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Abstract

Population-monotonicity is a property of resource allocation rules which says
that if the number of agents increases while the resources at their disposal
remain fixed, so that the profile of welfare levels chosen for the initial group
remains feasible only by ignoring the newcomers, then none of the agents
initially present should gain. The implications of abstract versions of this
requirement have been investigated in game-theoretical models such as bar-
gaining problems and coalitional form games; the requirement, and a number
of variants, have also been the object of several recent studies in the context
of resource allocation, in classical models as well as in non-classical models,
including economies with public goods, economies with indivisible goods, and
economies with single-peaked preferences, both in the private good and in
the public good cases. The purpose of this paper is to survey this literature.
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1 Introduction

In the recent developments that have occurred in axiomatic analysis, several
requirements designed to ensure the good behavior of decision rules, or solu-
tions, when the number of individuals involved varies, have been formulated.
Among them, a principle of population-monotonicity has been playing
an increasingly important role. It is the objective of this paper to present
this principle, to survey the various applications that have been made of it,
and finally, to provide a guide to future research.

Like several of the principles that have been considered in normative stud-
ies of solutions, population-monotonicity expresses the solidarity of agents as
their circumstances change; in this case, what changes is how many of them
there are. Here is a statement for the canonical problem of fairly dividing a
vector of resources among agents with equal rights on them, a problem that
has provided the inspiration for the introduction of the principle. Think for
instance of the division of an estate among several heirs: the division having
been performed by applying some solution, an additional claimant appears
and his rights are recognized to have equal validity as those of anyone else; the
estate has to be redivided. We say that the solution is population-monotonic
if none of the heirs originally present gains as a result of this arrival. Equiva-
lently, if some of the heirs relinquish their rights, none of the remaining heirs
loses.

Our starting point in this survey will be the following more abstract
form of the requirement: when additional agents arrive, and the profile of
welfare levels chosen by the solution for the initial group remains feasible
only by “ignoring the newcomers”, then none of the agents initially present
gains. Conversely, the departure of some of the agents, if it permits a Pareto
improvement for the remaining agents, is indeed accompanied by such an
improvement.

We first apply the principle to two standard models of game theory —
bargaining problems and coalitional form games — and after examining a
somewhat more concrete model of cost allocation, we turn to the classical
problem of allocating a bundle of infinitely divisible goods. Then, we examine
several special classes of problems of allocation of goods: economies with
public goods, economies with indivisible goods, and finally economies with
single-peaked preferences, both in the private good case and in the public
good case.



As we will see, much remains to be done. Ideally, we would like to know
how restrictive the condition is, by completely describing the class of solutions
satisfying it, of course together with standard conditions. Such characteri-
zations are available for only a few models. For a number of other models,
population-monotonic solutions have been identified, but we are still far from
fully understanding the implications of the property.

We conclude by outlining the various components that a systematic anal-
ysis of population-monotonicity on a given domain should comprise: first,
identifying the most natural form of the property for the domain; finding out
if the main solutions for the domain satisfy the property; describing the class
of solutions satisfying it, together with standard properties; clarifying the
extent to which the requirement is compatible with other properties of inter-
est; when solutions exist that do satisfy population-monotonicity, formulating
criteria permitting to evaluate how well these solutions perform the job: if
all agents lose, how “evenly” are the losses distributed across them. On the
other hand, when it is too restrictive, one has to be satisfied with weaker
properties and the task then is formulating weakenings that retain as wide a
range of applicability as possible; alternatively, identifying subdomains of in-
terest on which the main property can still be met; but also, defining criteria
to evaluate how frequently solutions fail to satisfy the property.

Such a program was pursued by Thomson (1983a,b,c, 1984a,b,1987a),
and in joint work with Lensberg (1983) and Chun (1988, 1989, 1992), in the
context of abstract bargaining problems, but recent studies by Chun (1986),
Alkan (1989), Sprumont (1990), Moulin (1990a, 1992a), Thomson (1991)
and others will permit us in the final section of this survey to reformulate in
more precise terms and by reference to some specific models a number of its
components.

2 Population-monotonicity; a general formu-
lation

In most axiomatic studies, the number of agents is held fixed. Here, we
allow it to vary, and require of solutions that they provide recommenda-
tions for economies of all admissible cardinalities. The axiom of population-
monotonicity is meant to help us relate the recommendations made by solu-



tions as the number of agents varies.

The formulation given above for the problem of fair division is the one
that has been adopted in most of the applications since typically, and here we
deliberately use vague language so as obtain a statement that is meaningful
for as wide a range of models as possible, the arrival of newcomers is indeed
a “burden” on the agents initially present. It implies a “restriction of their
opportunities”, in the sense that the list of welfare levels initially selected
for them is feasible only by “ignoring these newcomers”, but the newcomers
should of course not be ignored.

In some situations of interest however, the arrival of the newcomers per-
mits a “sufficient” expansion of opportunities, by which we mean that the
list of welfare levels initially selected is now Pareto dominated by the list of
welfare levels attained at a decision at which the rights of all agents, includ-
ing those of the newcomers, are fully acknowledged. Here, the requirement
will be that none of the agents initially present be made to lose.

In a third class of models, whether the arrival of newcomers is beneficial
or not depends on their characteristics, and the natural formulation of the
property is that all agents initially present be affected in the same direction
by this arrival: none of them loses or none of them gains (Chun, 1986).

We believe that an essential part of what is generally, altough often im-
plicitly, understood by the phrase “economic justice” is that “agents be af-
fected in the same direction as their circumstances change”, provided no one
bears any special responsibility for these changes. Changes in circumstances
might be increases or decreases in the quantities of the goods available for
consumption, or of the inputs to be used in production; or they might be
improvements in technology, fluctuations in climate; or finally, as we con-
sider here, variations in the population. In this latter case, we can imagine
actual changes due to immigration or emigration, epidemics or births; or the
changes may be hypothetical : we often evaluate decision rules in terms of
what they would recommend in situations other than the one we actually
face. Some of the changes just listed could of course be due to some par-
ticular action that some agents may have taken but we repeat that here,
eschewing issues of incentives and responsabilities, we will limit ourselves to
situations when they have occurred independently of the will of the agents
whose welfare levels are to be chosen.

It is particulary illuminating to test rules by having some agents leave



the scene. Then, two possibilities arise. Either a decision has already been
made and a commitment to certain payoffs for the departing agents has to
be honored. In most models, the requirement that all remaining agents be
affected in the same direction by this departure, together with efficiency,
implies that the remaining agents also end up with the same payoffs. This
gives us a form of the condition of “consistency” that has been the object of
a considerable literature in the last few years'. Alternatively, in situations
where it is natural to assume that agents relinquish their rights when they
leave, we obtain the requirement on the rule that is being studied here.

Population-monotonicity is an ordinal requirement, that is, it depends
only on agents’ preferences. Its application does not rely on the social plan-
ner’s ability to measure, let alone compare and even less, equate, sacrifices
or gains. But it is conceptually compatible with the use of such operations,
and in any case, if so desired — we will see several examples of this —
population-monotonicity can be applied in models specified in utility space.
In such models it can be complemented with additional requirements based
on cardinal information.

In order to be able to deal with a variable number of agents, we need a
sufficiently general formulation. We assume that there is an infinite number
of “potential agents”, indexed by the positive integers, N, but we only con-
sider problems involving finite groups. Let @ be the class of all finite subsets
of N, with generic elements @), @'... A solution is a correspondence which
associates with every problem in the class that the group () may face, where
Q € 9, a set of outcomes in the feasible set of that problem, each of which
being interpreted as a recommendation for that problem (if we assumed the
set of potential agents to be finite, the statements of most of the charac-
terization results would have to be weakened). Our generic notation for a
solution is the letter ¢.

When we apply population-monotonicity to a solution correspondence,
we require to be able to compare all of the allocations chosen in the initial
economy to all of the allocations chosen in any larger economy. We could
imagine weaker statements allowing the comparison of at least one allocation
from each set, or one allocation from one set to all of the allocations from

1This connection is made by Chun (1985) in the context of rights problems. See Thom-
son (1993) for a survey of the literature devoted to the analysis of consistency. We will
encounter the condition on several other occasions below.



the other set. In the case of single-valued solutions, all of these conditions
are of course equivalent.
We are now ready to turn to applications of the principle.

3 Bargaining problems

Bargaining problems are decision problems specified as subsets of utility
space satisfying certain regularity conditions. A familiar concrete applica-
tion of this abstract model is to the distribution of goods, when consumers
are equipped with utility functions satisfying appropriate assumptions: then
the subset in question is the image in utility space of the set of feasible
allocations. If utility information is available, any allocation problem can
be so represented, but it is important to emphasize that when the analysis
of a class of allocation problems is limited to their representations in util-
ity space, information about their concrete structure is ignored, information
that in some situations might be quite relevant. Later on, we will explore
the implications of population-monotonicity in concretely specified economic
models. Also, we should note that not all allocation problems give rise to
feasible sets satisfying the assumptions that have been imposed in the study
of bargaining problems.

3.1 Population-monotonic solutions

A group of agents () € Q can attain any of the points of a feasible set
S, a subset of their utility space R¥, by unanimously agreeing on it?. If
they fail to reach an agreement, they get a particular outcome d € S, the
disagreement point. A bargaining problem is a pair (S,d) € 2R? x R?.
We make the standard assumptions that S is convex and compact, and that
there exists at least one point of S that strictly dominates d. We also assume
that S is “d-comprehensive”, (if a point z is feasible, then any point y such
that d £ y < z is also feasible); this mild assumption is imposed to guarantee
that the solutions that we will want to consider always select outcomes that
are at least weakly Pareto-optimal®. In order to simplify the exposition, and

By the notation R%, we designate the cartesian product of |@Q| copies of R, indexed by
the members of Q).
3For a formal definition, see below.
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Figure 1: Population-monotonicity in bargaining theory. (a) The
Nash solution is not population-monotonic since agent 2 receives less in the
two-person problem S than in the three-person problem T that results from
the arrival of agent 3. (b) The Kalai-Smorodinsky solution is population-
monotonic: neither agent 1 nor agent 2 gains upon the arrival of agent 3.

with no loss of generality since the requirement that solutions be invariant
with respect to changes in the origin of the utility scales is used in all of
the literature reviewed below, we assume d = 0, and we write S instead of
(S,0). Finally, we assume that all points of S dominate d. For each ) € Q,
let 9 be the class of all problems satisfying all of the above assumptions.
A solution is a function that associates with every S € £9, where Q € Q,
a unique alternative in S. Depending upon the context, this alternative is
interpreted as the recommendation that an impartial arbitrator would make,
or as a prediction as to which alternative the agents would select on their
own. The Nash solution (1950) chooses the feasible alternative at which the
product of utility gains from the disagreement point is maximal.

Consider the two-person problem S, involving agents 1 and 2, which is
represented in Figure 1 in the coordinate subspace relative to them. Solve
it by applying the Nash solution. Then, imagine that an additional agent,



agent 3, comes in. In this context, there is a natural way of specifying
the resulting three-person problem T' so that the arrival of the new agent
can be described as a “burden on the initial group”; it is to require that
its intersection with the coordinate subspace pertaining to the initial group
(this is the set of alternatives at which the new agent receives his coordinate
of the disagreement point, here 0), be the initial problem S. Note that if
the problem is derived from the distribution of private goods, this is exactly
what happens. Now, it is easy to specify S and T so that the projection of
the Nash solution outcome of T', N(T'), onto the two-dimensional subspace
in which S lies, Nyy,93(T'), is not dominated by the Nash solution outcome of
S, N(S). Any such example reveals that the Nash solution does not satisfy
population-monotonicity, which on this domain takes the following form:

Population-monotonicity for bargaining problems: For all ), Q' € Q
with Q@ C @', for all T € B9, and for all i € Q, pi(T) < ¢i(Ty) (where Ty
is the projection of T' onto the coordinate subspace relative to Q).

On the other hand, consider the solution introduced by Kalai and
Smorodinsky (1975): this solution picks the maximal feasible alternative
proportional to the ideal point, the point whose ** coordinate is equal
to the maximal feasible utility for agent :. The fact that it is population-
monotonic is illustrated in Figure 1b. Indeed, the projection of the ideal
point of the three-person problem T' (this is the point marked a(T")) onto
the two-dimensional space in which S lies coincides with the ideal point of
S (the point marked a(S)), so that the projection Ky 2(T) of K(T) onto
that subspace is collinear with K (5); the fact that K(S) dominates K 23(T)
coordinate by coordinate follows from the comprehensiveness of T'.

Another population-monotonic solution is the egalitarian solution
(Kalai, 1977), which selects the maximal feasible point of equal coordinates.
In fact, so is any member of the following family of monotone path so-
lutions. A monotone path in H_,Q_ is the graph of a continuous function
f:R— RE, each component of which is increasing, and such that f(0) =0
and || f(A) ||— o0 as A — co. A monotone path solution on X9 is a
solution such that for some monotone path in Hf, and given any S € X9, the
solution outcome of 5" is the maximal point of intersection of the weak Pareto-
optimal boundary of S with the path. Finally, consider a list of monotone

paths indexed by Q € @, G = {G? | Q € Q}, such that for all Q, Q' € Q



with Q C @', the projection of G®' onto R? coincides with G? (this property
of projections is crucial). Then, the monotone path solution relative to
G is the solution that, for each Q € Q, coincides on £ with the monotone
path solution associated with G9.

To present the results we need to impose a few other conditions on so-
lutions. Weak Pareto-optimality says that there is no feasible outcome
that all agents prefer to the solution outcome. Anonymaity says that the
solution is invariant under exchanges of the names of the agents. Scale-
tnvartance says that a linear rescaling, independent agent by agent, of
the utility functions, is accompanied by a similar rescaling of the solution
outcome. Contraction-independence® says that the elimination of alter-
natives that were not chosen by the solution does not affect the choice, if this
choice is still feasible. Continuity says that small changes in problems do
not produce large changes in solution outcomes.

The final condition, just like population-monotonicity, pertains to possible
changes in the number of agents. It says that if a point z is the solution out-
come of some problem, then the restriction of z to any subgroup of agents is
the solution outcome of the “reduced problem” they face: this is the problem
comprising all the alternatives at which the utilities of the other agents are
given their values at z. (In the introduction, we presented the requirement
as a form of “conditional” population-monotonicity). We will use, under the
name of weak consistency, the slightly weaker version of the condition that
is obtained by requiring domination coordinate by coordinate of the restric-
tion of z by the solution outcome of the reduced problem® (the egalitarian
solution may violate the strong form of the condition for problems whose
weak Pareto-optimal boundary contains non-degenerate parts parallel to a
coordinate subspace.)

We are now in a position to state the results. They are characterizations
of two of the most important solutions in the theory of bargaining.

Theorem 1 (Thomson, 1983a) The Kalai-Smorodinsky solution is the only

4This condition is more commonly known under the name of “independence of irrelevant
alternatives”.

This condition being somewhat less transparent than the others, we give it in full: For
all Q, Q' € Q with Q@ C @', and for all T € X9, we have p(r§(T)) 2 q, where z = ¢(T)

and r5(T) = {y € RS (v, zqnq) € T



solution satisfying weak Pareto-optimality, anonymity, scale-invariance, con-
tinuity, and population-monotonicity.

Theorem 2 (Thomson, 1983b) The egalitarian solution is the only solution
satisfying weak Pareto-optimality, symmetry, contraction-independence, con-
tinuity, and population-monotonicity®.

Theorem 3 (Thomson, 1984b) The egalitarian solution is the only solu-
tion satisfying weak Pareto-optimality, anonymity, continuity, population-
monotonicity, and weak consistency.

It is worth noting that the egalitarian solution, in fact all monotone path
solutions, satisfy an even stronger monotonicity condition: the arrival of any
group of agents, no matter how it influences the shape of the feasible set,
affects all agents initially present in the same direction. This is certainly not
true for the Kalai-Smorodinsky solution.

Chun and Thomson (1992) consider the class of problems obtained by
specifying, in addition to the data needed to define a bargaining problem, a
“claims point”, representing prior claims that agents may have. The conjunc-
tion of these claims results in an infeasible point, but the claims are made
in good faith, or represent commitments that cannot be jointly met, and a
“good” solution should take them into account. Chun and Thomson provide
characterizations of the solution that selects the maximal point on the seg-
ment connecting the disagreement point to the claims point. One of these
characterizations is based on the natural form of population-monotonicity for
that domain.

3.2 Guarantee structures

Although population-monotonicity is designed to ensure that when additional
agents arrive, none of the agents initially present gain, it would be unfortu-
nate if the burden fell disproportionately on some of them. If a solution
satisfies weak Pareto-optimality and population-monotonicity, the arrival of

SVariants of this theorem are given in Thomson (1984a). There, it is shown that if
weak Pareto-optimality is dropped, a certain family of “truncated egalitarian” solutions
obtains. Also, a characterization of the monotone path solutions obtains if anonymity is
dropped.



new agents has to hurt each of the agents initially present. If all of them
are negatively affected, it is natural next to want them to be affected in a
“quantitatively similar” way. In the context of bargaining, losses can be eas-
ily measured and compared by means of the cardinal information conveyed
by the utility functions. Here, we propose to use this information to evalu-
ate how well solutions distribute the burden due to the arrival of newcomers
accross the agents initially present, and to compare them on that basis.

Given Q, Q' € Q with Q C @', let S € 9 and T € £9 be such that
S = Tg. Given ¢ € @, the proportional loss incurred by agent 7 upon the
arrival of the group Q'\Q is equal to 1 — @;(T)/pi(S). Now, calculate the
smallest value taken by this ratio as S and T vary subject to the conditions
stated above. Let this number be denoted by «. Seen positively, the number
« can be interpreted as a “guarantee” offered by the solution to agent 7 € @
that, as the group enlarges from @) to @', his final utility will be at least
o times his initial utility. When a solution ¢ is anonymous, this guarantee
depends only on the cardinalities of () and @)’ and it can be written as agaql,
where ¢ = |Q] and ¢’ = |Q'|. We call the collection of all the numbers a7,
for q, ¢ € N, ¢’ > q, the guarantee structure of p. This notion can be
used to obtain a partial ordering on the space of solutions. Solutions that
offer greater guarantees are of course more desirable. One would perhaps not
expect to find maximal elements in the space of solutions, and therefore the
following may be surprising:

Theorem 4 (Thomson and Lensberg, 1983) The guarantee structure of the
Kalai-Smorodinsky solution is greater than the guarantee structure of any
weakly Pareto-optimal and anonymous solution.

Naturally, offering high guarantees to individuals might be costly to the
groups to which they belong. In order to understand the tradeoffs between
protection of individuals and protection of groups, we define the collective
guarantee structure of a solution by considering, for each pair S, T as
specified above, the arithmetic average of the proportional losses incurred
by the members of the initial group upon the arrival of additional agents,
and again, calculating the smallest value taken by this ratio (of course, the
geometric average or some other measure could be considered). Now, we
find that the Nash solution performs better than any weakly Pareto-optimal
and anonymous solution (in particular, better than the Kalai-Smorodinsky
solution (Thomson, 1983c)).

10



Instead of focusing on how much agents may lose, one could alternatively
focus on how much they may gain, and rank solutions on the basis of the
extent to which they allow such gains. Here too, the Kalai-Smorodinsky
solution performs better than any weakly Pareto-optimal and anonymous
solution when individuals are examined, but it is the Nash solution that
performs the best in that class when groups are examined (Thomson, 1987b).

Finally, we could compare how any two agents initially present fare, us-
ing the ratio of their relative losses, and look for solutions for which this
ratio is as close to 1 as possible. Here, the Kalai-Smorodinsky solution per-
forms better than any weakly Pareto-optimal, anonymous, and scale invari-
ant solution, and the egalitarian solution performs better than any weakly
Pareto-optimal, anonymous, and contraction independent solution (Chun and

Thomson, 1989).

4 Games in coalitional form

The next class of problems that we will examine is richer than the class
of bargaining problems because their specification involves a description of
the opportunities available to each group, or coalition, of agents. Two
subclasses of such problems are usually considered. In a “transferable utility”
game, what a coalition can achieve is given as a single number. In a “non-
transferable utility” game, it is given as a subset of utility space. As an
example of application of this model, consider an economy in which agents
can form productive units. The productivity of each subgroup depends on
the complementarities between the skills of the agents composing it. It is
measured by the output that they can jointly produce, or the value of this
output at some given prices. Another standard application of this model
is to cost allocation, where each coalition is characterized by the cost of
providing a certain service to its members when it is isolated from the rest
of the economy.

4.1 The transferable utility case

We start with the class of transferable utility (TU) games. There is a
group ) € Q of agents whose members may gather in coalitions”. What

"A coalition is a non-empty subset of Q.

11



each coalition can achieve on its own is its worth. A game in coalitional
form is a vector v € R¥¥'~1 the worth of each coalition being one of the
coordinates of v. Let v(.S) denote the worth of coalition S. Restrictions may
be imposed on v making the game monotonic (if S O T', then v(.S) Z v(T')), or
super-additive (the worth of a coalition is greater than the sum of the worths
of the coalitions comprising a partition, no matter what that partition is).
For all Q € Q, let G2 be a class of admissible games for the group Q.

4.1.1 Population-monotonic solutions

We would like to reward agents as a function of the worths of the various
coalitions. A solution is a correspondence that associates with every v € G,
where @) € Q, a non-empty set of vectors z € R such that Y ;g 7 < v(Q).
The 7** coordinate of such a vector represents one of the possible payments
to agent 1+ € () for being involved in the game. Already in this model, we
have to allow for multi-valuedness; although some interesting single-valued
solutions exist, many others are multi-valued.

A well-known solution is the core: given Q@ € Q and v € G9, it rec-
ommends any payoff vector ¢ € R? such that Y,cqzi = v(Q) and for
no S C @, v(S) > Ycs®i;; another important solution is the Shap-
ley value (Shapley, 1953); it recommends, for each ¢ € @, the payoff
i = Yscq,sai ks(v(S) — v(S\{s}), where ks = [(|S] — DI(|Q] = [SDI/IQI%
finally, evaluate the “dissatisfaction” of coalition S at z € R? by the num-
ber v(S) — Yiesxi- Then, the nucleolus (Schmeidler, 1969) selects the
payoff vector € R? with ¥;c0 z; = v(Q) at which the dissatisfactions of
coalitions are minimized in a lexicographic way in the set {z’ € R"|z} =
v({e}) for all i € N, and Y;cq i = v(N)}, starting with the most dissatis-
fied coalition.

In the study of coalitional form games, most investigators have limited
their attention to situations where the arrival of new agents is beneficial to
the agents originally present. A central issue in the literature is identifying
when these benefits are sufficient to ensure that none of them loses. We will
refer to the requirement that none loses from the arrival of the newcomers as
population-monotonicity, . Letting the newcomers in is of course the socially
efficient choice, so the property helps bring about coincidence of individual
and social interests. Given @' € Q, v € 6% and Q C @, let vy € G? be
defined by vg = (v(5))scq-

12



Population-monotonicity. for coalitional form games: For all Q, Q' €
Q with Q C ', for all v € G¥', p;(v) 2 pi(vq) for all i € Q.

As we will see, in order to obtain the property, it is necessary to limit
oneself to classes of games with a non-empty core, but much more is needed.
An important class of games admitting population-monotonic, solutions is
the class of convex games, that is, games v such that for all S, S’ C @,
v(SUS)+v(SNS) 2 v(S)+ v(S'). For such games the returns to co-
operation increase quite fast with the size of coalitions. Conversely, on the
class of concave games (games for which the inequality written above goes
the other way), population-monotonicity can be met. This result is based
on an observation due to Ichiishi (1988) that in a concave game, given any
fixed order of the players, the payoff vectors obtained by paying each player
his contribution to the coalition made up of the players preceding him in the
ordering meet the population-monotonicity inequalities.

Proposition 1 (Sprumont, 1990; Rosenthal, 1990b) On the class of con-
cave games, the Shapley value is a population-monotonic solution. On the
class of convex games, it is a population-monotonicy solution.

Sprumont identifies another interesting class of games admitting
population-monotonicy solutions, and for that class he exhibits a population-
monotonicy solution which bears a certain relationship to the Shapley value:
it is the class of games for which, given any two coalitions S and T' with
S C T, the average contribution of the members of S to the worth of S is
less than the comparable quantity for 7T'.

Next, we present results obtained for three special classes of games.
Sonmez (1993) shows that the nucleolus is not population-monotonic, on
the class of convex games, and that neither are the solutions known as the
separable cost remaining benefit (Moulin, 1988), nor the 7-value (Tijs, 1981).
He also studies a class of games that are exemplified by the well-known “air-
port problem” (Littlechild and Owen, 1973; Littlechild, 1974): each agent is
characterized by a number, which can be interpreted as the cost of a public
project (the length of the runway) when provided at the appropriate level for
him. The corresponding cost for each coalition is defined to be the greatest
cost associated with any of its members. Sonmez shows that on this subclass
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of the class of convex games, the nucleolus is a population-monotonicy solu-
tion (on the other hand, the separable cost remaining benefit solution and
the 7-value continue to fail the test).

Rosenthal (1990b) considers a class of games on graphs, called “flow
games”, in which players control edges. To each edge is associated a number
interpreted as the value that is created by transport along this edge. The
worth of a coalition is defined to be the maximal flow along the subgraph
consisting of the edges controlled by the members of the coalition. He shows
that on this class the Shapley value is not population-monotonics, but he
identifies characteristics of the new agents for which the payoffs attributed
to the agents initially present by both the Shapley value and a certain selec-
tion from the core satisfy the inequalities required by the property. Then, a
“conditional” form of the requirement is met.

Grafe, Ifiarra and Zarzuelo (1992) analyze the simple class of games de-
fined as follows: for each ¢ € N, there is a coeflicient ; € Ry, which can
be interpreted as a measure of agent ’s “usefulness”; there is also an in-
creasing function r : N — R indicating the productivities of groups as a
function of their sizes; these data are combined so as to give the worth of
each coalition S by the formula (;cs £i)r(]S]). They also consider the spe-
cial case when r(]S]|) takes the form |S|° for ¢ € [0,1]. They study the
population-monotonicity, of the Shapley value and of the nucleolus on this
class of games. The results are negative. However, the rule that divides the
worth of the grand coalition proportionally to the coefficients §; clearly has
the property.

4.1.2 Population-monotonic payoff configurations

Instead of searching for population-monotonic, solutions, we now limit our-
selves to the less ambitious task of searching, game by game, for population-
monotonic, payoff configurations: given Q € Q and v € G9, a payoff
configuration for v (Hart, 1985) is a list (z¥)scq, where for each S C Q,
z% € RS and T;cg2f = v(S). A payoff configuration provides a recommen-
dation for each coalition S, should it form, on the division of its worth v(S)
among its members; this recommendation may depend on the components
of v pertaining to coalitions that are not subsets of S.

Population-monotonic; payoff configuration: Given € Q and v €
G9, the payoff configuration for v, (z%)sco, is population-monotonicy if for
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all $, 8" C Q with § C 5, and for all i € S, ¥ < 2.8

To better understand the relationship between the concept of a
population-monotonicy solution on some domain and that of a population-
monotonicy payoff configuration for a game, note first that if a game and
all of its subgames belong to a domain on which there exists a population-
monotonicy solution, then of course, the game has a population-monotonic,
payoff configuration; simply apply the solution to the game and its subgames.
On the other hand, a domain of games each of which has a population-
monotonicy payoff configuration does not necessarily admit a population-
monotonicy solution. To see this, consider the domain consisting of the fol-
lowing two three-person games v and w and their subgames: Q = {1,2,3},
v(e) =0 for all i € Q, v(23) =0, v(S) =1 for all other S C @, w(z) = 0 for
all i € @, w(13) = 0, and w(S) = 1 for all other S C Q. The game v has
a unique population-monotonic; payoff configuration, at which all players
always get 0 except player 1 in the subgames vy 5y, v{1,3}, and v itself, where
he gets 1; a similar statement holds for w, where it is player 2 who gets the
non-zero payoffs. Since the subgames of v and w relative to players 1 and 2
are the same, we obtain a contradiction®.

Obtaining population-monotonic, payoff configurations requires that re-
strictions be imposed on the game. As a preparation for the main result on
this issue, first note that as announced earlier any such game has a non-empty
core. Indeed, let (z%)scq be a payofl configuration for v. Given S C Q, if
z? 2 25 for all i € S, then Sies Tl = Yies ¥ = v(9) so that S cannot
improve upon zg. A similar inequality can be established for any pair S,
S with S C 5’ (and not just pairs where S' = @), so that the cores of all
subgames of v are non-empty as well'®. If || = 3, this condition turns out
to be sufficient, but if |Q| > 3, it is not, as shown by the following example:

Example (Sprumont, 1990). Let @ = {1,2,3,4}. Each of players 1 and 2
owns a left glove. Each of players 3 and 4 owns a right glove. A pair of gloves
has value 1. A single glove has value 0.

This situation can be described by the following game:

v(i) =0for alli € Q

8Note that the set of population-monotonicy payoff configurations is convex.
°I am grateful to Y. Sprumont for providing me with this example.
10This is the condition known as “total balancedness”.
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v(12) = v(34) =0, v(13) = v(14) = v(23) = v(24) =1

v(igk) =1for all i, j, k€ Q

(@) =2

The core of each three-person subgame of v is a single point, at which
the odd man out gets 1 and the others get 0. Since each player is involved in
a three-person game at which his payoff is 1, for the configuration (z%)scq
to be population-monotonicy for v, we need 1:? 2 1 for all : € Q, but
since v(()) = 2, this is impossible. The cores of the two-person subgames
(and of course, of each one-person subgame), are also non-empty. Sprumont
generalizes this example to show that no assignment game with at least two
buyers and two sellers such that every buyer-seller pair derives some benefit
from trade has a population-monotonicy payoft configuration.

To state the main result of this section, which is a characterization of the
class of games admitting population-monotonicy payoff configurations, we
need a few additional definitions: The game v € G? is simple if v(S) = 0 or
1 for all S C Q; monotonic if for all S, S C Q with S C 5, v(S) £ v(S");
additive if there is a € R such that v(S) = a|S| for all S € §; finally, player
i € Q is a veto player in v € G2 if for all S such that ¢ ¢ S, v(S) = 0.

Theorem 5 (Sprumont, 1990) A game has a population-monotonic, payoff
configuration if and only if it is the sum of an additive game and a positive

linear combination of monotonic simple games with veto players!!.

Moulin (1990a) investigates the existence of population-monotonicy pay-
off configurations satisfying certain individual upper bounds. In the economic
application motivating his work, the bound relative to a given agent is de-
fined to be the maximal payoff he would obtain under the assumption that
all other agents had the same preferences as his, and under the requirements
of efficiency and equal treatment of equals'?. Formally, and returning to our
abstract model, given € Q, and v € G?, an aspiration for v (Bennett,
1983) is a vector y € R? such that for all S C Q, TicsyS = v(S). Simi-
larly, an aspiration configuration for v is a list (y%)scqg such that for

1Sonn (1990) shows that whether or not a game can be decomposed as stated in the
theorem can be determined by solving a simple linear program.

2We will come back to this bound, defined by reference to economies made up of
identical agents.
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all S C Q, y° is an aspiration for v(S). The configuration is population-

monotonicy if for all 1 € @, for all 5, 8" C Q with: € S C 5" C @, we have
S < oS
yi = y’t ‘

Proposition 2 (Moulin, 1990a) Let @ € Q and v € G? be a convex game.
Let (y%)sco be a population-monotonicy aspiration configuration such that
for all i € @, and for all S, 5’ C Q withi € SN S and |S] = |5, y7 =y
Then, v has a population-monotonicy payoff configuration bounded above by
Y.

Moulin shows that the result does not necessarily hold if the uniformity
assumption (the condition that for all : € @, and for all S, S" C @ with
ieSNS and |S| = |5, y7 = y¥) is not made. But in his application of
the result to economies with public goods, and if aspirations are defined as
explained above by reference to economies made up of agents with identical
preferences, the uniformity assumption does hold (see Section 8 for additional
results on public good economies).

4.2 The non-transferable utility case

Consider now the richer model in which what each coalition S C @ can
achieve is given as a subset V(S) of the utility space R® pertaining to
that coalition. Each V(S) is of course required to satisfy certain regularity
conditions. These games are called non-transferable wutility, or NTU,
games. For each ) € Q, let H? be a class of admissible NTU games involving
the group ). A solution associates with every V € H?, where Q € Q, a
non-empty subset of V(Q).

In this model also, we are even further from a full understanding of the im-
plications of population-monotonicity,. However, a result is available which
concerns a special subclass that has recently been the object of some atten-
tion. This is the class of “hyperplanes games”, games V € H? such that for
all S C @, V(95) is a hyperplane (a TU game can be represented as a hy-
perplane game in which the normals to the hyperplanes are vectors of ones).
Maschler and Owen (1989), who introduced this class of games, proposed
for it an extension of the Shapley value which is defined as follows. Given
Q € Q,v € HY, and an ordering {i1,1,...,%g|} of the players, consider
the payoff vector z obtained by giving (1) to agent ¢; the most that he can
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get on his own, z;, = max{z € V(i1)}, (2) to agent i the most he can get
in V(i1i2) subject to agent iy getting z;,..., (k) to agent ix the most he
can get in V(i1é2...15) subject to each of the preceding agents i, getting
z;,... Finally, the Maschler-Owen solution of the game is the average
of the payoff vectors so obtained when all orders are equally likely. We will
consider the subclass of hyperplanes games satisfying a certain property of
“strong cardinal convexity” (Sharkey, 1981), which ensures that the feasible
sets expand sufficiently as the number of agents increases. Now, we have the
following positive result :

Proposition 3 (Rosenthal, 1990b) On the class of strongly cardinally con-
vex hyperplane games the Maschler-Owen solution is population-monotonic, .

Concerning the existence, for each given game, of population-monotonicy
payoft configurations, we can only report that the counterpart of the re-
mark preceding Proposition 1 that one might have hoped for does not hold:
there are ordinally convex games (Peleg, 1986) for which the payoff configu-
ration that consists of the marginal contributions vectors are not population-

monotonict>.

5 Quasi-linear cost allocation problems

We now turn to a family of somewhat more concrete decision problems:
imagine a society that must select one among a finite number of projects;
with each project is associated a certain level of utility for each agent and a
certain cost. Which project should be selected and how should its cost be
allocated among the agents? This class of problems differs from the classes
examined so far in that information is retained on the manner in which
utility levels are generated. However, no particular structure is imposed on
the physical nature of the options available. In the sections to follow, we
will keep on record a complete description of the physical features of the
alternatives of which the feasible set is comprised.

Formally, let A be a finite set of public projects. A quasi-linear cost
allocation problem is a pair ((u;)icg, C) = (ug,C) € RMI? x R4, Here, C
is the cost vector, each coordinate of C being the cost of the corresponding

130bservation attributed to Moulin in Sprumont (1990).
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project. In addition, there is a private good called “money” which can be used
for compensations. The preferences of agent : € Q, defined over the product
A x R, admit a quasi-linear numerical representation u;: given the project
a € A and given agent ¢’s holdings of money m; € R, his utility is u;, + m;.
For each Q € Q, let M® be the class of these problems. A solution is a
function that associates with every (ug,C) € M@, where Q € Q, a vector
z € R? such that Yico Ti = maXge A(EieQ Ui — C,). A family of examples
are obtained by first selecting the project for which the difference between
sum of utilities and cost is the highest, and then choosing contributions so
that all agents receive an equal share of the surplus over some reference level
so generated.

Chun (1986) proposed for this model the condition that all agents be
affected in the same direction by the arrival of additional agents, which is
indeed the appropriate form of the principle of population-monotonicity for
this model. This is the first time in this survey that we find it necessary to
use this condition.

Weak population-monotonicity for quasi-linear cost allocation
problems. For all Q, Q' € Q with Q C @', for all (ug:,C) € M, for
all z € p(ug,C) and 2’ € p(ug, C), either z; = 2! for all i € Q or z; < 2! for
all : € Q).

Chun searched for solutions satisfying the following additional require-
ments (formulated by Moulin, 1985a, 1985b, in his extensive analysis of this
class of problems.) Pareto-optimality says that the decision maximizes
the net aggregate benefit. Anonymity says that the solution is invariant
under exchanges of the names of agents. Independence of the zero of
the utility functions says that the solution is invariant under the addi-
tion of an arbitrary constant to the agents’ utilities. Independence of the
zero of the cost function says that an increase in the cost function, uni-
form across all alternatives, is distributed evenly among the agents. Cost
monotonicity says that an increase in the cost function is borne by all
agents.

The following theorems give a very complete picture of the implications
of weak population-monotonicity in this model. Essentially, all admissible
solutions can be described as “egalitarian”, as they consist in dividing equally
a surplus over some vector of reference utility levels, but they differ in the
way the reference levels are computed. Let e be the vector of all ones in RI4!,
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Theorem 6 (Chun, 1986)
A solution ¢ satisfies Pareto-optimality, anonymity, the two independence
azioms and weak population-monotonicity if and only if there is a function
g : [R4]? — R satisfying
() g(z + ae,z) = g(z,2) + afor all z, z € R4 and for all « € R
(i) g(0,2) = 0 for all z € R4
(iii) g(z, z + ae) = g(z, 2) for all z, € R4 and for all « € R
and such that for all Q € Q, for all 7 € Q, and for all (ug,C) € M9,
#i(1iq> C) = (1/]Q1) maxses{Sieq tha — Cab + (1/1QDI(Q] — D (s, €) —
e\ 9(us, O)}-

Theorem 7 (Chun, 1986) A solution ¢ satisfies the five axioms of Theo-
rem 6 and cost-monotonicity if and only if there is a function § : R4 — R

satisfying
(i) §(z + ce) = §(z) + a for all z € R4 and for all @ € R
(i) §(0) =0

and such that for all Q € Q, for all 7 € Q, and for all (ug,C) € M?,
pi(ug,C) = (1/|Q]) maxeea{Eieq uia — Ca} + (1/|QD{(IQ] — 1)g(us) —
Cieavey 9(ui)}-

Alternatively, an axiom of consistency (informally described in section
2) can be used in Theorem 7 instead of cost-monotonicity. Additional char-
acterizations are offered in Chun (1986). The requirements that no agent
be able to gain by disposing of utility, or that the solution provide a min-
imal reference utility to each individual, place further restrictions on the g
functions. These restrictions can be completely described.

6 Fair allocation in economies with private
goods

We now apply the idea of population-monotonicity to one of the most com-
monly studied problems, that of allocating a fixed bundle of goods among a
group of agents with equal rights on these goods.
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6.1 Population-monotonicity for the classical problem
of fair division

The model is as follows. There are £ € N goods and a group @ € Q of
agents; for each ¢ € ), R; is agent ¢’s continuous, convex and monotone pref-
erence relation defined over Rﬁ_ with I; designating the indifference relation
associated with R;. Let R, be the class of all such “classical” preference
relations. Also needed is ) € RY, the social endowment. A problem of
fair division is a pair ((R;)icq,9) € R x R%, or simply (Rq,Q). This
formulation is to be distinguished from formulations in which each agent is
entitled to a particular share of the social endowment, his “individual” en-
dowment (see below); here, we assume instead that agents are collectively
entitled to the resources ). For each Q € Q, let £9 be a class of admissi-
ble problems involving the group ). A solution is a correspondence that
associates with every (Rg, ) € €9, where Q € Q, a non-empty subset of
the set of feasible allocations of (Rg,), Z(e) = {z € R{%!| Ticq 2 < Q).
We have already discussed the condition of population-motonicity for this
mode] in the introduction and we will not give a formal statement since it is
straightforward.

A simple example of a population-monotonic solution is the solution that
always chooses equal division: z; = Q/|Q] for all ¢ € Q. Of course, this
solution suffers from the major drawback of not being efficient. To obtain
efficiency, give the entire social endowment to the agent with the lowest
index in () and nothing to the others. This population-monotonic solution is
efficient but quite unappealing from the distributional viewpoint.

The suggestion is often made to solve problems of fair division by op-
erating the Walrasian mechanism from equal division. Is the solution so
defined population-monotonic? The example of Figure 2a, which is taken
from Chichilnisky and Thomson (1987), shows that it is not. In the two-
person economy consisting of agents 1 and 2 in which the vector O € R2
has to be divided, it leads to the allocation (z,z3). After the arrival of
agent 3, it leads to the allocation (21, 2}, z3). Since agent 1 prefers 2| to 21,
population-monotonicity fails. We add that the example can be specified with
homothetic preferences; this assumption often has regularizing implications
(together with the assumption of equal endowments, it implies uniqueness
and stability of the Walrasian equilibrium), but it does not prevent the un-
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Figure 2: Population-monotonicity in exchange economies. (a) The
Walrasian solution operated from equal division is not population-monotonic.
(b) The “egalitarian” solution defined by requiring all agents to be indiffer-
ent between their consumptions and the same scale multiple of the social
endowment is population-monotonic.

desirable possibility that the presence of one more claimant benefits one of
the original agents. Quasi-linearity of preferences would not help either.

The following theorem provides additional information about the circum-
stances in which violations occur, as it relates the likelihood of population-
monotonicity being violated by the Walrasian solution operated from equal
division to the likelihood of the solution being subject to the “transfer prob-
lem”, a problem that has been the object of a considerable amount of at-
tention in the international trade literature: a solution is said to be subject
to the (strong form of the) transfer problem if the transfer of part of some
agent’s endowment to another agent ultimately benefits him and hurts the
recipient:

Proposition 4 (Jones, 1987) Consider the class of economies with homoth-
etic preferences. In the absence of substitution effects, the Walrasian solution
from equal division is subject to the transfer paradox if and only if it violates
population-monotonicity. In the presence of substitution effects, it may vi-
olate population-monotonicity even in situations where no transfer paradox
would occur.

For a positive result, we have the “egalitarian” solution (Pazner and
Schmeidler, 1978), which is defined by selecting the efficient allocation(s) at
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which utilities are equal, using the utility representations obtained by cali-
brating along the ray through the aggregate bundle. Figure 2b illustrates the
fact that this solution is population-monotonic: in the two-person economy
(R1, Ra, ) the efficient allocation (z,2;) is egalitarian since there exists zg
proportional to © such that both agents are indifferent between their con-
sumptions and zp. In the enlarged three-person economy (Ri, Rz, Rs,(?), the
efficient allocation (2,25, 2%) is egalitarian with a reference bundle 2§ that
can only be lower than 2y on the ray through (2. Therefore, both agent 1 and
agent 2 lose upon the arrival of agent 3.

This solution is only one example in a large family of population-
monotonic solutions defined as follows (Thomson, 1987). Let B be a family
of choice sets {B(\) C RL|\ € Ry} with the following properties

is upper-semi-continuous
is monotonic : B(A) € B(X') whenever A £ X'

)i
)i
.) is unbounded : for all » € Ry, there is A such that r(1,...,1) €
A

Given an economy e = (Rg,§) € ’R x RY in which preferences are
strictly monotone, let wp(e) be the set of efﬁc1ent allocations z of e such that
for some A € Ry, and for all ¢ € Q, z iz where zfR;z! for all 2! € B(}).
It is easy to see that any such equal-opportunity equivalent solution
g is population-monotonic. The following proposition is a straightforward
generalization of an observation made in Thomson (1987b):

Proposition 5 On the domain of classical economies in which prefer-
ences are strictly monotone, the equal-opportunity equivalent solutions are
population-monotonic selections from the Pareto solution.

These solutions are directly inspired by the monotone path solutions of

bargaining theory (Section 3). Here, the monotone path is obtained by choos-
ing for each agent a continuous numerical (“utility”) representation of his
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preferences and tracing out the image in utility space of the list of maximiz-
ers (2])ieq in B(A) of the preference relations (R;);eq as A varies. Under our
assumptions on preferences, the image of the feasible set is comprehensive
(Section 3.1). For A = 0, a point in the feasible set is obtained and by the
unboundedness of B(.), for A large enough, a point outside of the feasible
set results. The fact that the solutions are well-defined follows from these
observations. Proving that they are population-monotonic is straightforward.

Examples of interesting families satisfying the above conditions are the
following : ‘

Bi(\) = {z € R¥|0 £ z £ AQ}. Note that the solution associated with
this family is the egalitarian solution defined above.

By(A) = {z € R*|0 £ 2 < d} for some d € R..

Bs(\) = {z € R |pz £ A} for fixed p € A*L.

As already noted, we are not interested only in population-monotonicity.
We certainly want our allocation rule to be efficient, that is, to be a sub-
solution of the Pareto solution; but we also want it to satisfy some dis-
tributional requirements. The distributional requirements that have played
the main role in the literature are embodied in the following solutions: the
no-envy solution (Foley 1967) selects the set of feasible allocations z such
that for no pair {¢,7} C @, we have z,; P,z - at such an allocation no agent
would want to exchange bundles with anyone else; the individual ratio-
nality from equal division solution selects the set of feasible allocations
that all agents prefer to equal division; the egalitarian-equivalence solu-
tion (Pazner and Schmeidler, 1978) selects the set of feasible allocations z
such that for some 24 € Hﬁ_ and for all 1 € @), zol;2;.

The egalitarian solution is a selection from both the individual ratio-
nality from equal division solution and the egalitarian-equivalence solution
and it is population-monotonic. On the other hand, the Walrasian solution
from equal division is a selection from both the no-envy solution and the
individual-rationality from equal division solution but, as we saw earlier, it
is not population-monotonic.

Is there any population-monotonic selection from the no-envy and Pareto
solution? The next theorem states that the answer is no. We should point
out however that its proof relies on having access to economies with a large
number of agents (a continuum), and this leaves open the question whether
the impossibility holds for the small number case. (All of the other negative
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results reviewed here are proved by means of examples with a small number
of agents).

Theorem 8 (Moulin, 1990c) There is no population-monotonic selection
from the no-envy and Pareto solution.

In order better to understand the strength of population-monotonicity,
the following result is useful: A solution satisfying consistency (see Section
2 for a general statement of this property and Section 3 for an applica-
tion to bargaining), and resource-monotonicity (any increase in the resources
to divide benefits everyone) automatically satisfies population-monotonicity
(Fleurbaey, 1992¢, 1993; Chun, 1985, establishes this fact for bankruptcy
problems). Consequently, as Fleurbaey (1992) notes, in exchange economies
satisfying the familiar gross substitutability assumption and in which all
goods are normal, the Walrasian rule from equal division is a single-valued
population-monotonic solution. This is because under those assumptions, it
is single-valued, as is well-known; it is also resource-monotonic (this follows
from Polterovich and Spivak, 1983, as observed in Moulin and Thomson,
1988). It is consistent in general (Thomson, 1988).

6.2 A generalized notion of population-monotonicity

If the commodity to divide is a “bad”, the counterpart of population-
monotonicity is that all agents benefit from the arrival of additional agents,
the requirement that we considered for coalitional form games under the
name of population-monotonicityy. Moulin (1989) points out that for the
quasi-linear domain (Section 6.5) the egalitarian solution of Pazner and
Schmeidler (1978) is a population-monotonic, selection from the individual
rationality from equal division and Pareto solution. On the negative side, it
remains true that there exists no population-monotonicy selection from the
no-envy and Pareto solution (Moulin, 1990d).

It can be argued that it is really when we have in mind efficiency that
in the classical problem of fair division we require that none of the agents
initially present gains upon the arrival of additional claimants, and in the
model with bads that none of them loses. If it is found desirable to keep effi-
ciency considerations separate from fairness considerations, weak population-
monotonicity should be used instead. In the classical case, and when ef-

25



ficiency is imposed, weak population-monotonicity reduces to population-
monotonicity, and in the case of bads, it reduces to population-monotonicity, .
Another advantage of using weak population-monotonicity is that it is bet-
ter adapted to non-classical models. We have already seen its relevance in
the analysis of quasi-linear cost allocation problems. Here are several other
illustrations for general resource allocation problems. First, suppose that
the mere presence of additional agents affects positively the agents initially
present. Then it might be possible to make the latter better-off in spite of
the fact that resources have not changed. More generally, an agent’s welfare
may depend on the consumptions of the others (and not just on his own
consumption) and here too, if these external effects are positive and strong
enough, it may be possible to make all agents initially present gain when new
agents come in.

Or suppose that it is not aggregate resources that are constant, but re-
sources per capita. Then, depending upon the preferences, one may well
be able to make all agents initially present gain when new agents come in.

The case of the division of a good when preferences are single-peaked will
be discussed in Section 10. We only note here that this case is a mixture of
the classical case and of the case of bads: the situation is sometimes like the
classical one, and the arrival of additional agents is bad news, but sometimes
the arrival of additional agents is good news. In this model, the appropriate
requirement is weak population-monotonicity.

6.3 Economies with individualized endowments

A further generalization would allow agents to be differentially endowed of
the various goods and here too, the most that one can legitimately require
is weak population-monotonicity.

Formally, an economy is now a pair (Rg,wg) where Q € Q, Ry is as
before a profile of preference relations, and wg is a profile of endowments:
wg = (wi)ieg € Hﬂ_. Let F? be the class of all such economies. Solutions are
defined on the union of all F@, for Q € Q.

That the Walrasian solution does not satisfy the property can be proved
by a simple modification of Figure 2a. An example of a weakly population-
monotonic solution is the solution that picks any allocation such that all
agents be indifferent between their net trade and a reference trade propor-
tional to some multiple of a fixed vector. The family so defined is the natural
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Figure 3: The d-egalitarian trade solution is weakly population-
monotonic. (a) In the example depicted here, both agents 1 and 2 gain
upon the arrival of agent 3. (b) In this example, both agents 1 and 2 lose
upon the arrival of agent 3.

counterpart for economies in which individual endowments are specified, of
the equal-opportunity equivalence solutions associated with the family of
choice sets B, (see above). For a formal definition, let d € Rﬂ_. Given
Q € Q and e = (Rg,wq) € FY, the d-egalitarian trade solution picks
the efficient allocations z of e such that there is A > 0 with, for all z € @,
z;I;(w; + Ad). It is well-defined when preferences are strictly monotonic. Fig-
ure 3 illustrates the fact that the solution is weakly population-monotonic
and that indeed both cases may occur: upon the arrival of new agents, all
agents initially present may gain (Figure 3a) or they may all lose (Figure
3b).

6.4 Bargaining solutions used as resource allocation
rules

The relevance of bargaining theory to the resolution of concretely specified
problems of resource allocation is discussed by Roemer (1986a,b, 1988) and
Chun and Thomson (1988). The theory of bargaining relies on the require-
ment that two “concrete” problems having the same image in utility space
be treated the same. Roemer spells out informational assumptions under
which results obtained in the abstract theory of bargaining can be rewritten
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for concrete economic problems. The crucial property he uses is designed
to relate the recommended allocations as the number of goods varies. This
property, together with standard efficiency and symmetry conditions, and
population-monotonicity, allows him to derive from the characterization of
the egalitarian solution to the bargaining problem (Theorem 2) a character-
ization of the counterpart of that solution for the economic domain.

The advantage of the abstract bargaining model is that many concrete
situations can be represented in utility space as objects satisfying the assump-
tions typically made in the theory of bargaining. In particular, if utility func-
tions are continuous, monotone increasing and concave, the images in utility
space of two problems of fair division differing only in the number of agents
are pairs of problems satisfying the hypotheses of the axiom of population-
monotonicity relevant for that theory. Is the converse true? Given a pair of
problems satisfying the assumptions of population-monotonicity, are they the
images in utility space of a pair of economies differing only in the number of
agents? If all such pairs of problems could be so derived then of course, the
characterization results of bargaining theory would be directly applicable.
However, and not surprisingly, the answer is no. Yet, not all pairs of prob-
lems are actually needed in the characterization proofs, and enough richness
could remain for these characterizations to hold. It is intuitive that this rich-
ness depends on the number of goods. The question is then whether some
bounds on the number of commodities can be identified that help predict
whether the property can be met. The answer is yes, as explained next.

Chun and Thomson (1988) show that in the one-commodity case, the
Nash solution is population-monotonic (recall that the Nash solution does
not have this property on the general domain). The proof is simple: let
each agent ¢+ € N be equipped with a concave utility function u; : Ry — R.
Allocating € units of the unique good among the members of a group @) € Q
according to the Nash solution means finding (z;)ico € RY maximizing the
product [[;eq ui(z)) with respect to (})icq € Rf subject to the condition
Yicq T; = §). Assuming for simplicity that all utilities are differentiable, this
exercise is solved by equating the ratios ui(z;)/u;(z;) across all agents. But
since each ratio is a decreasing function of its argument, it follows that when
there are more agents, the common value of the ratios solving this exercise
can only be greater, which results in a smaller consumption for all agents
initially present.
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However, it turns out that as soon as there are two goods, the class of
admissible problems is sufficiently rich to produce the same behavior as on
arbitrary problems. The next proposition summarizes these results.

Proposition 6 (Chun and Thomson, 1988) In the one-commodity case, the
Nash solution (used as a resource allocation rule) is population-monotonic.
For any greater number of commodities, it is not.

Note that in the one-commodity case any solution defined by maximizing
a sum Y eq fi(zi) subject to the condition Y ,cqz; = (2, where, for each
1 € N, f; is continuous, monotone increasing and concave, also is population-
monotonic.

6.5 Solutions to games in coalitional form used as re-
source allocation rules

Recall that on the class of TU concave coalitional form games the Shap-
ley value is population-monotonic (Section 4). This result can be applied
to economies that can be represented as concave games. What are these
economies ?

A “TU” economy is one in which agents can be described in terms of
“utility functions”, utility being transferable from any agent to any other
agent at a one-to-one ratio. This is mathematically equivalent to adding an
“accounting” good such that each agent’s preferences can be represented by
a function that is separable additive in the accounting good on the one hand,
and some function of the others on the other, and linear in the accounting
good. If this formulation is adopted, the social endowment of the accounting
good is of course equal to zero. Alternatively, and in fact more generally,
we can assume that this special good is an actual good, without necessarily
requiring the social endowment to be equal to 0. We will adopt this formula-
tion and refer to the good as “money”: to summarize, we say that agent ¢’s
preferences are quasi-linear if they admit a numerical representation that
is separable additive in money on the one hand and all the other goods on
the other, and linear in money: u;(z;,y:) = z; + v;(y;) where z; € R is agent
’s consumption of money and y; € Hﬁ:l is the vector of his consumptions of
the other goods. It is standard to assume that z; is unconstrained in sign
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and unbounded below. These assumptions are usually imposed for mathe-
matical convenience, but they are of particular significance for our problem.
For each () € Q, let 53 be the class of quasi-linear economies. Since the
social endowment of money may be negative, there is of course no reason to
expect population-monotonicity, and in these cases, we will limit ourselves to
the search for weakly population-monotonic solutions.

On the domain of quasi-linear economies with a social endowment of
money equal to 0, the Walrasian solution from equal division is still not
population-monotonic. In fact, the property cannot be met even if no distri-
butional requirements are imposed:

Theorem 9 (Moulin, 1992b) On the domain of quasi-linear economies in
which the social endowment of money is 0 (and even if the functions v;
are concave), there is no population-monotonic selection from the Pareto
solution.

However the counterpart of the egalitarian solution of Pazner and Schmei-
dler (1978) (see above), which is obtained by requiring the reference bun-
dle to be proportional to the social endowment vector, is obviously weakly
population-monotonic. This solution is a selection from the individual ratio-
nality from equal division and Pareto solution. Another weakly population-
monotonic solution is obtained by choosing allocations at which the surplus
measured in terms of money is divided equally (Moulin, 1992b). This so-
lution only satisfies a weaker condition of individual rationality, which says
that each agent’s utility level, evaluated in terms of the quasi-linear function
that represents his preferences normalized so that the utility of the zero bun-
dle be equal to zero, is at least as large as his utility, divided by the number
of agents, from consuming the social endowment.

Population-monotonic solutions do exist if preferences are appropriately
restricted. Given € Q and e = (Rg, Q) € 83, where R; is represented by
the function u; : R x Hﬁ_‘l — R such that u;(z;,y:) = z; + vi(ys), consider
the coalitional form game w, = (we(S))scq € G!? defined by : w,(S) =
max{ ;cs(®: + vi(yi))| Ties(zi,yi) = Q}. This is the stand alone game
associated with the economy. Finally, let Sh*(e) be the set of allocations
z = (2i,4:)icq € Z(e) such that for all ¢ € Q, z; + vi(y;) = Shi(w,), the :**
coordinate of the payoff vector chosen by the Shapley value for the game w..
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To specify the restriction on the domain that will be useful, first say that
two goods j and k are substitutes for the function v; : R — R if for
all y; € RS, and for all a,b € Ry, v;(yi + beF) — v;(y;) = vi(y; + aed + bek) —
v;(y; + ae’), where e/ denotes the j™* unit vector: this says that the marginal
benefit of an additional unit of good k decreases as the consumption of good
J increases. Writing the condition for j = k& means that the function v; is
concave in y;. Also, a function v; satisfies substitutability if any two goods
are substitutes in v;. Now, we have:

Proposition 7 (Moulin, 1992b) On the domain of quasi-linear economies in
which the social endowment of money is any non-negative number, and such
that for each S C @) the function w.(.S) (see above) satisfies substitutability,
the Shapley value Sh* (used as a resource allocation rule) is population-
monotonic.

Note that on this domain, the Shapley value only satisfies the weak in-
dividual rationality condition described above. However, the stronger condi-
tion of individual rationality from equal division can be met together with
population-monotonicity. Moulin (1990b) proposes a constructive algorithm
producing such a solution!4.

If there is only one good in addition to money, the hypothesis of substi-
tutability is equivalent to concavity of the function v;. Moulin gives other
examples of application of Proposition 7. For instance, the result holds if
there are only two goods in addition to money, and each function v; is con-
cave and submodular over R%. It also applies in the {-good case if each
function v; is twice continuously differentiable in the interior of Hi‘l, strictly
concave, exhibits gross substitutability and has an infinite marginal utility
of each good at 0.

Finally, we note that on the domain of public good economies (Section 8),
the associated stand-alone game is convex without having to impose addi-
tional assumptions on preferences beyond quasi-linearity, so that the Shapley
value is then a population-monotonic; solution (Moulin, 1990a).

14A disadvantage of the solution is that it does not respond well to changes in resources,
in contrast with the Shapley value.
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7 Fair allocation in economies with produc-
tion

Generalizing even further, we turn next to economies with production. We
first augment the description of an economy by a production set, to be in-
terpreted as being jointly owned by everyone. To complete the specification
of the model, we have several choices. One is to add a social endowment
of goods that can be used as inputs or distributed for private consumption.
The other and more interesting choice is to endow each agent with some
amount of “time”: time also can be used as an input or it can be consumed
as a private good, in the form of leisure, but it is not transferable across
agents. We will make the second choice, which raises a number of interesting
issues. Therefore, an economy is a list (Rg,wq,Y), where (Rg,wq) are as
in the specification of economies with individual endowments, and ¥ C R*
is a production set. Let P% be the class of all economies so specified. A
solution is a mapping defined on the union of all such P?, where Q € Q,
which selects for each economy a non-empty subset of its feasible set.

Here too, depending upon the nature of the technology and depending on
agents’ endowments, the arrival of new agents might be good news or bad
news for the agents initially present and we will use population monotonicity,
as well as population monotonicity,, and weak population-monotonicity.

It is easy to see that the equal-opportunity equivalent solutions ¢p asso-
ciated with monotonic families B of choice sets as described earlier (Section
6.1) are still well-defined here. They continue to be population-monotonic
when production sets are convex, and they are weakly population-monotonic
in general.

Moulin (1988, 1990c,d) studies the considerably weaker form taken by
population-monotonicity when the small group contains only one agent, un-
der the name of free access upper bound. The one-person components of
all efficient solutions agree, so that instead of pertaining to the comparison of
the recommendations made by a solution for two economies of different sizes,
the axiom essentially reduces to a “one-economy axiom” (just as individual
rationality from equal division in the exchange case). Therefore, the follow-
ing negative result in which, since agents may be differentially endowed, the
no-envy requirement should be understood to apply to trades, is all the more
disapointing: on the class of one-input, one-output economies with concave
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production functions, there is no subsolution of the no-envy (for trades) and
Pareto solution satisfying the free access upper bound (Moulin, 1990c). How-
ever, when the no-envy requirement is dropped, not only the free access upper
bound, but in fact population-monotonicity itself can be met, in particular
by the constant returns-to-scale equivalent solution, defined as fol-
lows: given e = (Rg,wq,Y), this solution selects any z € Z(e) such that for
some reference constant returns-to-scale technology, and for all ¢ € @), z; 1,2,
where 2} maximizes R; under the assumption that agent ¢ has access to that
reference technology.

Proposition 8 (Moulin, 1990c) On the class of one-input, one-output pro-
duction economies with concave production functions, the constant returns-
to-scale equivalent solution satisfies population-monotonicity'®.

In the case of quasi-linear economies in which the social endowment of
money is equal to 0, Moulin (1990c) notes the existence of a selection from
the Pareto solution satisfying population-monotonicity and the identical
preferences upper bound: no agent is better off than at the allocation
that would be chosen if all others had preferences identical to his, under the
requirements of efficiency and “equal treatment of equals”.

In economies with increasing returns-to-scale technologies, there is no
selection from the Pareto solution satisfying no-envy (for trades) and the
requirement that all agents prefer what they receive to the best they could
achieve if given free access to the technology, a requirement which, in view
of our earlier terminology, it is natural to call the free access lower
bound (Moulin, 1990d). This requirement is a special case of population-
monotonicity,. However, the constant returns-to-scale equivalent solution is
a population-monotonicy selection from the Pareto solution (Moulin, 1990c).

On the domain of economies such that the marginal rate of substitution
between the input and the output increases along each ray through the ori-
gin, the “proportional benefit” solution (Roemer and Silvestre, 1992), which
selects the efficient allocation such that all consumptions are proportional
to each other, is single-valued and population-monotonic (Fleurbaey, 1992c).

151t is in fact the only selection from the Pareto solution satisfying technological-
monotonicity and the free access upper bound. See Maniquet (1993) for a formulation
of an alternative bound of “Pareto domination of average cost equilibrium” and a discus-
sion of its compatibility with population- monotonicity.
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Fleurbaey (1992c) gives some insight about the shape of the newcomers’
preferences that are likely to cause various solutions, in particular the equal-
income Walrasian solution, to violate population-monotonicity.

8 Fair allocation in economies with public
goods

Next, we consider economies with public goods. Here too, the implications
of population-monotonicity (and of its variants) are not well understood. For
the case of general preferences, a brief discussion appears in Thomson (1987c)
who observes that certain egalitarian type solutions have the property. We
also have the following positive result for the case of one public good.

Proposition 9 (Moulin, 1992a) The selection from
the egalitarian-equivalence and Pareto solution obtained by requiring the
reference bundle to be proportional to the unit vector corresponding to the
public good is population-monotonicy..

We have already noted that on the class of quasi-linear economies in
which the social endowment of money is 0, the Shapley value used as a re-
source allocation rule and applied to the stand-alone game associated with
each economy is a population-monotonic selection from the Pareto solu-
tion (Section 6.5; Moulin, 1990a). On that domain, and applying the con-
cept of population-monotonic payoff configuration of cooperative games (Sec-
tion 6.5), Moulin (1990a) also shows the existence of what could be called
population-monotonicy allocation configurations. The component
allocations are selected from the Pareto solution and meet the identical pref-
erences upper bound.

Consider now the following model of an economy with a public “bad”:
there is one private good which is produced according to a technology with
an input consumed at the same level by all agents (think of a productive
activity that creates pollution). Moulin (1990d) notes that for such a model,
the selection from the egalitarian-equivalence and Pareto solution obtained
by requiring the reference bundle to be proportional to the unit vector cor-
responding to the public good is population-monotonicy. Also, a selection
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from the Pareto solution satisfying population-monotonicity, and the iden-
tical preferences upper bound (see above) can be defined as follows: Given
a parameter A € R,, determine for each agent the highest welfare he could
obtain subject to the condition that z; units of the input would give him
f(Az;) units of the output, where f is the production function. Then, select
the efficient allocation such that for some A, each agent’s welfare be equal to
his welfare at the solution of this maximization exercise (Moulin, 1990c).

9 Fair allocation in economies with indivisi-
ble goods

We now turn to the problem of allocating jobs and salaries among workers
with equal seniorities and qualifications. The jobs are not identical and the
workers’ preferences for the various job-salary packages differ. Each job is to
be assigned to only one worker and the sum of the salaries is not to exceed a
certain budget. How should the job-salary packages be defined and assigned?

The formal model is as follows. There is a group () € Q of agents and a
collection A of objects. An amount ) € R, of an infinitely divisible good,
called money, is also available for distribution. KEach agent ¢ € @) has a
preference relation R; defined over the space A xR. It is strictly monotonic in
its second argument and such that for all @, § € A and for all m € R, there is
m' € R such that (8, m')R;(«a,m). Let Rinq be the class of all such preference
relations. FEach agent should receive at most one object. An allocation is a
pair z = (o, m) of a function o : ) — A specifying which object each agent
receives, and a vector m € R4 such that ¥ ,c4 mo = Q specifying how much
money is associated with each object. The bundle received by agent 7 € @) at
zis (0(2),mo(;)). A problem of fair allocation with indivisible goods
is a triple (Rg, A,Q)) € Rgd x A x Ry, where @ € Q. Let Z% be the class of
these problems. A solution is a correspondence that associates with every
e = (Rg,A,Q) € I9, where Q € Q, a non-empty subset of the feasible set of
e.

In Figure 4, along each of the axes, indexed by the jobs, is measured
the salary that is associated with the corresponding job. To keep track of
which job-salary combinations an agent finds indifferent to each other, we
connect them by an “indifference curve”. A few sample indifference curves
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Figure 4: The allocation of indivisible objects when monetary com-
pensations are feasible. (a) Representation of preferences. (b) Upon the
arrival of agents 1 and 2, agent 3 may gain.

are indicated for agent 1. The notion of an envy-free allocation applies to this
situation just as well as in the previous section. Under the above assumptions,
envy-free allocations exist. In fact, there usually is a continuum of them and
here too, a natural question is how to make selections from this continuum.

A special case of the model just described is when the objects are all
identical. For instancs, consider the allocation of jobs on an assembly line
when there are more workers than jobs, all extra workers being allocated the
“null” object, denoted @}, which corresponds to unemployment. Finally, we
have the even more special situation in which there is a single object and
some money to allocate. To represent preferences in either one of these two
situations, we need only two axes, one indexed by the object, which will be
received by the “winners”, or “the unique winner” in the one-object case,
and the other indexed by the “null” object, which will be received by all the
other agents, the “losers”. For the winners not to envy each other, when
there are several of them, they should receive the same amount of money.
Similarly, for the losers not to envy each other, they should also receive the
same amount of money.

9.1 Population-monotonicity in the one-object case

We start with the one-object case. First, we note that in that case population-
monotonicity is incompatible with no-envy, even when preferences are quasi-

linear (Alkan, 1988, Moulin, 1990b).
Example (Moulin, 1990c). See Figure 4b. Let @ = {1,2,3}, A = {0, a}
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and ) = 0. Agents have quasi-linear preferences such that (0,45)(e,0),
(0,36)15(cx,0), and (0,10)I5(c,0). Let e = (Rg, A4,1) and z € F(e). Then,
efficiency requires that agent 1 gets the object. Agents 2 and 3 both get the
null object and ¢ units of money satisfying 12 £ ¢t £ 15. Thus, the worst
bundle agent 3 receives is (0, 12) and he prefers it to (e, 0), the bundle that
he would receive if he were alone.

In the example, agent 3 is better-off at any envy-free allocation of the
three-person economy than if he were alone, so that in fact a violation of the
counterpart of the free access upper bound introduced earlier (see Section 7)
is unavoidable if no-envy is insisted upon.

However, since here consumption spaces are unbounded below, it may
be unnatural to require agents to lose when new agents come in. This is
because the model is essentially equivalent to a production model. Receiving
the object is similar to being given a chance to produce “utility” by using the
object. When new agents come in with “good” production functions, they
may be able to use the object very productively and the agents originally
present may be made to benefit from it. To be ready to deal with that case
and with the case when the new agent has a poor production function, we
return to the condition of weak population-monotonicity.

Then, consider the solution * that systematically selects the envy-free
allocation that is the least favorable to the winner, as illustrated in Figure 5.
At this allocation, the winner’s indifference curve through his bundle passes
through the losers’ common bundle. It is easy to see that this solution is
weakly population-monotonic.

The solution ¢* is a selection from the egalitarian-equivalence solution in-
troduced in Section 6.1 (It is because there is only one object that egalitarian-
equivalence is compatible with no-envy'®.) Moreover, a characterization of
the solution can be obtained on the basis of weak population-monotonicity.
To formally state the result, we need the following very mild condition of
neutrality: if an allocation obtained by exchanges of bundles from one that
is chosen by the solution leaves unaffected the welfares of all agents, then it
is also chosen by the solution. We will also use the condition of translation
tnvariance which says that if all the preference maps are translated by some
amount ¢ € R, and the social endowment of money is changed by ¢ times the

16Tn general, the two distributional requirements of no-envy and egalitarian-equivalence
are incompatible (Thomson, 1990).
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Figure 5: A weakly population-monotonic selection from the no-
envy solution in the one-object case. (a) Definition of the solution: it
picks the allocation that is the worst for the winner in the set of envy-free
allocations, so that all indifference curves pass through a common “reference
bundle”. (b) Its weak population-monotonicity: as the number of agents
changes, the reference bundle moves to the left or to the right for all agents.
In the example, as agent 3 arrives, the reference bundle moves from z to z.

number of agents, then the recommended bundle for each agent is obtained
from his old one by increasing its money component by ¢.

Theorem 10 (Tadenuma and Thomson, 1993) In the one-object case, the
solution ¢* is the only weakly population-monotonic, neutral and translation
invariant selection from the no-envy solution.

In economies with indivisible goods, there is no meaning to “equal di-
vision” but a particularly useful distributional requirement is obtained by
insisting that each agent be made at least as well off as at the only envy-free
allocation that would exist in an economy in which all agents had the same
preference as his; this is the identical preferences lower bound encountered
earlier. In the two-person case, meeting this bound is actually the same
condition as no-envy, but if there are more than 2 agents, the identical pref-
erences lower bound is weaker than no-envy. The next few results pertain to
economies in which the object is a “good”: an agent would always need to be
compensated to give it up. Then, in economies with quasi-linear preferences
in which the social endowment of money is 0, Moulin (1990c) shows that the
Shapley value applied to the associated stand alone game is a population-
monotonic selection from the Pareto solution that meets the identical pref-
erences lower bound (this solution differs from ¢*.) A generalization of this
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result to the multiple object case appears below. Another generalization, to
economies where preferences are not necessarily quasi-linear, (and under the
assumption that the social endowment of money is any positive number,) is
given by Bevia (1992), who constructs an extension of this solution having
these same properties.

9.2 Population-monotonicity in the multiple-object
case

In the multiple-object case, the selection from the egalitarian-equivalence
and Pareto solution obtained by requiring the reference bundle to contain a
fixed object is weakly population-monotonic but it is not guaranteed to be
a selection from the no-envy solution anymore (Thomson, 1990). In fact,
if no-envy is insisted upon, we have the following impossibility which even
holds on the quasi-linear domain:

Theorem 11 (Tadenuma and Thomson, 1992) In the multiple-object case,
there is no weakly population-monotonic selection from the no-envy solution.

The following positive result is available however :

Proposition 10 (Moulin, 1992b) In the multiple-object case, if preferences
are quasi-linear and the social endowment of money is non-negative, the
Shapley value, applied to the stand alone game associated to each econ-
omy (see section 6.5), is a population-monotonic selection from the Pareto

solution!?.

Finally, we turn to the more general case when each agent can be assigned
several objects. A general analysis of this case has been carried out by Bevia

(1993).

Proposition 11 (Bevia, 1993) Consider the multiple-object case when each
agent can be assigned several objects. Then, even if preferences are quasi-
linear and if the social endowment of money is 0, there is no population-
monotonic selection from the Pareto solution. However, if preferences are
quasi-linear and satisfy the counterpart of the substitutability assumption

17This result should be compared to Proposition 7.
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of section 6.5., and if the social endowment of money is non-negative, the
Shapley-value applied to the stand alone game associated with each economy
defines a population-monotonic selection from the Pareto solution.

9.3 Locally extendable allocations

Theorem 11 shows that weak population-monotonicity is a very strong re-
quirement in the present context and it is therefore natural to investigate
the possibility of satisfying weaker requirements. Alkan (1989)’s contribu-
tion is along those lines. He asks the following question: For each given
economy, is there some allocation such that the arrival of another agent can
be made to affect all agents initially present in the same direction, and such
that the departure of an agent can be made to affect all remaining agents in
the same direction.

Locally extendable allocation. Let ¢ be a solution. Let Q € Q, e =
(Rg,A,Q) € I9, and z € ¢(e). Let mp be the maximal amount of money
received by anyone at z. The solution ¢ permaits the local upper-
extendability of z if for any i € @, there is 2’ € p(Rg\(iy, A, Q) such that
(i) 2iPjz; for all j € Q\{¢} if mpr > 0, (ii) 212, for all j € Q\{i} if mar = 0,
and (iii) z; P;2; for all j € Q\{i} otherwise. It permits the local lower-
extendability of z if for all i ¢ @, there is 2’ € p(Rgu(iy, 4, ) such that
(i) 2;Pjz; for all j € Q if z;P;(0,0) for all j € Q, (ii) 2;1;z; for all j € Q if
z;1;(0,0) for all j € @, and (iii) 2, P;z; for all j € @ otherwise.

It turns out that the no-envy solution F' permits only limited local ez-
tendability. The allocations that can be so extended are defined as follows :
given e = (Rg, A,§) and z € p(e), define the welfare of agent i € Q at
z to be the amount of money that by itself would constitute a bundle that
the agent finds indifferent to z;. Now, say that z is a mazimin welfare
allocation of F(e) if the agent with the lowest welfare at z has the highest
possible welfare in F'(e). Also, say that z is a minimaz money allocation
of F(e) if the maximal amount of money received by anyone at z is the
smallest among all allocations in F'(e).

Theorem 12 (Alkan, 1989) The no-envy solution permits the local upper-
extendability of the minimax money allocation and the local lower-
extendability of the maximin welfare allocation. It permits the local upper-
extendability of the minimax money allocation only.
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Alkan also shows that local lower-extendability is an easier requirement to
meet than local upper-extendability: indeed there are economies in which the
no-envy solution permits the local lower-eztendability of all of its allocations.

Fleurbaey (1993) considers a version of this model in which the indi-
visible goods are interpreted as non-transferable talents or handicaps, and
establishes the population-monotonicity of several solutions.

10 Fair division in private good economies
with single-peaked preferences

Examples abound of activities that one enjoys up to a point, any time spent
on it beyond that point decreasing one’s overall satisfaction; in many cases,
there may very well be a point beyond which one wishes that one would not
have started at all. Consider such an activity to be divided up among the
members of a team, and assume that the activity has to be completed!®.
How should this division be done?

Formally, there is a group @ € Q of agents among whom to allocate
2 > 0 units of an infinitely divisible commodity; for each ¢ € @), R; is agent
’s continuous and single-peaked preference relation defined over Ry i.e.,
there is a number p(R;) € R4 such that for all z;, 2} € Ry, if 2} < z; < p(R;)
or p(R;) £ z; <z}, then z;P;z}. Let R, be the class of all such preference
relations. A problem of fair division with single-peaked preferences
is a pair (Rg,Q) € R x Ry. For each Q € Q, let 82 be the class of all
problems involving the group ). A solution associates with every (Rg, ) €
S9, where ) € Q, a non-empty subset of the set of feasible allocations of
(Rg,0), {z € H$|ZieQ z; = Q}. Note that feasibility is defined with an
equality sign, reflecting the fact that the commodity is not freely disposable.
The axiomatic analysis of this class of problems was initiated by Sprumont
(1991).

Efficiency is easily understood. If the amount to divide is larger than
the sum of the preferred amounts — we will say that there is “too much” of
the commodity — efficiency requires that each agent consumes more than he
would prefer, and if the opposite holds — then, we will say that there is “not

18 Another situation with an identical mathematical representation is rationing in a two-
good economy.
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Figure 6: The uniform rule illustrated for @ = {1,2,3}. (a) The case
1 £ YicoP(R;) : each agent whose preferred consumption is smaller than
A gets his preferred consumption; each of the others gets A. (b) The case
Yieq(Ri) S ) : each agent whose preferred consumption is greater than A
gets his preferred consumption; each of the others gets .

enough” — efliciency requires that each agent consumes less than he would
prefer. Fairness, in addition to efficiency, is one of our objectives and we will
consider the same distributional requirements as in Section 6, no-envy and
individual rationality from equal division. Just as in classical economies,
there is a continuum of efficient allocations satisfying these distributional
requirements and the question of selection arises.

An appealing selection is the uniform rule, introduced in the fix-price
literature and recently characterized by Sprumont (1991) on the basis of
incentive considerations. It is defined as follows: Let Q € Q and (Rg,Q) €
S?. Then, z € Rf is the uniform allocation of (Rg,?) if when ) <
Yicq P(Ri), there is A € Ry such that for all ¢ € @, z; = min{p(R;), \},
and when };co p(Ri) < , there is A € Ry such that for all ¢ € Q, z; =
max{p(R;), A}, in each case )\ being chosen so as to ensure feasibility. It is
easy to see that the uniform rule selects efficient allocations that are both
envy-free and individually rational from equal division. The rule is illustrated
in Figure 6 for each of the two cases.

In this model, the arrival of additional agents may be either good news
(in cases when there is too much of the good to begin with) or it may be bad
news, and the natural property to consider is weak population-monotonicity.
Unfortunately, the property is quite demanding. For instance, the equal
division rule does not satisfy it. To see this, let Q = {1,2} and = 6;
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then, equal division is (3,3). Now, let Q' = {1,2,3}; here, equal division is
(2,2,2). If p(R1) = 2 and p(Ry) = 3, (3,3) is worse for agent 1 and better
for agent 2 than (2,2,2). If in addition p(Rs) = 2, the allocations (3,3) and
(2,2,2) are the uniform allocations of the economies (Rg,?) and (Rgs, ), so
the example shows that the uniform rule is not weakly population-monotonic
either.

These negative results extend much further, as stated in the next propo-
sition, in which we use the requirement, under the name of symmetry , that
identical agents be treated identically, reserving the term “anonymity” for
the requirement that the solution be invariant under exchanges of the names
of agents.

Theorem 13 (Thomson, 1991) There is no weakly population-monotonic se-
lection from the no-envy solution, nor from the individual rationality from
equal division solution. Also, there is no weakly population-monotonic and
symmetric solution that depends only on preferred consumptions.

These are disappointing results. Note in particular that they obtain even
though efliciency is not required. However, if the distributional requirements
of no-envy and individual rationality from equal division are dropped, anony-
mous and weakly population-monotonic selections from the Pareto solution
can be found on large subdomains of the primary domain. For example,
certain solutions based on equating “sacrifices” as measured by the size of
upper contour sets satisfy the property. These “egalitarian” type solutions
do provide appealing ways of solving the problem.

Moreover, upon close examination of the proofs of the negative results
stated in Theorem 13, one discovers that they involve comparing economies
where initially there is too much of the commodity and after the arrival of the
new agents there is not enough of it, or conversely. This naturally suggests
limiting one’s attention to situations in which changes in the population are
not so disruptive, that is, situations where there is too much before and
after, or there is not enough before and after:

One-sided population-monotonicity: For all Q, Q' € Q with Q' C Q,
for all (Rg,2) € 89, if Yieqp(R) £ Q or if Ticop(Ri) = 9, then
(,Di(RQ,Q)RiQDi(RQI,Q) for all 7 € Q).
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The property retains a wide range of relevance and fortunately it is sat-
isfied by a number of interesting solutions, including the uniform rule, the
proportional rule (which allocates the commodity in proportion to the pre-
ferred amounts), and others. However, among these, the uniform rule is
close to being the only one to satisfy the no-envy requirement, as stated in
the next theorem, which also makes use of the requirement of replication-
tnvariance: if an allocation is chosen for some economy, then for any order
of replication, the replica allocation is chosen for the replica economy. This is
a weak requirement, being satisfied by most of the solutions that have been
proposed for this model.

For this next result, we impose on preferences the requirement that there
be a finite consumption indifferent to the zero consumption.

Theorem 14 (Thomson, 1991) The uniform rule is the only replication-
invariant and one-sided population-monotonic selection from the no-envy
and Pareto solution.

11 Public decision in economies with single-
peaked preferences

The public good version of the model discussed in the previous section is
examined by Ching and Thomson (1993). In brief, there is an interval [0, Q]
of possible levels of a public good, all potential agents having single-peaked
preferences over it. A solution associates with each profile of preferences a
single level of the public good.

It is easy to check that the following solutions, indexed by the parameter
a € [0,9)], are population-monotonic: given some profile of preferences, select
the level a if it is efficient (that is, if it is between the smallest and the largest
preferred levels in the profile of preferences); if not, select the preferred level
in the profile the closest to a (note that the parameter a is required to be
the same for all cardinalities). These solutions constitute a subfamily of a
family introduced by Moulin (1984) and characterized by him on the basis
of strategy-proofness. Let C, be the solution associated with the parameter
a.

Theorem 15 (Ching and Thomson, 1992) The solutions {C,la € [0,9Q]}

are the only population-monotonic selections from the Pareto solution.
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Since here the only good present is a public good and the feasible set does
not change as the number of agents enlarges (this model should be compared
with the model of section 8), there is no means of compensating an agent for
any change in the chosen level that the arrival of newcomers might cause. As
a result, population-monotonicity is quite a strong condition.

12 Conclusion

Although the principle of population-monotonicity is well understood in some
of the models in which it has been investigated, not much is known about
its implications in a number of other important contexts. It is usually easy
to find out whether a given solution does or does not satisfy the property.
However, when it comes to characterizing the class of well-behaved solutions
that satisfy the property, relatively little has been accomplished. We hope
that this review will stimulate the search for answers to the numerous ques-
tions that are still open. To help in this work, we suggest that the analysis of
population-monotonicity (or its variants population-monotonicity, and weak
population-monotonicity) in a given model should have the following compo-
nents:

A. Identifying population-monotonic solutions. In particular, finding out
whether the most widely used solutions for the model satisfy the property.

- If such solutions do exist, characterizing all of them. Of course, the
class of population-monotonic solutions might be large, and a characterization
possible only if the solutions are also required to satisfy minimal requirements
of efficiency and distribution.

- Studying the compatibility of the property with other properties of
interest.

- Formulating criteria that would help evaluate how well population-
monotonic solutions do perform the job and compare them on that basis.
Obtaining population-monotonicity is only the first step. In a second step,
one may want to ensure that sacrifices (or gains) not only be in the same di-
rection but also be distributed “evenly” (see the notion of guarantee structure
used in bargaining theory).

B. If population-monotonic solutions do not exist on the primary domain
of interest, identifying interesting domain restrictions that would help recover
existence (Quasi-linearity of preferences has been a useful restriction in the

45



study of exchange economies and in the case of indivisible goods; in the latter
case, so has allowing only one object. In production economies, allowing only
two goods has been a useful assumption.)

- Formulating weaker monotonicity requirements:

(1) Conditions involving a given problem and all of its subproblems instead
of a general class of problems (see the notion of a population-monotonic payoff
configuration used in the context of coalitional form games).

(ii) Conditions involving only unit changes in the population (see the
notion of local upper- or lower-extendability introduced in economies with
indivisible goods).

(iii) Conditions based on comparing what each agent gets in some problem
to the average of what he gets in the subproblems!®.

(iv) Conditions based on specifying an order in which new agents arrive.
When the space of characteristics is endowed with an order structure, limiting
one’s attention to situations where agents’ arrivals are in agreement with that
order might be interesting.

(v) Finally, special features of the model might be relevant in formulating
conditions restricting the applicability of the condition (as we saw on the
single-peaked domain).

- Formulating criteria that would help evaluate how far from population-
monotonic a given solution may be. If some agents gain when they should
lose, taking the maximal (or average) gain they might incur could provide
the basis for the comparisons of solutions.

19Gimilarly to the way Maschler and Owen had suggested weakening consistency.
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