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INTRODUCTION

Compliance with laws and regulations is generally achieved by the
deterrent effects of punishments. With very few exceptionms, economic
theories of deterrence have all been confined to a static framework. Recent
studies have begun to reveal the limitations and deficiencies of static
deterrence models (e.g. Davis, 1988; Leung, 1991a, 1993; Nash, 1991;
Polinsky and Rubinfeld, 1991).

Although the importance of dynamics has begun to be recognized in the
deterrence literature, the development of the subject is still in an early
stage. One major shortcoming of the existing dynamic deterrence models is
the assumption of a two-period structure that can simply be described as
follows. An individual engages in illegal activity in the first period. If
he is caught and convicted, he will be fined or imprisoned (or both)! He
will then participate only in legal activity thereafter, and this concludes
the second (and final) period. With the exception of Flinn (1986), this

i1legal-legal two-period structure underlies all the existing dynamic

deterrence models, even though some of them may appear to be multi-period.
The fundamental problem with the two-period assumption is the exclusion
of recidivistic behavior as every indi&idual is only allowed to break the
law once. While the two-period assumption is often justified on grounds of
simplicity and analytical tractability, it is plainly not supported by
empirical evidence. Reports on the prevalence of recidivism abound in the
literature. For instance, Avi-Itzhak and Shinnar (1973) report that about 67
percent of felons released from prisons in California in 1964 were
rearrested at least once within three years, and about 46 percent resulted

in prison terms. Similarly, Schmidt and Wwitte (1988) find that, for each of



the two cohorts (1978 and 1980) of releasees from the North Carolina prison
system, about 35 percent returned to prison within 46 months. Similar rates
of recidivism, based on different samples in different time periods, are
also reported in Bureau of Justice Statistiecs (1987, 1989).

Recidivism is more pervasive for economic crimes. Many studies find
that prisoners released or paroled for property offenses (such as burglary,
theft, and fraud) have significantly higher recidivism rates than those
released for violent, drug, or public-order offenses (Bureau of Justice
Statistics, 1987, 1989). The two-period models leave recidivistic behavior
unexplained. In addition, the ignorance of recidivism raises questions on
the generality of the results obtained from the existing two-period models.
Hence, modeling recidivism is important not only for the fact that
recidivistic behavior is prevalent but also because it may generate new
insights that cannot be gained from the existing two-period models.

The aim of this paper is to formulate a general dynamic deterrence
model that allows individuals to recidivate. Using dynamic programming
techniques and some recent results in Leung (1991b), I show that the
complicated recidivistic decision problem that thwarts previous attempts
can be made analytically tractable. Incorporating recidivism enables the
model to address issues that cannot be handled by the existing models. To
jllustrate the usefulness of the recidivistic model, four issues are
discussed in the paper. First, I examine how a repeat offender’s decision to
engage in illegal activity, as well as the offense rate given participation,
changes with time and with the number of prior convictions. Second, I derive
some comparative static results and contrast them with those of the two-

period models. Third, I investigate whether an increase in the likelihood of



punishment has a greater deterrent effect than an increase in the severity
of punishment. Fourth, I explore the connection between the recidivistic
model and the stochastic-process models of crime that have been extensively
used in operations research and criminology.

The fourth issue needs some elaboration. In contrast with economics,
the importance of recidivism has long been recognized in operations research
and criminology, where a great deal of work has been done to model
recidivistic behavior as a stochastic process.1 These models have been
widely utilized to evaluate the effectiveness of crime control policies. In
these models, individuals are assumed to commit crimes according to a
stochastic process (typically a Poisson process). The assumption is rarely
justified in the literature; perhaps the only exception is Carr-Hill and
Payne (1971). They contend that crimes can be regarded as random events with
offenders as unlucky victims, therefore the occurrence of an offense can be
1ikened to an accident. In this way, the modeling of crime commission can be
drawn on an extensive and established literature in probability theory that
models the occurrence of accidents as a stochastic process. Nevertheless,
economists may find it difficult to accept these stochastic-process models
of crime because of the assumptions that every individual follows the
postulated stochastic process mechanically and does not behave purposively.
These machine-like lawbreakers do not optimize as rational economic
individuals. No previous attempt has been made to examine the relationship
between economic models and stochastic-process models of crime.? In the
following analysis, I will explore the connection between the two types of

models by investigating what type of stochastic-process model of crime is

implied by the dynamic economic model.



1. A DYNAMIC PROGRAMMING MODEL OF DETERRENCE

Consider a risk neutral individual who contemplates participating in
illegal activity at time t. The returns from crime are given by 7w (c(t)),
where c(t) is the intensity of offending. The precise meaning of the offense
rate c(t) depends on the type of illegal activity. It can be defined as the
frequency of offending, the effort or time allocated to jllegal activity, or
the severity of the offense (e.g. amount of income tax evaded, value of
jtems stolen, quantity of pollutants discharged, collusive price-fixing
markup). For the purpose of a general analysis a specific interpretation of
the offense rate is unnecessary and therefore will not be given here.

Let n be the number of times the offender has previously been convicted
(n = 0,1,2,3,...). Both c(t) and n affect the hazard rate (instantaneous
conditional probability) of detection and conviction h(c(t),n). If the
illegal activity is detected, the offender will be arrested. He will face
two possible forms of punishment if he is convicted: a fine of 6(c(t),n) and
an imprisonment term of s(c(t),n).3 The severity of punishment is allowed to
depend upon the offense rate and the number of prior convictions. The
returns that the offender obtains during imprisonment are given by a
constant #. After he is released, he may contemplate again whether to
participate in illegal activity. The decision problem restarts again, and
the main difference is that the number of convictions has been increased by
one in this round.%

Assume that the individual faces two choices: participating in legal
activity versus illegal activity, and let the returns from engaging in legal
activity be ;(n). The offender faces an infinite horizon and discounts

future returns at a rate of r. There are three basic assumptions:
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Assumption 1: r € (0,1) and c(t) € [0,1]. «, 6, h, and s are bounded and
continuous functions.

Assumption 2: n(0) = 0, « >0, =" < 0, h(0,n) =0, hy 2 0, hyjp 2 0, 6(0,n)
=0, §7 20, 637 20, s(0,n) =0, s1 20, ;(n+1) < ;(n),
f(c,n+l) > 6(c,n), and s(c,n+l) > s(c,n).

The restrictions put on m, 4, h, and s in Assumption 2 are mild. Both
the fine and the imprisonment term increase with the offense rate because
the more serious the offense, the more severe will be the punishment. The
severity of punishment is also allowed to increase with the number of prior
convictions since repeat offenders usually receive heavier penalties
(Greenwood 1982). There are two reasons for assuming that ;(n) decreases
with n. First, a criminal history may create a stigma effect that reduces
the offender’s legal returns and market opportunities. Second, participation
in illegal activity requires time and effort, thus the offender foregoes his
human capital investment opportunity in legal activity. In additionm, the
offender's human capital may depreciate because of the lack of legal market
experience. These stigma and human capital effects lower the earnings from
legal activity. -

With these assumptions, the offender’s decision problem at time 7 given
n prior convictions (7 2 0, n > 0) is to choose c(t), t € [r,@), to maximize —
the expected present value of returns:

(1) V(r,n) = Max (V_(7,n),Vy(7,m)},

where V; and V; denote the legal and the illegal returns, respectively, and

(2) v, (rym) = [ e T(ENa(myde - x(m)/x,
0 1-Fp(t)
3) V; (r,n) = Max e T(t-T)x(c(t)) de
c(.) T 1-Fn(7)



o t+s(c(t),n)
+ | e T(E-T)| _g(c(t),n) + e T(X-t)7ax
T t

Fa(0)
+ e-rs(c(t) ,My(t+s(c(t),n),n+l) dt
1-Fn(T)

subject to
(4) Ff(t) = h(c(t),n)[1-Fu(t)].

Constraint (4) follows directly from the definition of the hazard rate,
where Fj(t) denotes the probability density function of the time of
detection and conviction.? The expression for V;(7r,n) requires some
elaboration. At any time t, the offender will gain mn(c(t)) if the illegal
activity is not detected, the conditional probability of which is given by
[1-Fo(t)1/[1-Fp(r)]. The probability of arrest and conviction is given by
the conditional density Fﬁ(t)/[l-Fn(T)]. If the offender is detected and
convicted at time £, he will be fined #(c(t),n) and imprisoned for a period
of s(c(t),n). After he is released at time t+s(c(t),n), the decision problem
restarts again. Notice that there is a discount term e-rs(c(t),n) on the
value function V(t+s(c(t),n),n+l) because imprisonment postpones the
realization of future returns from time t to t+s(c(t),n). Consequently, the
value function at time t+s(c(t),n) has to be discounted by e-rs(c(t),n) jp
order to bring it back to the present value at time t.®

Although the dynamic programming problem appears intractable, it can be
converted into a simpler problem. For convenience, let 7 be normalized to
zero.’ Since time 7 enters the problem only through the discount term, the
optimal control problem is autonomous. Furthermore, the problem has an
infinite horizon, therefore the value function does not depend on time 7

explicitly, i.e., V(7r,n) can be replaced by V(n). Without loss of



generality, let 7 = 0 and F,(0) = 0. In addition, by virtue of (4), Fh(t) in
(3) can be replaced by h(c,n)[1-Fo(t)]. As a result of these arguments and

simplifications, problem (1)-(4) can be reduced to:

(5) V(n) = Max (V (n),V;(n)},
(6) V, (n) = x(n)/r,
7 V;(n) = Max.( ) w e Tt{x(c)-6(c,n)h(c,n)

+ e-Ts(e,0)y(n+1)h(c,n) ] [1-Fy(t)]dt.
The decision problem (5)-(7) indicates that after each conviction, the
individual compares the returns V, and Vp, and decides whether to engage in
illegal activity again.8 The following proposition forms the basis of the

rest of the analysis.

PROPOSITION 1. Under Assumption 1,
(a) there exists a unique, bounded, and continuous function V satisfying the
functional equation (7), and

(b) the dynamic programming problem (7) is equivalent to

(8) V; (n) = Max
c

[ x(c) - 6(c,m)h(c,n) + e-rs(c,M)y(n+l)h(c,n)
r + h(c,n) .

PROOF: See Appendix.

Proposition la establishes the existence of the value function, while
Prﬁposition 1b shows that the original continuous time optimal control
problem can be substantially simplified to a more tractable dynamic
programming problem that does not explicitly involve the time variable.? It
also implies that the optimal solution c(t), t € [0,«), of problem (7) is a

constant that does not depend on time t. Thus, the offense rate will not



rise or fall with time during the interval between convictions.

As (8) reveals, the dynamics of the model are generated from three
sources: 8(c,n), h(c,n), and s(c,n). This means that (8) will degenerate
into a static model (i.e., V(n) will be the same as V(n+l) and there is no
difference between the present and the future) oniy if #, h, and s do not
depend on n. Therefore, the model is more general than Flinn's (1986) model

which relies exclusively on imprisonment to generate the dynamics.

1I. IMPLICATIONS

A. Recidivism
For any n > 0, an offender will recidivate if V (n) < V;(n). Let T'(c,n)
= [ﬂ(c)-ﬁ(c,n)h(c,n)]/[r+(l-e'rs(°'n))h(c,n)] and consider the condition
(cl): 1If T'(c,n) = 0, then T'(c,n) 2 I'(c,k) for all k > n.

Proposition 2 describes how recidivism changes over time.

PROPOSITION 2: Under Assumptions 1 and 2, if (Cl) is satisfied, then
VI(n) > VI(n+1) and V(n) = V(nt+l). These two inequalities will be strict if
V;(n) > VL(n) and if the inequality in (Cl) is strict.

PROOF: See Appendix.

The condition VI(n) > VL(n) means that the offender continues to
participate in illegal activity after n convictions. This condition is
clearly needed, for if the offender desists from crime after p convictions,
then V(n) = VL(p) = %(p)/r for all n > p. Hence, V(n) = V(nt+l) for n > p and

the inequality cannot be strict.



Proposition 2 describes the entry and exit behavior of the offender’s
criminal career. It shows that the value of participating in illegal
activity decreases with the number of prior convictions and indicates
whether and when a potential offender will engage in illegal activity. As
the number of prior records increases, the expected gain from illegal
activity diminishes and the likelihood of recidivism decreases. Whether the
offender will desist from crime depends on the slopes of v, (n) and V;(n).

Figures 1 and 2 describe two main possibilities. In Figure 1, the curve
AC describes the relationship between V(n) and n, and BC describes the
declining legal returns ;r(n)/r.10 The offender will quit the criminal career
when the two curves meet at C (where n = p). The number of convictions will
stay at p permanently since the offender will never participate in illegal
activity again. Clearly, it is possible that the offender will never quit
the criminal career. This is described by the curves AA' and BB' in Figure
2. In this case, V;(n) always stays above V, (n) so that there does not exist
any p such that v;(p) £ ;(p)/r. The individual becomes a chronic offender in

this case.

Figures 1 and 2 here

Proposition 2 shows that if the offender desists from crime, it will
be a permanent quit. In other words, once the offender exits from the
illegal sector, he will never participate in illegal activity again because
the returns from doing so are jower than the legal returns. Temporary quits
are not implied by the model, unless there are unforeseen stochastic changes

that alter the difference between V and V;.



Given that 6(.,n) and s(.,n) increase with n (Assumption 2), a
sufficient condition for (Cl) to hold is that h(.,n) increases with n.
Several arguments can be put forth to justify a positive relationship
between h(.,n) and n. First, if an offender had been arrested before, law
enforcement agencies would have more information on the offender and
subsequently could monitor him more closely. Likewise, private citizens may
help to detect a repeat offender because they know more about the offender.
These public and private information effects increase the probability of
apprehension for recidivists. Second, law enforcement agencies may also
learn more about the offender’s habits as the number of convictions
increases. Third, law enforcement agencies may pursue more tenaciously
offenders who repeatedly defy the laws. Again, actions taken by private
citizens will also reinforce the last two factors because they too may learn
more about the offender’s habits and strive tenaciously to convict repeat
offenders. For example, a company which had been convicted of producing
fraudulent products will be watched more carefully by individual consumers,
special consumer groups, communities, and perhaps rival companies.

Although the previous three considerations (information, learning, and
tenacity) suggest that n has a positive effect on h(.,n), there is a
learning effect which works in the opposite direction. As the number of
convictions rises, an offender’'s experience in evading detection may
increase, making it more difficult to arrest him. Theory cannot ascertain
whether this negative effect dominates the positive effect, so the issue can
only be resolved empirically. The evidence to date seems to support the view
that h(.,n) increases with n.11

Even if h(.,n) decreases with n, the conclusions of Proposition 2 still
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hold as long as (Cl) is satisfied. This result is intuitively reasonable,
for if h(.,n) does not fall too fast with n, then the value of participating
in illegal activity should decline with n because the severity of punishment
rises with n. The inequality in (Cl) provides an explicit condition to show
how fast h(.,n) can decrease with n. Although the expression I'(c,n) may not
have a convenient interpretation, one can replace it by a stronger but more
interpretable condition:

(C2): Both 6#(c,n)h(c,n) and (1-e'rs(°'n))h(c,n) increase with n.

It is easy to check that (C2) implies (Cl). (C2) is more interpretable
than (Cl) because #(c,n)h(c,n) is the expected fine and (1-e’rs(°'n))h(c,n)
can be regarded as the expected penalty from imprisonment. Since the
offender’'s returns after incarceration are given by e-Ts(C,M)y(n+l), the
incarceration costs him V(n+l)-e TSV(nt+l) = (1-e"TS)V(n+l), because he would
have gotten V(n+l) had he not been incarcerated. Hence, 1-e-rs(c,n) can be
treated as a loss factor which measures the penalty from imprisonment.
Condition (C2) accords with the intuition that if the expected penalties
(fine and imprisonment) increase with n, then the value of engaging in
illegal activity will diminish with n.

The model suggests that law enforcement and rehabilitative agencies
can make crime commission less attractive to ex-offenders by raising their
alternative legal opportunities. This may be accomplished indirectly by
providing them with training and educational programs to increase their
earning capabilities or more directly by giving them income subsidies. In
any case, the alternative legal returns must be raised to at least VI.12

Proposition 2 is concerned with the participation decision, the next

proposition examines the intensity decision. An additional condition is
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needed:

(C3): -hsyp + rhs% - 2hysy + hyg <€ 0.

PROPOSITION 3: Under Assumptions 1 and 2, if c; is an interior solution to
the maximization problem (8) and (C3) is satisfied, then c = c; must
satisfy the equation
9) n'(c) - 61(c,n)h(c,n) - §(c,n)hy(c,n) - rsl(c,n)e'rs(c'n)V(n+1)h(c,n)
+ e-rs(c,0)y(n+l)hy(c,n) - V;(m)hi(e,n) = O.

PROOF: See Appendix.

Proposition 3 characterizes the solution of the dynamic programming
problem.13 To study how c; changes with n, consider first a simple case in
which 8(c,n) = 6 (a constant), s(c,n) = 0, and h(c,n) = ch(n). Assume that
V(n) = V;(n) (the offender has not yet desisted from crime), then (9)
becomes w’(c:) = [6 + V(n) - e ISV(n+1)]h(n). Differencing this equation
yields

cXiq - ef = ([6+V(n+])-V(n#2) [h(n+l) - [6+V(n)-V(n+1) Jh(n))/x"(2),
where z lies between c:+1 and cg. This expression suggests that the sign of
cg+1 - c: is indeterminate. Even if one assumes h(n+l) > h(n), c;+1 - c:
will still depend on the curvature of V(n). For instance, if V(n+2)-V(n+l)
< V(n+l)-V(n) (i.e. V(n) is "concave"), then c;+1 - c: < 0 (since n" < 0).
Unfortunately, the model does not yield an unambiguous sign for [V(n+2)-
V(n+l)] - [V(nt+l)-V(n)]. From this simple example one can infer that the

sign of c;+1 - c: is also ambiguous in the general case. Thus, even though

V(n) and V;(n) fall with n, cg may rise with n.
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B. Comparative Statics

Equations (8) and (9) can be used to study the effects of shifts in the
functions h, 8, s, and % on V; (n) and c:. Consider first a parallel shift in
f(c,n), i.e. a shift in 6(c,n) (upward or downward) without altering the
slope 61(c,n) at each c. 14 Applying the envelope theorem to (8),
(10) av; (n) /a6 = (—h+e'rs[3V(n+1)/30]h)/(r+h).
Applying the implicit theorem and differentiating (9) with respect to
§(c,n), one obtains
(11) M(ac:/ae) =hp + rsle'rs[aV(n+1)/80]h

- e ¥S[3V(ntl)/d6]hy + [8V; (n)/36]hy,

where M = w“-011h-201h1-0h11+e'rsV(n+1)(-hsll+rhs§-2hlsl+h11)—VI(n)hll.
Substituting (10) into (11) and simplifying,
(12) M(ac:/aﬁ) = rh1/(x+h) + re ¥S[av(ntl)/86][s1h - hy/(x+h)].

The effects of parallel shifts in s and h on Vy(n) and c: can also be

derived analogously. It can be shown that

(13) 3V, (n)/8s = e FS[-rV(n+l) + av(n+l)/3s]h/(r+h),

(14) M(3ck/as) = re TS([aV(n+1)/0s] - £V(n+1)) [s1h - hy/(x+h)],
(15) 4V, (n)/8h = (-0 + e TS[V(ntl) + (8V(na+l)/8h]h] - V(n))/(x+h),
(16) M(dck/ah) = 61 - hy/(r+h) + re-TS[aV(n+l)/8h][s1h - hy/(x+h)]

+ e ISy(n+l) [rsq + hy/(x+h)] - VI(n)hl/(r+h).

For a parallel upward shift in ;, there are two cases to consider. In
Figure 2, if BB’ is shifted upward, but still lies below AA' at every n,
then the offender will still not desist from crime at any n. Hence the
shift in n will not have any effect on V; (n) and c: at all. For the case in
Figure 1 in which the offender quits at n = P, v(p) = ;(p)/r. It can be

shown that for any n < P,
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(17) 8V, (n) /3% = e~TS[aV(n+1)/3n]h/(r+h),

(18) M(3c*/am) = re"TS[aV(n+l)/dx][s1h - hy/(x+h)].

One can use the fact that 6V(p)/6; = 1/r to iterate (17) backward and
obtain for each n < p an explicit expression for BVI(n)/B; that does not
contain 3V(n+l)/6;. The following proposition follows readily from (10) -

(18).

PROPOSITION 4: Under Assumptions 1 and 2, V;(n) is decreasing in 0 and s,
and increasing in ;. If (Cl) holds, then V;(n) is also decreasing in h. If
sih < hy/(r+h) and (C3) is satisfied, then acX/86 < 0, dch/ds < 0, and
ack/an > 0.

PROOF: See Appendix.

As expected, an increase in fine, imprisomment, or the hazard rate of
arrest reduces the value of illegal activity. As a result, the offender may
quit his criminal career earlier. An increase in legal returns, however,
raises the value of illegal activity. This seemingly counter-intuitive
result does not imply that the offender will engage in crime for a longer
period of time. From (17), aVI(p-l)/é; = e TSh/[r(x+h)] < 1/r, hence
iterating (17) backward yields 6VI(n)/6; < 1/r for all n < p. Since
BVL(n)/E; =1/r > BVI(n)/a; for all n < p, hence the increase in the value
of legal activity is larger than the increase in the value of illegal
activity, so the offender may quit crime earlier.

Although parallel shifts in h, 6, s, and ; produce unambiguous effects
on the participation decision, the effects on the intensity decision are

more difficult to determine. Proposition &4 shows that an increase in 6§, s,
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or ; will reduce the offense rate if the inequality sih < hy/(r+h) holds.
This condition will be satisfied if the length of incarceration is
independent of the offense rate (i.e. sy = 0). If the condition is not met,
then an increase in fine, imprisonment, or legal returns may result in a
higher offense rate. This is intuitively possible because given that the
decision to engage in crime has been made, an offender may commit more
serious offenses to compensate for the higher expected punishment or the
higher foregone legal earnings. This leads to an important policy tradeoff.
An increase in penalty reduces the value of illegal activity, so that fewer
people will commit crimes, other things being equal. On the other hand, for
those who will commit crimes, the increase in penalty may increase their
offense rates. It is therefore possible that increasing the penalty may
result in a higher total crime rate.

Even if s1h < h1/(x+h), the sign of ac;/ah is still indeterminate. For
example, if h; = 0 and s7 = 0, then (16) becomes M(ac;/ah) =01, which
implies that ac:/ah < 0. On the other hand, if 67 = 0, s1 =0, V(n) = Vi(n),
and 8V(n+l)/8h = 0 (say when n = p-1), then (16) becomes M(acg/ah) =
- ohl/(r+h) + [ TSV(n+l) - V(n)]hl/(r+h), thus ac;/ah > 0. Hence the effect
of a shift in h on c: could go either way.

Equations (10) - (18) can also be utilized to highlight the differences
between the recidivistic model and the existing two-period deterrence
models. Consider a prototypical two-period deterrence model in which V(0) =
Max (U, (0), V7(0)), V,(0) = x(0)/x, and V(1) = V. (1) = x(1)/r. A potential
offender compares the legal returns V. (0) and illegal returns V;(0). If
V;(0) is larger than V; (0), then he will engage in illegal activity. If he

is caught and convicted, he will never engage in illegal activity again and
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will earn the legal returnms ;(1)/r thereafter. This illegal-legal transition
underlies the structure of all the two-period deterrence models in the

literature. Notice that in this model, V(0) = V(1) follows directly from the
assumption that ;(0) > ;(1). Since 8V(1)/46 = 0, av(l)/ds = 0, and av(l)/éh

= 0, one can modify (10), (12) - (18) to obtain

(19) 3V, (0)/38 = -h/(x+h),
(20) M(3c¥/a8) = rhy/(r+h),
(21) gV, (0)/3s = -e TSV(L)h/(r+h),
(22) M(3ck/8s) = -r2e FSV(1)[s1h - hy/(x+b)],
(23) 4V, (0)/3h = [-6 + e FSV(1) - V(0)]/(xr+h),
(24) M(8ck/8h) = 67 - fhy/(r+h)
+ e"TSY(1)[rsy + hy/(r+h)] - V;(O)hy/(r+h),
(25) 3V, (0) /8% = e TSh/r(r+h),
(26) M(3c¥/am) = e TS[s1h - hy/(r+h)],

where the arguments ct and n = 0 are suppressed for simplicity.

Equations (19), (21), (23), and (25) illustrate that the effects of
shifts in h, #, s, and ; are qualitatively similar to those of the
recidivistic model. However, the sign of ac;/ao is now unambiguously
nonpositive, while the signs of ac:/as and ac;/a§ still depend on sih -
hl/(r+h).15 The sign of BC:/ah remains indeterminate.

There are two main differences between the two-period model and the
recidivistic model. First, the inequality V(0) 2 V(1) holds trivially in the
two-period model, whereas some condition such as (Cl) is needed to ensure
that V(n) = V(n+l) in the recidivistic model. The inequality V(n) 2 V{n+l)
plays an essential role in establishing some of the implications of the

recidivistic model. Second, V(1) is exogenously given in the two-period
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model, while V(nt+l) is endogenously determined in the recidivistic model
(except for V(p) if the offender desists from crime at n = p). The offender
has to ponder the effects of his decisions not only on the current gains but
also on the future returns. By ignoring future considerations, the
implications of the two-period model can be very misleading. For instance,
the two-period model predicts that an increase in fine will unambiguously
reduce the offense rate. The recidivistic model, however, reveals that this

prediction is not robust when recidivism is allowed.

C. Certainty versus Severity of Punishment

A frequently discussed issue in deterrence theory is the relative
deterrent effectiveness of a change in the probability of detection and
conviction versus a change in the severity of punishment. It is widely
believed that an increase in the probability has a greater deterrent effect
than an increase in the severity.16 Becker (1968) develops an economic model
to show that this widespread presumption necessarily implies that offenders
are risk preferrers. Subsequent works by Brown and Reynolds (1973) and
Heineke (1975), however, show that Becker's result is sensitive to his =~ —
assumptions. They demonstrate that the presumption in general does not imply
anything about the offenders' attitudes toward risk. Economic theory has not
yet provided a satisfactory explanation for the presumption.

Some advance has been made by Davis (1988). He argues that if one
considers the timing of rewards and punishments, the presumption can be
explained irrespective of the offender’s attitude toward risk. The main
problems with Davis'’ analysis, however, are that he assumes a two-period

horizon and ignores recidivism, and uses Becker’s (1968) notion of
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"compensating changes" to derive the result. As Brown and Reynolds (1973)
have pointed out, the device "compensating changes" (compensating an
jncrease in the probability of detection by an equal percentage reduction in
the fine so as to leave the expected income from the offense unchanged) is
both unappealing and arbitrary. They show that one can immediately infer
criminal risk preferences from compensating changes since the device amounts
to the standard method of determining risk preferences by altering variances
while leaving means unchanged. If the device is used, then Becker's analysis
on the implication of the presumption on risk preferences will simply be
redundant. The arbitrariness of the device is also revealed in the way the
expected income is held constant in Davis (1988).

By considering recidivistic behavior and without using compensating
changes, the dynamic model developed here can provide an explanation for the
greater deterrent effectiveness of a change in the probability than in the
severity of punishment. Consider the more relevant case in which the
individual engages in illegal activity, i.e. V(n) = V;(n). Following Brown
and Reynolds (1973), the elasticities of V(n) with respect to § and h will
be used to compare the relative deterrent effectiveness of a change in the
probability versus a change in the severity of punishment. Let ¢y and ey
denote the elasticities -{8/V(n)][8V(n)/d88] and -[h/V(n)]/[8V(n)/dh],

respectively.

PROPOSITION 5: Under Assumptions 1 and 2, if V(n) = V;(n) and (Cl) is

satisfied, then €} 2 €4.

PROOF: See Appendix.
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Proposition 5 shows that the offender’s value of engaging in illegal
activity is more responsive to a change in the hazard rate of detection and
conviction than a change in the severity of punishment. Hence, an increase
in the certainty of punishment has a greater deterrent effect than an
increase in the severity of punishment. One of the most important insights
gained from the recidivistic model, which cannot be obtained from all the
existing two-period models, is to uncover the conditions under which the
result will hold. In a two-period model, (19) and (23) imply that

en - €9 = [V(O) - e TSV(1) Jh/[ (x+h)V(0) ],
which shows that ey is unambiguously greater than €g. On the other hand,
condition (Cl) is meeded for ey > €g to hold in the recidivistic model. 1f
(Cl) is not satisfied, the inequality e > €y may be reversed.l’ This
possibility illustrates one of the weaknesses of ignoring recidivistic
behavior in the existing two-period models because they cannot expose the

importance of the relationship between V(n) and V(n+l).

D. Stochastic-Process Models of Crime

Proposition 1b shows that the optimal offense rate that solves the
dynamic programming prpblem is a constént. This implies that from the nth
conviction to the (nt+l)st conviction, the optimal offense rate c; does not
vary with time. Similarly, the optimal offense rate c:+1 is a constant from
the (n+l)st conviction to the (n+2)nd conviction.l8 As h(c,n) only depends
on ¢ and n, the hazard rate of detection and conviction also does not vary
with time between any two consecutive convictions. The time between two
consecutive convictions is therefore exponentially distributed because the

exponential distribution is the only distribution with a constant hazard
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rate. Ignoring the time spent in incarceration, this implies that the crime

process is a Markov jump (point) Drocess.19 The state space is the set of

the number of convictions (0,1,2,3,...}, and a jump occurs when there is a
conviction.20 Therefore the stochastic-process model of crime implied by the
recidivistic model is a Markov-jump-process model. In contrast with all the
stochastic-process models of crime in the literature, the Markov-jump-
process model obtained here is derived from an underlying economic
optimizing behavioral model.

Most of the stochastic-process models of crime in operations research
and criminology are Poisson-process models, and therefore they are just a
special case of the Markov-jump-process model. This is because a Poisson
process, which requires the hazard rate to be the same at any time t €
[0,©), is a special case of the Markov jump process which only requires the
hazard rate to be constant during the time between any two jumps (see Hoel
et al., 1972; Breiman, 1968; Gikhman and Skorokhod, 1968). Hence, the
recidivistic model provides a behavioral and structural foundation for the
Poisson-process models of crime. The results also indicate how the
parameters of the behavioral model are connected to the parameters of the
stochastic-process models.

There is a subtle difference between the two types of models, however.
In a typical Poisson-process model of crime in operations research and
criminology, it is assumed that the crime process (the process of crimes
committed by an individual) follows a Poisson process and an arrest is
determined at random for each crime. Thus, the arrest process is a thinned
version of the crime process in that only a subset of the crimes results in

arrest (Lehoczky, 1986). As long as the probability of arrest does not
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depend upon the number of crimes committed and the number of previous
afrests (a strong assumption), the arrest process (thinned Poisson process)
will still be a Poisson process.21 This Poisson arrest process is the basis
of the Poisson-process model of crime. In contrast, the recidivistic model
assumes that only the arrest process is stochastic. An individual commits
crime over time and faces a random arrest process governed by the hazard
rate of detection. Although the two models may be observationally equivalent
(since the crime process, unlike the arrest process, is unobservable), the
underlying behavioral assumptions are fundamentally different. This arises
from the ways non-economists and economists approach the problem.
Non-economists tend to focus exclusively on the number of crimes. In
contrast, economists are more concerned with offense rates such as the time
allocated to illegal activity, the amount of tax evaded, the number of
illegal immigrants hired. In many applications, the economic approach is
more appropriate because the number of crimes may not be a good measure of
criminality. For example, suppose a cartel is engaged in price fixing and
charges a high price over a long period of time (say, until the crime is
detected). In this case, the number of crimes committed is one, but the
number is not very useful. The offense rate (the markup above the marginal
cost of production) is clearly a more important measure of criminality (see
Block et al. (1981) for an example of illegal price fixing in the bread
industry). Hence, the Markov-jump-process model derived here, which is based
on a more appropriate concept of offense rate and does not require the
strong assumption that the probability of detection to be independent of the
number of prior convictions, is better than the Poisson-process models of

crime in operations research and criminology.
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The Markov-jump-process model is empirically testable since one can
check whether the time between convictions is exponentially distributed.
Available evidence supports this prediction. For example, in Stollmack and
Harris' (1974) study on releasees from correctional programs and Nash's
(1991) work on violations of consumer protection regulations, the

exponential distribution fits the data reasonably well.

III. CONCLUSION

Economic theories of deterrence have primarily been built on static
models. Of the few dynamic deterrence models existed in the literature, a
major shortcoming is the assumption of a two-period structure that ignores
recidivism. Although "few criminal justice issues have matched recidivism in
stirring public opinion and in engaging the attention of criminal justice
professionals" (Bureau of Justice Statistiés, 1989), the modeling of
recidivistic behavior has virtually been ignored in economics. The aim of
this paper has been to formulate and solve a general dynamic deterrence
model that incorporates recidivism. It demonstrates how the complicated
recidivistic problem can be brought into a dynamic programming framework,
from which a set of useful implications can be derived. In addition to
formulating and solving the recidivistic model, the paper makes four
contributions. It shows how the value and the intensity of engaging in
illegal activity change over time, highlights the deficiencies of two-period
models, establishes the conditions under which an increase in the certainty
of punishment will have a greater deterrent éffect than an increase in the
severity of punishment, and provides a structural foundation for the widely

used stochastic-process models of crime in operations research and
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criminology. The model also generates some testable predictions. For
example, it shows that the time between convictions is exponentially
distributed.

There are many issues which can further be explored. As in Flinn
(1986), Nash (1991), Polinsky and Rubinfeld (1991), and many others, the
model assumes risk neutrality. It would be useful to study the effects of
risk aversion or risk preference on the implications of the recidivistic
model. However, this is technically a difficult problem. If utility is
defined on consumption, then lifetime discounted utility will be the same as
lifetime discounted consumption for a risk neutral offender. Since lifetime
discounted consumption equals lifetime discounted income (wealth), the
offender’s utility maximization problem becomes a wealth maximization
problem. Because of this equivalence, the offender's decision problem can be
formulated as the wealth maximization problem described by equations (1) -
(3). If the offender is not risk neutral, then he cannot just maximize
wealth because his lifetime discounted utility is no longer equivalent to

his wealth. In modeling the offender's utility maximization problem, it is

now necessary to consider whether lending and borrowing are allowed. If
saving is not permitted, then the offender has to consume all his returns - -
(legal or illegal) at each moment. By reinterpreting n as a utility

function, (1)-(3) can be modified to handle this case. However, a major

problem arises in modeling the fine § because the offender does not have any
savings to pay the fine if he is caught. It appears that the only solution

is to make the unattractive assumption that ¢ = 0. In the more realistic

case in which saving is permitted, the offender not only has to choose the

offense rate but also the rate of consumption at each instant. Hence,
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relaxing the risk neutrality assumption will give rise to a series of
problems and the analysis will become much more complicated. These problems
do not arise in a static deterrence model because consumption must be equal
to wealth, as there is only one period in the model.

In the discussion on certainty versus severity of punishment, the
deterrent effect is measured in terms of the value of illegal activity. A
more complete analysis would include the effects of altering the certainty
versus the severity of punishment on the offense rate. The combined impact
of punishment on the participation and the intensity of offending has not
yet been investigated in the literature.22

Another issue also deserves attention. From a general equilibrium point
of view, the recidivistic model only deals with the supply side (the supply
of offenses). It would be useful to model the demand side and then
investigate the equilibrium properties. Many policy debates can only be
properly addressed by a dynamic general equilibrium model, especially for
those policies that involve time and other dynamic considerations. The best
example is selective incapacitation since imprisonment occurs over time. The
existing general equilibrium literature either uses static models and
therefore ignores incapacitation (e.g. Neher, 1978; Balkin and McDonald,
1981; Usher, 1986; Furlong, 1987), or makes ad hoc assumptions on the
supply side (Ehrlich, 1982). Using the results established in this paper, it

is possible to develop a more complete general equilibrium analysis of

crime.
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APPENDIX: PROOFS
PROOF OF PROPOSITION 1:

(la) Let C(Z,) (Z; = the set of nonnegative integers) be the space of
bounded and continuous functions v: Zi + R, with the sup norm |v| = supxezs+
|v(x)|. Define an operator T on Cc(Z,) by Tv = Max (;(n)/r, Maxg () J}, where
J is given by J = I3 e'rt[w(c)-0(c,n)h(c,n)+e'rs(°'n)vh(c,n)][1-Fn(t)]dt.
Clearly, T: c(zZy) » C(Z;). Let w be a real nonnegative number. Since
o-s(c(8),0) < 1, T(v4w) < Max{n(n)/r, Maxc[J + wfg e T F(t)de]). Let D(r)
- % e TtFj(t)dt. Clearly, D(0) = f© Fi(t)dt < 1, and D'(x) < 0 for r > 0.
It follows that D(r) < 1 for r > 0. Furthermore, e Tt ig strictly convex in
t for r > 0. By Jensen's inequality, D(r) > eXp[-rfz tFﬁ(t)dt] > 0. Hence, O
< D(r) <1 for r > 0. Let g be a real number such that D(r) < g < 1, then
T(vtw) < Max(m(n)/r, Max (J + pw)) = Max{n(n)/r, (Max, J) + pw) < Tv + pu.
Hence for any given r > 0, there exists a positive real number g < 1 such
that T(v+w) < Tv + pw. It is easy to check that T is a monotone operator. It
follows from Blackwell's theorem that T is a contraction mapping with
modulus B, and so the functional equation (7) has a unique bounded and
continuous fixed point V.

(1b) The expression n(c(t)) - 0(c(t),n)h(c(t),n) +
e'rs(c(t)rn)V(n+1)h(c(t),n) inside the integral in (7) is a function of c(t)
and n only, and does not depend on t explicitly. It is easy to verify that
the model is a member of the Kamien-Schwartz class of models (Kamien and
Schwartz, 1971; Leung, 1991b). Therefore the theorem in Leung (1991b) can be
applied to solve the optimization problem (7), and it follows that the
optimal solution c(t) is a constant for all t. As a result, the right-hand

side of (7) can be integrated to obtain the right-hand side of (8).
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PROOF OF PROPOSITION 2:

If V;(n) 2 V; (n+l), then V(n) > V(n+l) (since ;(n) > ;(n+1)). Hence,
it suffices to prove V;(n) 2 VI(n+1). There are two possibilities: the
offender does not desist from crime (a chronic offender) or he desists at
some point in time. The proofs for these two cases are slightly different.

Case (i). Suppose that the offender never desists from crime. Since
V(n+l) = VI(n+1), therefore V;(n) - V; (n+l) = Vi (n) - V(n+l)
= Max_ {w(c)-ﬁ(c,n)h(c,n)-[r+h(c,n)(1-e'rs(°’n))]V(n+1)}/[r+h(c,n)]. Hence,
(Al) V;(n) - V; (ntl)
> (w(c)-e(c,n)h(c,n)-[r+h(c,n)(1-e'rs(°'n))]V(n+1))/[r+h(0,n)],
for any c € [0,1]. Thus, Vi (n) - V; (n+l) >0 if a ¢ € [0,1] can be found
such that the right-hand-side of (Al) is nonnegative. Consider

(A2) ¢ = argmax I'(c,n),
ce(0,1]

where T'(c,n) = [w(c)-0(c,n)h(c,n)]/[r+(1_e'rs(°:n))h(c,n)]. c1eariy, such a
¢, exists because I'(c,n) is continuous in ¢ and ¢ lies in a compact set
[0,1]. Now it remains to show that this particular &, will yield the desired
inequality for (Al), i.e.,
(A3) w(én)-ﬁ(én,n)h(én,n)-[r+(1-e'rs(én'n))h(én,n)]V(n+1) > 0.
Since the offender never desists from crime, V(n) = V;(n) for all n > 0.
Thus, substitute V(n) for V;(n) and iterate the functional equation (8),
(A4) V(n) = Max ., { &(cpy,n) + @(cn+1,n+1)D(cn,n)

+ Q(cn+2,n+2)D(cn+1,n+l)D(cn,n)

+ Q(cn+3,n+3)D(cn+2,n+2)D(cn+1,n+1)D(cn,n) + ... ),
where ®(cy,k) = [w(ck)-G(ck,k)h(ck,k)]/[r+h(ck,k)], and
D(cp k) = e T5(C BIn(ey, k) /[r+h(cy,k)]. Using the product symbol T, (A4)

can be expressed more compactly as
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(AS5) V(n) = Max ., (®(cpy,n) + =, [8(ciqq,i+l) M., D(cy, )11
Since ®(ci,k) = F(ck,k)[l-D(ck,k)], (A5) can be rewritten as
(A6) V(n) = Max{c}(F(cn,n)[l-D(cn,n)]
+ 3 [T(ciq1,i+1)[1-D(ci41,i41) 1M, D(ej, 301}

Assumption 2 implies that x'(0) > 0. Since #x(0) = 6¢(0,n)h(0,n) = 0,
and 01(O,n)h(0,n)+0(O,n)hl(O,n) = 0, hence for each n > 0, there exists
some ¢ € [0,1] such that «n(c) > 6(c,n)h(c,n). Thus, r(éy,n) >0 for all n >
0. Combining this with (Cl1),
(A7) I'(c,ntk) < T'(é,,n)
for any ¢ € [0,1] and any k > 0. Since 0 < D(cy,k) <1 for any k>0,
substituting (A7) into (A6) yields
(A8) V(n) < I'(&,,n)(Max , {[1-D(cp,m)]

+ 22__ [[1-D(ej41,i+1) )M, D(ey,3)103.
In addition, [1-D(cp,n)] + Zi., [[1-D(ci+1,i+l)]H§=n D(Cj,j)]
= {1-D(cq,n) + [1-D(cn+1,n+l)]D(cn,n) + [1-D(cn+2,n+2)]D(cn+1,n+1)D(cn,n) +
[1-D(cn+3,n+3)]D(cn+2,n+2)D(cn+1,n+1)D(cn,n) + ... )< 1. Thus, (A8) implies
(A9) V(n) < I'(ép,n) |
= [w(én)-ﬂ(én,n)h(én,n)]/[r+(1-e'rs(én’n))h(én,n)].

As &, may not be an optimal solution for the dynamic programming problem
(8), substituting &, into the right-hand-side of (8) yields
(A10) V(n) 2 [n(én)-B(En,n)h(én,n)+e'rs(én'n)V(n+l)h(én,n)]/[r+h(én,n)].
Combining (A9) and (Al0), (A3) is obtained. This completes the proof. If
I['(c,n+k) < I'(c,n), then the inequality (A7) will be strict. It follows that

the inequality (A9) will also be strict, hence V(n) > V(ntl).
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Case (ii). Suppose there exists a finite integer p > 0 such that V, (p)
> V;(p). Im this case, the offender will desist from crime at n = p because
Case (i) has proved that if he continues to engage in illegal activity,
V;(n) £ V; (p) for all n > p. Since V(n) = ;(p)/r for n > p, it remains to
prove that V;(n) 2 VI(n+1) for 0 € n £ p-1. The proof is essentially the
same as Case (i) except that a different argument is needed to show that
V(n) < T'(é,,n). Since the offender desists at n = p, V(n) = V;(n) for 0<n
< p-1, and (A6) has to be modified as follows. For 0 < n £ p-2,

(All) V(n) = Max{c}(F(cn,n)[l-D(cn,n)]
+ TP22 [I‘(ci+1,i+l)[1-D(ci+1,i+1)]II§_n D(cj,j)]
+ [7(p)/r][1-D(cp.1,p-1)IMEZE D(ey, 1)
Notice that p = 2 is implicitly assumed in (All). The proof for the case p =
1 is trivial, since V(0) = Max(x(0)/r,V;(0)) = x(0)/r 2 x(1)/r = V(1). Apply
(A7) to replace every r'(.,.) in (All) by the maximum I'(&,,n),
(A12) V(n) < Max ., (T'(&n,n) [1-D(cp,n) + zp_2 [1-D(ci+l,i+1)]II§=n D(cj,j)]
+ [()/r][1-D(cp.1,p-1)IMEZE D(e5,3))
- Max,,, ([(&,m) - T(&qmD(ep.1,p-DIELT Dej, )
+ [7(p)/r][1-D(cp.1,p-1)IIBLZ D(ey, 1))
It follows from (Al2) that V(n) < I'(ép,n) if it can be shown that T(ép,n) 2
;(p)/r. Let c:_l denote the optimum c that solves (8) when n = p-1, then
Vy (p-1) = (m(c¥.}) - 6(ch.y,p-1bleg y,p-1) +
[exp(-rs(c¥_; ,p-1)) IV(PIB(c)y ,p-1))/[r+h(cg. 1 p-D)]
> x(p-1)/1,
since the offender desists at n = p. From this inequality,
V(p) > ([r+h(et.y,p-D1[n(p-1)/r]-w(cy 1 )+0 ey ,p-DDhley y p-1))/

([exp(-rs(c}.,,p-1))Ih(c; 1 p-1)).
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Since V(p) = ;(p)/r and ;(p) < ;(p-l), therefore

A(p)/r 2 ([r+h(c*., ,p-1)1[n(p)/r]-n(ch )46 (cy 1 ,p-Dhley 1 ,p-1)V/
(lexp(-rs(cX_;,p-1))Ih(cp. 1 ,p-1)).

Rearranging this inequality yields

(A13) [w(cj_l)-a(cj_l,p-1)h(cj_1,p-1)]/(r+[1-exp(-rs(cj_1,p-1))]h(cj,1,p-1))
> m(p)/r.

The left-hand side of (Al3) is just F(c:_l,p—l), which by (Cl) is less than

or equal to T'(&,,n) (since p-1 > n). Thus, T(&,,n) 2 ;(p)/r. Consequently,

V(n) £ I'(é,,n) and the rest of the proof in Case (i) follows.

PROOF OF PROPOSITION 3:

Let U(c,n) = n(c) - 8(c,m)h(c,n) + e ¥S(¢:MV(ntl)h(c,n). The first-
order and second-order necessary conditions of (8) are given by
[r+h(cX,n)]U1(c¥,n) - U(ef,n)hy(cy,n) = 0, and M = [r+h(c¥,n) 1011 (ch,n) -
U(c;,n)hll(cg,n) < 0, respectively. These can be expressed more simply as
(A14) Uy (e¥,n) - Vi (m)hy(ch,n) = O,

M = Upp(c¥,n) - Vy(n)hyy(cq,m) <0,

since V;(n) = U(c;)/[r+h(c;,n)]. Equation (9) is identical to (Al4) whenﬁcré”

*
(O

It remains to verify that c; is indeed a maximizer. The second-order
sufficient condition will be satisfied if M < 0. For convenience, the
arguments c: and n are suppressed. Straightforward calculation yields

(A15) M = z" - 611h - 267hy - 6hyq + e ¥8V(n+l)(-hsyy + rhs? - 2hysy + hyp)
- Vi (m)hyy.

It follows from Assumption 2 and (C3) that M < 0, and the second-order

sufficient condition is satisfied.
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PROOF OF PROPOSITION 4:

Consider first the case for #. If the offender desists from crime at n
= p, then V(p) = ;(p)/r, so that 3V(p)/38 = 0. One can then iterate (10)
backward to prove that dV;(n)/86 < 0, hence V;(n) is decreasing in 8 for any
n < p. If the offender never desists from crime, then V(n) = V;(n) for all
n. In this case one can employ standard dynamic programming techniques (e.g.
Stokey and Lucas, 1989, Theorem 4.7) to show that the contraction maps
decreasing functions of § to decreasing functions of §. Hence the fixed
point Vy(n) is decreasing in ¢ and 8V(n)/86 < 0. The proofs for the other
cases are similar and are therefore omitted. Condition (Cl) ensures that
V(n) - e TSV(n+l) > 0 and hence the right-hand side of (15) is nonpositive.
The proofs for the signs of ch/ae, ac;/as, and ac;/6; follow directly from

inspecting (12), (1l4), and (18).

PROOF OF PROPOSITION 5:
From (10) and (15),
(Al6) [8V(n)/3618 - [8V(n)/dh]h
= (([8V(n+1)/8018 - [3V(n+l)/3h]lh)e TS + [V(n)-e *SV(n+l) ] )h/(x+h).

First, consider the case where the offender never desists from crime.
Define a truncated value function V®(n) (0 < m < =):
(Al17) V@(n) = Max ., (®(cpy,n) + =P [®(cy41,141) HJ%:n D(cj,j)]}
for n < m, and define V®(n) = 0 for all n > m. Let Q™(n) = [8V™(n) /8618 -
[8V™(n)/8h]h, and R%(n) = VB(n)-e T5V®(n+l). It is easy to verify that
(A16) also holds for the truncated case (with V replaced by V). Hence,
(Al18) Q%(n) = [e TSQM(n+l) + R®(n) Jh/(r+h).

It is easy to check that Proposition 2 remains valid when the value
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function is truncated, hence R®(n) > 0 for n < m. Since Q®(m) = 0, it

follows from induction on (A18) that Q®(n) > 0 for all n < m. The proof

will be completed if it can be shown that limp Q®(n) = Q(n) = [8V(n)/a08]6

- [8V(n)/8h]h. This amounts to proving that limp dvl(n) /88 = 8V(n)/86 and

limp o avl(n) /8y = dV(n)/dy. Differentiate (Al7) with respect to § and use

the envelope theorem,

(A19) av®(n) /88 = - (G(c®,n) + =L [G(c},,,i+]) H§=n D(c%,3)1),

where G(cf,k) = 9(c§,k)h(cﬁ,k)/[r+h(c:,k)], and c¢§ (k = n,ntl,...,m) denote

the optimal offense rate for the truncated problem (Al7). Since # and h are

bounded functions, let § = sup § < @ and 8 = sup (h/[r+h]) < 1. Since e"TS

< 1, (Al9) implies that |aV®(n)/36]| < 88[1 + & + 62 + ... + 6™D] < §6/(1-6)

(a constant and therefore dv®(n) /36 is Lebesgue integrable). It follows from

the dominated convergence theorem that

(A20) limp o fg [8V™(n)/86]1d8 = fﬁ [1imy,. 8V™(n)/3614d6.

By the fundamental theorem of calculus,

(A21) 2 [8V®(n)/86]1d8 = V™(n) gy, - VB(n) |-,

(A22) 2 [8V(n)/801d6 = V()| gap - V() | geas

where V(n)|0=b denotes that V(n) is evaluated at 6 = b. The contraction

property implies that limp . Vm(n)|0,b'= V(n)|€=b’ and limg,, Vm(n)|9=a’=

V(n)|9=a, thus (A20), kAZl), and (A22) imply that limpy,, avm(n) /36 =

8V(n)/88. A similar argument shows that limg o dvl(n)/8h = 8V(n)/8h, thus

Q(n) =2 0. As €, - €9 = Q(n)/V(n) (V(n) > 0), the result follows immediately.
If the offender desists from crime at n = p for some p > 0, then the

proof is even simpler since the value function has a natural truncation

point at m = p-2 (see (All)) and there is no need to use the above limiting

argument. The induction on (Al18) is sufficient.
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NOTES

1. See e.g. Avi-Itzhak and Shinnar (1973), Stollmack and Harris (1974),
Shinnar and Shinnar (1975), Blumstein and Nagin (1978), Chaiken and Rolph
(1980), Maltz and Pollock (1980), Greenwood (1982), Tierney (1983),
Lehoczky (1986), Greenberg (1991), and the reviews in Cohen (1978) and
Blumstein et al. (1986).

2. This deficiency has also been recognized by Manski (1978), who offers
several other reasons to emphasize the importance of finding a connection
between behavioral models and stochastic models of crime.

3. Instead of imprisonment, the punishment for some types of crime (such as
corporate or white-collar crimes) may be in the form of a temporary
suspension of the offender’'s license to operate his business. The model can
easily handle this case since s(c,n) can also be interpreted as the duration
of suspension.

4. The hazard rate h(c,n) is employed to model the decision problem because
the time of detection and conviction is a random variable. As the decision
to engage in illegal activity is made at each point in time, taking the past
as given, it is therefore conditional in nature. Since the hazard rate
describes the instantaneous probability of arrest at time t given the
offender has not yet been arrested by time t, it is appropriate to model the
effects of ¢ and n directly through the hazard rate.

5  For convenience it is assumed that there is no time lag between detection
and conviction. This does mot imply that detection must result in conviction
because conviction can also be modeled as a random variable. For example,

let p(c(t),n) be the hazard rate of detection and v(c(t),n) be the
probability of conviction, then assuming independence, the hazard rate of
detection and conviction will be given by h(c(t),n) = plc(t),n)v(c(t),n).

It is easy to check that the analysis will go through with this modification.

6. This can be proved rigorously by iterating V(t+s(c(t),n),n+l) explicitly
and noting the difference between the discount terms (at time t+s(c(t),n)
versus at time t).

7. The following argument shows that the normalization is innocuous. Since
Jersteter.n) e"T(x~t)xdy = [l-e Fs(c(t). ™M) |x/r, integration by parts shows
that (3) can be exgressed as YI(T,H) = x/r +

Max, ) f7 e ¢v T ([r(e(e))-T][1-Fy()]/[1-Fa(r)] * [-6(c(t),n) )
+ e r8lel®),m) [y(t+s(c(t),n),ntl)-n/r] |FH(t)/[1-Fh(7) ])dt. Subtracting n/r
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from both sides of this expression yields W(TLn) = Max (WL(r,n),WI(T,n))L
where W(r,n) = VST,n)-w/r, W (r,n) = VL(r,n)-ﬁ/r, and W;(r,n) = V;(r,n)-n/r.
It follows that 7 can be treated as baseline returns since all the other
returns (x, V, V,, and V;) can be defined relative to n. Hence, to economize

the use of symbols, m is normalized to zero so that the V symbols for the
value functions can be maintained.

8. The model assumes that the individual participates either in legal
activity or in illegal activity. Carr-Hill and Stern (1979) argue that such
a dichotomous choice between legal and illegal activities may not be useful
for some types of crime. For example, they maintain that a substantial
proportion of property offenses and minor thefts are committed by people
with full-time legal jobs. The pursuit of these jillegal activities is to
increase total wealth. To deal with this possibility, the model can be
modified as follows. Let V(n) = Max,  , f: e *t[x(c) + A(n) - 6(c,n)h(c,n) +
e rsle,m)y(n+l)h(c,n)][1-Fy(t)]dt. The individual obtains n(c) from illegal
activity, along with #(n) from legal activity. In fact, this problem becomes
even simpler than (5)-(7) as it is no longer necessary to distinguish
between V; and V;. Although this problem will not be analyzed below, one can
verify that all the main results of the paper apply to this case as well.

9. The transformation from (7) to (8) was first proved by Kamien and
Schwartz (1971) in a different and much simpler setup. Since then, many
economists have used Kamien and Schwartz'’'s proof to justify similar
transformations in other contexts (e.g. Davis, 1988) . However, Kamien and
Schwartz's proof is unwarranted because it relies on an unverified
transversality condition for an infinite horizon control problem. For
details and a solution to the problem, see Leung (1991b).

10. Strictly speaking, the curves AC and BC should be step functions since n
only takes on integer values. They are drawn as continuous curves simply for
convenience.

11. See e.g. Maguire et al. (1988) and Schmidt and Witte (1984, 1988, 1989).
However, as pointed out by a referee, there is a subtle problem in
interpreting these empirical findings. Although these authors find that n
has a significant positive effect on the hazard rate of rearrest, they do
not fully control for c in their hazard estimations. As a result, these
studies may not offer conclusive evidence for the view that h(c,n) increases
with n, holding c constant. Nevertheless, Maguire et al. (1988, section 4.1)
are aware of this problem, so they restrict their sample to offenders who
were rearrested for felonies because misdemeanors vary widely in
seriousness. In this way they can partially control for the variation in c.
One can also interpret the explanatory variable TSERVD (time served in
prison) in Schmidt and Witte (1984, 1988, 1989) as a partial control for c
because the sentenced length of incarceration is a good proxy for the
seriousness of the offense. Unfortunately, they define TSERVD as the time
served for the previous offense, not for the current offense (i.e. the
.offense that led to the offender’s subsequent return to prison). Hence
TSERVD is a good proxy for the seriousness of the current offense only if
the intensities of successive offenses are highly correlated. On the other
hand, one can argue that using the time served for the current offense as a
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proxy is problematic because it is an endogenous variable. Furthermore the
usual explanatory variables (demographic and past criminal history) employed
in the hazard estimations (e.g. Schmidt and Witte, 1984, section 3.3) should
be able to provide a fairly good control for the seriousness of the current
offense. This is a subtle empirical problem which remains to be resolved.

12. This implication is supported by Rauma and Berk's (1987) empirical
findings. In a 5-year follow-up study of a California program started in
1978, Rauma and Berk (1987) find that recidivism among ex-offenders can be
reduced by providing unemployment compensation immediately after their
release from prison.

13. As demonstrated in the proof in Appendix, the purpose of condition (C3)
is to guarantee that the second-order condition of the maximization problem
(8) is satisfied. Notice that if V(n) = V;(n) and (C1) or (C2) holds, then
e ISY(n+l) - V;(n) = e TSy(n+l) - V(n) < 0 (by Proposition 2), so (C3) can
be replaced by the weaker condition (C4): -hsyq + rhs% - 2hysy < 0. All
three terms in (C4) are related to the slope of s. The expression arises
from the nonlinear (exponential) effect of imprisonment on future returns.
If sy = 0, i.e. the length of imprisonment is independent of the offense
rate, then (C4) will be satisfied.

14. More formally, let 8(c,n) = X+f(c,n), where A is a shift parameter, and
replace every § in (8) and (9) by 6. The parallel shift in the function §
described in the text is equivalent to a change in the parameter ) because
86(c,n)/3x = 1 and 861(c,n)/3x = 0 (i.e. 81(c,n) = f8(c,n)). The expressions
for dV(n)/36 and dcp/86 in the text can be shown to be qualitatively
equivalent to 3V(n)/dX and ac:/aA, respectively. Since adding a new
parameter to each of the functions h, ¢, s, and 7 will make the notations
unduly heavy, the simpler convention used in the text is adopted.

15. In fact, none of the existing two-period deterrence models considers
imprisonment. In these models, s = 0 is assumed. As s] = 0, the condition
sih < hy/(r+h) is automatically satisfied.

16. There is some evidence supporting this general belief. For example,
Ross’ (1984) analysis of drunk driving in Europe and North America suggests
that an increase in the certainty of punishment is more deterrent effective
than an increase in the severity.

17. A key step in the proof of Proposition 5 is the induction on (Al8) (see
Appendix), which crucially rests on the inequality V(n) 2 e ISy(n+l). This
in turn relies on the validity of Proposition 2. For example, if (Cl) does
not hold, then (A7) in Appendix may not hold and Proposition 2 cannot be
established. As a result, the proof of Proposition 5 fails and it is
possible that €y > €. In particular, if V(n) < e ISY(n+l), then the
induction on (Al8) yields Q®(n) < 0 for all n £ m. It follows from the rest
of the proof of Proposition 5 that ey > ¢p.

18. Notice, of course, that the two optimal offense rates (c; and c;+1) may

differ, but the key is that the optimal offense rate does not vary with
time between any two consecutive convictions.
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19. A Markov jump process is a Markov process of which the sample paths are
constant except for isolated jumps, and right-continuous. See Hoel et al.
(1972), Gikhman and Skorokhod (1968), or Breiman (1968) for details.

20. A jump process is pure (or non-explosive) if lim,,o Tn = where 7, is
the time at which the nth jump occurs. For the model here, a sufficient
condition for the Markov jump process to be pure is that sup h(c,n) < »; see
Breiman (1968, p.337) for a proof. This condition is satisfied here by
virtue of Assumption 1.

21. Mathematically, if the crime process is Poisson with mean X and the
probability of arrest for each crime is q (q is independent of the number of
previous arrests and the number of crimes committed), then the arrest
process will be Poisson with mean A\q. This is a standard result in the
theory of compound distributions, see Feller (1968, p.287) for a proof.

22. The possible tradeoff between participation and intensity may be
formally analyzed in the following way. Assume that the legal returns of
each individual are distributed randomly with a cumulative distribution
function H(.) and that individuals are otherwise identical. Then, the
expected offense rate at n = 0 is E(c) = 0.[1-H(VI(0))] + cBH(VI(O)) -
c;H(VI(O)), because individuals with V; (0) below V;(0), the probability of
which is H(VI(O)), will engage in jllegal activity with offense rate c,. For
those with V, (0) higher than v, (0), the offense rate is zero. The social
objective is to minimize E(c), and 9E(c) /38 = [H(VI(O))][ac;/aﬂ] +
c;[H'(VI(O))][aVI(O)/aﬂ]. A similar expression for 3dE(c)/dh can be obtained.
Since theoretical comparisons between the two expressions do not seem to
yield any tractable results, numerical simulations may be needed to solve
the problem.
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Figure 1. Anon—chronic offender

Figure 2. A chronic offender
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