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Abstract

In the context of testing for a unit root in a univariate time series, the convention
is to ignore information in related time series. This paper shows that this convention
is quite costly, as large power gains can be achieved by including correlated stationary
covariates in the regression equation.

The paper derives the asymptotic distribution of ordinary least squares (OLS) es-
timates of the largest autoregressive root and its t statistic. The asymptotic distribu-
tions are not the conventional “Dickey-Fuller” distributions, instead they are convex
combinations of the Dickey-Fuller distributions and the standard normal, the mixture
depending on the correlation between the equation error and the regression covariates.
The local asymptotic power functions associated with these test statistics suggest enor-
mous gains over the conventional unit root tests. A simulation study and empirical
application illustrate the potential of the new approach.






1 Introduction

A refrain often heard in applied macroeconometric circles is that “Unit root tests have low
power.” I believe that this view may be partly a result of the convention of testing for unit
roots in univariate time series. This convention ignores relevant information in multivariate
data sets. It turns out to be the case that multivariate data can indeed be very informative

in regards to the question of univariate unit roots.

Consider the simple AR(1) model
Ay: = 6yi-1 + uy (1)

where u; is iid (0,02). The hypothesis of a unit root in this model is typically tested by the
OLS t-statistic for § = 0. This test, known as the Dickey-Fuller test, is widely believed to
be the best (or approximately so) classical procedure in this context.

It is rare, however, that we observe the time series y; in isolation. More typically, we ob-
serve related (correlated) time series, which we will collect in the vector Az;. Our maintained

assumption is that z; is I(1), so that Az, is I(0). Let us assume that

Ug . Oy
~ iid | 0,

Az, Opu O
Set b = 072044, and € = u; — Azyb, so that (1), supplemented by the observable Ay,

becomes

Ayt = 6yt_.1 + A.’I);b + e;. (2)

Under the assumptions, the parameter é retains the same meaning as in (1). An important

difference in the equations, however, is that the error variance in (2), 02 = o2 —

o2l 0%
will be smaller than o2 in (1) (unless o4, = 0, in which case the variances are equal). This
suggests that the regression parameters will be more precisely estimated (at least in large
samples) if OLS is applied to (2) rather than (1). This means that confidence intervals will
be smaller and test statistics more powerful.

Another interesting question is: What is the distribution theory for the t-statistic for 6

in (2)? Sometimes researchers report such statistics, and the presumption has been that the
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Dickey-Fuller distribution is appropriate. The standard intuition is that stationary covariates
Az, do not affect the limiting distribution other than to correct for serial correlation in u..
We show below that this belief is incorrect.

The results in this paper relate to some previous results in the literature. Kremers,

Ericsson and Dolado (1992) discuss the model
Azyy = aoAzy + a3 (21021 — 220-1) + €1 (3)

Azgy = €

with €; and €z iid uncorrelated normal random variables. We can see that (3) falls in the
class (2) by setting y; = 21t — 221, Tt = 2a1, 0 = ai, and b = ag — 1. The results which
we derive below can therefore be seen as generalizations their results, although it should
be emphasized that Kremers, et. al., were discussing tests for cointegration, and not for
univariate unit roots.

Horvath and Watson (1993) have recently proposed tests for cointegration when the
cointegrating vector is known a priori. While their tests are primarily motivated as tests for
cointegration, they could be used to test for stationarity in a particular variable, by setting
the “cointegrating vector” equal to the unit vector. The tests and distributional theory they
obtain are different from those analyzed in this paper.

A final interesting possibility has been mentioned by Johansen and Juselius (1992). Con-
ditioning on a known cointegrating rank of the data, they propose tests that some of the
cointegrating vectors are known. Again setting the known cointegrating vector equal to the
unit vector, this allows testing the null hypothesis that a particular series y; is stationary
against the alternative that it is integrated (and cointegrated with some other series z:).
This flips the null and alternative from that considered in our paper, and requires that y,
and z, are cointegrated when y; is I(1), which we do not require. Again,it appears that our
tests are complementary to those of Johansen-Juselius.

Section 2 introduces a generalized version of (2), allowing for lagged dependent variables
and deterministic components. The Gaussian asymptotic power envelope for the test of 6 = 0
is derived and compared with the power envelope of model (1). The asymptotic distributions

of the OLS estimates of (2) are also found under local alternatives to a unit root. Section 3
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discusses test statistics. Both coefficient and t-statistics are introduced, and their asymptotic
distributions dérived under the null hypothesis and local alternatives. This permits an
analysis of asymptotic local power. The sensitivity of the results to misspecification of the
order of integration of z; is also discussed. Section 4 reports a simulation-based study of the
finite sample distribution of the test statistics, using data generated from a VAR(1). Section
5 applies the tests to some long time series. We find that real per capita GNP and the
unemployment rate are I(0) but highly persistent, that industrial production is I(1). The

Appendix contains the mathematical proofs.



2 Regression Framework

2.1 Model and Assumptions
The univariate series y; consists of a deterministic and stochastic component:

Y =dy + 5 (4)

where the deterministic component is one of the following: d; = 0, d; = u, or d; = u + 6t.

The stochastic component S; is modeled by an autoregression with observed covariates z; :
a(L)AS; = 651 + b(L) (Azy — pz) + & (5)

where a(L) = 1 —ayL — agL* — - - - — a,L? is a p-th order polynomial in the lag operator
and p, = E(Azy). Az, is an m-vector and b(L) = b,,L™% + -+ + b, L% is a lag polynomial
allowing for (but not requiring) either or both leads and lags of Az; to be included in (5).

Assumption 1 For some p > r > 2,

1. {Azy, e} is covariance stationary and strong mizing with mizing coefficients c,, which

satisfy ooy anl7V?;
2. sup, E [|Az,” + |e]?] < o0
3. E(Azi_re;) =0 for g < k < go;
4. E(eser) =0 forall k > 1;

5. The roots of a(L) all lie outside the unit circle.

Assumptions 1.1 and 1.2 are conventional weak dependence and moment restrictions.
Assumption 1.3 states that the regressors in (5) are orthogonal to the regression error. This
can be achieved simply by appropriate definition for the lag polynomial &(L) (by linear
projection). Assumption 1.4 implies that the lag polynomial a(L) is sufficiently large to
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whiten the errors. It should be possible to extend the analysis to allow for an infinite order
polynomial which is approximated in finite samples by a p which grows with sample size,
following the technique of Berk (1974) and Said and Dickey (1983).

The specification for b(L) allows for past, current, and even future values of Az, to enter
the regression equation. In many applications (such as a standard VAR in y; and Az,
in which case (5) is one equation from the VAR) only lagged values of Az, will enter the
regression, so b(L) will take the form &L + - - - + b, L%,

2.2 Transformations and Definitions

The behavior of S, is determined by the random vector

Ay — g
Uy = )
€t

which has long-run covariance matrix
sz Q;‘e ke
Q, = = > E (utu;_k) :
Qxe Qee k=—o0
The vector u, satisfies the conditions of Herrndorf (1984), so the partial sums of u, converge

weakly to a Brownian motion with covariance matrix (.

Now define the random variable
v =b(L) (Azy — pz) + e

and the vector i, = (v; €;)', which has long-run covariance matrix

Q VQogb+ 0 Qge + QL0+ Qe Qb+ Qe | ol po,o. (6)
! ¥ Qe + Qee Qee oo o2 )

where p = 0,./0,0. is the long-run correlation between v; and e;, and b = b(1).
Since b(L) is a finite-order polynomial, it follows that the partial sums of 7, converge
weakly to a Brownian motion with covariance matrix 2,. Furthermore, by the standard

decomposition implied by definition (6), we can write this limit as

[T7] avWI(r)

1
18 , 7)
TEZ" ™\ o (h00) 4+ 1= ) i)
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where W, and W, are independent standard Brownian motions.

The zero-frequency squared correlation p? measures the relative contribution (at the zero
frequency) of Az, to v;. One extreme is obtained when b = 0, then v; = e and p? = 1.
The other extreme is obtained when the regressors z, explain nearly all the zero-frequency
movement in v, in which case p? ~ 0. We technically exclude the limiting case of p? =0 by

requiring that p? > 0. We also define the variance ratio
2
2_ Ze
R =—.
U

An important special case arises when e, is uncorrelated with Az;_; for all k, for then
0ve = 0% and p? = R?. This situation holds wheng; and g; are both large. Since this is a
property which we might expect to see in a well-specified regression, we consider p* = R? to

be a special case of leading interest.

2.3 Preliminary Asymptotic Results

Our asymptotic theory will be based on “local-to-unity asymptotics,” following the technique
of Phillips (1987b) and Chan and Wei (1987). Model (4)-(5) contains a unit root when 6 = 0,
which 1s the null hypothesis of interest:

Ho :6=0.
We allow for local departures from the null hypothesis by setting
6 = —ca(1)/T. (8)

The null holds when ¢ = 0, and holds “locally” as T — oo for ¢ # 0. In a fixed sample,
however, (8) is simply a reparameterization.

The asymptotic theory for near-integrated processes utilizes diffusion representations. We
will use the following notation. For any continuous stochastic process Z(r) and any constant

¢, we define the stochastic process Z¢(r) as the solution to the stochastic differential equation
dZ¢(r) = —cZ(r) + dZ(r).

We can now derive asymptotic representations for the stochastic component S; and its

sample moments.



Lemmal

1
1. TTS[Tr] = a(1) o, Wi(r).

2. _T1_2 Z?:z S, = a(1)?0] fol (ch)z .

8. LT, Sise = a(l)Mouoe (p fo WidWh + (1 - p?) f3 WedWy) .

2.4 Power Envelope

The Gaussian power envelope for the unit root testing problem in model (5) can be easily
derived. Start by assuming that the nuisance parameters a, b(L), g, piz, and 6 are known,
and fix a point alternative §. Then assume that the error e, is iid N(0, 0?) and is independent
of Az, at all leads and lags. Finally, assume that the initial condition Sy is fixed. This allows
the construction of a Gaussian likelihood. The likelihood ratio test for a unit root (6 = 0

versus § < 0) rejects for small values of

_ ;1. 5 [(al [( L)AS, — 851 — b(LYAz:)” = (a(L)AS, — H(LYAz)?|,  (9)

and the Neyman-Pearson Lemma shows that this is the most powerful test of the simple
hypothesis. Setting § = —ca(1)/T, the large sample distribution of LR(8) can be found

fairly directly from Lemma 3.

Theorem 1
LR= (& -2) [ " (We)? + 2Re (p / “wiaws + (1-p2)"? / ' Wde2) .

Note that the limiting distribution of the likelihood ratio statistic depends on the pa-
rameters (c,c, R?, p?). Under the null (¢ = 0) the distribution depends on (g, R?, p?). The
point optimal likelihood ratio statistic sets € = ¢, so the asymptotic distribution under the
alternative depends on (c, R?, p?). This means that the Gaussian power envelope (maximal
rejection frequency for a test of fixed size, traced out as a function of the alternative c) for

this testing problem depends on two nuisance parameters, R? and p°.
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Note that when p? = R? =1 the limiting distribution of Theorem 1 simplifies to
LR = ¢ /01 (We)? +eWe(1)? -

which is the distribution found for the point optimal Gaussian likelihood ratio in a autore-
gressive model without covariates (see Elliott, Rothenberg and Stock (1992)). In this case,
the power envelope for model (5) equals that of the Dickey-Fuller model

Figure 1 plots the power envelope! for the leading case R? = p? and for a range of values
of p%. The lowest curve is for p? = 1. The curves are strictly increasing as p? falls. In fact, the
increase in the power envelope due to a decrease in p? is quite dramatic. Take the alternative
¢ = 5, which corresponds to an autoregressive root of .95 when T = 100. The power envelope
for the standard autoregressive model (when p? = 1) is 33%, increasing to 51% when p? = .7,
and to 90% when p? = .3. By itself, Figure 1 does not demonstrate an increase in power

of feasible tests (we leave this to Section 3), but it does show the enormous potential of

allowing for covariates in unit root tests.

2.5 Least Squares Estimation

When d; = 0, we have
a(L)Ay, = §ys—1 + (L) Az + €. (10)

When d; = p, the model is

a(L)Ay; = p* + 8yi-1 + b(L) Azy + €4, (11)
where pu* = —u — b'u,, and when dy = p + 0t, the model is
a(L)Ayy = p* + 0*t + yso1 + b(L) Azy + €, (12)

where u* = a(1)0 — 6 — b p, and 6* = —66. (10), (11) or (12) can be estimated by ordinary
least squares (OLS). Let 6, &, and 6 denote the OLS estimates of § from these three

regressions.

1The power envelope was calculated for each value of p? shown and at ¢ = 1,2, ...,16. The distributions
were approximated by calculations from samples of size 1000 with iid Gaussian innovations. To calculate
the envelope at each p? and ¢, 40,000 draws were made under the null to compute the 5% critical value, and

20,000 draws were made under the alternative to compute the power.



Theorem 2

fol Wdel 1/2 fol chdWQ)
Jo (WF)? Jo (Wg)?

The asymptotic distributions for T (3“ - 5) and T (37 — 6) are the same as (13), except that
WE(r) is replaced by

T (8§~6) = a(1)R (p +(1- 4 (13)

. 1
() = i) — [ W,
and
1 1 1 1
Wer(r) = Wer) — (4/0 we —-6/0 Wfs) + (12/0 Wes — 6/0 W;) r

respectively.

Given that the asymptotic distribution given by (13) depends on the nuisance parameters

R? and p?, it is important to be able to estimate them consistently. Natural estimators are

given by
~2 &1216
P = 53 (14)
and
~2
A2 06
=%
where
R 62 Gye M 1 .
Q= " T |= X w(k/M)‘:,:Zm—kné’
2 &2 k=—M ?

n = (0 &), & = a(L)Ay, — Syt_l - Amé@, and vy = Axﬁ; + é;. The function w(:) may be
any kernel weight function which produces positive semi-definite covariance matrices, such
as the Bartlett or Parzen kernels, and M is a bandwidth selected to diverge to infinity slowly
with sample size. Conditions under which these estimates are consistent are given in Hansen
(1992b), and selection rules for M which minimize asymptotic mean squared error are given

in Andrews (1991).
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3 Testing for a Unit Root

3.1 Test Statistics

There are two natural test statistics for the hypothesis of a unit root
HO : 6 =0

in models (10)-(12). One is the t-statistic

A 6
t(é) = ;(_85’ | (15)

where s(8) is the OLS standard error for 5. Alternatively, for models (11) or (12), we denote

the t-statistic for § by t(8*) or t(67), respectively. The other statistic is the normalized

coefficient

~

T4
a(1)R (16)

For models (11) and (12), we denote the coeflicient statistic by z(6#) and z(87), respectively.

z(8) =

We now give the asymptotic distributions of these test statistics under the local-to-unity

structure (8).

Theorem 3

N c fol Wdel ( _ p2)1/2 fol Wdez (17)

Z( )=>“—+P + (1 ’
RT3 (Wp) Jo W2

2 c (! 2\ o WrdWy 2\1/2
1= - ([ wer) +p(—f£7(—”%%m+(1~p)/zv<o,l>, (18)

where in (18) the N(0,1) variable is independent of W1. The asymptotic distributions
for z(8#), z(87), t(8*) and t(87) are the same as (17) and (18), except that Wy is
replaced by Wi* and W™, respectively.
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3.2 Asymptotic Null Distributions

Corollary 1 Under the null hypothesis 6 = 0,

1.
1 1
2(8) = pfij?iu‘%?—’i +(1-p2)" f—"f?/;V—-—d—?ﬁ, (19)
2.
#(8) = p—f‘)l—uﬁfi-% + (1= %) N(0,0). (20)
(Jo w2)
The asymptotic distributions for z(§*), 2(67), t(S“), and t(ST) are the same as (19)
and (20), except that Wy is replaced by
3.

We) = W) - [ W,

and

W{(r):Wl(r)—<4/01W1—6/01W13>+(12/01W13—6/01W1>r,

respectively.

The null distributions are not the conventional “Dickey Fuller” distributions for p # 1.
For the t-statistic, the null distribution is convex mixture of the standard normal and the
standard “Dickey-Fuller distribution,” with the weights determined by p2. As p? — 1, we
find the standard Dickey-Fuller, and as p? — 0 we obtain the standard normal distribution.
Estimated? 1%, 5%, and 10% critical values for t(§) and z(8) are given in Tables 1 and 2.
To use the statistics (15) and (16), the estimator 5? from (14) must be used to select the
appropriate row from the Tables. Since p? is consistent for p?, it can be used to select the
row.

The observation that the conventional Dickey-Fuller critical values are inappropriate
when a regression has stochastic covariates has not been made before. This alone is a useful

implication of our analysis. We can see from the form of the asymptotic distributions that

2The critical values were calculated from 60,000 draws generated from samples of size 1000 with iid

(Gaussian innovations.
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Table 1: Asymptotic Critical Values of Covariate t-Tests

Standard Demeaned Detrended
p? 1% 5% 10% | 1% 5% 10% | 1% 5% 10%
1.0-2.57 -1.94 -1.62|-3.43 -2.86 -2.57|-3.96 -3.41 -3.13
0.91|-257 -194 -1.61]-3.39 -2.81 -2.50-3.88 -3.33 -3.04
0.8]-2.57 -1.94 -160]|-3.36 -2.75 -2.46 |-3.83 -3.27 -2.97 |
0.71{-2.55 -1.93 -1.59]-3.30 -2.72 -2.41|-3.76 -3.18 -2.87
0.6 |-2.55 -1.90 -1.56|-3.24 -2.64 -2.32|-3.68 -3.10 -2.78
0.5]-2.55 -1.89 -1.54]-3.19 -2.58 -2.25|-3.60 -2.99 -2.67
04|-255 -1.89 -1.53]|-3.14 -2.51 -2.17{-3.49 -2.87 -2.53
0.3-2.52 -1.85 -1.511-3.06 -2.40 -2.06|-3.37 -2.73 -2.38
0.21-249 -1.82 -1.461|-2.91 -2.28 -1.92-3.19 -2.55 -2.20
0.11-2.46 -1.78 -1.42-2.78 -2.12 -1.75|-2.97 -2.31 -1.95

Table 2: Asymptotic Critical Values of Covariate Coefficient Tests

Standard Demeaned Detrended
p? 1% 5% 10%| 1% 5% 10% | 1% 5% 10%
1.0-13.8 -81 -5.71-20.7 -14.1 -11.3}-29.5 -21.8 -18.3
091|-13.6 -7.8 -5.51]-20.0 -13.7 -10.9-28.3 -21.0 -17.6
0.8|-13.0 -75 -531-19.0 -13.1 -10.3|-27.2 -20.0 -16.7
0.7|-124 -7.3 -5.1|-188 -124 -99 |[-26.1 -19.2 -15.9
06-11.9 -7.0 -5.0{-180 -12.0 -9.4 |-252 -184 -15.2
0.51]-11.7 -6.8 -4.8|-17.0 -11.4 -9.0 {-24.0 -17.2 -14.2
041]-11.0 -6.4 -4.51|-16.2 -10.7 -8.4 |-22.5 -16.2 -13.3
0.3 |-10.3 -6.0 -4.2|-15.0 -9.9 -7.7 |-20.8 -14.9 -12.2
0.2 -96 -55 -3.8|-13.7 -90 -7.0 [-188 -13.4 -10.9
0.1| -87 -5.0 -3.5|-122 -7.9 -6.0 |-16.7 -11.7 -9.3

the conventional asymptotic critical values are conservative, implying that tests mistakenly

based on the Dickey-Fuller critical values will have less power than they could.

3.3 Asymptotic Local Power Functions

Theorem 3 gives the asymptotic distribution of the t-statistic and coeflicient test statistic
under the local-to-unity alternative (8). The expressions show that the asymptotic distri-
butions, and hence the asymptotic local power, depends on ¢, p?, and R?. Figure 2 displays

the power functions® and power envelope for these two tests when d; = 0, for p? = 1.0, 0.7,

3The power functions were calculated for each p? and ¢ = 1,2, ...,16 from 20,000 samples of size 1000

with iid Gaussian innovations, using the asymptotic critical values from Tables 1 and 2.
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0.4, and 0.1, setting R? = p?. We can see that the power of the two tests are quite close to
one another and the power envelope. Interestingly, for p* < 1 and small ¢, the power of 0
exceeds that of z(S), and lies very close to the power envelope, but the reverse is true for
large c. (For p? = 1, all three curves are virtually identical.)

Figures 3 and 4 display the same set of power functions, but for the cases d; = p and
d; = p + 0t, respectively. In the case of a mean correction (d; = p), the coeflicient test 2(8#)
does much better than the t-test t(6#) for p? close to 1, but the t-test has higher power for
small p? and small c. The same pattern is seen for the case of a trend correction (d; = p+6t)
in Figure 4, but the t-test has higher power for a wider range of values of ¢ and p?. For both
test statistics, the power curves for small values of p? are far above those of the conventional
Dickey-Fuller tests, which are given by the curves for p? = 1.

Figure 5 explores the impact of letting p? differ from R?, displaying six power functions
for ¢(&#), setting p? = .1 and p? = .7, and letting R? take three values above, equal, and
below p?. First, examine the curves for p? = .7, which corresponds to mildly successful
regressors. Allowing R? = .35 achieves a major improvement in power relative to R? = .7,
while setting R? = 1 shows a substantial decline in power, nearing the power function for
the Dickey-Fuller t-test. Next, examine the curves for p? = .1. Here the impact of R? # p?
appears less dramatic, although the impact is still substantial. As the asymptotic theory
predicts, a lower R? implies a higher local power function. The coefficient tests had similar
behavior to the t-tests and are not displayed.

Figures 2 through 5 show that the regression tests come close to the power envelope for
the case without a deterministic component, and that neither the t-test nor coefficient test
strictly dominate the other. The most important message is that enormous power gains can

be achieved by finding appropriate covariates z; which produce a low p? and/or a low R2.

3.4 Over-Differenced Regressors

The theory of the previous sections is based upon the strong assumption that the series
At is stationary. Due to the classic spurious regression problem, it is fairly obvious that
it is important to not include in the regression equation an integrated process, hence most

included variables will be first-differenced to induce stationarity (and hence the notation
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Az;). This of course raises the possibility that Az; could be “over-differenced.” Suppose,
for example, that z; is I(0), and the regression included Az, which is thus I(—1). It is
easy to show that p? = 1, so the asymptotic power of our tests is equivalent to that of the
Dickey-Fuller tests.

This conclusion appears more pessimistic than warranted. The reason why z; is differ-
enced is because it is highly serially correlated. To develop a better finite sample approxi-
mation to the power function, let us assume that z; is near-integrated. Specifically, assume

that z; satisfies

A.’Et = —%.’Et_l + m’[ (21)

with z} satisfying the assumptions we previously made about Az;. When ¢ = 0, z; is
I(1) and our model is not misspecified. As we allow g to depart from zero, we induce a
continuous distortion away from the model’s assumptions, and can examine the impact of
misspecification. When ¢ = oo, z; is 1(0) and the power function for the regression tests
should equal that of the Dickey-Fuller tests.

The model is essentially the same as before, except that there is one more parameter, g.
The asymptotic local power function for the regression test will therefore depend on p?, R?
and g. Figure 6 plots the power functions for p? = .1 and g equal to 0, 2, 4, 8 and 16, and
the power function for p> = 1 and g = 0, which is should be the same as setting p? = .1
and g = oo. The qualitative impact of letting ¢ > 0 is as anticipated: increasing g moves
the power function down and away from that when g = 0, eventually reaching the power
function of the Dickey-Fuller test. What is somewhat surprising (at least to the author) is
the quantitative finding that the magnitude of the power loss is fairly mild. Even setting
g = 16 does not lead to a major loss of power. The asymptotic analysis suggests that

over-differencing is not likely to be a major specification error.
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4 Small Sample Distributions

To demonstrate the performance of the new test statistics in a small sample, I performed a

simulation experiment. Data were generated from the model

Ays = —(¢/T)ys-1 + us,

Ut ai1  a12 Ut—1 €1t
= + ,
A, a1 @G22 Azy_q €2
and
€1t 0 1 oxn
~ N ,
€o¢ 0 021 1

Each replication discarded the first 100 observations to eliminate start-up effects.

Throughout the experiment, I set az; = 0 and a;; = 0, since theses parameters do not
affect the nuisance parameters p? and R? (so long as the VAR is stationary). This leaves
three free parameters (031, @21, a12) which control the degree of correlation between Az,
and u;. The first experiment set all three to zero, the remaining 16 set o3, = 0.4, and varied
az and a;; among {-.3, 0, .3, .6}.

One Augmented Dickey-Fuller regression and three covariate regressions were considered.
All regressions included a constant and two lags of the dependent variable. The three
covariate regressions differed in their choice of lags of x;. The selections were:

Case A:  {Ax}.
Case B:  {Azy, Az}
Case C:  {Azy, Azipq}.
Case D:  {Azy, Azyoy, Azyyy}.
The asymptotic theory suggests that (to a first approximation) the power of the tests

will depend on p? and R?, which are complicated functions of the model parameters and the
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choice of regressors. To calculate these parameters, I used a simulation technique. 10 samples
of length 10,000 were generated from each parameterization, and the estimates 4? and R?
calculated using a Parzen kernel and Andrews’ (1991) automatic bandwidth estimator, and
are reported? in Table 3. The results are quite interesting. We can see that it is possible
for R? to exceed one, and for the addition of extra covariates to increase p2, which may run
counter to intuition. For the parameterizations where a;; < 0 or az; < 0, there is no major
decrease in p? or R? by inclusion of Az}s, and there may even be an increase. This points
out that simply the presence of correlation between two variables does not mean that the p?
and R? measures will be low. It will depend on the nature of the correlation.

To examine the size and power of the test, I ran experiments with samples of size 50, 100,
and 250. The null hypothesis obtains by setting ¢ = 0, and power was examined by setting
c =4, 8, and 15. To conserve space, only the results for 7' = 100 and ¢ = 0 and ¢ = 8 are
reported, as the results for the other sample sizes and alternatives were predictably similar.
All experiments used 5000 replication. |

To examine size, the 10 tests (t-test and coefficient test for the Dickey-Fuller and four
covariate regressions) were compared against asymptotic critical values. For the covariate
tests, 4> was calculated using a Parzen kernel and Andrews’ (1991) automatic bandwidth
estimator. We find a substantial range of size behavior, with some parameter designs pro-
ducing over-rejection, and others producing under-rejection. In general, the new covariate
tests have more size distortion than the Dickey-Fuller test, and the coefficient tests reject
more frequently than the t-tests.

Finally, the power of the tests were examined. Because some of the tests displayed size
distortion, the power calculations were done with finite sample critical values, obtained from
the simulated data generated under the null hypothesis. The Dickey-Fuller tests have power
which is roughly independent of the design, ranging from 17-22% for the t-test and 26-33%
for the coefficient test. The power of the covariate tests is much higher than the ADF tests,
and is well predicted by p? and R?. Indeed, the power gains from inclusion of covariates is
quite substantial, reaching to 99% power in one case. Note that it is important to get the

“correct” covariates, for major losses in power can be obtained by inclusion or exclusion of

4Standard errors (not shown) indicate that the estimates are quite precise.
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Table 3: Simulation Design

Parameters Case A Case B Case C Case D

Design | 021 a12 an p® R p* R’ p®  R? p® R?
1 0 0 0/1.00 1.00}1.00 1.00|1.00 1.00|1.00 1.00
21 4 -3 -3| .87 131} .97 1.06| .98 1.06}| .98 .97
3| 4 -3 0| .86 1.04| .96 96| .86 1.04| .96 .96
41 4 -3 3| 8 .86 | .86 .18 .66 .90 | .71 .72
5/ 4 -3 6| .85 .76 97 84} 48 77| .59 .68
6| .4 0 -3| .84 1.05| .84 1.05| .96 97| .96 .97
7 4 0 0 84 84| 84 84| .84 84| .84 B4
8| 4 o0 3| 83 67| .83 67| .61 63| .61 .63
9| 4 0 6| .84 55| .84 b5 | .38 46| .38 .46
10, 4 .3 -3| 8 .89 68 .80} .98 90| .73 .72
11 .4 .3 0| .87 .71} 65 66| .87 .71} .65 .66
12 4 3 3 .86 53| .63 42| .59 431 .38 .40
13 4 3 .6 .85 40 .62 .29 .27 261 17 .25
14| 4 6 -3| .90 .79 45 72| .99 90 .66 .67
15 4 6 0 91 62 .47 46 .90 62| .46 .46
16 4 6 .3 90 46| 46 .26 | .59 .30 22 .24
17 4 6 61 .89 .31 44 13 .18 A2 .07 .11

covariates.

This experiment suggests that the asymptotic theory provides useful predictions in mod-
erate samples for the performance of the tests. Since the asymptotic theory predicts major
power gains from the inclusion of covariates which decrease p? and R?, this can be used as

a guide in applications to increase the power of unit root tests.
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Table 4: Finite Sample Size, T' = 100

t Tests Coefficient Tests
Dickey | Covariate Tests | Dickey | Covariate Tests
Design | Fuller | A B C D| Fullk) (A B C D
1 5/ 5 5 5 5 67 7T 7T T
2 5110 6 7 5 6|8 8 7 7
3 5110 6 10 6 TH7T 9 8 9
4 6110 6 12 6 8|7 10 9 11
5 6111 6 12 6 Tv7 119 11
6 5/ 5 5 5 5 67 7 8 8
7 5! 5 5 5 5 7T/6 7T 6 7
8 5/ 5 5 5 5 7|6 6 6 6
9 51! 5 5 4 4 7T/6 6 5 5
10 512 5 5 6 TIT7TO9 9 12
11 512 5 2 5 715 5 6 6
12 61 2 5 1 4 715 5 5 5
13 613 5 1 4 815 5 3 4
14 411 4 5 6 65 9 9 12
15 511 5 1 5 64 5 5 5
16 61 2 5 0 5 7/5 5 3 5
17 712 6 0 3 85 5 3 4

Table 5: Finite Sample Power, T' = 100, ¢ = 8

t Tests Coeflicient Tests
Dickey | Covariate Tests | Dickey | Covariate Tests
Design | Fulle! | A B C D| Fullee) | A B C D
1 19119 19 18 19 29 128 29 28 28
2 19114 18 17 22 30126 29 28 30
3 20120 20 20 20 30 130 29 30 28
4 20 |28 23 28 25 29 136 30 36 31
5 21135 22 40 34 33142 34 48 44
6 20120 20 20 19 30129 29 28 28
7 19 |28 27 28 27 29136 36 36 36
8 20 | 38 37 45 43 28 140 41 46 46
9 201 52 48 65 63 29 |51 51 69 69
10 19123 26 20 26 27132 33 28 31
11 20 | 37 44 34 42 29 |39 48 38 47
12 17151 68 67 72 27148 65 60 72
13 1969 86 88 88 26 |59 83 90 93
14 21126 38 18 35 29 | 34 41 27 36
15 20139 64 35 63 29 |43 66 40 65
16 19159 88 82 88 27151 88 73 91
17 18181 99 99 99 27170 98 99 99
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5 Application to U.S. Time Series

Nelson and Plosser (1982) challenged the prevailing wisdom of the 1970s by showing that
the Augmented Dickey-Fuller (1979) test did not reject the hypothesis of a unit root for
many U.S. annual macroeconomic time series. The original Nelson-Plosser data ran up to
1970, but was recently extended to 1988 by Schotman and van Dijk (1991). We apply our
covariate tests to three series: Real GNP per Capita (1913-198), Industrial Production
(1891-1988), and the Unemployment Rate (1894-1988). All are measured in logs. Since
the null hypothesis is that each series has one unit root, each variable was first-differenced
before used as a covariate. All regressions included a constant and linear time trend, and
three lags of the dependent variable (p = 3). In addition to the ADF tests, we report three
specifications with covariates, setting k; and k; each equal to 0 and 2. Note that in each
case the contemporaneous value of the covariate is included.

Table 6 presents the results. For GNP and Industrial Production, the first difference of
the unlogged Unemployment Rate was used as Az;, and for the Unemployment Rate, the
growth rate of Industrial Production was used as Az;. The OLS estimate of 6, its standard
error, t(8), and z(8) are presented for all cases, and the estimated ? and R? for the covariate
regressions.

First examine GNP. The ADF t-test is not significant, while the z-test is. The point
estimate for the coefficient on lagged GNP is about -.20, with large standard errors. The
message from the ADF regressions is that the data are uninformative regarding the order of
integration of GNP.

The covariate tests are much more revealing. For every lag specification, both tests are
significant at the asymptotic 5% level, with all but one test rejected at the asymptotic 1%
level. The estimated p? are extremely low, ranging from .06 to .08, and the estimated R?
are similar. This indicates that the estimates should be quite precisely estimated and the
power of the unit root tests considerably higher than for the ADF tests. Interestingly, while
the t-statistics show that § is significantly different from 0, the point estimates (about -.08)
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Table 6: Unit Root Tests for Extended Nelson-Plosser Data

GNP, Using UR as Covariate

Covariate Tests
ADF k=0 ky =2
’C]—_—O k1=2 k1=0 k1=2
6 -.20 -.09 -.08 -.09 -.08
s(8) .06 .03 .03 .03 .03
t(6) | -3.3| -3.4%%| 3.2%%| 31%x|  _209%
2(8) | -25.5% | -24.3%% | -21.0%* | -24.6%* | -21.1**
p2 .06 .08 07 .08
R? .09 .09 .08 .08
IP, Using UR as Covariate
Covariate Tests
ADF k=0 k=2
R =0k=2k=0]k=2
6 24| -06f -06| -05| -.06
s(6) .07 .04 .04 .05 .04
t(8) 33| 14| 15| 11| -13
z(8) | -29.6** | 99| 89| -84| -84
p? 21 16 17 15
R? 20 19 .20 19
UR, Using IP as Covariate
, Covariate Tests
ADF ]Cz =0 kg =2
k1=0 k'1=2 k1=0 k1=2
6 -.28 -.14 -.11 -.19 -.15
s(6) .07 .06 .06 .07 .07
t(8) | -3.9% -2.2 -1.7 -2.8 2.3
2(8) | -45.6%* | -26.6%* | -19.7%* | -35.9%* | -26.9%*
5? 53 20 58 .39
R? 50 27 AT 30

GNP: Real per Capita Gross National Product
IP: Industrial Production Index
UR: Unemployment Rate

* Significant at the asymptotic 5% level
** Significant at the asymptotic 1% level
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are much closer to 0 than the ADF estimates. Hence, while real per capita GNP appears to
be 1(0), it is highly persistent.

Second, examine the Industrial Production series. The ADF t-test statistic lies quite close
to the asymptotic 5% critical value, the ADF z-test is significant, and the point estimate and
standard error of § indicates considerable uncertainty. The covariate tests, however, strongly
support the unit root hypothesis. The point estimates of é are about -.06, with insignificant
t-statistics and z-statistics.

Third, turn to the unemployment rate. Both ADF tests strongly suggest that the series is
I(0). Examining the estimated p? for the covariate regressions, we see that there is consider-
able diversity between the specifications, as setting k; = 0 yields p? around .55, while k; = 2
yields p? € [.20,.39]. For the specification with the lowest $?, the z-stat is significant at the
asymptotic 1% level, while the t-stat is not statistically significant. For this specification,
the estimated § is quite small, at -.11, suggesting considerable persistence, even if the data
is 7(0). It is hard to know how to decisively interpret these conflicting results. The ADF
and covariate z-statistics suggest stationarity, while the covariate t-tests suggest caution.
On balance, it seems prudent to infer that the unemployment rate is stationary, but highly
persistent.

In all three cases, the inclusion of covariates in the regression equation moved the point
estimate of § much closer to 0. This is a likely consequence of the more precise and less
biased sampling distributions implied by Theorem 2. The ADF estimator is highly biased
and considerably imprecise, while the covariate estimator is less biased and more precise.
Thus if a series is highly persistent (or integrated) with a small (or zero) 6, sample estimates

of § will tend to be further from zero in an ADF regression than in a covariate regression.

6 Conclusion

This paper has analyzed the distribution theory for tests of unit roots in regression models
with covariates. We have found that the distributions of the standard test statistics is a
non-trivial function of the included covariates. We have also found that this complication

implies a major benefit: the power functions are dramatically improved as well. Our Monte
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Carlo study suggested that the finite sample size of the regression t-statistics is adequate,
and the power against stationarity excellent. We applied these tests to long time series,
and found strong evidence to support the contentions that real per capita GNP and the
unemployment rate are stationary but highly persistent, and that Industrial Production is

11).
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Appendix A. Mathematical Proofs

Proof of Lemma 1.
Part 1: Note that
a(L)=a(l)+ a*(L)(1 - L) (22)

where a*(L) has all roots outside the unit circle. Let £ = a*(L)AS; which satisfies

sup & = 0, (VT).

Using (8), and (22) we find that (5) can be rewritten as

ASy = —%Sat_l + —;-&-1 + o,
where S;; = a(L)S;. Hence
——sup [Sw — S3l = 0 (23)
T <T

where S7, is generated by

ASz = =Sk + v

By Theorem 4.4 (a) of Hansen (1992a) we know that

1 c
\/Tsa[Tr] = ale (T) (24)
(23) and (24) yield
1
_-\/TSG[TT] = o,Wi(r). (25)

Finally, let k(L) = a(L)~'. We have k(L) = k(1) + k*(L)(1 — L) where k*(L) has all roots
outside the unit circle since a(L) does. By (25),

1 1 1 _ ¢
\/—TS[TT] = ﬁk(L)Sa[TT] = k(l)ﬁsa[:r,] + Op(l) = k(1) 10’,,VV1 (r).

The proof is completed by noting that k(1) = a(1)~2.

Part 2: Follows from Part 1 by the continuous mapping theorem.
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Part 3: Theorem 4.4 of Hansen (1992a), Part 1, and (7) yields

1 <& 1 2\ 1/2
=3 Saec= [ a(1) o Wioud (pW1 +(1- ) Wz) ,
Tt:l 0

which is the stated result. 0O

Proof of Theorem 1.

Rearranging terms in (9), we find that

¢? — 2ec) & 2¢
LR = 0(1)2(_;2—1‘7{—2 Z St_1 +a(1) 2
v t=2

An application of Lemma 3 yields
—2 — ! 2 _Oe 1 1/2 c
LR= (& - %) [ (W) + 22 (p | wiaw, + (1 47) / % dW2>
0 Oy 0

The stated result follows by the definition R = o./0,.

Proof of Theorem 2.

We prove (13). The extension to the cases with a mean or trend correction is standard
and omitted.

Let @1 = (Ayia1y ooy Aoy Thygps oo z;_,, ). Since ¢, is covariance stationary, ergodic, and

strong mixing, and FE(¢.e;) = 0 under Assumption 1, we know that

1 T
13 Sty = 0,(1) | (26)
t=2
1 T
TZ¢¢:—nF>0 | (27)
and
T
z t€4 — (28)
Thus -

T (5 6) _ '11723;2 Si-1€ — —%Efzg St—1¢; (% Z?=2 ¢t¢§) % Ethz pies
75 iey St1 — 72 iy Si16) (5 2L, 616}) £ TL; 6:Sims

1 T
_ 7T 2i=2 St-16

= + 0,(1). 29
15T 57, p(1) (29)
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Hence by Lemma 3,

r(-5) a(1)1ouoe fo Wi (pdWr + (1 — p?)/* dW3)
-6 =
( a(1)-2a? [y (W)

= o(1) ( L VAW | (1 gr) V7 o Wil chdW?) .
Oy

p
Jo (WF)? Jo (We)?
The equality R = o./0, establishes the result. 0

Proof of Theorem 3.
Part 1 follows from Theorem 2 and the fact that 76 = —ca(1) under (8). Since

) T T T T 1z
t(é) = 67" (Z Sti—3 Si1d, (Z qw;) > ¢tst_1> 8
t=2 t=2 t=2 t=2

1 T 1/2 .
= 51 (ﬁ T 53_1) T4+ 0,(1),
=2

we can see that

) 1 \1/2 I Wed o WrdW,
i) o7 (a2 [ 057) " [ty otm (IS oy B WG

¢ (e ) WedW, 12 [y WedW,
= ([ ovr) o p By (e BT
(/5 we)?) (fs wp)?)
Since Wy is independent of Wi and W5, [ W.dWa/ (f2 (We)")""" is distributed N(0,1), and
is independent of W{. This completes the proof. D
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Figure 1: Asymptotic Local Power Envelope, R?
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Figure 2: Comparison of Power Envelope
and Covariate Tests with No Mean Correction, R2
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Figure 3: Power of Covariate tests

With Mean Correction, R2
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Figure 5: Power of t—Test With Mean Correction
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