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Abstract

Much of the literature on the endogenous generation of a city employs increasing
returns to scale in order to obtain agglomeration. In contrast, the model considered here
focuses on the role of marketplaces or trading centers in the agglomeration of population as
cities. QGains to trade in combination with transportation and marketplace setup costs
suffice to endogenously generate a city or cities with one or multiple marketplaces. It is
assumed that consumers are fully mobile while production functions are location—specific.
The exchange of commodities takes place in competitive markets at the marketplaces,
while the number and locations of the marketplaces are determined endogenously using a
core concept. Unlike the standard literature of urban economics, our model can deal with
differences in geography by letting the setup costs of marketplaces and the transportation
system depend on location. After showing that an equilibrium exists and that equilibrium
allocations are the same as core allocations, we investigate the equilibrium number and
locations of marketplaces, the population distribution, and land prices. In contrast with
earlier literature, the results are general in the sense that specific functional forms are not
needed to obtain existence of equilibrium, equilibria are first best, and equilibria are locally
unique (in our examples).
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Where human beings organize their

economy around

market exchange, trade between city and country will be
among the most powerful forces influencing cultural
geography and environmental change. The ways people
value the products of the soil, and decide how much it
costs to get those products to market, together shape

the landscape we inhabit.

Cronon (1991, p. 50)

1. Introduction

Over the past few years, increasing attention has been focused on the economics

of cities. Why do cities form where they do?

What are the driving forces behind

the formation of cities? What roles do gains to trade and the location of

marketplaces play? Is perfect competition consistent with spatial modeling?

Naturally, in order to motivate our approach to these questions, it is useful to

see how the extant literature has addressed them. There are two important aspects

of an explanation of why a city is formed in a particular place. These have been

labeled as first and second matures of geography (Cronon (1991)). A first nature of

geography is an advantage created by nature of locating at a certain place (such as a

natural harbor, a river, and so on), while a second nature of geography is an

advantage created by human beings of locating

there.

There are many ways to interpret the notion of second nature of geography.

Krugman (1991a,b) points out that increasing returns to scale from population

agglomeration are important in explaining the formation of cities, and stresses the

importance of the history of a city. History affects the consumers’ location choices

in each period, and it determines the future of a city. Krugman also introduces

transportation cost and discusses the resulting location of cities. Krugman (1993a)

introduces dynamics into the model, while Krugman (1993b) uses a continuum of

locations and endogenously generates potential functions. Fujita and Krugman (1993)



include land explicitly in the model, allow many types of manufactured goods, and
obtain various types of city configurations and industrial specializations.! Similar
models were investigated earlier by Fujita and Ogawa (1982) and Fujita (1988) as
well. Jane Jacobs (1969, 1984) lends support to this entire line of argument.

Although it is limited to a specific functional form, the use of a Dixit-Stiglitz
(1977) model in this line of research to explain city formation seems important, since
it can generate various types of urbanization in developed (industrialized) countries.
However, since the model features increasing returns to scale and monopolistic
competition, there is a large indeterminacy of the set of equilibria. Therefore, from
the same economic data (preferences, endowments, and so on), we can obtain many
equilibrium city structures (different numbers of cities at different locations).

In this paper, we will focus on the history of the formation of a city as detailed
by Cronon (1991), who analyzes the birth and the development of Chicago. Before
and in the early stages of industrialization, Cromon says that the second nature of
geography played a crucial role in the development of Chicago. What Cronon means
by "second nature" is actually something different from increasing returns to scale

due to population agglomeration.

Each new improvement meant a shift in regional
geography — a dredged harbor here, a canal or a road
there — so the advantages sustaining the city came to
have an ever larger human component. A kind of
‘second nature,’ designed by people and ‘improved’
toward human ends, gradually emerged atop the original
landscape that nature — ‘first nature’ — had created as
such an inconvenient jumble.

Cronon (1991, p.56)

1 Ciccone and Hall (1993) find a positive relationship between productivity level and the
density of economic activity. Kim (1993) provides some empirical evidence on regional
concentration or specialization of industrial production in the United States. For the data
from the 1920’s to the present, this evidence seems t0 contradict the verbal arguments of
Krugman (1991b) concerning industrial specialization.



What Cronon calls the "second nature" of geography is the class of commodities
called local public goods. Cronon cites a dredged harbor, a canal, a road, a railroad,
and especially a marketplace as examples of the second nature of geography that

contributed to the agglomeration of Chicago (Cronon, 1991, pp. 56 — 62).

The number and scale of such interregional trading
connections critically determined a city’s eventual
position in the urban hierarchy. Cities with the greatest
access to the East would become the new metropolises of
their region; towns with less direct eastern ties would
rely on western wholesaling centers for the bulk of their
merchandise and develop only a local retail trade of
their own.

Cronon (1991, p. 62)

To the north of Chicago is a forest that can produce lumber, while to the south
is a prairie that is most suitable for producing wheat. Since Chicago established
marketplaces for these commodities, many people accessed Chicago, and as a result,
Chicago became the main regional market for all of these commodities. That is, the
early development of Chicago was generated from gains from trade, location—specific
production, and the establishment of marketplaces; see Cronon (1991, pp. 154-155).
Transportation systems, canals, and railroads played important roles in the
development of Chicago as well. The Illinois and Michigan Canal made Chicago
accessible to the Illinois and Mississippi Rivers (Cronon, 1991, pp. 63-64). A local
railroad network reduced the cost of shipping lumber and crops and enlarged
Chicago’s regional market (Cronon, 1991, pp. 65-70). More globally, the Erie Canal
and railroads linked Chicago with New York — the center of the eastern market
containing a major harbor that imported European commodities. The Union Central
Pacific Railroad connected Chicago with San Francisco on the west coast (Cronon,
1991, p. 70). These improvements, made by people, changed Chicago from the town

with ‘the muddy roads and shallow harbor’ to ‘the new metropolis of the Great



West’ (Cronon, 1991, p. 63).

This paper provides a model of city formation that focuses on marketplaces and
on mass transportation systems for transporting commodities among marketplaces.
We make the locations of marketplaces endogenous and we impose an individual
transportation cost for accessing a marketplace as well as setup costs for both
marketplaces and mass transportation systems that connect marketplaces (railroads,
canals, and so on). Consumers are endowed with labor and land? that is used either
for consumption or to produce commodities; the commodities are produced using
location—specific production technologies, so the amount of a commodity produced
depends on the distribution of labor across locations.3 Consumers can trade
commodities and land only at marketplaces, and they pay transportation cost
individually (the opportunity cost of leisure) to access marketplaces. Hence, if there
is only one marketplace, then a consumer must access it if she wants to trade goods.
If there is more than one marketplace, then society must build a mass transportation
system to connect these marketplaces in order to transport commodities from one
marketplace to another. In this case, each consumer accesses the marketplace that is
most convenient. The explicit introduction of a mass transportation system to the
model makes our model rich enough to explain the development of cities in the
places where terminals of a mass transportation system were located, while allowing

the location of such a system to be endogenous.# Gains to trade provide an

2 There is no absentee landlord.

3 Location specific production is one of the assumptions that implies gains to trade. In the
context of Chicago’s rise, Cronon (1991) points to location specific production of lumber,
grains, and livestock in separate chapters of his book. Of course, Chicago eventually
became the main regional market for all of these commodities. In terms of a theoretical
predecessor, Schweizer, Varaiya and Hartwick (1976) have location specific production.

4 Buffalo and Los Angeles are other examples of such cities. Buffalo became a large city
because it is located at the west end of the Erie Canal. Although San Diego has a better
natural harbor than Los Angeles, Los Angeles is bigger than San Diego, as Los Angeles was
chosen as the terminus of a transcontinental railroad.



incentive for marketplaces to coalesce. Although most of the papers in this field
introduce increasing returns to scale in order to induce agglomeration, our model
focuses on cities as marketplaces or trading centers following Berliant and Wang
(1993).5 That is, we introduce (local) public goods into the model instead of
increasing returns to scale to obtain population agglomeration. Thé locations of
marketplaces and consumers as well as land prices and the method of sharing the
cost of setting up marketplaces and a mass transportation system are all endogenous
and simultaneously determined. Since we treat marketplaces as local public goods,
the collective choices made by consumers to set up marketplaces, to set up a mass
transportation system, and to share the costs of these goods play an important role
in the analysis.8

Moreover, since we let the setup costs of marketplaces and a mass transportation
system be dependent on location, our model can capture aspects of the first nature of
geography.” For example, we can allow for the following situations: one location
might be more suitable than another for dredging a harbor, or it might be less costly
to build a railroad between one pair of marketplaces than another. In the previous
literature, including the work with increasing returns, it is usually assumed that the
geography is a homogeneous plane or line. That is, the locations in the economy are

physically identical ex ante. However, the role of natural harbors is certainly quite

5 Berliant and Wang (1993) construct a model of city formation without production where
the location of marketplaces is endogenous and study under what conditions a monocentric
city is formed. Gains to trade, transport cost, and the setup cost of marketplaces drive the
model. They start from a social welfare maximization problem and find price support for
the social optimum, which generates a market equilibrium. Consumers have limited
mobility, as they must reside in the area where their endowments are found.

6 The reasons why we must employ specialized rather than general models to study our
questions are as follows. Aside from the notion that endogeneity of location as well as
prices and quantities makes it difficult to establish precisely characteristics of equilibrium,
the introduction of a spatial dimension causes some interesting problems in solving our
model. As we shall see in Example 1, the nonemptiness of the core is not generally assured
if there is heterogeneity in consumers.

7 Ellickson and Zame (1994) also stress the importance of the first nature of geography.



important in explaining the development of Boston and New York. Since Chicago
faces on Lake Michigan, heavy lumber could easily be transported to Chicago from
the north. The location—specific production technology implicitly describes part of
the first nature of geography as well. Our model can capture these elements.
Although we follow Berliant and Wang (1993) in regarding marketplaces as a
kind of local public good, our approach is more positive. Assuming that consumers
incur costs when establishing a marketplace, we try to find where marketplaces will
be located, and how the setup cost of marketplaces is shared at a core allocation.
The core is a solution concept from cooperative game theory that requires that no
coalition (subgroup) of consumers wants to deviate from the allocation. In our
particular model, we require that no coalition of consumers wants to construct an
exclusive marketplace or set of marketplaces that only they can use to increase their
utility. Therefore, the core allocations are regarded as stable allocations. Using this
solution concept, we can analyze the determination of the location of marketplaces
and the cost—sharing of the setup costs of marketplaces and mass transportation
systems simultaneously. We will establish the existence of a core allocation and
characterize it in our model. As a result, we can see how cities and marketplaces
are set up by consumers’ cooperative actions for their mutual benefit.8 Gains to
trade derived from location—specific production give consumers an incentive to set up
marketplaces. Through a core equivalence theorem, exchange at a marketplace can
be interpreted as resulting from a competitive price equilibrium with a participation
fee for marketplaces, given the marketplace locations. That is, given locations of the
marketplaces, consumers choose their locations and consumption plans subject to their

budget constraints and firms maximize their profits, while a city manager minimizes

8 We should note that some recent work in finance, such as Greenwood and Smith (1993),

examines the dynamics of the opening of financial markets in a setting that lacks a spatial
dimension.



the setup costs of marketplaces and of a mass transportation system given a price
vector and charges participation fees to comsumers that are used to finance the setup
costs of marketplaces and a mass transportation system.

In the context of the models contained in the literature, there are three ways to
define a city, or agglomeration. The definition can involve any combination of (i)
the concentration of population (e.g. Baruchov and Hochman (1977) and Papageorgiou
and Smith (1983)), (i) the concentration of market or transaction activities (e.g.
Stuart (1970) and Baesemann (1977)), and (iii) the concentration of employment and
production (e.g. Mills (1967), Papageorgiou (1979) and Imai (1982)). Our work is
concerned with all of these aspects of agglomeration. We define a city to be where
population agglomerates, but both marketplace location and employment play roles in
our model.

It is important to relate our work to the Spatial Impossibility Theorem of
Starrett (1978), one of the central results in the field (see Fujita (1986) for an
insightful discussion of this result). Loosely speaking, the Theorem states that if (i)
there is no cost of relocation, (i) consumers’ preferences and firms’ technologies are
independent of location, (iii) the economy is closed, and (iv) each location has
complete competitive markets, then there is no equilibrium with positive
transportation cost in aggregate. In essence, under these assumptions, economic
activity and agents are completely spread out over space if land is included in the
model. Our model circumvents this result by dropping assumptions (ii) and (iv),
employing location specific production and a setup cost for marketplaces.

Most models in the literature drop assumptions (ii) and/or (iv) as well:
consumers must access a central business district, the location of which is ezogenously
given. The central business district might be the only marketplace, or the only
location where goods are produced. For example, Ellickson and Zame (1991) prove

very general theorems on the existence of market equilibrium and core equivalence in



an exchange economy with this type of framework. In contrast, we employ location
specific production and determine the locations of marketplaces endogenously. In the
end, if one is to have agglomeration in equilibrium, one must dispense with one or
more of the Starrett assumptions. A review of the various articles accomplishing this
in different ways can be found in Berliant and Wang (1993). We note in passing
that much of the literature of regional science does not violate any of the
assumptions of the Starrett Theorem, and thus must rely on other forces, such as
population externalities, t0 achieve agglomeration; see Berliant and ten Raa (1993) for
further detail.

Our main results are as follows. Under the assumptions that all consumers are
identical and the setup costs for marketplaces and mass transportation systems are
proportional to the number of participants in a market, the core is shown to be
nonempty and equivalent to the set of competitive equilibrium allocations with
participation fees for marketplaces when the number and locations of marketplaces are
optimal. At a core allocation, consumers are treated equally almost surely in the
utility sense. If consumers are heterogeneous, the core can be empty due to a
nonconvexity caused by the cost an individual consumer incurs in accessing a market.
Finally, if the setup costs for marketplaces and mass transportation systems are
independent of the number of participants and all consumers are identical, the core is
shown to be nonempty but the set of core allocations is larger than the set of
competitive equilibrium allocations. The characteristics of the solutions are examined
through simulations.® The numerical analysis says that as the setup cost of
marketplaces goes up, the number of marketplaces decreases and population

agglomeration is enhanced. The rent of land in the center of a city will increase

9 The reason we use simulations instead of analytically deriving comparative statics to
characterize equilibrium is that it is very difficult to obtain analytical results since we have
many endogenous location variables as well as many (utility equating) constraints due 0
the free mobility of consumers.



with marketplace setup cost as well. If either preferences are asymmetric in
produced goods or the production technology for marketplaces is asymmetric in
produced goods, the location of marketplaces will be biased. If the setup cost of a
mass transportation system is dependent on the locations of marketplaces, the
equilibrium number and locations of marketplaces are affected. The last result
suggests the importance of the first nature of geography in the theory of city
formation.

We set up a general model and define some relevant concepts in section 2.
Section 3 shows that the core can be empty in general and demonstrates the
nonemptiness of the core in a special case. Section 4 characterizes core allocations

using examples. Section 5 concludes. An appendix contains all of the proofs.

2. A geperal model

Here we will construct an abstract spatial economy that contains variants of the

linear city and the monocentric city models as special cases.

(a) An Overview of the Economy: There are I (finite and integer) produced

consumption commodities in the economy. There is a finite number of different
types of locations in the economy. The location set is denoted by J C R™, where m
is a positive integer (typically, m = 1 or 2) and J is finite. Each location j € J is
just a point, but it contains a positive amount of homogeneous land. A consumer
can choose one location from J to live in. Each consumer owns land and labor as
her endowment. Although commodities can be transported physically among
locations, land and labor are specific to locations. Each consumer produces

commodities using production technologies available at her location, and brings her
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products to a marketplace to trade goods (commodities and land). In marketplaces,
other consumers are selling goods she wants. The consumer is required to spend
time to go to a marketplace; the time spent depends on the location of the
marketplace and her residential location. Marketplaces can be established in a
feasible marketplace location set D C R, The set D is assumed to be compact.i0 If
we use a linear city model, then D is an interval in R. If we use a monocentric city
type model, then D is a subset of R2. More than one marketplace can be
established if needed. In such a case, marketplaces must be connected by a mass
transportation system to get commodity flows between them. To establish a
marketplace and a mass transportation system, a coalition of consumers has to pay
costs depending on the size of the coalition using the marketplace system. Figures 1
and 2 illustrate examples of our economy when m = 1. In the examples, J = {o,
.33, 67,1} and D = [0, 1]. In locations {0, .33}, commodity 1 is produced, and in
locations {.67, 1}, commodity 2 is produced. In each j € J, there is a certain
(possibly different) amount of land. In Figure 1, there is only one marketplace,
located at {.5}. At equilibrium, a commodity will have the same price at each
marketplace. If a consumer is living at location {0}, she travels from {0} to {5} in
order to trade. If, instead, a consumer is living at location {.33}, she only travels
from {.33} to {.5} in order to trade. In Figure 2, there are two marketplaces with
locations {.167} and {.833}. If a consumer is living at {0}, she accesses the
marketplace {.167}, since the travel cost to that marketplace is lower. On the other

hand, if a consumer is living at {1}, she accesses the marketplace at {.833}. The

10 There is an asymmetry between the cardinality of consumer locations (finite) and
potential marketplace locations (a continuum). If we modelled both as a continuum,
complications would arise in both the simulations and in core equivalence, aside from much
more technical proofs. If both were finite, odd locations of marketplaces would occur in the
simulations simply because marketplace locations that would otherwise be optimal might
be omi'ateld from the set of potential marketplace locations. The latter case is covered by
our model.
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two marketplaces are connected by a mass transportation system that supplies
commodities to each marketplace. If this transportation system did not exist, only
commodity 1 would be available at the marketplace {167}, and only commodity 2
would be available at the marketplace {.833}. A consumer chooses her location j
from J taking into account, for each location, the wage, rent, and commuting cost to

the closest marketplace.

{(b) Marketplaces: The location of a marketplace can be anywhere in D. No
marketplace requires land: a marketplace is a point d € D. The locations of the
marketplaces are denoted by v{dl, dogy + s dk} — d ¢ D. Let K be the collection of
finite sets in D (9 € K). If there is only one marketplace, all consumers have to
access it to trade with each other. If there is more than one marketplace, then each
consumer will access the marketplace that is most convenient. We assume that the
transportation cost of commodities between marketplaces is negligible, while to access
marketplaces consumers have to use their time endowments. This assumption
appears reasonable, but we can introduce costs of tramsporting mass quantities of
commodities between marketplaces with little change in the analysis that follows (but
notation would become quite complicated). Instead, we wish to focus on the
trade—off between the number of marketplaces (with a set-up cost) and the (leisure)

cost of consumer access to them.

(c) Consumers: There is a continuum of consumers. The set of consumers is
denoted A = [0, 1], and 2 representative element of A is a. The consumers form an
atomless measure space (A, £, v), where £is the Borel sigma algebra of A and v
is Lebesgue measure on A. By definition, #A) = 1. Until Theorem 3, we will

allow for heterogeneous types of consumers.
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(d) Individual Transportation: Consumers access marketplaces to trade commodities

with others. They pay a cost to bring their products to marketplaces. To keep the
model simple, there are no physical or monetary transport costs; there is only the
cost of time to travel to a market. We assume that travel cost (round trip travel
time) from location j to a marketplace d is represented by :Sj(d), where :Sj: D-R +
is a continuous function. Note that this function captures Cronon’s first nature of
geography in accessing a marketplace, since travel cost can vary with the terrain
between a consumer and a market. Travel cost is assumed to be independent of the
quantity of goods transported. Since a consumer accesses a marketplace that is most
convenient, time to travel to a marketplace in marketplace structure d for a
consumer residing at j € J is given by 6j(d), where 6j: K-R,is such that 6j(d) =
min 4.4 5j(d). The Euclidean (round trip) distance from location j to the closest

marketplace given marketplace structure d € K is an example of 6j(d); ie., 6j(d) =2

min 4.4 I - djf.1

(e) Mass Transportation among Marketplaces; When there is more than one

marketplace, it is necessary to build a mass transportation system to have commodity
flows among them. One can imagine the situation where there is a railroad station
in front of each marketplace. Commodities traded in a marketplace are either
brought by individual traders or transported from other marketplaces by the mass
transportation system. For simplicity, we assume that there is no marginal

transportation cost to bring commodities from one marketplace to another.f2 On the

11 We could replace the Euclidean norm with any other norm as well. For other types of
norms, see Beckmann and Thisse (1986, pp. 59-62).

2 We could introduce a marginal transportation cost in the mass transportation system.
Although the arguments below are not affected much, this change would introduce
differences in commodity price vectors across markets. In such a case, notation would
become very messy, and each consumer’s choice over which marketplaces to access would
depend on the price vector in each marketplace as well as the travel cost from her location

to each marketplace.
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other hand, the cost of building a mass transport system depends on the marketplace

structure d € K.

(f)_The Trading Set: It is assumed that each consumer must reside in exactly one

location in J. Since consumers Can choose their locations freely, consumption sets are
nonconvex, and even disconnected. This fact does not depend on the finiteness of
the location set J. Even if J is a convex subset of R™, the trading set is always
nonconvex. This point can be seen easily in the following example. No convex
combination of one unit of land in Boston and one unit of land in Philadelphia will
generate one unit of land in New York. There is a further complication. Since
production 18 location—specific, we cannot treat labor as a homogeneous good, since it
has a different effect on output at different locations. Thus, the usual definition of a
labor endowment does not make sense. To avoid these difficulties, we treat labor in
each location as a different good, and use a trading set instead of a consumption set
(McKenzie (1959)). A trading set is a consumption set where the endowment point

. . . _ I
is normalized to the origin. Let N =Q,~ 0, ~ Qp > 0y = R

potential trading set where {2 ¢ = !RI, Q (= IR‘],

« B2 « J be the
and QL = IRJ denote potential
commodity, leisure, and land trading sets, and j= J denotes the potential location
choice set, respectively. Consumers’ trading sets with no transportation costs are
represented by the closed-valued measurable correspondence X: A -+ Q. For
simplicity, we let X(a) = Uy X (a) where Uy X (a) is the union of X (a) for j € J.
We define X (a) = IR x H (a) x L(a) x {j}, where H (a) and L(a) are a type a
consumer’s leisure trading set when she chooses location j and land trading set,
respectively. The specification of the trading set implies that no consumer is
endowed with produced commodities. The j-th axis of H j(a) ¢ & s [-T(a), 0] and
the other axes are all {0}, where T(a) is the leisure endowment of a type a

consumer. By this we mean that if a consumer chooses location j, she can consume
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Jeisure or supply labor only at j. The land trading set is L(a) = {L € R:L>-

b(a), b(a) > 0}, where b(a) denotes the initial endowment (vector) of land belonging
to consumer a (in all Jocations).13 A typical element of X(a) is denoted (¢, (L J),
representing commodity consumption, net leisure consumption, net land consumption,
and location choice, respectively. Note that — £ denotes labor supply plus
transportation cost. To show core equivalence (Theorem 1) and the existence of
equilibrium (Theorem 2), it is convenient to modify the trading sets. Let X(d, a) =
Uy Xj(d, a), where Xj(d, a) = IR_I*_ x Hj(d, a) x L(a) = {j}, where the jth axis of
Hj(d, a) is [-T(a), —5j(d)]; ie., Xj(d, a) is obtained by truncating Xj(a,) at the

transportation cost from j to d, 5j(d). We call X(d, a) the truncated trading set (see

1
+

x flj(d, a) x L(a) » {j}, where the j-th axis of ij(d, a) is [-T(a) + 6j(d), 0]; i.e,

also Berliant and Fujita (1992)). Let ).((d, a) = Uy )~(j(d, a), where ij(d, a) = R

)-(j(d, a) is obtained by translating 'Xj(d, a) by 6j(d). We call )-((d, a) the translated

trading set.

(g) Preferences: The preference relation R(a) ¢ X(a) x X(a) is assumed to be 2
complete preorder. R(a) is closed in X(a) = X(a).‘ To get the preference relation on
the translated trading set R(d, a) C ).((d, a) x 5(((1, a), testrict R(a) to X(4d, a) x
X(d, a) and translate the preference relation by 6j(d). Denote by », (>g) and ¥,
(tg) the strict and weak preference relations, respectively, induced by R(a) on X(a) x
X(a) (R(d, a) on 5(((1, a) x 5((d, a)). The space of admissible preferences is denoted
by % and endowed with the topology of closed convergence (Hildenbrand (1974)).
We assume that R: A - # is a measurable mapping, where & is endowed with the

Borel o—algebra.

13 We define vector inequalities as follows: Let x, x’ € R™. Then x » x’ if X; 2 X’ for all i

=1,-+,0,X>X ifx>x’ and x # x/,and x >> X’ ifxi>xi’ forali=1, -+, 0.
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(h) Production: In our economy, the production structure is location—specific. Land

and labor are used to produce consumption commodities. The production set that is
I 2]

available at location j is denoted by Y. C R = R™; Y. is a closed convex cone with
vertex at the origin. We assume Yj n IR}_ x [R_?_J = {0}, and IRE x IR?_J C Yj' For
any j € J, there exists i € I such that Y} = R_, where Y} is the projection of Y.i on

the i—th axis. This implies that for any location j there is at least one commodity
which is not producible. Such an assumption excludes an autarkic equilibrium. To
produce commodities, labor at j is assumed to be essential. Denote the aggregate

production set by Y = ZJ Yj’ which is also assumed to be a closed, convex cone

2J
+

constant returns to scale technology. In this specification, we did not explicitly

with vertex at the origin, and Y N ([R4I_ x RZ*) = {0}. These assumptions imply a
exclude the possibilities that (i) inputs (such as raw materials) are transported among
locations (there is trade in inputs), and (ii) produced commodities are used as inputs
for the production of other commodities (there is trade in intermediate goods).
Although these possibilities do not cause any mathematical problems in our proofs,

they cause some problems in the interpretation of the model.t4 Hence, we will

14 The problem is how to introduce the transportation cost of inputs and intermediate
goods. If it is costless to transport these goods from one location to another, then it is
asymmetric to assume that consumers need to transport final products (commodities) to
marketplaces, and that this transportation is costly. In this case, for symmetry, consumers
should be able to obtain commodities without incurring a cost to access a marketplace. On
the other hand, if transporting inputs and intermediate goods is costly, then their
transportation cost functions must be introduced into the model. Although this can be
done using the tramsportation technology sets provided by Schweizer, Varaiya, and
Hartwick %1976), these transportation technologies must be treated as correspondences
from the set of marketplace structures to the commodity space if inputs and intermediate
goods are transported via marketplaces and a mass transportation system. Of course, final
products (commodities) should be transported in the same way for symmetry. In fact, the
latter approach is very rich, and it could explain industrial specialization in certain areas;
for example, we could explain why steel factories are located in the areas close to coal
mines. We conjecture that it is possible to generalize our model to deal with the approach
involving positive transportation costs for all goods, but it requires very complicated
notation and arguments. Thus, for simplicity, we assume that inputs and intermediate
goods are not transportable in this paper.



16

exclude these cases for now; finding assumptions to exclude these possibilities is quite
easy, while adjusting the model to account for these possibilities is easy but technical

and cumbersome. We will return to this point in the conclusion of the paper.

(i) A Topology on the Set of Marketplace Structures: Here we induce a topology on

K that is used to define continuity of functions and correspondences on K. It is
defined as follows. We can partition K = Uli() K, where K { is the set of elements
of D with cardinality £ We can induce a topology on K, using a metric defined in
the following manner. Let o (d) be the set of permutations of d, and let s(d) be a
representative element of o (d). For any d, d’ € K, the metric distance between d
and d’ is defined by min (g o (q) ) k £, lIs,(@) - dll, where s,(d) and df
denote the k—th elements of s(d) and d-, respectively. Taking the disjoint union of
the spaces Kl (£ = 0,1,2,...), we obtain a topological space (K, 0), where ¢ is the
topology on K thus defined. Note that the function 5‘] is continuous on the
topological space (K, ¢). From now on, the topology induced on K is always taken

to be 2.

(j) The Setup Cost of Marketplaces: To establish a marketplace, consumers must

pay costs depending proportionally on the number (measure) of consumers who use
the marketplace. Specifically, we assume that for each measurable coalition S € £,
the commodity bundles required to establish marketplaces at d € K are given by the

set QY(, 8) = uS) x 2M(a), where 2M: K - R} « B27 is closed-valued and
_{_ x IR_?_J and 0 ¢ .ZM(d) (positive cost)
Cc 2 M(d) (a free disposal property) for any d € K.

convex—valued, and satisfies (i) 2 M(d) CR
.. M I 2J
and (i) 27(d) + R, = R}
We call 4 M the input requirement correspondence for establishing a marketplace
structure. Note that this correspondence captures Cronon’s first nature of geography

in setting up a marketplace: the setup cost of marketplaces can depend on the
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number and locations of marketplaces. As a special case, we can let 2 M(d) =
2 ded 2 M(d), where 2 M(d) denotes the input requirement set for setting up a
marketplace at d € D.

An important assumption is that the setup cost of marketplaces is proportional
to the size of a coalition (as is the setup cost of a mass transportation system; see
(k) below). This assumption is used only for proving a core equivalence theorem,
and is not related to the nonemptiness of the core. Note that we do not assume

anything about cost allocation among consumers €x ante.

(k) The Setup Cost of a Mass Transportation System: When there is more than one

marketplace, they must be connected by a mass transportation system. The cost
results, for example, from building stations in front of marketplaces and from
constructing railroads between them. We define the setup cost of a mass

transportation network in the following manner: QT(d, S) = S) x 2 T(d), where

2 T: K IR}_ x IR_?_J is the input requirement correspondence for establishing a mass
transportation system. Again we assume that 2 T: K = lR_{_ x IR_?_J is continuous,

closed—valued, and convex-valued, and satisfies (i) 2 T(d) C IR}_ x IR_?_J and 0 ¢
3 T(d) (positive cost), and (ii) .ZT(d) + IR}_ x lR_?_‘] C .ﬁT(d) (a free disposal
property).

The specification of 2 T general enough to capture Cronon’s first nature of
geography in setting up a mass transportation system: 2 T(d) can be dependent on
the number of marketplaces, the locations of marketplaces, and the distances between
marketplaces. In the railroad example, 2 T(d) depends on the cost of building
stations in each marketplace as well as the cost of building a railroad connecting
marketplaces; the latter is dependent on the distances among marketplaces and the

geographical characteristics of areas between them. Using our specification, many

methods for measuring the distance between marketplaces are captured. For example,
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let .ZT(d) = Q% x (#d) + Q" x 7(d), where QP is the input requirement set to
produce one station, Qr is the input requirement set to build one mile of railroad,
and 7(d) is the distance among the marketplaces (there is no first nature of
geography in this example). Here we can use the following specifications of the
distances between marketplaces, which make 7(d) a continuous function on (K, ¢ ):
) min grep ) gea 14 = &1 o () min ygre (@) § Fhet Mon(@ ~ (@l
In case (i), the marketplaces are connected radially, while in case (ii) the

marketplaces are connected by a piecewise linear curve.

(1) The Total Setup Cost of Marketplaces and a Mass Transportation System: For

notational simplicity, we combine the two types of setup costs into one. The total
setup cost of marketplaces and a mass transportation system is denoted Q(d, S) =

M, ) + QT(q, 9).

(m) An Economy: An economy & is a list ((A, £, v); X, R} Y, Q, J, D).

(n) Feasible Allocations: A consumption allocation in & is a Borel integrable
function f: A - Q such that f(a) € X(a) a.e. in A. The collection of consumption
allocations is denoted by J¥. A list (d, f) is called an allocation. Given (d, f), let
%(d, a) be such that if proj; f(a) = j then %f(d, a) = fg(a) - 5j(d) and other
elements of %(d, a) are the same as those of f(a), where ff(a) denotes consumer a’s
net leisure consumption at j, and proj(_)(*) is the projection operation of (*) onto
(-). This is a consumption allocation in the translated trading set. An allocation
(d, f) in & is feasible if (d, f) satisfies:

(1) i(d, a) € }-((d, a) a.e. in A,

(i) J A projg (4, 3) du(a) € Y - Q(4, A),
where C = Q_ « 9, x Qp, and hence projg X(d, a) = Uy {R] H(d, a) x L(a)}.
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The collection of feasible allocations is denoted by .18

(o) Individually Rational Allocations: An allocation (d, f) in & is individually
rational if f(a) ¥, (0, j) for any j € J ae. in A.

(p)_Coalitional Deviations: Let S € £ be a coalition which is trying to deviate
from a feasible allocation (d, f). A feasible coalitional deviation in & given the
locations of marketplaces d- € K is a list of d’, 5, and an allocation g: A - (0 that
satisfies the following condition:

Js proj; §(d", a) difa) € Y - Q(d, S).
We say (d°, S, g) improves upon (d, f) if g(a) », f(a) a.e. in S.

(q) Core Allocations: A core allocation in & given the locations of marketplaces d is

a feasible, individually rational allocation (d, f) such that there is no feasible
coalitional deviation given locations of marketplaces d that improves upon f. The
collection of core consumption allocations in & given locations of marketplaces d €
K is denoted Core(d). A core allocation in & is a feasible, individually rational
allocation (d, f) such that for any d’ € K there is no feasible coalitional deviation
given d’ that improves upon f. The collection of core allocations in & is denoted

by Core.

(r) An Equilibrium with Participation Fees:18 Due to the setup cost of marketplaces,

15 Notice that our feasibility concept is dependent on the marketplace structure, since there
cannot be more than two marketplace structures simultaneously. We assume that goods
cannot be transferred from one coalition to another coalition without merging into one
coalition. This is a basic assumption in cooperative game theory. The meaning of this
assumption in our setting is that without sharing the same marketplace structure,
consumers cannot transfer goods to others.

16 Qur ‘participation fees’ are a different concept from the ‘participation price system’ used
in Wooders (1993). Wooders analyzes a local public good economy (a coalition structure
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the usual Walras equilibrium concept itself is not useful in this model. We will use
a modified Walras equilibrium that includes a city manager in the equilibrium
concept. An equilibrium with participation fees in & given the locations of
marketplaces is a list (d, f, ¥y, 4, p) where d € K, y € Y, q € Q(d, A), and p € A
(a is the unit simplex in IR}_ x IR_?_J) such that:

(i) p-y > pry’ for amy y’ €Y,

(ii) p-q ¢ p-q’ for any @’ € Q(d, A),

Gi) [y prolg f(d @) dMa) = ¥ - @

(iv) p-{projg i(d, a)} ¢ —p-q ae in A,

(v) %(d, a) tg x VxE€E ).((d, a) s.t. p-(pProjp x) ¢ - p-q ae in A.

Here, the setup cost of marketplaces and a mass transportation system is financed by
poll taxes on market participants (p-q). A city manager minimizes the setup costs
of marketplaces and the mass transportation system given p. The collection of
equilibrium allocations with participation fees in & given the locations of

marketplaces d € K is denoted E(d).

(s) Envy Free Allocations: A consumption allocation f € % is envy free in S if the

following condition is satisfied a.e. for a € S: f(a) ¥, f(a’) a.e. for a- € A. The
collection of (not necessarily feasible) allocations in & that are envy free in A is

denoted by F.

(t) Pareto Efficient Allocations: Let x5 be such that for f, f* € &, fr I’ iff f(a)
ry T (a) a.e. in A. A feasible allocation (d, f) € F is Pareto efficient, if for any

economy), and her ‘participation price’ for a community is a payment made by a consumer
to join that community. On the other hand, in this paper we consider an integrated
economy (a grand coalition economy), and our ‘participation fees’ are used to finance the
setup costs of marketplaces and a mass transportation system for the whole economy.
Hence, our participation fees are more like tax payments to the central government.
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(d7, f) € &, it is not the case that fr r, f with f(a) », f(a) for a a.e. in some

S, »/(S) > 0. The collection of Pareto efficient allocations in & is denoted by P.

3. The Core

We will demonstrate the nonemptiness of Core allocations in our economy. It is
convenient to establish a couple of preliminary results in order to prove the
nonemptiness of and characterize the Core. The strategy for this section is as
follows: First, we establish the equivalence between Core(d) and E(d), and the
nonemptiness of Core(d) in a general model. After that, we give an example in
which there are two types of consumers and the Core is empty. Finally, assuming
identical consumers in the economy, we prove the nonemptiness of the Core. All of

the proofs are given in the appendix. First we define a couple of assumptions.

Local Nonsatiation: Given d € K, for any x € )Z(d, a), for any ¢ > 0, there exists

x’ € )~((d, a) such that ||x — x’|| < € and x’ >g x, a.e. in A.

This assumption is standard, and says that for any consumption plan, there is a

better one nearby.

The Boundary Condition: If (¢, { L, j) € X(a) satisfies ¢; = 0 for some i € I, or lj
= - T(a), or Lj = - bj(a), then for any (c’, &, L’, j’) € X(a), (¢, &, L7, i’) Yo
(c, & L, j), a.e. in A.

This assumption says that any interior consumption plan is at least as good as

any boundary consumption plan.
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Theorem 1. For all d € K, Core(d) = E(d) under local nonsatiation and the

boundary condition.

Remark. The proof of the theorem is a modification of Hildenbrand’s (1974).
However, the boundary condition is an unusual assumption in the context of core
equivalence theorems. This assumption is used in two ways. First, it gives
incentives to consumers to participate in markets. Second, it is used to prove that a
minimum expenditure equilibrium is an equilibrium with participation fees. Due to
the lack of convexity of trading sets, a minimum expenditure equilibrium is not even
a quasi—equilibrium. Hence, neither irreducibility nor monotonicity of preferences
helps in proving core equivalence (and nonemptiness of E{d)), since there are multiple
wealth levels that have consumption plans without cheaper points. Assumption C.3
together with C.2 in Wooders (1980) in the context of a local public good economy

is very close to our boundary condition.

Since Core ¢ U Core(d) by definition, Theorem 1 implies that any core
deK

allocation is represented by an equilibrium with participation fees for some location of
marketplaces. Therefore, we can analyze a core allocation using the notion of
equilibrium with participation fees. The following corollary is a consequence of this

argument.

Corollary 1. Let S € .£ be a set of consumers in which each consumer has the
same preference relation and trading set with »(S) > 0. Under the assumptions of

Theorem 1, at any core allocation consumers are envy free a.e. in S.
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Corollary 1 is important, since it establishes equal treatment of identical
consumers (in the almost everywhere sense) at core allocations. Next, we prove the

nonemptiness of E(d) and Core(d). We need a couple more assumptions.

Interiority: There exists j € J such that:
int(Y — Q(d, A)) n [, Projg kj(d, 2) difa) # 0.

This assumption says that the set of feasible allocations with non-—zero

consumption is nonempty.

Monotonicity in Commodity Consumption: For any i € I, for any j € J, for any
(c, & L, j) € X(a) such that ¢ >> 0, lj > — T(a), Lj > — b(a), if ¢/ > ¢ then
(¢, & L, J) >, (c, 4 L, j) ae in A.

Remark. Monotonicity in commodity consumption implies local nonsatiation in the

interior of trading sets for any d € K.

Theorem 2. For all d € K such that (Y - Q(d, A)) n projg )-((d, a) # 0 ae in A,
E(d) # ¢ under the boundary condition, monotonicity in commodity consumption, and

interiority.

Remark. Each of these three assumptions plays an important role in the proof. Due
to disconnected consumption sets, Wwe do not have continuity of budget relations.
Interiority and monotonicity in commodity consumption assure positive commodity
prices, which implies that (1ocation—speciﬁc) price vectors are nonzero at any location.
All three properties are used to prove that individual demand correspondences have

closed graphs. Completeness and transitivity of * 5 1€ also important in this part of
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the proof (see Konishi (1993)). We cannot use a dispersed wealth distribution type of
assumption (see Mas—Colell (1977) or Yamazaki (1978) for a definition), due to
Example 1 below. Note that in this theorem we allow for the possibility of empty
locations. Monotonicity in commodity consumption assures that there exists a

commodity with a positive price at every location.

Corollary 2. For all d € K such that (Y - Q(d, A)) n projq }-((d, a) # # ae in A,
Core(d) # § under the boundary condition and monotonicity in commodity

consumption.
Remark. Interiority is not needed to prove Core(d) # 0.

Unfortunately, there is an unpleasant example related to the nonemptiness of
Core. If consumers are not homogeneous then the Core can be empty, although it is

not difficult to show that Core(d) is nonempty.

Example 1.7 Let D = [0, 1]. Let location 1 be at {0}, and let location 2 be at

{1}. There are two types of consumers (1 and 2); the measure of each type is 1/2.
There is no land in the economy, and each type of consumer owns 2 units of leisure
as endowment regardless of location choice. To set up a market, a coalition S must
pay ¥(S)/2 units of location-specific labor in both locations. The cost to set up two
marketplaces is twice as much as the cost to set up one marketplace (there is no

setup cost for a mass transportation system). There is no first nature of geography

in the example. The individual (marginal) transportation cost is one. Each

17 This example is not a counterexample in the strict sense, as it violates the boundary
condition. We employ this example for expositional purposes. Using the same method as
Example 1, we can construct a formal counterexample by employing the two types of
preferences used in the numerical examples in the next section.
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commodity is produced using a location—specific production function y; + Ll <0 fori
= 1, 2, where y; denotes the output of commodity i. Consumers have Leontief-type
utility functions: type 1 and type 2 consumers’ utility functions are ul(cl, c2) = min
{201, c2}, and u2(c1, c2) = min {cl, 2c2}, respectively. That is, neither type of
consumer obtains utility from leisure consumption. In this economy, the Core is

empty.

To see this, first notice that there can be only one marketplace in the economy.
If there is no marketplace in the economy, then no one can get positive utility. If
there are two marketplaces, then even if there is no individual transportation cost,
again no one can get positive utility due to the setup costs of marketplaces and of
the mass transportation system. Therefore, if there exists a core allocation, it must
have only one marketplace. Denote the location of the marketplace by d € D, which
denotes the distance from location 1. If d = 1/2, then y; + ¥o = 1/2, and the
production allocation is determined by the population distribution over locations. If
d takes a different value, then the aggregate production set changes (see Figure 3).
As a result, taking an envelope of production possibility frontiers over d, we obtain
the curve AB. Each point on AB corresponds an element d € D. By calculation,
we can show that type 1 and 2 consumers’ ideal locations for the marketplace are d1
=5 — 421 and d2 = — 4 + 21, respectively. That is, by allocating the population
properly, type i consumers can attain their most preferred consumption vector Ci by
forming a homogeneous coalition consisting of consumers of only their type
distributed over both production locations (see Figure 4). Since a! and a2 are
different, for any d € D, at least one type of consumer will deviate to improve upon
the original allocation. Therefore, the core is empty. In fact, any convex
combination of ¢! and c? is infeasible; see, for example, the point E in Figure 4.

How about the case where each group forms its own marketplace and no consumer
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accesses the marketplace established by the other group? Unfortunately, even in this
case, some type 1 consumers living in location 2 want to access the marketplace dz,

since it is closer to location 2. Then both types of consumers use both marketplaces,
and they need to pay doubled setup costs. Therefore, without assuming exclusion in

the use of marketplaces, we cannot obtain a stable allocation. 18

The problem that this example suggests is that if there are transportation costs,
the production possibility sets with endogenous location of marketplaces are
nonconvex in general. This is the source of the trouble. Although we assume
Leontief preferences in this example to make the point clear, it is not essential to
the robustness of the example.

Due to this unpleasant counterexample, our theorem on the nonemptiness of the
core requires identical consumers. In a strange way, this aids in justifying the use of
a continuum of consumers in this model. Berliant (1985) points out that, under
some conditions, the use of both land and a continuum of consumers in a model
creates problems with consistency of the model. When all consumers are identical,
however, the arguments of Papageorgiou and Pines. (1990) apply. Although these
arguments are not entirely convincing (see Berliant and ten Raa (1991)), they do
provide some justification for our framework. One more assumption is needed before

we can state our main result.

Boundedness of Feasible Markeiplace Structures: There exists ¢, finite and integer,

18 Tn our model, an allocation is a list consisting of two elements: a marketplace structure d
and a consumption allocation f (see footnote 15). With our solution concepts, it is not
possible to split the economy into two separate, self sufficient units at a core allocation.
The reason is that land must be traded at marketplaces, and every consumer Owns land at
every location (if all consumers are identical). Readers might think that consumers could
do better than joining the grand coalition by separating into several self sufficient
coalitions. However, since we do not have explicit externalities from population
agglomeration, we can always find an allocation under the grand coalition that is at least
as good as an allocation derived from a structure with multiple coalitions for almost all
consumers.
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such that for all & 3 4 for all d € K,,, (Y - Q(d, A)) n [, X(d, A) difa) = ¢.

Remark. This assumption says that all the resources in the economy can only
generate a finite number of marketplaces. Since there is only a finite number (#J)
of locations for consumers, the optimal number of marketplaces is always less than or
equal to #J if the total marketplace setup cost increases by adding one more

marketplace. In such a case this assumption is trivially satisfied.

Theorem 3. Suppose that consumers are identical a.e. in A. Then, Core # ¢ under
the boundary condition, monotonicity in commodity consumption, and boundedness of

feasible marketplace structures.

The following is a characterization of Core, which is proved by using an

argument in the proof of Theorem 3.
Corollary 3. If all consumers are identical a.e. in A, Core = F n P.

In our model, marketplace and mass transportation setup costs have been
assumed to be proportional to the size of the coalition using it. This is an extreme
case. The other extreme case is that irrelevant of the size of coalitions, the
marketplace and mass transportation setup costs are fixed. In such a case, it is
harder for coalitions to deviate from a proposed allocation. Thus, the Core in the
proportional setup cost case is a subset of the Core in the fized setup cost case.
Hence, nonemptiness of the Core in the fized setup cost case is easy to show (see

Scarf (1986)).

Corollary 4. Suppose that consumers are identical a.e. in A. If marketplace setup
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cost is not a function of the population using the marketplaces and mass
transportation system, then Core # ¢, but the equal treatment property does not

hold since Core(d) # E(d).

4. City Formation: Examples

In this section, we will characterize core allocations using numerical methods.
We do not use comparative statics for this purpose for the reason given in footnote
9. The computations use a nonlinear programming package, GAMS/MINOS version
9.95. The basic model is the one that is described in Section 2(a) and in Figures 1
and 2. Locations are one dimensional and contained in the unit interval [0, 1].
There are four types of land, J = {0, 0.33, 0.67, 1}. For convenience, we call these
types of land a, b, ¢, and d, respectively. Commodity 1 is produced in a and b
while commodity 2 is produced in ¢ and d. The feasible location set for
marketplaces is D = [0, 1]. The leisure endowment T is set at 2, and the land
endowment is 1 at each location (for each consumer). Individual travel cost to a
marketplace is the opportunity cost of leisure, and is the distance from a consumer’s
residence to the marketplace. The preferences of consumers are represented by a
Cobb—Douglas type utility function, U(c, 4 L, j) = (cl)"‘l(cz)“?(z - ej)“3(1 -~ Lj)‘“,
where oy + a9 + 03 + ooy = 1. The production function at j is simple, and is
denoted by y j= (- lj) x m;, where y f and m; denote the production level at j and
the population (measure) at j, respectively. The setup cost of a marketplace is
represented by a kind of composite good of commodities 1 and 2. To produce one
marketplace, we need g units of the composite commodity. That is, the level of q
represents the setup cost of a marketplace. The production function that produces

the composite good is denoted q = (c1)7(02)1—7. That is, we only use the two
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commodities that are outputs to produce the composite good. In the first three
examples, we do not introduce a setup cost for a mass transportation system, and we
assume that if there are k marketplaces then the cost of producing marketplaces is k
times the cost of producing one marketplace. We will use the following sets of
parameters. (Case-T): o = 0.25 fori=1,2, 3, 4, and v = 0.5. (Case-II): o =
02, &y = 03, ag = &y = 0.25, and v = 0.5. We tried many values for q (q =
0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5); it is a very important parameter in our model,

since marginal travel cost is normalized to one.

(Case-1): The results are summarized in the following table:

q || # |location population output rent

01| 4 |a,b,c,d {.250 .250 .250 .250 .34 .34 .34 .34 |.024 .024 .024 .024
05 || 2 b,c 104 .306 .306 .194 |.23 .43 .43 .23 |.015 .027 .027 .015
A 1 .5 188 .312 .312 .188 |.20 .40 .40 .20 |.013 .026 .026 .013
.2 1 .5 179 .321 .321 .179 |.20 .44 .44 .20 |.011 .023 .023 .01l
.3 1 .5 167 .333 .333 .167 |.20 .48 .48 .20 |.008 .021 .021 .008
4 1 .5 150 .350 .350 .150 [.19 .52 .52 .19 |.006 .019 .019 .006
.5 1 .5 125 .375 .375 .125 |.17 .59 .59 .17 |.004 .016 .016 .004

Table 119

Commodities 1 and 2 are treated symmetrically in this case. One immediate
observation is that when g is small (g = 0.01 or 0.05) there are many marketplaces
(4 and 2, respectively), but if q becomes larger (g > 0.1), there is only one
marketplace. The population in the middle (b, ¢) increases as q increases. The
rents in the center area relative to those in the outer area also increase with q. The

reason why the absolute values of remts go down as q increases is that the

19 The locations of marketplaces when q = 0.05 can be any of {a, c}, {a, d}, {b, c}, or {b,
d}. We choose {b, c} only because of the nice contrast with other parameter values. The
same applies to Table 2.
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production technology to produce marketplaces uses commodities but not land as
inputs. As q goes up, more of the commodity production is used for marketplace
production. Hence, commodities become scarce and the relative prices of land go
down as q increases. One interesting feature is that when there are two
marketplaces (q = 0.05) we still have agglomeration of consumers, although we also
have a symmetric situation within each area producing a commodity, {a,b} and

{c,d}.20

(Case-1I): The results are summarized in the following table.

q || # |location population output rent

.01 4 la,b,c,d |.224 .224 .276 .276 .30 .30 .38 .38 |.020 .020 .028 .028
.05 2 b,c 180 .268 .333 .220 {.20 .36 .45 .25 |.014 .025 .035 .020
Nl 1 .67 156 .273 .350 .221 (.15 .32 .50 .26 |.010 .022 .029 .016
2 1 .67 150 .287 .355 .209 |.15 .36 .53 .26 {.009 .020 .026 .013
-3 1 .67 140 .304 .362 .193 |.15 .40 .57 .25 |.007 .019 .022 .010
4 1 .65 128 .327 .374 .172 |.14 .48 .61 .24 |.005 .017 .019 .007
D 1 .62 109 .357 .393 .142 |.13 .52 .65 .20 {.003 .015 .017 .004

Table 2

The main difference from Case-I is the location of marketplaces when the
number of marketplaces is one. Since consumers prefer commodity 2 to commodity 1
in Case-II, more of commodity 2 should be produced. This requires that a larger
portion of consumers live in ¢ and d. Then, to save individual transportation cost,
the location of marketplaces is biased to the right. Therefore, in the cases q = 0.1,
0.2, 0.3, the location of the marketplace is ¢ (0.67). Consider next the cases when q

— 0.4 or 0.5. The location of the marketplace is pulled toward b a little because of

20 This is because in this example there are only two locations producing each commodity.
I we add more locations between a and b and between ¢ and d, the locations of
marketplaces converge to symmetric positions when there is no mass transportation system
setup cost.
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a ‘symmetric’ marketplace production function (y = 0.5). As q becomes larger, the
economy is required to produce more of both types of commodity. In such a case, a
larger and larger portion of consumers is required to live in a or b. Then, if the
location of the marketplace is very biased, the total transport bill is high. This is
the source of the pulling power of the location of the marketplace.

We give a couple more examples. The next case (Case-III) is one where
consumers’ preferences are symmetric (oz1 =0y = 03 = Oy = 0.25), while the
technology for production of a marketplace is asymmetric (7 = 0.3). We only
provide the core allocation for g = 0.1. The location of the only marketplace is at
0.605, and the distributions of population, output, and rent are as follows: 0.174,
0.295, 0.327, 0.205 (population); 0.168, 0.359, 0.446, 0.228 (output); 0.012, 0.025,
0.027, 0.014 (rent). Comparing this result with the case (@ = 0.1) in Table 1, we
can say that if the technology for marketplace production is asymmetric, the location
of the marketplace is biased toward the region that produces the commodity that is
needed more in the production of marketplaces.

Finally, we focus on the setup cost for a mass transportation system. In the
next two examples, we assume that the setup cost for marketplaces (q) is constant
independent of the number of marketplaces, while the setup cost of a mass
transportation system depends on the locations of marketplaces and the distances
among them. To produce a mass transportation system, the same composite
commodity as in marketplace production is used. To focus on the first nature of
geography in setting up a mass transportation system, we assume o = 0.25 for all i,
and ¥ = 0.5. To provide marketplaces, consumers must pay q independent of the
number of marketplaces. In (Case-1V), the setup cost of a mass transportation
system in terms of the composite good is 3 x g per unit distance. In (Case-V), the
setup cost for a mass transportation system in terms of the composite good is 9 x q

per unit distance if it is built in the interval [0, 0.5], and is 0.3 x q per unit
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distance otherwise. The reader can imagine a situation in which the interval [0, 0.5]
is mountainous, where it is costly to build a railroad, while the interval (0.5, 1] is a
prairie, where it is less costly to build a railroad. For these two cases, we
investigated only the value g = 0.05. In (Case-1V), we get two marketplaces {b, c},
while population, output, and rent distributions are exactly the same as those in the
case g = 0.05 in Table 1. For (Case-V), we obtain three marketplaces {0.5, ¢, d},
while population, output, and rent distributions are: 0.183, 0.295, 0.261, 0.261
(population); 0.187, 0.375, 0.357, 0.357 (output); 0.015, 0.028, 0.022, 0.022 (rent).
Aside from the setup cost of a mass transportation system, (Case-IV) and (Case-V)
are the same, so we can see that the first nature of geography matters for the
equilibrium number and locations of marketplaces and population agglomeration, as

well as the rent distribution.

5. Conclusion

We have seen in this paper how gains to trade, location—specific production and
the setup costs of marketplaces and a mass transportation system can be used to
generate agglomeration and city formation.2! In this paper, we assumed that there is
no input nor intermediate good trade to avoid complications (see Footnote 14).
Commodities are produced only by labor and the land available at each location.
Commodities are transported from residences to marketplaces by individual consumers.
However, this specification is unrealistic in industrialized economies. Raw materials

as well as intermediate goods are traded over locations. Fortunately, our model is

21 Although our model is based on gains t0 trade derived from the exchange of commodities,
we could alternatively make the simple assumption that consumers must access
marketplaces.
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rich enough to capture these features, but only with further complications. We can
introduce transportation technologies for moving goods between production or
residential locations and a marketplace, in addition to mass transportation
technologies for moving goods among marketplaces, following Schweizer, Varaiya, and
Hartwick (1976). These transportation technologies are described as production set
correspondences from the set of marketplace structures (K) to the commodity space.
By adding transportation technologies to location—specific production technologies, we
can obtain net location—specific production set correspondences from the set of
marketplace structures to the commodity space. Using this method, we can introduce
input and intermediate good trade into our model consistently without changing the
basic arguments.

The model we have used can be considered complementary to the models of city
formation based on increasing returns to scale from population agglomeration. In a
model with increasing returns to scale, the history of a city is important in the
development of a city. An important question that should be asked is: what
determines the initial population distribution in the economy? The answer to this
question gives us not only the initial state of the economy, but also determines the
resulting development of cities over time through the mechanisms described by
models employing increasing returns. Our model can reduce the "indeterminacy"
problem of the increasing returns model by determining the initial population
distribution and city structure. In essence, our model is driven by the same forces
that drive classical international trade theory, while the models used in the spatial
increasing returns literature are driven by the same forces that drive the new
international trade theory.

Although we can say that our model, in combination with increasing returns
models, has the potential to explain the history of a city and the resulting city

structure, we have not investigated the dynamics of the development of cities



34

explicitly. Completion of a theory of city formation seems to be an important
project.22 At the very least, it can be said that unlike the previous literature, our
model can account for Cronon’s first nature of geography in explaining where cities
locate. An interesting variation of our model would make population endogenous by
adding immigration. Although the setup costs for marketplaces and a mass
transportation system are rather abstract in our model, we might be able to obtain
more results by specifying these costs explicitly. These ideas seem worthy of further

investigation.

22 Palivos and Wang (1993) provide a dynamic model of city formation based on an
endogenous growth framework.
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Appendix

Proof of Theorem 1. First note that without setting up marketplaces, by the

boundary condition, consumers will obtain the worst possible outcome. Hence,
Core(d) and E(d) are always individually rational. Second, we prove E(d) ¢ Core(d).
Suppose (d, f) € E(d) but (d, ) ¢ Core(d). Then there exists a coalition 5 € A,
S) > 0, and there exists an allocation (d, g) such that (i) é(d, a) >g E(d, a) a.e.
in S, and (ii) /g Projn g(d, S) dv(a) € Y - Q(d, S). By (i), p-(projg g) > p-(y -
q) = - p-q ae. in S. This implies p-(/g Projg é(d, a) di(a)) > I}rrlz,%{{ p-(Y -
Q(d, S)) = ~S) = {mzei%:( p-(Y - Q(d, A))}, which contradicts (ii). Hence E(d) C

y

Core(d).

Next, we will prove the most difficult part of the theorem, Core(d) C E(d).
First, we will demonstrate the existence of a unique individual profit function. Let
A* = A N Y*, where Y* is denotes the dual cone of Y. Given p € a*, let TI(d, S,
p) = max p-y st.y€Y - Q(d, S), and let n(d, p) = max p-y st yE€ Y -
Q(d, A).22 Note that II(d, S, p) = Jg n(d, p) dv, since Q(d, ) = «S) x Q(d, A).
Therefore, 7(d, p) is a Radon-Nikodym derivative of TI(d, S, p), which is unique up
to r—equivalence.

Let (d, f) € Core(d). Define a correspondence ¢ from K x (A, £, v)into Q
by ¥(d, a) = {x € ).((d, a): x >g }(d, a)}. Then a standard argument shows 9 is
measurable (Hildenbrand, 1974, p. 134). The local nonsatiation property of
preferences and the integrability of f imply [ S PIoj ¥d, a) da) # 0 by a
measurable selection theorem (Hildenbrand, 1974, D.II.2 Theorem 1, p. 54). Let Z =
u {/g projn Wd, a) dv(a) - Y + Q(d, S): S € £ 1S) > 0}. We claim 0¢Z

23 In the appendix, ‘y’ sometimes represents an element of Y — Q(d, A) (the net production
set) instead of Y (the private production set). This is just for notational simplicity, and
the reader should be able to distinguish between these two by the context of usage.
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Suppose 0 € Z. Then there exist S € .4 ¥(S) > 0, and é(d, ) € ¥d, -) st g
P10~ é(d, a) d(a) € Y - Q(d, S). Then (4, g, S) can improve upon (d, f) since
é(d, a) >g E(d, a) a.e. in S. Hence, 0 ¢ Z. Note that Q(d, 8) = n(d) x Jg Q
d{a). By Vind’s lemma (Hildenbrand, 1974, D.IL4 Proposition 5, p. 62), Z is

convex. By a separation theorem, there exists p € IRI x IR2‘]

st. p# 0, 0 < pez for
all z € Z. In fact, p > 0, for if not there exists z € Z s.t. prz < 0 by the free
disposal property in Q. Moreover, p-Z 2 0 implies p € Y*. Therefore, without loss
of generality, we can normalize p € A¥,

Hence, for every S € 6 (S) > 0, we have p-y £ p-X for every y € Y — Q(d,
S) and x € fs PIOj #(d, a) d(a). Then we obtain p-y £ p-X for every y € Y —
Q(d, S) and x € [g projg ¥(d, a) di(a). Hence, p-(Y - Q(d4, 8)) < (4, S, p) £
inf(p- /g PIojn ¥d, a) d(a)). By interchangeability of infimum and integration
(Hildenbrand, 1974, D.IL.4 Proposition 6, p. 63), we obtain [ g m(d, p) dv = II(d, S,
p) ¢ Jg inf{p- (projq ¥(d, a))} d(a). Hence, n(d, p) < p-x for every x € projq
¥(d, a) a.e. in A.

Now we claim p-(projq %(d, a)) = — min p-Q(d, A) a.e. in A. Since /g Projg
Wd, a) da) # 9, TI(d, S, p) < = and n(d, p) < ». This implies n(d, p) = — min
p-Q(d, A), since Y is a convex cone with vertex at the origin. Actually the
minimum exists, since the feasible Q(d, A) are bounded and feasibility is satisfied
under p. Local nonsatiation implies p-(projC E(d, a)) > n(d, p) a.e. in A. Suppose
that there exists S € 4 ¥(S) > 0, s.t. [g =(d, p) dv < p-[g PrOjgy %(d, a) di(a).
Then there exists y € Y s.t. [g Projq }(d, a) di(a) € {y} - Q(d, S), and p'y >0,
which contradicts profit maximization by firms. Therefore, p-(projC }(d, a)) = =(d,
p) a.e in A.

So far, we have proved that f attains a minimum expenditure a.e. in A, i.e., (d,
f, y, q, p) is an expenditure minimizing equilibrium (see Hildenbrand (1968)).

However, a minimum expenditure consumption plan is not in general the most
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preferred plan in the budget set. To prove that an expenditure minimizing
equilibrium is an equilibrium with participation fees, we need to make use of the
boundary condition and local nonsatiation. Consider first the set of a € A such that
inf p- (pro.]C X. (d a)) > n(d, p) for all j € J. Then, p-(projg f(d a)) = min

p- (projg X. (d a)), which implies by the boundary condition that f(d a) is a
maximal element in the budget set as long as f(d a) is in the budget set. Next
consider the set of a € A such that there exists j € J such that inf p- (pro_]C X (d
a)) < n(d, p). By the boundary condition, projy f(d a) € {j” € J: inf p-(projq
X ,(d, a)) < =(d, p)}. We claim that f(d a) is a maximal element in the budget
set. To show this, let B (d a, p) = {x € X(d a): p-(projg x) < n(d, a)}, and let
B (d a, p) = {x € X (d a): p-(projg x) < n(d, p)}. Without loss of generality, let
j = projy f(d a). Suppose that there exist j» € J and x’ € B.,(d, a, p) s.t. x’ >g
f(d a). Then j € {j”” € J: p (PIOJC ,,(d, a)) > n(d, p)} by the boundary
condition. Pick a convergent sequence {xk}k=1 ¢ B j,(d, a, p) s:t. X[ = X Since
R(d, a) is a closed complete preorder P3(d, a) is open. Therefore, there exists an
integer k s.t. for any k > k, x{ » (d a), a contradiction. Hence, E(d, a) is a

maximal element in the budget set. This proves Core(d) = E(d).//

Proof of Corollary 1. By the definition of Core and Core(d), Core C Ug Core(d).
From Theorem 1, Core C Uy E(d). The proof is completed by applying the
definition of E(d).//

Proof of Theorem 2. This proof is a combination of the proofs of Hildenbrand (1974,

I1.2.2 Theorem 2, p. 151) and Hildenbrand (1974, 11.4.2 Theorem 2, p. 219), greatly
complicated by the use of disconnected consumption sets.
A standard argument proves that the feasible average translated trading set and

feasible production set are bounded. Truncate the net production set (the total setup
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cost is subtracted) Y — Q(d, A) by a compact hypercube in C that contains the
feasible production set in its interior. Denote the net truncated production set by
§[(d) Next truncate individual translated trading sets in the following way: )~(k(d,
a) is such that projn~ XX (d a) = Projn X. (d a) n (Y + ke), for j € J and k = 1,
2, -+, where e = (1, 1, ., 1) € C. Since d € K is feasible, XX (d, a) # § ae. in
A for all k.

Let a* = a N Y*, where Y* denotes the dual cone of Y. Clearly, a* is compact
and convex. Let n(d, -): aA* = \A((d) be such that n(d, p) = {y € \A((d): Py 2Py
for any y’ € S}(d)}. Then, 7(d, -) has a closed graph, and is compact— and
convex—valued. Also let n(d, +): a* = R be such that n(d, p) = p-n(d, p)- Then,
m(d, -) is a continuous function.

Let us move to the consumer sector. Let Bl‘]?(d, a, p) = {x € projn ).(k(d, a):
p-x < n(d, p)}, Bk(d, a, p) = U Bl‘;(d, a, p), and B{(/(d, a, p) = Uy Blg(d, a, p)
for V C J st. V # 0. These denote budget relations in some (or all) locations. Let
A K x A x % - XX(d, a) be such that ¢ kd, a, p) = {x € BXd, a, p): x 2§ x’
for any x’ € B (d a, p)}- ¢ denotes consumer a’s demand relation when the
consumption set is truncated by Y + ke. Since (Y - Q(d, A)) n projq X(d a)$+ 0
a.e. in A, there exists j € J such that Y(d) N projg li(d, a) # 0 for all k ae in
A. Since p € a*, there exists j € J such that Blg(d, a, p) # # ae. in A.

Let & = {p € a*: p® >> 0}, where p° is commodity price vector. Eventually,
we will show that the equilibrium price relative to k is in 8. Given a € A, d € K,
P € X we partition J into three sets:

J_(d, a,p) = {j € J: (d, p) > min p- [proj¢ X" (d a)l},
J_(4, a, p) = {j € J: n(d, p) = min p-[projg Xj(d, a)l},
I _(& & p) = {i € 3 (& p) < min p-lprojg X(d )}
Since d is feasible, J>(d, a, p) # 0 ae. in A. Given a € A, deK, jeJ, we

partition 2 into three sets in a similar manner:
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2.(d, 3, §) = {p € & (d, p) > min p[projg; Xj(d, 2},
R_(d4, 8 §) = {p € & (4, ) = min p-[projg; X;(4, 2]}
R_(d, 3, 9) = {p € & (& ) < min p-[projg X;(d 2}
| Obviously & (d a, j) is open relative to 2. It is easy to show Bj(d, a, +)is
continuous on & (d a, j)

Now, we claim ¢ (d a, +) has a closed graph in . Since B (d a, -) is not
continuous in general due to disconnected consumption sets, we need several steps to
prove this. First note that if j € J (d a, p), there exists x € B]?(d a, p) such
that x >d x’ for x’ € B ,(d, a, p) s.t. j-€ J_(d, a, p) by the boundary condition.
Hence if J (d a, p) # ® then projy ¢ (d a, p) €J (d a, p)

Second we show that if J >(d, a, p) # 0, then for any p € X=(d, a, j), for any
sequence {p° } 5 p such that {p°} ml c ! (d a, j), there exists an integer 5 such
that for any s > 8, j £ projy ¢ (d a, p) To show this, let x € B (d a, p) and
x' €B j'(d’ a, p) where j’ € J>(d, a, p). From local nonsatiation and the
boundary condition, x’ >g x. Since P(d, a) is open, the statement is proved.

Third, let 2 S(d, a, V) = (ny X>(d a, j))\(UJ\V X>(d a, j)), where \ is set
subtraction. Then, & is partitioned by & S(d, 2, V)s for V.cJ st V#0. Let
pE(d, 2, V) = {x € BX(d, a, p): x »d x for any x' € BX(4, 1, j)}. Since BY(d,
a, -) is continuous in X>(d, a V), sz(d, a, +) has a closed graph in X>(d, a, V) for
any V ¢ J (Hildenbrand, 1974, 11.1.2 Corollary 2, p. 104). Since R(d, a) is a
complete preorder, <,ok(d, a, p) = w{‘,(d, a, p) for any p € X>(d, a V), for any V C
J (see Konishi, 1993, Lemma 2). Hence, gok(d, a, -) has a closed graph in X>(d, a,
V) for any V C J.

Fourth, let {p*},2; C & (d, a, V) be such that j € V and p® - p e B\ (d 2
j). Then, if x® 4 x such that x° € <pk(d, a, ps) for each s = 1, 2, ---, then for s

large enough j ¢ pronxS by the argument in the second step above.

These four steps above prove that <pk(d, a, +) has a closed graph on 2.
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Now, let \Ilk(d, p) = [, Proj tpk(d, a, p) d(a). Since <pk(d, -, p) is
measurable and integrably bounded, \Ilk(d, p) # ¢ (Hildenbrand, 1974, D.I1.4 Theorem
2, p. 62). Furthermore, \Ilk(d, -) has a closed graph on 2 (Hildenbrand, 1974, D.IL.4
Proposition 8, p. 73), and is convex-valued (Hildenbrand, 1974, D.IL.4 Theorem 3, p.
62).

Let 25 = |, pij x%(d, a) du{a) — Y(d). Then, Z¥

is compact and convex.
Let 2% = {p € a% p > 1/s for all i € I}. Clearly, % is compact and convex. For
s large enough, 25+ 0, and A® c & Let Cks a® + Z¥ be such that Cks(p v (d
p) — 7(d, p). Then (ks has a closed graph, and is convex-valued. Let ﬂks. Z -
% be such that Hks(z) ={p € A% pez > p’-z for any p’ € 2%}, Then, 6% has a
closed graph, and is convex—valued. Let £ks = Ck x 0k 5. a5 « Zk + a5« z¥,
Then §ks has a fixed point by Kakutani’s theorem. Hence, there exists a list (d,
fks, yks, pks) such that (d, fks) € ¥, yks € i((d), pks
conditions: () %ks(d a) € gok(d a, pks) a.e. in A, (ii) ykS € 7(d, pks), and (iii)
[ 5 Projg £k 5(d, a) du(a) - y S <o

Pick a sequence of fixed points {(d, fks, yks, pks)}k - From (i) and (iii), [,

€ a5 satisfying the following

PIOjy £k 5(d, a) du(a) € Y(d) for each k. Then, without loss of generality, we can

assume [ A PIOjn %ks(d, a) di(a) - <, Yks - §s, and Pks - PS- Since 7(d, -) is

closed, 375 € n(d, ps). From Fatou’s lemma in several dimensions (Hildenbrand, 1974,
D.IL.4 Lemma 3, p. 69), there exists 5 such that (d, £) € F such that (i) %s(d, a)

is an accumulation point of %ks d, a)}, 2, ae in A, (ii) [, proj £ d, a) dr(a) ¢
k=1 A C

]
X.

Since iks(d, a) € wk(pks) a.e. in A, and since P(d, a) is open, %s(d, a) € p(d,

d

a, ps) a.e. in A, where ¢(d, a, p) = {x € B(d, a, p): x Yo X’ for any x’ € B(d, a,

p)}. Let Y = A Projg %s(d, a) di{a). We will prove that v* € 7(d, p°). To
accomplish this, let = ys - Sr's Since local monsatiation of preferences is implied

by our assumptions, ps-(projC %S(d, a)) = n(d, p°) a.e. in A. Hence psy’ = Py
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We show y° € Y — Q(d, A). It suffices to show 25 < 0. Since 2° = (limy_ fp
projg 15%d, a) dufa) - 7) - (limy, T proig 1@, 2) dvfa) = [ prolg £, )
di(a)), z® < 0 by Fatow’s lemma in several dimensions and the free disposal property
of Y — Q(d, A). Hence (d, £ y5, ps) is an equilibrium with participation fees
relative to s.

Now, what is left to show is that for s large enough, pg >1/sforalliel If
there exists such an s, (d, £, y°, ps) € E(d) holds. Suppose not. From interiority
and monotonicity in commodity consumption, we can find s such that zg > 0 for
some i € I (Hildenbrand, 1974, 11.2.2 Lemma 1, p. 150, and II.1.3 Proposition 6, p.
119). This contradicts z° < 0 for all s.//

Proof of Corollary 2. From the boundary condition and the feasibility of d, a.e. in

A consumer a has no incentive to deviate from the grand coalition, which proposes
(d, f) € E(d). Hence (d, f) € Core(d) by Theorem 1. Theorem 2 proves E(d) # ¢
if interiority is satisfied. If interiority is mot satisfied, then by the boundary
condition, a.e. in A consumer a can only consume a least preferred consumption plan.

Hence, there is no incentive to deviate from such an allocation, and Core(d) # 0.//

Proof of Theorem 3. First note that Y N projs X(a) # 0, i.e., there exists a feasible
allocation (# € K). Note also that by the assumption that the set of feasible
marketplace structures is bounded, the set of feasible marketplace structures projKﬁ’
is compact. To show this, it is enough to recall that the function 6] is a continuous
function on (K, ¢ ), and recall the assumptions on Q, Y, and X. Denote the
feasible marketplace structures by K.

Since we assume that consumers are identical almost everywhere, we drop a from
the notation for preference relations and consumption sets. Since ¥ is a continuous

complete preorder, there exists a continuous utility representation of ¥, u: X - [0, 1].
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By the definition of F, we can naturally define w F o [0, 1] such that if u(f(a)) =
u* a.e. in A, then 1~1(f) = u*. Clearly, there exists sup{l-l(f): f € projy F 1
projy &} = u. Then, there exists a sequence {(d&, i‘s)}sz1 such that u(f) - .
Since the feasible average consumption set is bounded and k is compact, there exists
a convergent subsequence of {(& | A Projg f(a)® du(a,))}s:1 -+ (d, x). Since K is
compact, d € K. Since Y — Q(d, A) is closed, X € Y — Q(d, A). From Fatou’s
lemma in several dimensions, there exists (d, f) € &, such that (i) [, projo f dv <
x, and (ii) f(a) is an accumulation point of {fﬁ(a)}sz1 ae in A. Since d® - d, #d°
= #d. Since 6j is continuous and X is closed, f(a) € X(d, a), which is a truncated
trading set. From closedness of », (d, f) € Fso (d, ) € Fn &. From the
continuity of u, {1(f) = u. Hence (d, f) is a maximal element of F N & in %,.
Now we will prove that (d, f) € Core. Suppose not. Then, there exist (d’, g)
€ & and S € 6 ¥/S) > 0, such that g(a) > f(a) ae. in S. Since d* € proj &,
Core(d’) # ¢ by Corollary 2. Let (d’, h) € Core(d’). Then, (g, S) cannot improve
upon h. This implies that there exists S € £, 5’ C §, «S’) > 0, such that h(a)
> g(a) a.e. in S’. Since h € F by Corollary 1, h(a) » f(a) a.e. in A by transitivity
of ». This contradicts 1~1(f) = u. Hence (4, f) € Core.//

Proof of Corollary 3. Since Core € P, Core ¢ F n P (Corollary 1). Let (d, f) € F

N P. Then, u(f) = max{u(f’): (&, f) € F n )}, which implies (d, f) € Core by

the argument in the proof of Theorem 3.//
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