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1. Introduction

The canonical collective choice problem can be thought of as attempting to
select an outcome from a certain set of feasible alternatives, where this selection is
based in some manner on the preferences of the relevant individuals. The classical
approach to this problem is to aggregate the individual preferences into a social
preference relation, and then determine whether there exists any maximal elements
with respect to this relation; such elements would then be the "best" outcomes to
select and are referred to as the core outcomes associated with the individuals’
preferences and the particular method of preference aggregation.

There are essentially two classes of results concerning the existence of core
outcomes in the "spatial model", that is, when the feasible set of alternatives (or
policy space) X constitutes a convex subset of some finite—dimensional Euclidean
space. The first class, associated with Greenberg (1979), Schofield (1984) and Strnad
(1985), assumes continuous convex preferences and a compact policy space X, and
states that if the dimension of X is less than some critical value (with this value
depending on the specifics of the preference aggregation) then core outcomes will
always exist. Conversely, if this dimension is greater than or equal to the value a
core outcome does not necessarily exist, in that there are simple examples of
continuous (in fact, continuously differentiable), convex preferences for which no core
outcome exists. We will have no quarrel with this class of results here.

The second class, as exemplified by Schofield (1980) and McKelvey and
Schofield (1986), assumes preferences are continuously differentiable (but not
necessarily convex), and investigates the generic existence of the core. That is, while
for dimensions of X higher than the above critical value examples from the first class

of results show that core outcomes might not exist, the results in this second class



show how above a second critical value core outcomes almost always do not exist (in
a manner to be made precise below). It is this second class of results with which
we take issue. Specifically, the purpose of this paper is to demonstrate, not that
these genericity results with respect to the core are necessarily wrong, but rather that
the proofs of the results are wrong. These proofs, found in both Schofield (1980)
and McKelvey and Schofield (1986), make use of known results pertaining to
singularities of smooth mappings. The claim here is that the correct application of
this proof technique generates critical values for the dimension of the policy space
which are strictly above those posited by Schofield and McKelvey, in some instances,

actually doubling this critical value.

2. The Model

There exists a set N = {1,..,n} of voters, with « > n > 2, and a convex
policy space X C IRp; since in what follows attention is restricted to interior points
and local optimum conditions, we will assume X is equal to all of RP. Voter i has
preferences over X represented by a smooth utility function ui:X—»IR, that is, where
the partial derivatives of 0, of all orders exist and are continuous. The differential
dui(x):[Rp—blR defined by

dui(x)(v) = 11;:1(1)1 [ui(x+tv) - ui(x)]/t

is a linear map, and therefore can be represented by the gradient vector

Vi(x) = [Bui(x)/ﬁ‘xl,...,(?ui(x)/ﬁxp];
thus for any v € RP du(x)(v) = v.V(x) (e scalar product). Let u =
(ul,...,un):X—»an denote a wtility profile, and define U(X)™ to be the space of all
smooth utility profiles on X.

A (strict) collective preference relation P over the set X is characterized by a

collection ? of decisive coalitions of voters: for all x,y € X, xPy if and only if there



exists C € D such that u(x) > u(y) for all i € C. The collection D is required to
be monotonic: C € D & C- 2 C => C’ € D, and proper C € D => N\C ¢ 7. A
particularly important class of such collections for our purposes are g¢-rules, that is,
collections of the form

?={CcN:|[C|]2q}

Wq,
where q is some integer. Such a collection is obviously monotonic, and as long as q
is greater than or equal to (n+1)/2 it will be proper as well.

The core with respect to the pair (D,u) consists of those points x€X such that
yPx for no yeX:

C(Pu) = { x€X : ~[3 yeX & CeD s.t. u(y) > u(x) V ieCl}.
It is well-known that if the collection P is collegial, that is, if

k) = nC+# ¢,

CeD

then the core is typically non-empty (simply choose one of the best points for any
voter i from k(?)), so in what follows we will assume the collection is non—collegial.
With respect to q-rules, it is apparent that the only collegial rule is where q = n
(i.e. unanimity is required), and so this restriction for g-rules is that the integer g
be less than n.

The set of core points can be characterized as follows: for any coalition C ¢ N
define the Pareto set for C at the utility profile u by

P(Cou) = { x€X : ~[3 yeX s.t. w(y) > y(x) V ieCJ}.

The following is then immediate:

Lemma 1: For all (D,u), C(P,u) = n P(C,u).
CeD

Thus, the set of core points are precisely those elements in the Pareto sets of all

decisive coalitions.



For smooth preferences such as those assumed here we have the following

necessary condition describing elements of P(C,u):

Lemma 2 (Smale, 1973): If x € 7P(C,u), then there exists A = (’\1""”\|C|) €
C
k] I\{0} such that 3 ) =0

Proof Suppose x € P(C,u) but for all such vectors A, % )\iVi(x) # 0. Define
, ieC
ieC
Y = {yeR”: y = % AV,(x) for some AeW} .
ieC

_ | Cl. :
W={er VN 20vik

Then Y is compact and convex, and O ¢ Y; hence by the separating hyperplane
theorem there exist v € RP such that vy > 0V yeY.
Clearly V.(x) € Y for all i€C, and hence v.V,(x) > 0 V i€C as well. And since

v.Vi(x) = lim [u(x+tv) - w(x)]/t > 0,
t=0

we have that u(x+tv) > u,(x) ¥V i€C for small t, contradicting x € P(C,u). o

In words, a necessary condition for x to be Pareto optimal with respect to the
coalition C is that the gradient vectors of the members of C are semi-positively
dependent at x, for this guarantees there is no direction v away from x that all
members of the coalition C prefer to move.

Define

I(Cu) = {xeX: {V;(x)};cq are semi—positively dependent}
and let

I(P,u) = n I(C,u).

CeD

By Lemmas’ 1 and 2, then, we have that for all pairs (?,u),

c(d,u) ¢ 1(0) (1)

where we label I(D,u) the infinitesimal core. Therefore if one can show that the



infinitesimal core is empty, then necessarily the core will be empty as well.

The "singularity approach" to the question of core existence backs away from
this requirement of semi—positive dependence and considers points where a coalition’s
gradient vectors are only linearly dependent, the rationale being the latter is a much
more well-understood concept in mathematics. So for all coalitions C ¢ N and
utility profiles u, define

A(Cyu) = { xeX : {V,(x)}; are linearly dependent};
thus for all C ¢ N, Z(C,u) ¢ A(C,u). Finally, define

A(D,u) = n A(C,u),
CeD

so that for all pairs (?,u) we have

I(P,u) C A(D,u). (2)

Therefore if one can show that A(D,u) is empty, then by (1) and (2) there will not
exist any core points. For values of p sufficiently large this will "almost always" be
the case, in a manner to be made precise; the issue in this paper concerns exactly
how large "sufficiently large" must be.

Endow the space U(X)™ of smooth profiles with the Whitney C® topology (cf.
Golubitsky and Guillemin, 1973); under this topology two utility profiles are close if
the values of the functions as well as partial derivatives of all orders are close. A
subset V of U(X)" is dense if for any u € U(X)" and any neighborhood W of u, it
is the case that W n V # ¢. We say that a property K of utility profiles is generic
if the set {u satisfies K} constitutes an open and dense subset of Ux)™

Schofield (1980) and McKelvey and Schofield (1986) prove one or both of the

following:

Claim: (i) For an arbitrary collection P, if p > n-1 then A(D,u) = ¢ generically;

(ii) For an arbitrary g-rule, if p > g then A(Dq,u) = ¢ generically.



Specifically, Theorems’ 1 and 2 in Schofield (1980) state these bounds with respect to
the infinitesimal core Z(D,u), but then the proofs focus on showing (i) and (ii) to be
true, and then invoke (2) above. McKelvey and Schofield (1986) deal only with
g-rules, and in fact state a stricter bound than (ii) for the infinitesimal core of such
rules (Theorem 1). However, they state this claim as a result (Corollary 1) and
employ it in their proof of their Theorem 1. More importantly, this proof relies
critically on a result (Theorem 4) which logically implies (ii); indeed, McKelvey and
Schofield use Theorem 4 to prove (i), a result which is trivial assuming Theorem 4
to be true.

Our argument is that both parts of this claim are in fact not true, in that
there exists open sets of utility profiles for which this claim fails to hold. Therefore
the proofs of Theorems’ 1 and 2 in Schofield (1980) as well as Theorem 4 in
McKelvey and Schofield (1986) (and hence the proof of their Theorem 1) are
incorrect. We will demonstrate this argument with simple examples which take care
of both parts of the claim simultaneously: the examples will be of q-rules where q is
equal to n-1 (n=3 and ¢q=2, or n=4 and q=3) and p is greater than or equal to q.
From now on, therefore, we will restrict attention to q-rules; for ease of notation, let

Alq,u) = A(Wq,u).

3. Singularities

The method of proof found in Schofield (1980) and McKelvey and Schofield
(1986) involves first identifying the dimension of the set A(C,u), and then arguing
that as one intersects, say, A(C,u) with A(C’,u) the dimension of this intersection
typically falls by a certain amount. For example, when we think of two planes
intersecting in [R3, we envision this intersection as generally constituting a

one-dimensional object. Therefore, if upon taking this intersection over all of the



decisive coalitions this dimension turns out to be less than zero, the set A(q,u),
which equals this intersection, must be empty.

The key to this method is that these intersections be transversal, so that
existing dimension—counting arguments can be applied (more on transversality below).
However a problem arises when considering the intersection of A(C,u) with A(C’,u)
when C n C’ is non—empty, since here the sets A(C,u) and A(C’,u) are essentially
"glued together" by the members of C n C/. That is, A(CNC’,u) will necessarily be
a subset of both A(C,u) and A(C’,u), and hence will be in their intersection.
Therefore the intersection of A(C,u) with A(C’,u) will not be as clean as
transversality would require, calling into question this method of determining the
emptiness or non—emptiness of the set A(q,u), and hence of the core.

On the other hand, it turns out that determining whether a point x is in
A(q,u) is equivalent to verifying a relatively simple property of the differential of the
utility profile w:X-R". As with the individual utilities, the map du(x):[Rp—»[Rn is
linear, and therefore can be represented by the (nxp) Jacobian matriz

Vl(x)
1 x) = | Y2
Vn(x)
The rank of the mapping du(x) is defined to be the dimension of its image;
equivalently the rank of du(x) is given by the rank of the matrix J (x), ie. the
maximum number of linearly independent rows or columns. Let z = min{p,n}, and
for all k = 0,...,z, define

Si(u) = { xeX : rank J (x) = k },

and let

z—1
S(u) = kgo Si(w) -

The set S(u) then consists of the singularities of the mapping w:X-R", that is, points



where the rank of the Jacobian J (.) is less than maximal. The set A(q,u) will be a

subset of S(u):

q—1
Lemma 3: For all (q,u), A(q,u) = U Sk(u).
k=0

Proof. x € Aqu) <=>
x € A(Cu) V C ¢ vq <=>
{V,(x)};¢ are linearly dependent V C € iDq <=>
any set of m > q gradient vectors are linearly dependent <=>
any set of m > q rows in Ju(x) are linearly dependent <=>
rank J (x) < g-1 <=>

X € Sk(u) for some k = 0,...,g-1 <=>

q—1
x€E U

S, (u). o
k=0 X

Therefore elements of A(q,u) will be precisely those points in X where the rank of

the Jacobian matrix Ju(.) is at most q-1.

Ezample 1: n = 3, p = q = 2, and
ul(X>Y) =X
u,(x,y) = xy
2
u3(X7Y) =¥ /2

The Jacobian matrix then is



and hence the origin (0,0) is a point where the rank of the Jacobian is 1, S,(u) =

{(0,0)}; further, there are no points where the rank of the Jacobian is 0.

A(2,u) = {(0,0)}.

Ezample 22 n = 4, p = q = 3, and

ul(x,y,z) = x
UZ(X,y,Z) = y
u3(x,y,z) = yz

2
u4(X:Y7Z) =1z /2

The Jacobian matrix is then

1 0 0

10 1 0
‘]u(')_ 0 z y
0 0 z

Thus

and hence the Jacobian is of rank 2 for all points along the x-axis, S,(u) = {(x,y,2):

y = z = 0}, while there are no points for which the Jacobian is of rank 1 or 0.

Thus A(3,u) = {(x,y,2): y=2=0}.

Ezample & n = p = 4, ¢ = 3, and
ul(x,y,z,w) =x
uz(x,y,z,w) =y
u3(x,y,z,w) = xz + yw

2 2
uy(xy,2w) = 2°/2 + w /2

The Jacobian is
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I =

OoON O+

o ~O
N M OO

0
0
y H
w

and hence the Jacobian is of rank 2 when x=y=z=w=0, while there are no points
for which the Jacobian is of rank 1 or 0. Therefore A(3,u) = {(0,0,0,0)}.

Let £(p,n) denote the space of linear maps from RP to [Rn, so in particular for
all x € X we have that du(x) € L(p,n). As before, we can identify [(p,n) with the
set of all real (nxp) matrices, which is evidently equivalent to R™P (with each
coordinate in the latter giving one of the nxp entries in the matrix). For any k =
0,...,z let Ek(p,n) be the elements in £(p,n) of rank k.

Next let du:X - £L(p,n) be the mapping which assigns to every point x in X
the linear map du(x). Then we have that the point x € X is an element of the set
S, (u) if and only if du(x) € Ly (p,n), or equivalently that S, (u) is the preimage
under du of the set L, (p,n):

S, (1) = du™l(£, (p,n)).

That is, a singularity point of the utility profile u is an element of X where the
mapping du intersects the set Ek(p,n) for some integer k < z. Thus in example 1
the mapping du:X-£(2,3) intersects the set L1(2,3) when (x,y) = (0,0) and at the

point in £;(2,3) associated with the rank 1 matrix

—
OO =
OOO
[ I |

As mentioned above, our goal is to construct an open set of utility profiles V
U(X)" such that for all ueV we have A(qu) # ¢. With this in mind, suppose we

"tremble" the utilities in example 1 in the following manner:

u(xy) = x + &
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uz(X:Y) = Xy

ug(xy) = & + ¥7/2

where ¢ and § are real numbers close to zero. Then the Jacobian is

and s0 at x = 8¢ and y = be the rank of the Jacobian is 1; therefore A(2,1~1) # &
Alternatively, consider a different tremble:

ﬁl(x,y) =X + ey2/2

1:12(}(:3’) = Xy + oX

1;3(x,y) = 5X2/2 +y

The Jacobian is then

1 ey
() = |y xto,
0x y

and so at x = —o, y = 0 the rank of the Jacobian is again 1, implying A(2,11) $ ¢
In fact, it turns out that anmy tremble for which the Jacobian is sufficiently close to
the original will possess a point where the Jacobian is rank 1, and indeed such a
point will be close to the original singularity at (0,0). The reason for this is that
not only does the differential of the original utility profile intersect the set of rank 1

linear maps £1(2,3), but it does so transversally.

4. Transversal intersections

Consider by way of example the function £:R-R% defined by f(x) = (x,xz), and a

one—dimensional manifold M in [R2, i.e. a subset of R® which locally "looks like" R,
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where M = {(y,z)elez z = y3}; see Figure 1. The function f(.) then intersects the
manifold M at two points in [R2, namely at (0,0) and at (1,1). Suppose we now
"tremble" the function f in a particular manner, say %(x) = (x,x2+e), where ¢ > 0
is small. As is apparent upon inspection, the first intersection disappears whereas
the second remains (albeit at a slightly different point). Further, it is clear upon
inspection that no matter how one trembles the function f, the second intersection
will remain. Thus the latter "crosswise" intersection of the function f(.) with the
manifold M will be stable under perturbations, while the non—crosswise intersections
will not. The concept of transversality characterizes precisely this idea of crosswise
(and hence stable) intersections, and so we begin this section with its formal
definition.

Let £R°-R® be an arbitrary smooth function, and M an m-dimensional manifold
in lRt; define the codimension of M as ¢ = t-m. For each point yeM there exists a
neighborhood Y of y and a mapping g:Y—»IRC, where the differential dg is of rank c,
such that Y n M = g_l(O). That is, in a neighborhood of y we can characterize the
set M as the zero set of a function g, where this function is referred to as the
defining mapping of M at y. Then f(.) is said to intersect the manifold M
transversally at xeR® if f(x) € M and the composite map h = gof:R*-R® is such that
the differential dh is of rank ¢ at x, where g(.) is the defining mapping of M at y =
f(x); that is, 0 is a regular value of gof. This definition of transversality is
equivalent to the more common one, that the image of df(x) plus the tangent space
to M at f(x) span all of R® (cf. Guillemin and Pollack, 1974); for our purposes the
former definition is more useful, since below we will be able to identify the relevant
defining mappings quite easily.

To see this definition of transversality in action, consider the above example
with f(x) = (x,xg). In this instance we are in fact given the defining mapping for

the manifold M globally, namely g(y,z) = z - y3. The composite map h = gof:R-R
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is then h(x) = 2 - x3, implying dh(x) = [2x - 3x2]. Therefore dh(0) = [0] while
dh(1) = [-1], and hence the differential of the composite map h is of rank 0 at x =
0 and is of rank 1 at x = 1. Thus the function f(.)‘intersects the manifold M
transversally at x = 1, but non-transversally at x = 0.

Returning to our original problem, we have a mapping du:RP-£(p,n), and a
subset Ek(p,n) of L(p,n) describing the rank k linear maps. As previously discussed,
we can identify £(p,n) with R™P, and it can be shown that Ek(p,n) constitutes a
manifold in £(p,n) of codimension equal to (p—k)(n-k) (Levine, 1971 p. 11). The
importance of transversal intersections, and the formalization of the "trembling"

arguments above, are captured in the following:

Theorem (Levine, 1971 p. 44): Suppose u € U(X)" is such that du intersects the set
[k(p,n) transversally at xeX. Then for any neighborhood Y of x there exists a
neighborhood V of u in U(X)™ such that if u/ € V then du’ intersects £, (pn)

transversally at some x’ € Y.

Thus if the utility profile u is such that du(x) intersects £, (p,n) transversally, then
not only do all nearby profiles intersect Lk(p,n) but they do so at points in X near
to x. In this sense, the stability observed in the transversal intersection of f(.) =
(x,x2) with M in the above example will exist whenever we have a transversal
intersection of du(.) with £, (p,n).

Given the above theorem, then, all that needs to be verified is that the
intersections exhibited in any of the examples from section 3 are transversal; in fact
we will show that they all are. Note first that in each example the points of

intersection in £, (p,n) are all of the form
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be an nxp matrix "close" to J, where A is kxk, B is kx(p-k), C is (n—k)xk, and D
is (n-k)x(p—k); for such matrices the square submatrix A will be non-singular and

hence invertible (since A will be close to Ik). Post—multiply M by the non-singular

matrix
| -1
N=|- J[ o
0 I
| “p-k
to get the matrix
Al o
M= |-+ - —-
C |D—CA_1B

Since the product of a non-singular matrix and a rank r matrix generates a rank r

matrix, we have rank(M) = rank(M’). Finally, since the submatrix A is
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non-singular and hence of rank k, the matrix M’ (and therefore the matrix M) is of
rank k if and only if

D - CATIB = o,
where the RHS is an (n-k)x(p—k) matrix of zeros. Thus let g:E(p,n)-»R(n_k)x(p_k) be
defined by g(M) = D - CA_lB; the function g then is the defining mapping of the
manifold £, (p,n) at J € £; (p,n).

To see that the differential du intersects the manifold Lk(p,n) transversally at
J, consider the composite mapping h = godu:ﬂlp—»ﬂl(n—k)x(p_k). In example 1, we
have that h(x,y) = (x,y) and hence dh(0) is trivially of rank 2, as required; in
example 2 h(x,y,z2) = (y,z) and again dh(0) is of rank 2, as required; and in example
3 h(x,y,2,w) = (x,7,2,w) and hence dh(0) is of rank 4, again as required. Therefore,
any one of these examples, together with an appeal to the above theorem,
demonstrates that the claim described above is false; we have "robust" examples of
utility profiles where p > n—1 and yet A(q,u) # ¢ (in fact, example 3 shows that the

inequality in the first part of the claim cannot be replaced with "p > n'" either).
y

5. Counting djmensions‘

The singularity approach does provide an upper bound on the generic existence
of core points, it’s just that the correct bounds are much weaker than those
identified in the above claim. For an arbitrary smooth function £R5RY and a
manifold M in R' of codimension ¢, say that f is transversal to M if at every point x
in R® either i) f(x) ¢ M, or ii) f intersects M transversally at x; equivalently, f is
transversal to M if all intersections are transversal. For example, in Figure 1 the
function f is not transversal to M whereas the function f is.

Given this definition the function f would be transversal to M if it never
intersected M, transversally or otherwise. In this case, of course, the preimage of M,

f 1(M), would necessarily be empty; otherwise, f 1(M) itself will be a manifold in R°
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of codimension ¢ (Levine, 1971 p.23). If on the other hand ¢ = (t-m) > s, then
dimf 1(M) =5 —c¢ < 0 and again 1(M) will be empty, since the only manifold
with a negative dimension is the empty set. That is, if t~-m > s then the only way
f can be transversal to M is to have f never intersect M at all.

Now from above we have that the manifold Lk(p,n) in £(p,n) is of codimension
(n—k)(p-k), and hence of dimension pn — (n—k)(p-k). For instance, in example 1 we
have that £(2,3) is six dimensional, with £ (2,3) being a four dimensional subset of
£(2,3). Further, S;(u), the set of points xeX for which the differential du(x) is of
rank k, is given by the preimage du_l(ﬁk(p,n)) of the set Ck(p,n) under the mapping
du. Therefore, if du is transversal to £k(p,n) then Sk(u) will either be empty or else
a manifold in RP of codimension (p—k)(n—k), and hence

dim 8, (u) = p - (:-k)(pk) . (3)

In example 1, for instance, we have a zero—dimensional set Sl(u), as this
dimension—counting argument would predict; in example 2, we have a one—dimensional
set Sy(u); and in example 3, we again have a zero—dimensional set S,(u).

In general, whenever the inequality

p < (n-k)(p%) (4)
holds we know that if du is transversal to £,(p,n) it will be the case that Sy (u) will
be empty. Further, it turns out that transversal intersections of du and £ (p,n)
happen to be the gemeric state of affairs: by the Transversality Theorem of Thom
(cf. Golubitsky and Guillemin, 1973), for all k < z the set

{ weU(X)" : du is transversal to L, (p,n)}
is residual, where a residual subset of U(X)™ is one which contains a countable
intersection of open dense sets.. And since the space U(X)Il equipped with the
Whitney topology is a Baire space, i.e. one in which all residual subsets are dense,
du will generically be transversal to Ck(p,n). In particular, we have that Sk(u) will

generically be empty whenever the parameters (p,nk) are such that (4) holds.
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Next, note that the RHS of (4) is decreasing in k; therefore if (p,nk) satisfies
(4) then (p,nk’), with k’ < k, will satisfy (4) as well. Thus by Lemma 3, in order
to insure that A(q,u) is generically empty we simply need to check that k = g-1
satisfies (4), which gives us the following inequality guaranteeing the generic
emptiness of A(q,u):

p < (n—q+1)(p—q+1) . ()

Thus, by (1) and (2) from section 2 we have that whenever (p,n,q) are such that (5)
holds the core C(? q,.) will generically be empty.

We can in addition generate an upper bound for the generic existence of the
core for general rules (i.e. not necessarily g-rules) using exactly the same arguments.
Recall that throughout we have been assuming the collection of decisive coalitions 7
is non—collegial, so in particular for every i € N there exists some coalition C € ?
such that i ¢ C; by monotonicity it must be that the coalition N\{i} € ? as well.
Hence if xeX is a core point with respect to the pair (P,u) then necessarily x €
P(C,u) for all C € D, and x would be a core point for the g-rule with q = n-1
as well. Therefore a sufficient condition for C(D,u) to be empty is that C(D__;,u) be
empty, and from (5) we know that a sufficient condition for the latter is

p < 2(p—n+2), or

p > 2(n-2) = 2n - 4. (6)

That is, if (p,n) satisfy (6) then for any non—collegial rule the core will generically
be empty (recall the original claim had p > n-2). In addition, we know that this is
the lowest possible general bound wusing this approach, since this is precisely the
bound for one particular rule, namely the g-rule with q = n-1.

Finally, examples’ 1 — 3 in section 3 merely demonstrate that when the above
inequalities are not satisfied for those particular parameters (p,n,q) one can find open
sets of utility profiles such that on this set A(q,u) is non—empty. Is this a general

result? That is, suppose that for some g-rule the parameters (p,n,q) are such that



18

(5) does mot hold; is it necessarily the case that one can find an open set of profiles
such that on this set A(q,u) is non-empty? Whitney (1958) answers this question in
the affirmative: whenever (p,nk) are such that (4) fails to hold, there exist open sets
of mappings u for which S,(u) is non—empty. In this sense, then, there is nothing

inherently special about examples’ 1 — 3.

6. Caveats and Extensions

Three comments are in order. The first is that the examples in section 3 all
had one of the voters possessing non—convex (in particular, saddle—point) preferences;
hence one reasonable conjecture would be that by restricting attention to convex
preferences such examples might not exist. This however turns out not to be true,

as the following example (due to John Nachbar) aptly demonstrates:

Ezample 4:n = 3, p = q = 2, and
ul(x,y) =X +7y
uy(xy) = - /2 - ky’[2
u3(x,y) = —k.x2/2 - y2/2 , where k > 1.

The Jacobian matrix is

11
I, () = [—x —ky} ,

—kx -y

so that at (x,y) = (0,0) the rank of J is 1. 'To see that this intersection of du
with £,(2,3) is transversal, use the defining mapping g(M) = D - CA™!B as in
section 4 to get the composite map h = godu = (x-kykx-y). Then dh is

represented by the matrix
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1 -k

Lo
which (since k # 1) is clearly of rank 2. Thus the non—convexity of the preferences
in the earlier examples was not crucial.

The second comment again has to do with the examples in section 3, and that
is that all of these actually dealt with majority rule core points. However, these do
not address Schofield’s (1983) work on the generic non—existence of such points, for
in the latter use is made of the pivotal gradient conditions (McKelvey and Schofield,
1987), which place additional requirements on core points over and above those found
in Lemma 3 above.

Finally, what has been shown here is that certain proofs of the generic
non—existence of the core are wrong; however this does not necessarily imply that
core points exist when, for example, p > n-1. Rather, the proof technique of
relaxing the requirement of semi-positive dependence to linear dependence, and
subsequently invoking rtesults from singularity theory, does mnot generate the
dimensional bounds on core existence that were claimed. It would appear, given the
message of the previous comment, that by requiring semi—positive dependence (which
is essentially equivalent to the pivotal gradient conditions) and not simply linear
dependence one may be able to generate tighter bounds on the existence of core

points.
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