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ABSTRACT

The question of the existence of a stationary equilibrium for distorted versions of the
standard neoclassical growth model is addressed in this paper. The conditions presented
guaranteeing the existence of nontrivial equilibrium for the class of economies under study
are simple and intuitively appealing, while the existence proof developed is elementary.
Examples are given illustrating that economies with distortional taxation, endogenous growth
with externalities, and monopolistic competition can all fit into the framework developed.

(JEL Classification No. C62, E30, E60)






I. INTRODUCTION

A great deal of work has recently been devoted to the study of economic environments
which give rise to nonoptimal equilibria (see, for example, Coleman [3], Greenwood and
Huffman [10]). The analysis of these environments is not a straightforward application of
results known from dynamic competitive analysis, as in Stokey and Lucas with Prescott [17],
since the resulting equilibria are not optimal. The usual problem in these environments is
that individual agents fail to take into account how their actions influence the behavior of
other agents. In order to solve an individual agent’s dynamic program, one needs to know
the equilibrium law of motion governing the aggregate state of the world, but to know this
in turn requires knowledge of the outcome of decision-making at the individual level. Proving
existence of equilibria can then be problematic, since in these representative agent models it
can be difficult to establish that the individual and aggregate laws of motion for decision
variables coincide along an equilibrium path. Various assumptions have been suggested to
guarantee existence of an equilibrium. It is shown below that a relatively minor restriction
on the nature of the technology, with no unusually restrictive assumptions placed on
preferences, is sufficient to guarantee the existence of an equilibrium.

The environment studied below is very similar to the standard neo-classical growth
model, with the notable exception that behavior at the aggregate level can affect the decision-
making of individual agents. In particular, there is an externality in the production technology
whereby the productivity of each agent’s investment in capital is influenced by the investment
decisions of other agents. As is illustrated, economies with distortional taxation, endogenous
growth with externalities, and monopolistic competition can be cast into this general
framework.

The analysis conducted below borrows ingredients from Coleman [3] and Greenwood
and Huffman [10]. In particular, following the innovative work of Coleman [3], the existence
of equilibrium is established by constructing a monotone operator which maps the aggregate
law of motion into itself. Coleman’s [3] strategy for proving existence is generalized and
significantly simplified in two ways: first, by adopting a less restrictive and more intuitive set
of assumptions on tastes and technology outlined in Greenwood and Huffman [10]; and
second, by employing a simpler line of argument to prove that the fixed point to the

monotone operator is an equilibrium for the cconomy under study. The end result of



combining components from the above two analyses is an existence proof that is much simpler
than that contained in either work, despite the greater generality of the argument being
pursued. Another benefit of the present approach is that the assumptions employed below

would appear to be readily verifiable for a variety of environments.

II. THE ECONOMIC ENVIRONMENT
The economy under consideration is one which is very similar to the discrete-time
standard neo-classical growth model. There is a continuum (of measure one) of identical

agents who have preferences described as

o0

E[Y BU()], B € (01,

t=0

where E[] is the expectation operator, B is the discount factor, and ¢, represents consumption
in period t. The momentary utility function U(:):®, — &, is strictly increasing, strictly
concave, and twice differentiable and U”(0) = o.

Each agent is endowed with the same production technology which is written in the

following form:

y, = F(k,K.mn,).

Here, y, represents output of the consumption good in period t, and k, is the agent’s private
input of capital into the production process which was chosen in period t-1. The variable 7,
is a random technology shock which is known at the beginning of period t. It is drawn from
the bounded set A and has a Markov distribution function which will be denoted as
Gy, |m,)- The variable K, represents the average or per capita quantity of capital supplied
by all agents in the economy. Each agent, being of measure zero, behaves as though his
choice of capital stock k, has no influence on the average capital stock K,. As is conventional,
it is assumed that the production technology is strictly increasing and strictly concave in its
first argument, and twice differentiable in its first two arguments. Other than the restrictions
described below, no further constraints are placed on the technology with respect to the

influence of the last two arguments.



Assumptions: V1 € A:

(i) F(kKmn) >0, Vk, K >0, and limy,, F,(K,Kn)= .
(ii) JK > FKKn =K
(iif) For all K € (0, K|,

F(KK,n) + F,(KKmn) =0,

and

F,(KKn) + F,,(KKm»n) < 0.

These assumptions seem relatively innocuous. The first assumption places relatively
standard restrictions on the production technology. The second merely places a convenient
upper bound on the level of output, or capital stock in the economy, which is satistied for
almost all parameterized versions of the concave technology. The third assumption places
benign restrictions on how aggregate capital can affect the individual technology. It requires
that the social marginal product of capital (or the sum of the marginal products of the
individual and aggregate stocks) be positive. Additionally, it is necessary that the social
returns to capital are diminishing in the individual capital stock. Observe these properties
need only hold locally "along an equilibrium path” where k=K. It would seem easy to check
that these simple properties hold for a wide range of economic problems. Additionally, it
should be recognized that these appear to be much less restrictive assumptions than those
imposed on the production and utility functions in Coleman [3]."

Finally, output in each period must be used for either consumption or investment

purposes. Thus,
¢ * kt+1 = Yo

where k,,, is the amount of the consumption good used for investment at date t which

becomes productive capital in the following period.

III. EXISTENCE OF EQUILIBRIA

The representative agent’s dynamic programming problem for the environment under

study can be cast as



V(k,K.n) = max (U(F(k,K,m) - k') + BIV(K',K',n")dG(n'|n) ), (P1)

where the aggregate K evolves exogenously according to the nontrivial law of motion K' =
Q(K,m). Assume thatithis aggregate law of motion is nontrivial in the sense that Q(K,n) >
0 for K > 0. Now let the optimal decision-rule associated with the above problem be denoted
by k' = q(k,K,n). An important property of this decision-rule is that q(k,K,n) < F(k,K,n) if
kK > 0.2 Standard arguments can be used to show that the any interior solution for this

decision-rule must satisfy the Euler equation (1) shown below.
UF(kK.m) - k') = BIUE (kLK) = K")F, (k'K n)dG(’|n)- (1)

Now, the economy under study is one where all agents are identical. In equilibrium,
therefore, the decision-rule regulating the individual’s capital accumulation must coincide with
the law of motion governing the evolution of the aggregate capital stock. The following

definition makes this notion more precise:

Definition;: A stationary equilibrium for the environment described above is a pair of

functions k' = q(k,K,n) and K’ = Q(k,) such that

() the decision-rule for each agent, k' = q(k,K,n), solves the optimization problem (P1),
and

(ii)  the individual’s decision-rule is consistent with the law of motion for the aggregate per

capita capital stock, or q(K,K,n) = Q(K,n).

From the above definition of an equilibrium, it is clear that if an aggregate law of motion for
capital of the form 0 < K' = Q(Kn) < F(K,n), for K > 0, exists, then it must satisfy
equation (2)

U(F(K,K,n) - K') = BIU(F(K',K',n) - K"YF(K',K',nydG(n'|n), (2)

where K" = Q(Q(Kﬂl),n')'



Proposition: There exists a nontrivial stationary equilibrium for the economy

described above.

Proof:
A. Construction of the Aggregate Law of Motion

Consider the sequence of aggregate laws of motion {H/(K,7)}";=, that are generated
recursively as follows: First define H'(K,n) = 0. Second, define H"*'(K,n) to be the solution

for x in the Euler equation shown below
U(F(KK,n) - x) = BIU(F(x,x,m) - H(xn")F,(xx,1)dG®’[n). G)

Thus, equation (3) implicitly defines an operator mapping the function H! into H*'> Now
assume that
oH (K,

0 < ___;K_ﬂl < [F(K.Kn) + F(KKn)], (4)
which certainly holds for j=0. The left-hand side of equation (3) is strictly increasing in x,
and the right-hand side is decreasing in x by Assumption (iii) and equation (4). Hence, there
exists a unique solution to equation (3), and consequently 0 < H(K,n) < F(K,K,n) for K>0,
j=1, by Assumption (i). Note also that if the capital stock K increases by a unit, then output
increases by the amount [F,(K,K,n) + F,(KK,n)]. Then it is easily shown that

-

0 < _a_lf’_a(lzlfi’l < [F(K.Km) + F(KKn)]. (5)
It is also seen from equation (3) that replacing H/(K,n) by a function that is everywhere
greater results in a larger solution for x. In other words, this procedure generates a
monotonically increasing sequence of laws of motion for the aggregate capital stock
{H(K,n)}",=o defined on [0,K]xA. Furthermore, this sequence is bounded from above by K
[see Assumption (ii)]. Let

Q(Km) = i, HI(Kn),

so that Q(,7) is the pointwise limit of the functions Hi(+,-) which exists because

{HI(K,7)}";~, is a monotonically increasing bounded sequence. Since Hi(0,m) = 0 for all j,
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then Q(0,7) = 0 as well. Note from (4) that oH*'(K,n)/oK is bounded from above by
F,(K,K,7) + F,(K,K,n), for all j, and hence the sequence {H"*'(K,n)}";-, is equicontinuous on
[¢, K] for all { € (0,K]. Therefore, the sequence {H*'(K,n)}"-o converges uniformly on each
closed interval to Q(+°), which must also be a function continuous in its first argument (by
the Arzela-Ascoli theorem and Theorem 7.13, Rudin [16]).* Furthermore, Q) must also
satisfy the restriction given by equation (4), with the derivative interpreted as a finite.
difference.

Is the function Q(K,n) = lim;,,, Hi(K,n) constructed above a good candidate for an
equilibrium aggregate law of motion? To answer this question, suppose that Q(K,n) <
F(K,K,n) for K € (0, K] and n € A. By construction, the function K' = Q(K,n) satisfies
equation (2). Furthermore, given this aggregate law of motion, there exists a unique decision-
rule k' = q(k,K,n) which solves the Euler equation (1). Clearly, when k = K, it transpires
that q(K,K,n) = Q(K,n) solves (1), since Q(K,n) satisfied (2). Thus, for the case when Q(K,n)
< F(K,K,n) for all K # 0 an equilibrium has been found. To complete the existence proof
it will be shown next that Q(K,n) = lim;_, H(K,n) = F(KK,n) for K € (0, K] and 1 € A.

Remark: Observe that for any finite T, the sequence {HI(K,n)}";-o gives the unique set of

T+1 laws of motion that obtain from a T+1-period version of the economy under study.

B. Nondegenerateness of the Aggregate Law of Motion

It is important to ensure that the aggregate laws of motion do not converge to a
degenerate case where investment equals total output. For instance, consider the possibility
that Q(K,n) = F(KK,n) for all K and n. While this solution for the aggregate law of motion
will trivially satisfy (2), it cannot constitute an equilibrium for the economy under study since
(P1) demands a solution for the representative agent’s decision-rule such that q(k,K,n) <

F(k,X,n) whenever k, K > 0.

To rule out such degenerate cases, consider the sequence of value functions {V"}~,-,

generated from the mapping

vk Kom) = max (U(F(kKm) - K’y + BIV (k! K\ m')dG(n'|n )}, (P2)

where K’ = Q(K,n). Without loss of generality, assume that V° = 0. Well-known arguments
can be employed to show that this mapping defines an operator T, such that V* = TV™},

6



which has as its unique fixed point the function V characterized by PD).
Now let {QJ ., be a sequence of continuous functions converging uniformly to the
function Q on [0, K]XA. Next, consider the sequence of value functions {V“}°"n_O generated

from the mapping

V" (kKm) = max U(F(kKn) - k') + BIV"" (k'.K'\n")dG(n'[n )}, (P3)

with K~ = Q*'(K,p). Set V® = 0. Let the optimal decision-rule associated with (P3) be
denoted by k' = q*'(k,K,n). A key step in the subsequent analysis is to show that lim,_, ., \E
=V, where V is the fixed point to equation (P1)°

Assume momentarily that indeed lim, ,, {/“ = V. Given this supposition, it is easy to
demonstrate that Q(K,n) < FKK,n) for K € (0, K] and 7 € A. Note that the sequence of
functions {H"}*, _, constructed in the previous subsection satisfies the properties assumed for
the sequence {Q"}",, that underlies the mapping (P3). Therefore let Q" = H" for all n.
Then by the construction of the mapping (P3), "(K,K,n) = H'(K,n) for K € [0, Klandn €
A. Now, consider the sequence of functions {V.V“'l},‘j"=1 where W*'(k'.Knn') =
{/““(k',Q“‘l(K,n),n’). Clearly, this sequence converges to the function W(k',Kn,n') =
V(k',Q(K,n),m") by the assumption made above. Since the functions W and W™, for all n=2,
are each strictly concave in their first argument it follows that (kK1) = qkKmn),
pointwise.* Consequently, Q(K,n) < F(Kn) for K = 0, since the solution to problem (P1)
dictates that q(k,K,n) < F(k,K,n) for kK > 0.

All that remains to be established is that lim, ., {7“ — V. Toward this end, note the
following fact for future use.

Fact 1: Since V" — V uniformly, for all ¢ > 0, there exists an N such that forn = N

Ve (k,Km) - V(k,Km)| < &f3,

for all k,K € [0,K], n € A.

Next, define the continuous function % [0,K]xAY — &, recursively by



7 Ky gl yg) = QT (Ko g My 2D, 0)s

where 7° = K,. The function =9 gives the period-q aggregate capital stock assuming that the
initial period-zero capital stock is Ko, the history of shocks {m ¥, transpires, and the law
of motion Q is followed.

Likewise, define the continuous function m™%:[0,K]xA* —» &K, for m = q = 1,

recursively by
7™ (KM greesM ) = Q777 (T (KysM gs s My 2 )M g1 )s

with 7 = K,. The function 7™ gives the period-q aggregate capital stock for the economy
with an m-period horizon, assuming that the law of motion Q™! is followed in period t (for
t < g-1) and contingent upon the initial period-zero capital having the value K, and the
history of shocks {n,}¥, being realized. Note that since Q' = Q uniformly, lim,, .., A =
for all ¢ > 0. This is easily seen to imply Fact 2, which will be used in the subsequent

analysis.

Fact 2: Since U(*) and F(") are continuous functions, and the sequence {Q’} converges

uniformly to Q, for all q and & > 0, there exists an M such that for m = M = max(q,1),

[U(F (k™ (Ym,) - k7) = UF(k(Ym,) - k)| = d L P

for k, k*, K, € [0, K], {ng, My -, 1} E AL and 0 s t < q.

Finally, Fact 3 (which is trivial) is noted.
Fact 3: Let B = max,, [UF(K, K, n))]. For each & > 0, there exists a P such that for

g
[.1__3]5 < (e/3).

allp = P,



~

Lemma: Lim,_., V" = V.
Proof: Pick ¢ > 0 and choose N and P such that Facts 1 and 3 hold. Next, let q =

max|N,P] and choose M = max(q,1) large enough so that Fact 2 holds as well. Now note that

” m-1 '
4 (ko’Ko"no) = Imax 1E [E BIU(F(k',’n""",T],) - knl)} ’
{k Yo N

1+1°1=0
where the expectation operator E(?) reflects the integration with respect to the finite
probability distribution of {; m1 - Rirst, set m = M. By Fact 3 it follows that

j=1°

" g-1 .
| V(kypKymy) =V " (kpKysmy) | < | Vi(kyKym,) - max 1E[EBtU(F(kt,w"‘v'm‘) - km)] + £
{k Y5 \=°

t+1

since q = P. Second, Fact 2 then implies

| V(kgKomy) V" (kpKpm) | = | V(kyKprm,) - max E
kYo

41t

S BV ki) - m] (5]

t=0

2
| Ve Kyma) = Ve Kymy) | + (_35] .
Third, since q > N, it immediately transpires from Fact 1 that

|V (ko Kysmy) - V7(ky,Kymp)| S & O

1IV.  DISCUSSION

The form for the production technology, y = F(k,K,n), is a general formulation that
could embody many environments. The following three examples may help to illustrate this
point.

Example 1: Distortional Taxation. Let the representative agent’s production function be

described by y = Y(k,n) + (1-8)k, where Y has the standard production function properties.

Note that under this formulation capital depreciates at the rate §. Now suppose that there

9



is a government in the economy that taxes income at the rate 8 and provides a capital
consumption allowance of u. The resulting tax revenue is rebated back to the agent via a
lump-sum transfer payment. This environment can be handled in the above framework by

adopting the following specification for F(k,K,n):

F(k,K,m) = (1 - 0)Y(k,n) + [1-8(1 - )k + 0Y(K,n) - pdK.

It is straightforward to check that Assumptions (i), (ii) and (iii) are satisfied. Additionally,
this framework can also accommodate a progressive income tax structure.” To do this let
9 be given by 8 = ©(k,n). It is easily seen that, so long as the individual’s after-tax income
[1-O(k,n)][Y(kn) + (1 - 8(1 - p))k] is both strictly increasing and strictly concave in k, then
the required assumptions are satisfied. '

Furthermore, it is easy to incorporate a variable supply of labor into the analysis.
Now, let the representative agent’s preferences be described by U(c - G(¢)), where G(-) is
an increasing convex function.® The technology is specified as y = Y(k,€,n), where ¢
represents his labor input. Also, suppose that the government taxes labor income at the rate

A. Define the function L(k,n) by
L) = argmax {(1-0)Y(kaxan) =[(1-0)/(1-)]G))-
To recast the environment into the framework developed, let F(k,K,n) be given by
F(k,K,n) = (1 - O)Y(k,L(kn),m) + [1 - 8(1 - w)fe - [(1 - 6)/A - MG (L (kM)
+ OY(K,L(K,m)m) - w8 + [(h - 0)/(1 - MIGL(K,m).

While now a little more difficult to verify, F(k,K,n) satisfies Assumptions (i), (ii) and (iii).
The representative agent’s dynamic programming problem can again be characterized by (P1),

given this formulation for F(k,K,n).

FExample 2: Endogenous Growth with Externalities. Consider a simple version of Romer’s

[15] well-known economic growth model. First, let the representative agent’s preferences be

described by z B'en(c,) . Second, supposc the production technology is given by y =
t=0

10



nY(kK), where Y is linearly homogeneous in its first two arguments with the standard
properties holding otherwise. With this combination of tastes and technology it is possible
for the economy to grow without bound. The model, however, has a stationary representation
that can be handled in the framework developed above. To see this, define the variables c,
k. and K by & = o/K, k' = k'/K, and K’ = K'/K® Next, let F(k,Kn) be represented by
F(IA(,IA(,n) = nY(lz/IA{,l), Observe that F satisfies Assumptions (i), (i) and (iii), with F; + F,
= ( when k = K. ‘

| Now, it is easy to deduce that the representative agent’s dynamic programming
problem (P1) can be rewritten for the current example in transformed form as

V(k,K,m) = max (en[F(e.Km)-k'] + BIV(K,K',n")dG(n' | 1)}, (P4)

where K' = Q(Ié,n) . Since F, + F, = 0, when k = K it is immediate from (4) that the

equilibrium law of motion can be expressed more simply as K' = Q(m). Clearly then, the
solution for the original model is homogeneous of degree one in the aggregate capital stock.
Also, it is easy to check by solving (P4) that Q(n) = 7BF,(1,1,1)."® The economy can
experience growth if E(m)F,(1,1,1) > 1/B.

Example 3: Monopolistic Competition. A simple stochastic infinite horizon version of

Kiyotaki’s [12] model of monopolistic competition also fits into the framework developed.
Imagine an economy inhabited by a continuum of agents distributed uniformly over the unit

interval. Agents are identical except that each owns a firm producing a differentiated
1

product. The generic individual’s preferences are described by Y Bin| f loc (0)°d0]°, for

=0

0 < p < 1, where c,(0) represents his period-t consumption of the good produced by agent
9. The representative agent’s firm produces output according to the linear production
technology y = 7k, where 7 is an aggregate technology shock. An individual’s capital
accumulation is governed by the technology k' = [ Li(0)°d0]"», where i(6) is the amount of
goods purchased from agent 8 for investment purposes. Finally, the agent’s budget constraint
for any given period reads [*;p(8)[c(8) + i(6)]dé = pnk, where p(8) is the price for good .

Now, by carrying out the implied within-period maximization, it is easy to deduce that

11



o(8) = [p(@)/P]" V[ ['ip(E)c(¥)dE/P] and i(6) = [p(O)/P]"* [['p(E)i(8)dE/P], with the
aggregate price level P being given by [['p()?®dE]*V?. Next, define ¢ and k' by ¢ =
[['c(8)?do]"" and k' = [jloi(B)PdO]lfp. The agent’s preferences can now be represented

more simply by EB‘ €nc, . Also, using the above formulae it is apparent that
=0 .

¢ = [L,p(0)c(0)dd/P and k' = [';p(0)i(0)dd/P. This allows the individual’s budget constraint
to be given the more compact representation ¢ + k' = (p/P)nk. Observe that the demand,
y, for the agent’s firm’s product is described by y = (p/P)Y* VY, where aggregate demand Y
is defined by Y = [ p(8)[C(6) + 1(0)]d6/P and C(0) and I(f) represent the aggregate amounts
of good @ that are demanded for consumption and investment purposes. Thus, p/P =
(mk/Y)*", as y = mk. Since in equilibrium each industry behaves the same, it must transpire
that Y = 5K, where K is the average or aggregate level of the capital stock. Therefore the
representative agent’s budget constraint can be reformulated as ¢ + k' = nk°K'*. The
agent’s intertemporal optimization problem amounts to choosing ¢ and k' in each period so
as to maximize expected lifetime utility. The problem now has the form of Example 2.

Observe that the economy can grow without bound.

12



FOOTNOTES

1. In particular, Assumption 5 in Coleman [3] assumes that there is not "too much”
uncertainty about the production function disturbances. No such assumption is needed in the

present analysis, as the degree of uncertainty is unrestricted.

2. Suppose to the contrary that q(k,K,n) = F(K,n) for some k, K > 0. To show that this
strategy of consuming nothing cannot be optimal, consider increasing current consumption, and
correspondingly reducing current investment, by some amount & > 0. On the one hand, the
resulting per unit gain in current utility will be [U(g) - U(0)}/e. On the other hand, the per unit loss
in expected future utility is (B/[V(k',K';n’) - V(k'-eK';n")]dG(n’| n))/e. Now since U'(0)=0, this
per unit gain can be made arbitrarily large by picking e small enough. The per unit loss is bounded
in size, however, since the solution for V() in (P1) is a continuous, bounded function that is both
strictly increasing and strictly concave in its first argument.

| 3. Greenwood and Huffman [9], and Lucas and Stokey [13] use similar mappings to
establish the existence, and characterize the properties, of equilibria for cash-in-advance models.
Also, this mapping forms the basis for numerical algorithms used to solve nonlinear dynamic
stochastic models that have been proposed by Baxter [1], Coleman [2], and Danthine and

Donaldson [6]. See Danthine and Donaldson [5] for a discussion of these types of algorithms.

4. Specifically, the Arzela-Ascoli theorem implies that the limiting function is continuous
in its first argument, while the theorem in Rudin [16] establishes that the convergence is uniform

since the sequence is monotone.

5. Here the norm employed is | V | = sup, |V(xy X, X;) |, where x = (X, X;, X3) €
[0,K]x[0,K]XA. Similarly, the norm for the convergence of the functions {Q'}",_, is also the sup

norm.
6. See Stokey, Lucas, with Prescott [17], Theorem 9.9.
7. Coleman’s [3] analysis also allows for a progressive income tax.

8. This form of utility function has been used in Greenwood, Hercowitz and Huffman [8],
and Hercowitz and Sampson [11], and Mendoza [14]. These analyses suggest that for the study of

business cycles the restrictions imposed by this sort of utility may not be that severe.

9. Coleman [4] and Gomme [7] use this transformation in computational work to obtain

stationary solutions for endogenous growth models.

10. F(kKm) = nF(K,1), which implies that F,(k,Km) = nF,(kK.1).
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