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Abstract

The purpose of this paper is to survey the literature devoted to the ax-
iomatic analysis of the bargaining problem as formulated by Nash (1950).
We cover the “classical” theory, starting from Nash’s own work, and modern
developments, including studies of the behavior of solutions under changes in
population and changes in disagreement point. We briefly indicate applica-
tions of the theory to economics and strategic interpretations of the model.
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COOPERATIVE MODELS OF BARGAINING

1 Introduction

The axiomatic theory of bargaining originated in a fundamental paper by
J.F. Nash (1950). There, Nash introduced an idealized representation of
the bargaining problem and developed a methodology that gave the hope
that the undeterminateness of the terms of bargaining that had been noted
by Edgeworth (1881) could be resolved.

The canonical bargaining problem is that faced by management and labor
in the division of a firm’s income. Another example concerns the specification
of the terms of trade among trading partners.

The formal and abstract model is as follows: Two agents have access to
any of the alternatives in some set, called the feasible set. Their preferences
over these alternatives differ. If they agree on a particular alternative, that
is what they get. Otherwise, they end up at a prespecified alternative in
the feasible set, called the disagreement point. Both the feasible set and
the disagreement point are given in utility space. Let they be denoted by §
and d respectively. Nash’s objective was to develop a theory that would help
predict the compromise the agents would reach. He specified a natural class of
bargaining problems to which he confined his analysis, and defined a solution
to be a rule that associates with each problem (5,d) in the class a point of
S, to be interpreted as this compromise. He formulated a list of properties,
or axioms, that he thought solutions should satisfy, and established the
existence of a unique solution satisfying all the axioms. It is after this first
axiomatic characterization of a solution that much of the subsequent
work has been modelled.

Alternatively, solutions are meant to produce the recommendation that an
impartial arbitrator would make. There, the axioms may embody normative
objectives of fairness.

Although criticisms were raised from the very beginning against some of
the properties Nash used, the solution he identified, now called the Nash
solution, was often regarded as the solution to the bargaining problem until
the mid-seventies. Then, other solutions were introduced and given appealing
characterizations, and the theory expanded in several directions. Systematic
investigations of the way in which solutions could, or should, depend on the



various features of the problems to be solved, were undertaken. For instance,
the crucial axiom on which Nash had based his characterization requires that
the solution outcome be unaffected by certain contractions of the feasible set,
corresponding to the elimination of some of the options initially available.
But, is this independence fully justified? Often not. A more detailed analysis
of the kinds of transformations to which a problem can be subjected led to
the formulation of other conditions. In some cases, it seems quite natural
that the compromise be allowed to move in a certain direction, and perhaps
be required to move, in response to particular changes in the configuration
of the options available.

The other parameters entering in the description of the problem may
change too. An improvement in the fallback position of an agent, reflected
In an increase in his coordinate of the disagreement point, should probably
help him. Is it actually the case for the solutions usually discussed? This
improvement, if it does occur, will be at a cost to the other agents. How
should this cost be distributed among them?

The feasible set may be subject to uncertainty. Then, how should the
agents be affected by it? And, what should the consequences of uncertainty
in the disagreement point be? How should solutions respond to changes in
the risk attitude of agents? Is it preferable to face an agent who is more, or
less, risk-averse?

The set of agents involved in the bargaining may itself vary. Imagine some
agents to withdraw their claims. If this affects the set of options available to
the remaining agents favorably, it is natural to require that each of them be
affected positively. Conversely, when the arrival of additional agents implies
a reduction in the options available to the agents initially present, shouldn’t
they all be negatively affected? And, if some of the agents leave the scene,
not empti-handed but with their payoffs, or promise of payoffs, shouldn’t the
situation, when reevaluated from the viewpoint of the agents left behind, be
thought equivalent to the initial situation? If yes, each of them should still
be attributed the very same payoffs as before. If not, renegotiations will be
necessary that will greatly undermine the significance of any agreement.

What is the connection between the abstract models with which the the-
ory of bargaining deals and more concretely specified economic models on
the one hand, and strategic models on the other? How helpful is the theory
of bargaining to the understanding of these two classes of problems?



These are a sample of the issues that we will discuss in this review. It
would of course be surprising if the various angles from which we will attack
the problem all led to the same solution. However, and in spite of the large
number of intuitively appealing solutions that have been defined in the litera-
ture, only three solutions (and variants) will pass more than a few of the tests
that we will formulate. They are Nash’s original solution, which selects the
point of S at which the product of utility gains from d is maximal, a solution
due to Kalai and Smorodinsky (1975), which selects the maximal point of S
at which utility gains from d are proportional to the maximal utilities within
the set of feasible points dominating d, and the solution that simply equates
utility gains from d, the Egalitarian solution. In contexts where interper-
sonal comparisons of utility would be inappropriate or impossible, the first
two would remain the only reasonable candidates. We find this conclusion
to be quite remarkable.

Bibliographic note. An earlier survey is Roth (1979c). Partial
surveys are Schmitz (1977), Kalai (1985), Thomson (1985a), and
Peters (1987a). Thomson and Lensberg (1989) analyze the case of
a variable number of agents. Peters (1992) and Thomson (1994)
are detailed accounts.

2 Domains. Solutions

A union contract is up for renewal; management and labor have to agree on
a division of the firm’s income, failure to agree resulting in a strike. This is
an example of the sort of conflicts that we will analyze. We will consider the
following abstract formulation: An n-person bargaining problem, or simply a
problem, is a pair (5, d) where S is a subset of the n-dimensional euclidean
space, and d is a point of S. Let X7 be the class of problems such that
(Figure 1a):

(i) S is convex, bounded, and closed (it contains its boundary).
(ii) There is at least one point of S strictly dominating d.

Each point of S gives the utility levels, measured in some von Neumann-
Morgenstern scales, reached by the agents through the choice of one of the

3
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Figure 1: Various classes of bargaining problems: (a) An element of
%3. (D) An element of £. (c) A strictly comprehensive element of %2.

alternatives, or randomization among those alternatives, available to them.
Convexity of S is due to the possibility of randomization; boundedness holds
if utilities are bounded; closedness is assumed for mathematical convenience.
The existence of at least one z € S with z > d is postulated to avoid the
somewhat degenerate case when only some of the agents stand to gain from
the agreement!. In addition, we will usually assume that

(iii) (5,d) is d-comprehensive: If z € S and 2 >y > d, then y € S.

This property of (S,d) follows from the natural assumption that utility
is freely disposable (above d). It is sometimes useful to consider problems
satisfying the slightly stronger condition that the part of their boundary
that dominates d does not contain a segment parallel to an axis. Along that
part of the boundary of such a strictly d-comprehensive problem, “utility
transfers” from one agent to another are always possible. Let 05 = {z ¢
S|Pz’ € S with 2’ > z} be the undominated boundary of S.

In most of the existing theory the choice of the zero of the utility scales
1s assumed not to matter, and for convenience, we choose scales so that
d = 0 and ignore d in the notation altogether. However, in some sections,
the disagreement point plays a central role; it is then explicitly reintroduced.

"Vector inequalities: given z, z' € R®, z 2 &’ means ¢; > z for all i; z > z’ means
z 22 and ¢ # z'; ¢ > 2’ means z; > 2/ for all 4.



When d = 0, we simply say that a problem is comprehensive instead of
d-comprehensive. Finally, and in addition, we often require that

(iv) S C R%.

Indeed, an argument can be made that alternatives at which any agent
receives less than what he is guaranteed at d = 0 should play no role in the
determination of the compromise. (This requirement is formally stated later
on.)

In summary, we usually deal with the class 3% of problems S as repre-
sented in Figure 1b -1c. (the problem of Figure 1c is strictly comprehensive,
whereas that of Figure 1b is only comprehensive; since its boundary contains
a non-degenerate horizontal segment.) We occasionally consider degener-
ate problems, that is, problems whose feasible set contains no point strictly
dominating the disagreement point.

Sometimes, we assume that utility can be disposed of in any amount: if
z € S, then any y € R" with y £ z is also in S. We denote by Y5 _ and
Yo, the classes of such fully comprehensive problems corresponding to
X% and Xj.

The class of games analyzed here can usefully be distinguished from the
class of “games in coalitional form” (in which a feasible set is specified for each
group of agents), and from various classes of economic and strategic models
(in the former, some economic data are preserved, such as endowments and
technology; in the latter, a set of actions available to each agent is specified,
each agent being assumed to choose his action so as to bring about the
outcome he prefers). In sections 7 and 8, we briefly show how the abstract
model relates to economic and strategic models.

A solution defined on some domain of problems associates with each
member (.5, d) of the domain a unique point of S interpreted as a prediction,
or a recommendation, for that problem.

Given A C R}, cch{A} denotes the “convex and comprehensive hull” of
A: it is the smallest convex and comprehensive subset of R containing A. If
z,y € R}, we write cch{z,y} instead of cch{{z,y}}. Finally, A"! = {z ¢
R%|3° 2; = 1} is the (n — 1)-dimensional unit simplex.

Bibliographic note. Other classes of problems have been dis-
cussed in the literature, in particular non-convex problems and



problems that are unbounded below. In some studies, no dis-
agreement point is given (Harsanyi 1955, Myerson 1977, Thomson
1981c). In others, an additional reference point is specified; if it
is in 9, it can be interpreted as a status quo (Brito, Buoncristiani
and Intriligator 1977 choose it on the boundary of S), or as a
first step towards the final compromise (Gupta and Livne 1988);
if it is outside of 5, it represents a vector of claims (Chun and
Thomson 1988, Bossert 1992a,b, 1993, Herrero 1993, Herrero and
Marco Gil 1993, Marco Gil 1994a,b). See also Conley, McLean,
and Wilkie (1994), who apply the techniques of bargaining theory
to multi-objective programming. Another extension of the model
is proposed by Klemisch-Ahlert (1993). Some authors have con-
sidered multivalued solutions, (Thomson 1981a, Peters, Tijs and
de Koster 1983), and others, probabilistic solutions (Peters and
Tijs 1984b, Howe 1994).

Three solutions play a central role in the theory as it appears today. We
introduce them first, but we also present several others so as to show how
rich and varied the class of available solutions is. Their definitions, as well
as the axioms to follow shortly, are stated for an arbitrary S € %2, [and
(S,d) € 7).

For the best-known solution, introduced by Nash (1950), the compromise
is obtained by maximizing the product of utility gains from the disagreement
point.

Nash solution, N (Figure 2a) : N() is the maximizer of the product [J z;
over S. [N(S,d) is the maximizer of [[(z; — d;) for z € S with z 2> d.]

The Kalai-Smorodinsky solution sets utility gains from the disagreement
point proportional to the agents’ “most optimistic expectations”. For each
agent, this is defined as the highest utility he can attain in the feasible set
subject to the constraint that no agent should receive less than his coordinate
of the disagreement point.

Kalai-Smorodinsky solution, K (Figure 2b) : K(.9) is the maximal point
of S on the segment connecting the origin to a(S), the ideal point of 3,
defined by a;(S) = max{x;|z € S} for all 5. [K(S,d) is the maximal point
of 5 on the segment connecting d to a(S, d), where a;(S,d) = max{z;|z € S,
x 2 d} for all 7.]
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Figure 2: Examples of solutions. (a) The Nash solution. (b) The Kalai-
Smorodinsky solution. (¢) The Egalitarian solution.
solutions. (e) The discrete Raiffa solution. (f) The Perles-Maschler solution.
(9) The Equal Area solution. (h) The Utilitarian solution. (¢) The Yu
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The idea of equal gains is central to many theories of social choice and
welfare economics. Here, it leads to the following solution:

Egalitarian solution, E (Figure 2¢) : E(S) is the maximal point of S of
equal coordinates. [F;(S,d) — d; = E;(S,d) — d; for all 7, 3.]

The next solutions are extreme cases of solutions favoring one agent at
the expense of the others. They occur naturally in the construction of other
solutions and sometimes serve as useful indicators of the strength of some
proposed list of axioms (just as they do in Arrow-type social choice):

Dictatorial solutions, D* and D* (Figure 2d) : D!(S) is the maximal
point z of S with z; = 0 for all j # ¢. [Similarly, D%(.S,d) = d; for all j # ]
If n =2, D*(S) is the point of PO(S) = {z € S|Pz’ € S with 2’ > =z }

whose i**’s coordinate is maximal.

If S is strictly comprehensive, D*(S) = D*(S). If n > 2, the maximizer
of z; in PO(S) may not be unique, and some rule has to be formulated to
break possible ties. A lexicographic rule is often suggested.

The next two solutions are representatives of an interesting family of
solutions based on processes of balanced concessions: agents work their way
from their preferred alternatives (the dictatorial solution outcomes) to a final
position by moving from compromise to compromise:

The (discrete) Raiffa solution, R? (Figure 2¢) : R¥(S) is the limit point
of the sequence {z'} defined by: z*® = D(S) for all 4; for all t € N, 2t =
(Z2'V)/n, and z** € WPO(S) = {z € S|fiz' € S with 2’ > z} is such
that z¥ = z! for all j # . [On X7, start from the D(S,d) instead of the
D*(S).]

A continuous version of the solution is obtained by having z(¢) move at
time ¢ in the direction of (¥ «'(t))/n where 2'(t) € WPO(S) is such that
zh(t) = z;(t) for all j # i.

The Perles-Maschler solution, PM (Figure 2f) : For n = 2. If 85 is
polygonal, PM(S) is the common limit point of the sequences {zt}, {y'},
defined by: z° = D*!(S), y° = D**(S); for each t € N, z¢, y* € PO(S) are
such that 27 > y{, the segments [z~ 2], [y'~?, y'] are contained in PO(S)

and the products |(z{™' — z¢) (25 — 28)| and |(yi™" — y?)(yi! — yb)| are equal
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and maximal®. If 5 is not polygonal, PM(S) is defined by approximating
S by a sequence of polygonal problems and taking the limit of the associated
solution outcomes. [On X7, start from the D(.S,d) instead of the Di(S).]

When 95 is smooth, the solution can be given the following equivalent
definition. Consider two points moving along 9.5 from D*'(.S) and D**(S)
so that the product of the components of their velocity vectors in the wu4
and uy directions remain constant: the two points will meet at PM(S). The
differential system describing this movement can be generalized to arbitrary
n; it generates n paths on the boundary of 95 that meet in one point that
can be taken as the desired compromise.

The next solution exemplifies a family of solutions for which compromises
are evaluated globally. Some notion of the sacrifice made by each agent at
each proposed alternative is formulated and the compromise is chosen for
which these sacrifices are equal. In a finite model, a natural way to measure
the sacrifice made by an agent at an alternative would be simply to count the
alternatives that the player would have preferred to it. Given the structure of
the set of alternatives in the model under investigation, evaluating sacrifices
by areas is appealing.

The Equal Area solution, A (Figure 2g) : For n = 2. A(S) is the point
x € PO(S) such that the area of S to the right of the vertical line through «
1s equal to the area of S above the horizontal line through z. [On X2, ignore
points that do not dominate d.]3

The next solution has played a major role in other contexts. It needs no
introduction.

Utilitarian solution, U (Figure 2h) : U(S) is a maximizer in z € S of
Y xi. [U(S,d) is defined as the solution to the same maximization exercise.]

This solution presents some difficulties here. First, the maximizer may
not be unique, and to circumvent this difficulty a tie-breaking rule has to
be specified; for n = 2 it is perhaps most natural to select the midpoint of

2Equality of the products implies that the triangles of Figure 2f are matched in pairs
of equal areas.
3There are several possible generalizations for n 2 3.



the segment of maximizers (if n > 2, this rule can be generalized in several
different ways). A second difficulty is that as defined here for 7%, the solution
does not depend on d. A partial remedy is to search for a maximizer of 3 z;
among the points of S that do dominate d. In spite of these limitations,
the utilitarian solution is often advocated. In some situations, it has the
merit of being a useful limit case of sequences of solutions that are free of
the limitations.

Agents cannot simultaneously obtain their preferred outcomes. An intu-
itively appealing idea is to try to get as close as possible to satisfying every-
one, that is, to come as close as possible of what we have called the ideal
point. The following one-parameter family of solutions reflects the flexibility
that exists in measuring how close two points are from each other.

Yu solutions Y? (Figure 2i) : Given p €]1, 0o, Y?(S) is the point of S for
which the p-distance to the ideal point of S, (¥ ]a;(S) — z;|P)*/*, is minimal.
[On X7, use a(S, d) instead of a(5).]

Bibliographic note: Versions of the Kalai-Smorodinsky solu-
tion appear in Raiffa (1953), Crott (1971), Butrim (1976), and
the first axiomatization in Kalai and Smorodinsky (1975). A
number of variants have been discussed, in particular by Rosen-
thal (1976,1978), Kalai and Rosenthal (1978) and Salonen (1985,
1987). The Egalitarian solution cannot be traced to a partic-
ular source but egalitarian notions are certainly very old. The
Equal Area solution is analyzed in Dekel (1982), Ritz (1985), An-
barc1(1988), Anbarciand Bigelow (1988), and Calvo (1989); the
Yu solutions in Yu (1973) and Freimer and Yu (1976); the Raiffa
solution in Raiffa (1953) and Luce and Raiffa (1957). The mem-
ber of the Yu family obtained for p = 2 is advocated by Saluk-
vadze (1971a,b). The extension of the Yu solutions to p = oo is
to maximize min{|a;(S) — z;|} in z € S but this may not yield
a unique outcome except for n = 2. For the general case, Chun
(1988a) proposes, and axiomatizes, the Equal Loss solution, the
selection from Y'*°(5) that picks the maximal point of S such that
a;i(S)—=z; = a;(S)—z, for all ¢, j. The solution is further studied
by Herrero and Marco (1993). The Utilitarian solution dates back
to the mid 19th century. The 2-person Perles-Maschler solution

10
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Figure 3: The Nash solution. (a) The Nash solution satisfies contrac-
tion independence. (b) Characterization of the Nash solution on the basis of
contraction independence (Theorem 1).

appears in Perles-Maschler (1981) and its n-person extension in
Kohlberg, Maschler and Perles (1983) and Calvo and Gutiérrez
(1993).

3 The Main Characterizations

Here we present the classic characterizations of the three solutions that oc-
cupy center stage in the theory as it stands today.

3.1 The Nash solution

We start with Nash’s fundamental contribution. Nash considered the fol-
lowing axioms, the first one of which is a standard condition: all gains from
cooperation should be exhausted.

Pareto-optimality: F'(S) € PO(S) = {z € S|Pz’ € S with &’ > z}.

The second axiom says that if the agents cannot be differentiated on the
basis of the information contained in the mathematical description of S, then
the solution should treat them the same.

Symmetry: If S is invariant under all exchanges of agents, F;(S) = F;(S)
for all ¢, .

11



This axiom applies to problems that are “fully symmetric”, that is, are
invariant under all permutations of agents. But some problems may only
exhibit partial symmetries, which one may want solutions to respect. A more
general requirement, which we will also use, is that solutions be independent
of the name of agents.

Anonymity: Let 7 : {1,...,n} — {1,...,n} be a bijection. Given z € R, let
T(2) = (Tr(1)s o) Ta(n)) and 7(S) = {2’ € R"|3z € S with 2’ = #(z)}. Then,
F(7(5)) = #(F(95)).

Next, remembering that von-Neumann Morgenstern utilities are unique
only up to positive affine transformations, we require that the solution should
be independent of which particular members in the families of utility func-
tions representing the agents’ preferences are chosen to describe the problem.

Let Af : R — R" be the class of independent person by person, positive,
linear transformations (“scale transformations”): A € Ag if thereis a € R,
such that for all z € R", A(z) = (@124, ...,ayz,). Given A € AZ and S C R™,
A(S) = {2’ e R*|3z € S with 2’ = A(z)}.

Scale invariance: A(F(S)) = F(A(S)).

Finally, we require that if an alternative is judged to be the best compro-
mise for some problem, then it should still be judged best for any subproblem
that contains it. It can also be thought as a requirement of informational sim-
plicity: A proposed compromise is evaluated only on the basis of information
about the shape of the feasible set in a neighborhood of itself.

Contraction independence: * If S C S and F(S) € S, then F(S') =
F(9).

In the proof of our first result we use the fact that for n = 2, if z = N(5),
then S has at z a line of support whose slope is the negative of the slope of
the line connecting « to the origin (Figure 2a).

Theorem 1 (Nash 1950) The Nash solution is the only solution on 7 sat-
isfying Pareto-optimality, symmetry, scale invariance, and contraction inde-
pendence.

“This condition is commonly called “independence of irrelevant alternatives”.

12



Proof: (for n = 2) It is easy to verify that N satisfies the four axioms (that
N satisfies contraction independence is illustrated in Figure 3a). Conversely,
let F' be a solution on X2 satisfying the four axioms. To show that F = N,
let S € X2 be given and let z = N(5). Let A € A2 be such that z' = A\(z) be
on the 45" line. Such a A exists since ¢ > 0, as is easily checked. Also, the
problem S§' = A(5) is supported at 2’ by a line of slope -1 (Figure 3b). Let
T ={y € R}|Zy:; £ X zi}. The problem T is symmetric and z' € PO(T).
By Pareto-optimality and symmetry, F(T') = z'. Clearly, S' C T and 2’ € S,
so that by contraction independence, F(S') = a’. The desired conclusion
follows by scale invariance. Q.E.D.

No axiom is universally applicable. This is certainly the case of Nash’s
axioms and each of them has been the object of some criticism. For in-
stance, to the extent that the theory is intended to predict how real-world
conflicts are resolved, Pareto-optimality is certainly not appropriate, since
such conflicts often result in dominated compromises. Likewise, we might
want to take into account differences between agents pertaining to aspects
of the environment that are not explicitly modelled, and differentiate among
them even though they enter symmetrically in the problem at hand; then,
we violate symmetry. Scale invariance prevents basing compromises on in-
terpersonal comparisons of utility, but such comparisons are made in a wide
variety of situations. Finally, if the contraction described in the hypotheses of
contraction independence is “skewed” against a particular agent, why should
the compromise be prevented from moving against him? In fact, is seems
that solutions should in general be allowed to be responsive to changes in
the geometry of S, at least to its main features. It is precisely considerations
of this kind that underlie the characterizations of the Kalai-Smorodinsky and
Egalitarian solutions reviewed later.

Bibliographic note: Nash’s theorem has been considerably re-
fined by subsequent writers. Without Pareto-optimality, only one
other solution becomes admissible: it is the trivial Disagree-
ment solution, which associates with every problem its dis-
agreement point, here the origin (Roth 1977a, 1980). Dropping
symmetry, we obtain the following family: given o € A™™1, the
Weighted Nash solution with weights « is defined by max-
imizing over .5 the product [Jz;* (Harsanyi and Selten 1972);
the Dictatorial solutions and some generalizations (Peters 1986b)

13



also become admissible. Without scale invariance, many other
solutions, such as the Egalitarian solution, are permitted.

The same is true if contraction independence is dropped; how-
ever, let us assume that a function is available that summarizes
the main features of each problem into a reference point to
which agents find it natural to compare the proposed compro-
mise in order to evaluate it. By replacing in contraction indepen-
dence the hypothesis of identical disagreement points (implicit in
our choice of domains) by the hypothesis of identical reference
points, variants of the Nash solution, defined by maximizing the
product of utility gains from that reference point, can be obtained
under weak assumptions on the reference function (Roth 1977b,
Thomson 1981a).

Contraction independence bears a close relation to the axioms
of revealed preference of demand theory (Lensberg 1987, Peters
and Wakker 1987, Bossert, 1992b). An extension of the Nash so-
lution to the domain of non-convex problems and a characteriza-
tion appear in Conley and Wilkie (1991b). Non-convex problems
are also discussed in Herrero (1989). A characterization without
the expected utility hypothesis is due to Rubinstein, Safra and
Thomson (1992).

We close this section with the statement of a few interesting properties
satisfied by the Nash solution (and by many others as well). The first one
is a consequence of our choice of domains: the Nash solution outcome al-
ways weakly dominates the disagreement point, here the origin. On %72, the
property would of course not necessarily be satisfied, so we write it for that
domain.

Individual rationality: F'(S,d) € I(5,d) = {z € S|z 2 d}.
In fact, the Nash solution (and again many others) satisfies the following
stronger condition: all agents should strictly gain from the compromise. The

Dictatorial and Utilitarian solutions do not satisfy the property.

Strong individual rationality: F(S,d) > d.
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The requirement that the compromise depend only on I(S, d) is implicitly
made in much of the literature. If it is strongly believed that no alternative
at which one or more of the agents receives less than his disagreement utility
should be selected, it seems natural to go further and require of the solution
that it be unaffected by the elimination of these alternatives.

Independence of non-individually rational alternatives: F(S,d) =

F(I(S,d),d).

Most solutions satisfy this requirement. A solution that does not, al-
though 1t satisfies strong individual rationality, is the Kalai-Rosenthal solu-
tion, which picks the maximal point of S on the segment connecting d to the

point b(.S) defined by b;(S) = max{z;|z € S} for all ..

Another property of interest is that small changes in problems do not lead
to wildly different solution outcomes. Small changes in the feasible set, small
errors in the way it is described, small errors in the calculation of the utilities
achieved by the agents at the feasible alternatives; or conversely, improve-
ments in the description of the alternatives available, or in the measurements
of utilities, should not have dramatic effects on payoffs.

Continuity: If 5 — S in the Hausdorfl topology, and d — d, then
F(S",d") — F(S,d).

All of the solutions of Section 2 satisfy continuity, except for the Dicta-
torial solutions D*' and the Perles-Maschler and Utilitarian solutions (the
tie-breaking rulesnecessary to obtain single- valuedness of the Utilitarian so-
lutions are responsible for the violations).

Bibliographic note: Other continuity notions are formulated
and studied by Jansen and Tijs (1983). A property related to
continuity, which takes into account closeness of Pareto-optimal
boundaries, is used by Peters (1986a) and Livne (1987a). Salo-
nen (1992,1993) studies alternative definitions of continuity for
unbounded problems.
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Figure 4: The Kalai-Smorodinsky solution. (a) The solution satisfies
individual monotonicity: the feasible set expands in a direction favorable to
agent 1 and he gains as a result. (b) Characterization of the solution on the
basis of individual monotonicity (Theorem 2).

3.2 The Kalai-Smorodinsky solution

We now turn to the second one of our three central solutions, the Kalai-
Smorodinsky solution. Just like the Egalitarian solution, examined last, the
appeal of this solution lies mainly in its monotonicity properties. Here, we
will require that an expansion of the feasible set “in a direction favorable to
a particular agent” always benefits him: one way to formalize the notion of
an expansion favorable to agent i is to say that the range of utility levels
attainable by agent j(j # ¢) remains the same as S expands to S’, while
for each such level, the maximal utility level attainable by agent 7 increases.
Recall that a;(S) = max{z;|z € S}.

Individual monotonicity (for n = 2): If ' D S, and a,;(S’) = a;(9) for
J # i, then F;(S') 2 Fy(S).

By simply replacing contraction independence by individual monotonicity
in the list of axioms shown earlier to characterize the Nash solution, we
obtain a characterization of the Kalai-Smorodinsky solution.

Theorem 2 (Kalai-Smorodinsky 1975) The Kalai-Smorodinsky solution is
the only solution on X2 satisfying Pareto-optimality, symmetry, scale invari-
ance, and ndividual monotonicity.

Proof: 1t is clear that K satisfies the four axioms (that K satisfies individ-
ual monotonicity is illustrated in Figure 4). Conversely, let F' be a solution
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on X3 satisfying the four axioms. To see that F' = K, let S € %2 be given.
By scale invariance, we can assume that a(S) has equal coordinates (Fig-
ure 4b). This implies that z = K(S) itself has equal coordinates. Then
let 5" = cch{(a1(5),0),2,(0,az(S))}. The problem S’ is symmetric and
z € PO(S'), so that by Pareto-optimality and symmetry, F(S') = z. By
individual monotonicity applied twice, we conclude that F(S) 2 z, and since
x € PO(S), that F'(S) =z = K(S). Q.E.D.

Before presenting variants of this theorem, we first note several difficul-
ties concerning the possible generalization of the Kalai-Smorodinsky solu-
tion itself to classes of not necessarily comprehensive n-person problems for
n > 2. On such domains the solution often fails to yield Pareto-optimal
points, as shown by the example S = convezhull{(0,0,0),(1,1,0),(0,1,1)}
of Figure 5a: there K(5)(= (0,0,0)) is in fact dominated by all points of S
(Roth, 1979d). However, by requiring comprehensiveness of the admissible
problems, the solution satisfies the following natural weakening of Pareto-
optimality:

Weak Pareto-optimality: F(S) € WPO(S) = {z € S|Pz’ € S, o' > z}.

The other difficulty in extending Theorem 2 to n > 2 is that there are
several ways of generalizing individual monotonicity to that case, not all of
which permit the result to go through. One possibility is simply to write
“for all j # ¢” in the earlier statement. Another is to consider expansions
that leaves the ideal point unchanged (Figure 5b, Roth 1979d, Thomson
1980). This prevents the skewed expansions that were permitted by indi-
vidual monotonicity. Under such “balanced” expansions, it becomes natural
that all agents benefit: restricted monotonicity says that if S’ D S and
a(S') = a(9), then F(S") = F(S).

To emphasize the importance of comprehensiveness, we note that weak
Pareto-optimality, symmetry, and restricted monotonicity are incompatible if
that assumption is not imposed (Roth 1979d).

Bibliographic note: A lexicographic (see Section 3.3) exten-
sion of K that satisfies Pareto-optimality has been character-
ized by Imai (1983). Deleting Pareto-optimality from Theo-
rem 2, a large family of solutions becomes admissible and with-
out symmetry, the following generalizations are permitted: given
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Figure 5: A difficulty with the Kalai-Smorodinsky solution for n >
(a) If S is not comprehensive, K(S) may be strictly dominated by all
points of S. (b) The axiom of restricted monotonicity: An expansion of the
feasible set leaving unaffected the ideal point benefits all agents.

a € A", the Weighted Kalai-Smorodinsky solution with
weights a, K, selects the point K(S) which is the maxi-
mal point of S in the direction of the a-weighted ideal point
a*(S) = (o1a1(S5),...,@na,(S5)). These solutions satisfy weak
Pareto-optimality (but not Pareto-optimality even if n = 2).
There are other solutions satisfying weak Pareto-optimality, scale
invariance, and individual monotonicity; they are normalized ver-
sions of the “Monotone Path solutions”, discussed below in con-
nection with the Egalitarian solution (Peters and Tijs 1984a;
1985b). Salonen (1985, 1987) characterizes two variants of the
Kalai-Smorodinsky solution. These results, as well as the charac-
terization by Kalai and Rosenthal (1987) of their variant of the
solution, and the characterization by Chun (1988a) of the Equal
Loss solution, are also close in spirit to Theorem 2. Anant, Basu
and Mukherji (1990) and Conley and Wilkie (1991) discuss the
Kalai-Smorodinsky solution in the context of non-convex prob-
lems.

3.3 The Egalitarian solution

The Egalitarian solution performs the best from the viewpoint of mono-
tonicity and the characterization that we offer is based on this fact. The
monotonicity condition that we use is that all agents should benefit from
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any expansion of opportunities; this is irrespective of whether the expan-
sion may be biased in favor of one of them, (for instance, as described in
the hypotheses of individual monotonicity). Of course, if that is the case,
nothing prevents the solution outcome from “moving more” in favor of that
agent. The price paid by requiring this strong monotonicity is that the re-
sulting solution involves interpersonal comparisons of utility (it violates scale

invariance). Note also that it satisfies weak Pareto-optimality only, although
E(S) € PO(S) for all strictly comprehensive S.

Strong monotonicity: If S O S, then F(S') =2 F(S).

Theorem 3 (Kalai 1977) The Egalitarian solution is the only solution on
Yy satisfying weak Pareto-optimality, symmetry, and strong monotonicity.

Proof: (for n = 2) Clearly, E satisfies the three axioms. Conversely, to
see that if a solution F' on XF satisfies the three axioms, then F = E, let
S € X§ be given, ¢ = E(S), and S’ = cch{z} (Figure 6a). By weak Pareto-
optimality and symmetry, F(S') = z. Since S 2 §', strong monotonicity
implies F'(S) 2 . Note that z € WPO(S). If, in fact, z € PO(S), we are
done. Otherwise, we suppose by contradiction that F(S) # E(S) and we
construct a strictly comprehensive problem S’ that includes S, and such that
the common value of the coordinates of £(S’) is smaller than max F;(S). The
proof concludes by applying strong monotonicity to the pair S,5. Q.E.D.

It is obvious that comprehensiveness of S is needed to obtain weak Pareto-
optimality of E(S), even if n = 2. Moreover, without comprehensiveness,
weak Pareto-optimality and strong monotonicity are incompatible (Luce and

Raiffa 1957).

Bibliographic note: Deleting weak Pareto-optimality from The-
orem 3, we obtain solutions defined as follows: given k € [0,1],
E*(S) = kE(S). However, there are other solutions satisfy-
ing symmetry and strong monotonicity (Roth 1979a, 1979b).
Without symmetry, the following solutions become admissible.
Given a € A™ ', the Weighted Egalitarian solution with
weights «, E%) selects the maximal point of S in the direction
a (Kalai 1977). Weak Pareto-optimality and strong monotonicity
essentially characterize the following more general class: given a
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Figure 6: Egalitarian and Monotone Path solutions. (a) Charac-
terization of the Egalitarian solution on the basis of strong monotonicity
(Theorem 3). (b) The Weighted Egalitarian solution with weights o and the
Monotone Path solution relative to the path G.

strictly monotone path G in R}, the Monotone Path solution
relative to G, EY, chooses the maximal point of S along G
(Figure 6b, Thomson and Myerson 1980). For a derivation of the
solution without expected utility, see Valenciano and Zarzuelo

(1993).

It is clear that strong monotonicity is crucial in Theorem 3 and that with-
out it, a very large class of solutions would become admissible. However, this
axiom can be replaced by another interesting axiom (Kalai 1977b) pertain-
ing to situations when opportunities expand over time, say from S to S’; the
axiom states that F'(.S”) can be indifferently computed in one step, ignoring
the initial problem .S altogether, or in two steps, by first solving S and then
taking F'(S) as starting point for the distribution of the gains made possible
by the new opportunities.

Decomposability: If 5" 2 S and $” = {¢” € R}|32’ € S’ such that
z' = 2" + F(S)} € B¢, then F(S') = F(S)+ F(5").

Bibliographic note: The weakening of decomposability ob-
tained by restricting its application to cases where F(S) is pro-
portional to F'(S”), when used together with Pareto-optimality,
symmetry, independence of non-individually rational alternatives,
scale invariance, and continuity to characterize the Nash solution
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(Chun 1988b). For a characterization of the Nash solution based
on yet another decomposability axiom, see Ponsati and Watson

(1994).

As already noted, the Egalitarian solution does not satisfy Pareto-
optimality, but there is a natural extension of the solution that does. It
is obtained by a lexicographic operation of a sort that is familiar in social
choice and game theory. Given z € R, let # € R™ denote the vector obtained
from z by writing its coordinates in increasing order. Given z, y € R™, z
is lexicographically greater than y if & > § or [ = §; and &5 > g,
or, more generally, for some k € {1,...,n — 1}, [#; = §i,..., %% = 7, and
Zx+1 > Jr+1]. Now, given S € 7, its Lexicographic Egalitarian solu-
tion outcome, FL(S), is the point of S that is lexicographically maximal. It
can be reached by the following simple operation (Figure 7): let z! be the
maximal point of 5 with equal coordinates (this is E(S)); if 2! € PO(S),
then z' = EL(S); if not, identify the greatest subset of the agents whose util-
ities can be simultaneously increased from z! without hurting the remaining
agents. Let 2% be the maximal point of S at which these agents experience
equal gains. Repeat this operation from z? to obtain z, etc.,..., until a point
of PO(S) is obtained.

This algorithm produces a well-defined solution satisfying Pareto-
optimality, even on the class of problems that are not necessarily compre-
hensive. Indeed, given a problem in that class, apply it to its comprehensive
hull and note that taking the comprehensive hull of a problem does not af-
fect its set of Pareto-optimal points. Problems in ¥% can of course be easily
accommodated. A version of the Kalai-Smorodinsky solution that satisfies
Pareto-optimality on X7 for all n can be defined in a similar way.

Bibliographic note: For characterizations of EY based on
monotonicity considerations, see Imai (1983) and Chun and Pe-
ters (1988). Lexicographic extensions of the Monotone Path so-
lutions are defined, and characterized by similar techniques for
n = 2, by Chun and Peters (1989a). For parallel extensions and
characterizations thereof, of the Equal Loss solution, see Chun

and Peters (1991).
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Figure 7: The Lexicographic Egalitarian solution for two examples.
In each case, the solution outcome is reached in two steps. (a) A two-person
example. (b) A three-person example.

4 Other Properties. The Role of the Feasible
Set

Here, we change our focus, concentrating on properties of solutions. For
many of them, we are far from fully understanding their implications, but
taken together they constitute an extensive battery of tests to which solutions
can be usefully subjected when they have to be evaluated.

4.1 Midpoint domination

A minimal amount of cooperation among the agents should allow them to
do at least as well as the average of their preferred positions. This average
corresponds to the often observed tossing of the coin to determine which one
of two agents will be given the choice of his preferred alternative when no easy
agreement on a deterministic outcome is obtained. Accordingly, consider the
following two requirements (Sobel 1981, Salonen 1985, respectively), which
correspond to two natural definitions of “preferred positions”.

Midpoint domination: F(S) > [T D'(S)]/n.

Strong midpoint domination: F(S) 2 [T D*(S)]/n.
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Many solutions satisfy midpoint domination. Notable exceptions are the
Egalitarian and Utilitarian solutions (Of course, this should not be a surprise
since the point that is to be dominated is defined in a scale independent way);
yet we have (compare with Theorem 1):

Theorem 4 (Moulin 1983) The Nash solution is the only solution on X7
satisfying midpoint domination and contraction independence.

Few solutions satisfy strong midpoint domination (the Perles-Maschler so-
lution does however; Salonen 1985 defines a version of the Kalai-Smorodinsky
solution that does too).

4.2 Invariance

The theory presented so far is a cardinal theory, in that it depends on utility
functions, but the extent of this dependence varies, as we have seen. Are there
solutions that are invariant under all monotone increasing, and independent
agent by agent, transformations of utilities, i.e. solutions that depend only on
ordinal preferences? The answer depends on the number of agents. Perhaps
surprisingly, it is negative for n = 2 but not for all n > 2.

Let AZ be the class of these transformations: \ € A7 if for each 1, there is
a continuous and monotone increasing function A; : R — R such that given
z € R", Mz) = (M(21), ..., \n(zn)). Since convexity of S is not preserved
under transformations in AP, it is natural to turn our attention to the domain
ig obtained from Y% by dropping this requirement.

Ordinal invariance: For all A € A7, F(A\(S)) = M(F(3)).

Theorem 5 (Shapley 1969; Roth 1979) There is no solution on X2 satisfy-
ing strong individual rationality and ordinal invariance.

Proof: Let F be a solution on X2 satisfying ordinal invariance and let S and
S’ be as in Figure 8a. Let A; and A; be the two transformations from [0,1]
to [0,1] defined by following the horizontal and vertical arrows of Figure 8a
respectively. (The graph of A, is given in Figure 8b; for instance, Ay(zy),
the image of z; under A,, is obtained by following the arrows from Figure 8a
to Figure 8b). Note that the problem S is globally invariant under the
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Figure 8: Strong individual rationality and ordinal invariance are
incompatible on X2 (Theorem 5) (a) S is globally invariant under the
composition of the two transformations defined by the horizontal and the
vertical arrows respectively. (b) An explicit construction of the transforma-
tion to which agent 2’s utility is subjected.

transformation A = (A, ;) € £2, with only three fixed points, the origin
and the endpoints of PO(S). Since none of these points is positive, F' does
not satisfy strong individual rationality. Q.E.D.

Theorem 6 (Shapley 1984; Shubik 1982) There are solutions on the sub-
class of X3 of strictly comprehensive problems satisfying Pareto-optimality
and ordinal invariance.

Proof: Given S € %2, let F(S) be the limit point of the sequence {z!} where
z' is the point of intersection of PO(S) with R{'? such that the arrows of
Figure 9a lead back to z!; z? is the point of PO(S) such that z% = zi and
a similarly defined sequence of arrows leads back to z?; this operation being
repeated forever (Figure 9b). The solution F satisfies ordinal invariance since
at each step, only operations that are invariant under ordinal transformations

are performed. Q.E.D.

Bibliographic note: There are other solutions satisfying these
properties and yet other such solutions on the class of smooth

problems (Shapley 1984).

In light of the negative result of Theorem 9, 1t is natural to look for a
weaker invariance condition. Instead of allowing the utility transformations

24



g

®l

uy

u3

(a)

ug

Uz

up

()

Figure 9: A solution on 33 satisfying Pareto-optimality, strong
individual rationality, and ordinal invariance. (a) The fixed point
argument defining z'; when z' moves down the intersection of 85 with the
coordinate subspace pertaining to agents 1 and 2, ' moves up. (b) The
solution outcome of S is the limit point of the sequence {z'}.
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to be independent across agents, require now that they be the same for all
agents:

Weak ordinal invariance: For all A € ]\g such that A\; = A; for all 4, j,

F(M(5)) = AF(S)).

This is a significantly weaker requirement than ordinal invariance. In-
deed, it can be met for n = 2 and we have:

Theorem 7 (Roth 1979¢; Nielsen 1983) The Lexicographic Egalitarian so-
lution is the only solution on the subclass of ig of problems whose Pareto-
optimal boundary is a connected set, to satisfy weak Pareto-optimality, sym-
metry, contraction independence, and weak ordinal invariance.

4.3 Independence and monotonicity

Here we formulate a variety of conditions describing how solutions should
respond to changes in the geometry of S. An important motivation for the
search for alternatives to the monotonicity conditions used in the previous
pages is that these conditions pertain to transformations that are not defined
with respect to the compromise initially chosen.

One of the most important conditions we have seen is contraction in-
dependence. A significantly weaker condition which applies only when the
solution outcome of the initial problem is the only Pareto-optimal point of
the final problem is:

Weak contraction independence: If §' = cch{F(S)}, then F(S) = F(S").

Dual conditions to contraction independence and weak contraction inde-
pendence, requiring invariance of the solution outcome under expansions of
S, provided it remains on the boundary, have also been considered. Useful
variants of these conditions are obtained by restricting their application to
smooth problems. The Nash and utilitarian solutions can be characterized
with the help of these conditions (Thomson 1981b,c). The smoothness re-
striction means that utility transfers are possible at the same rate in both
directions along the boundary of S. Suppose S is not smooth at F(S). Then,
one could not eliminate the possibility that an agent who had been willing
to concede along 05 up to F'(S) might have been willing to concede further
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Figure 10: Three monotonicity conditions. (a) Twisting. (b) Adding.
(c) Cutting.

if the same rate at which utility could be transferred from him to the other
agents had been available. It is then natural to think of the compromise
F(S) as somewhat artificial, and to exclude such situations from the range
of applicability of the axiom.

Bibliographic note: A number of other conditions that explic-
itly exclude kinks or corners have been formulated (Chun and
Peters 1988, 1989a; Peters 1986a; Chun and Thomson 1990c).
For a characterization of the Nash solution based on yet another
expansion axiom, see Anbarci1(1991).

A difficulty with the two monotonicity properties used earlier, individ-
ual monotonicity and strong monotonicity, as well as with the independence
conditions, is that they preclude the solution from being sensitive to certain
changes in S that intuitively seem quite relevant. What would be desirable
are conditions pertaining to changes in S that are defined relative to the
compromise initially established. Consider the next conditions (Thom-
son and Myerson 1980), written for n = 2, which involve “twisting” the
boundary of a problem around its solution outcome, only “adding”, or only
“subtracting”, alternatives on one side of the solution outcome (Figure 10)

Twisting: If z € S'\S implies [z; 2 Fi(S) and z; £ F;(S)] and z € S\S’
implies [z; £ Fi(S) and z; 2 Fj(5)], then Fi(S') 2 Fi(S).

Adding: If S’ D S, and z € S'\S implies [z; Z F;(S) and z; £ F;(S)], then
Fi(5") 2 Fi(S).
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Cutting: If §' C 5, and « € S\S" implies [z; = Fi(S) and z; £ F;(S)], then
FAS") < F(S).

The main solutions satisfy twisting, which is easily seen to imply adding
and cutting. However, the Perles-Maschler solution does not even satisfy
adding. Twisting is crucial to understanding the responsiveness of solutions
to changes in agents’ risk aversion (Section 5.3).

Finally, we have the following strong axiom of solidarity. Independently
of how the feasible set changes, all agents gain together or all agents lose
together. No assumptions are made on the way .S relates to S".

Domination: Either F'(5') = F(S) or F(S) = F(S).

A number of interesting relations exist between all of these conditions. In
light of weak Pareto-optimality and continuity, domination and strong mono-
tonicity are equivalent (Thomson and Myerson 1980) and so are adding and
cutting (Livne 1986a). Contraction independence implies twisting and so do
Pareto-optimality and individual monotonicity together (Thomson and Myer-
son 1980). Many solutions (Nash, Equal Area) satisfy Pareto-optimality and
twisting but not individual monotonicity. Finally, weak Pareto-optimality,
symmetry, scale invariance and twisting together imply midpoint domination
(Livne 1985a).

The axioms twisting, individual monotonicity, adding and cutting can be
extended to the n-person case in a number of different ways.

4.4 Uncertain feasible set

Suppose that bargaining takes place today but that the feasible set will be
known only tomorrow: It may be S* or S? with equal probabilities. Let F
be a candidate solution. Then the vector of expected utilities today from
waiting until the uncertainty is resolved is z' = [F(S*) + F(5?)]/2 whereas
solving the “expected problem” (S 4 5%)/2 produces F[(S! + 5?)/2]. Since
z' is in general not Pareto-optimal in (S! + 52)/2, it would be preferable
for the agents to reach a compromise today. A necessary condition for this
is that both benefit from early agreement. Let us then require of F' that it
gives all agents the incentive to solve the problem today: 2! should dominate
F[(5'+5%)/2]. Slightly more generally, and to accommodate situations when

St and S? occur with unequal probabilities, we formulate:
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Concavity: For all A € [0,1], F(AS" 4 (1 = X)S?) 2 AF(SY) + (1 — M) F(S?).

Alternatively, we could imagine that the feasible set is the result of the
addition of two component problems and require that both agents benefit
from looking at the situation globally, instead of solving each of the two
problems separately and adding up the resulting payoffs.

Super-additivity: F(S' + 5%) =2 F(S?) + F(S?).

Neither the Nash nor Kalai-Smorodinsky solution satisfies these condi-
tions, but the Egalitarian solution does. Are the conditions compatible with
scale invariance? Yes. However, only one scale invariant solution satisfies
them together with a few other standard requirements. Let I'? designate the
class of problems satisfying all the properties required of the elements of 2,
but violating the requirement that there exists z € S with z > 0.

Theorem 8 (Perles and Maschler 1981) The Perles-Maschler solution is the
only solution on X2UT? satisfying Pareto-optimality, symmetry, scale invari-
ance, super-additivity, and to be continuous on the subclass of %2 of strictly
comprehensive problems.

Bibliographic note: Deleting Pareto-optimality from Theo-
rem 8, the solutions PM* defined by PM*(S) = APM(S) for
A € [0,1] become admissible. Without symmetry, we obtain a
two-parameter family (Maschler and Perles 1981). Continuity is
indispensable (Maschler and Perles 1981) and so are scale invari-
ance (consider E) and obviously super-additivity. Theorem 8 does
not extend to n > 2 : In fact, Pareto-optimality, symmetry, scale
invariance, and super-additivity are incompatible on %3 (Perles

1982).

Deleting scale invariance from Theorem 8 is particular interesting: then,
a joint characterization of the Egalitarian and Utilitarian solutions on 6 -
can be obtained (note the change of domains). In fact, super-additivity can
then be replaced by the following strong condition, which says that agents
are indifferent between solving problems separately or consolidating them
into a single problem and solving that problem.
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Figure 11: Concavity conditions. (a) (Feastble set) concavity:

the solution outcome of the average problem SI;SQ dominates the average
ﬂs_l%rﬂgl of the solution outcomes of the two component problems 5! and
S2. (b) Disagreement point concavity: the solution outcome of the av-

1 2 R 1 2 .
erage problem (S, “+%) dominates the average Z5C1HF(SdY) gF 54) of the solution

2
outcomes of the two component problems (S,d") and (5,d?). (b) (c) Weak

disagreement point concavity: this is the weakening of disagreement
point concavity obtained by limiting its application to situations where the
boundary of S is linear between the solution outcomes of the two components
problems, and smooth at these two points.
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Linearity: F(S' + 5%) = F(S") + F(S5?).

Theorem 9 (Myerson 1981) The Egalitarian and Utilitarian solutions are
the only solutions on Xj _ satisfying weak Pareto-optimality, symmetry, con-
traction independence, and concavity. The Utilitarian solutions are the only
solutions on Xj _ satisfying Pareto-optimality, symmetry, and linearity (In
each of these statements the Utilitarian solutions are covered if appropriate
tie-breaking rules are applied.)

On the domain Egv_, the following weakening of linearity (and super-
additivity) is compatible with scale invariance. It involves a smoothness
restriction whose significance has been discussed earlier (Section 4.3).

Weak linearity: If F/(S') + F(5?) € PO(S! + S?) and 9S5* and 85? are
smooth at ['(S') and F'(S?) respectively, then F(S' 4 5%) = F(S') + F(S?).

Theorem 10 (Peters 1986a) The Weighted Nash solutions are the only so-
lutions on 22’_ satisfying Pareto-optimality, strong individual rationality,
scale invariance, continuity, and weak linearity.

Bibliographic note: The Nash solution can be characterized
by an alternative weakening of linearity (Chun 1988b). Ran-
domization between all the points of S and its ideal point, and
all the points of S and its solution outcome have been consid-
ered by Livne (1988, 1989a,b) and used by him to formulate in-
variance conditions that can be used to characterize the Kalai-
Smorodinsky and continuous Raiffa solutions.

To complete this section, we note that instead of considering the “addi-
tion” of two problems we could consider their “multiplication,” and require
the invariance of solutions under this operation. The resulting requirement
leads to a characterization of the Nash solution.

Given z, y € R, let z xy = (21y1,22y2); given S, T € Y%, let S+ T =
{z€Ri|z==z+y for somez € S and y € T'}. The domain 22 is not closed
under the *-operation, which explains the form of the condition stated next.

Separability: If S+ T € X2, then F'(S*T) = F(S)* F(T).

Theorem 11 (Binmore 1984) The Nash solution is the only solution on 2
satisfying Pareto-optimality, symmetry, and separability.
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5 Other Properties. The Role of the Dis-
agreement Point

In our exposition so far, we have ignored the disagreement point altogether.
Here, we study its role in detail, and, for that purpose, we reintroduce it in
the notation: a bargaining problem is now a pair (.9, d) as originally specified
in Section 2. We consider first increases in one of the coordinates of the
disagreement point; then, situations when it is uncertain. In each case, we
study how responsive solutions are to these changes. The solutions that
will play the main role here are the Nash and Egalitarian solutions, and
generalizations of the Egalitarian solution. We also study how solutions
respond to changes in the agents’ attitude toward risk.

5.1 Disagreement point monotonicity

We first formulate monotonicity properties of solutions with respect to
changes in d (Thomson 1987a). To that end, fix S. If agent i's fallback
position improves while the fallback position of the others do not change, it
is natural to expect that he will (weakly) gain. An agent who has less to lose
from failure to reach an agreement should be in a better position to make
demands.

Disagreement point monotonicity: If &, > d; and for all j # ¢, d; = dj,
then Fi(S,d') 2 Fi(S,d).

This property is satisfied by all of the solutions that we have encountered. -
Even the Perles-Maschler solution, which is very poorly behaved with respect
to changes in the feasible set, as we saw earlier, satisfies this requirement.

A stronger condition, which is of greatest relevance for solutions that are
intended as normative prescriptions, is that under the same hypotheses as
disagreement point monotonicity, not only Fi(S,d') = F,(S, d) but in addition
for all j # ¢, F;(S,d") £ F;(S,d). The gain achieved by agent ¢ should be
at the expense (in the weak sense) of all the other agents (Figure 12b). For
a solution that selects Pareto-optimal compromises, the gain to agent 7 has
to be accompanied by a loss to at least one agent j # i. One could argue
that an improvement in some agent k’s payoff would unjustifiably further
increase the negative impact of the change in d; on all agents j, j ¢ {s,k}.

32



Uz

Ut

Uy

(a) 7w (b)

Figure 12: Conditions of monotonicity with respect to the dis-
agreement point. (a) Weak disagreement point monotonicity for n = 2:
an increase in the first coordinate of the disagreement point benefits agent 1.
(b) Strong disagreement point monotonicity for n = 3: an increase in the first
coordinate of the disagreement point benefits agent 1 and at the expense of
both other agents.

(Of course, this is a property that is interesting only if n 2 3.) Most solutions,
in particular the Nash and Kalai-Smorodinsky solutions and their variants,
violate it. However, the Egalitarian solution does satisfy the property and
so do the Monotone Path solutions.

5.2 Uncertain disagreement point

Next, we imagine that there is uncertainty about the disagreement point. Re-
call that earlier we considered uncertainty in the feasible set but in practice,
the disagreement point may be subject to uncertainty just as well. Suppose,
to illustrate, that the disagreement point will take one of two positions d* and
d* with equal probabilities, and that this uncertainty will be resolved tomor-
row. Waiting until tomorrow and solving then whatever problem has come
up results in the expected payoff vector today z' = [F(S,d") + F(S,d?)]/2,
which is typically Pareto dominated in S. Taking as new disagreement point
the expected cost of conflict and solving the problem (S, (d! + d*)/2) results
in the payoffs 2? = F(S, (d'+d?)/2). If 2! < 2?, the agents will agree to solve
the problem today. If neither z; dominates z, nor z; dominates z;, their
incentives to wait will be conflicting. The following requirement prevents
this:
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Disagreement point concavity: For all A € [0,1], F/(S, Ad' + (1 — \)d?) 2
AF(S,d"Y) + (1 — N F(S, d?).

Of all the solutions seen so far, only the Weighted Egalitarian solutions
satisfy this requirement. It is indeed a very strong requirement as indicated
by the next result which is a characterization of a family of solutions that
further generalize the Egalitarian solution: given &, a continuous function
from the class of n-person fully comprehensive feasible sets into A*™*, and a
problem (5, d) € ¥} _, the Directional solution relative to §, E? selects
the point E%(S, d) which is the maximal point of S of the form d + t6(.5), for
t E H+.

Theorem 12 (Chun and Thomson 1990a) The Directional solutions are the
only solutions on X} _ satisfying weak Pareto-optimality, individual rational-
ity, continuity, and disagreement point concavity.

This result is somewhat of a disappointment since it says that disagree-
ment point concavity is incompatible with full optimality, and permits scale
invariance only when 6(.5) is a unit vector (then, the resulting Directional
solution is a Dictatorial solution). The following weakening of disagreement
point concavity allows recovering full optimality and scale invariance.

Weak disagreement point concavity: If [F(S,d"), F(S,d?)] C PO(S)
and PO(S) is smooth at F(S,d') and F(S,d?), then for all A\ € [0,1]
F(S, A 4 (1 — N)d?) = AF(S,d) + (1 = \)F(S, d?).

Y

The boundary of S is linear between F'(S,d") and F(S,d?) and it seems
natural to require that the solution should respond linearly to linear move-
ments of d between d' and d*. This “partial” linearity of the solution is
required however only when the compromise is not at a kink of 95. Indeed,
an agent who had been willing to trade off his utility against some other
agent’s utility up to such a point might perhaps have been willing to concede
further: No further move has taken place because of the sudden change in
the rates at which utility could be transferred. One can therefore argue that
the initial compromise is little artifical and the smoothness requirement is
intended to exclude these situations from the domain of applicability of the
axiom (this is an agreement already encountered). The point is made earlier
in Section 4.3.
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Theorem 13 (Chun and Thomson 1990c) The Nash solution is the only so-
lution on X _ satisfying Pareto-optimality, independence of non-individually
rational alternatives, symmetry, scale invariance, continuity, and weak dis-
agreement point concavity.

A condition related to weak disagreement point concavity says that a move
of the disagreement point in the direction of the desired compromise does not
call for a revision of this compromise. '

Star-shaped inverse: I'(S,Ad 4 (1 — A\)F(S,d)) = F(S,d) for all X €]0,1].

Theorem 14 (Peters and van Damme 1988) The Weighted Nash solutions
are the only solutions on Xy _ satisfying strong individual rationality, indepen-
dence of non-individually rational alternatives, scale invariance, disagreement
point continuity, and star-shaped inverse.

Bibliographic note: Several conditions related to the above
three have been explored. Chun (1987b) shows that a require-
ment of disagreement point quasi-concavity can be used to char-
acterize a family of solutions that further generalize the direc-
tional solutions. He also establishes a characterization of the
Lexicographic Egalitarian solution (1989). Characterizations of
the Kalai-Rosenthal solution are given in Peters (1986¢) and Chun
(1990). Finally, the continuous Raiffa solution for n = 2 is char-
acterized by Livne (1987b), and Peters and van Damme (1991).
They use the fact that for this solution the set of disagreement
points leading to the same compromise for each fixed S is a curve
with differentiability, and certain monotonicity, properties. Livne
(1988) considers situations where the disagreement point is also
subject to uncertainty, but information can be obtained about it,
and he characterizes a version of the Nash solution.

5.3 Risk-sensitivity

Here, we investigate how solutions respond to changes in the agents’ risk
aversion. Other things being equal, is it preferable to face a more risk-averse
opponent? Should we expect this to be the case? To study this issue we
need explicitly to introduce the set of underlying physical alternatives. Let
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C be a set of certain options and L the set of lotteries over C. Given
two von Neumann-Morgenstern utility functions u; and u} : L — R, u} is
more risk-averse than wu; if they represent the same ordering on C and
for all ¢ € C, the set of lotteries that are ui-preferred to ¢ is contained in
the set of lotteries that are u;-preferred to c¢. If u;(C) is an interval, this
implies that there is an increasing concave function & : u;(C') — R such that
u; = k ou;. An n-person concrete problem is a list (C,e,u), where C is
as above, e € C, and v = (uy,...,u,) is a list of von Neumann-Morgenstern
utility functions defined over C. The abstract problem associated with
(C,e,u) is the pair (5,d) = ({u(€)|¢ € L}, u(e)).

The first property we formulate focuses on the agent whose risk-aversion
changes. According to his old preferences, does he necessarily lose when his
risk-aversion increases?

Risk-sensitivity: Given (C, e, u) and (C”,¢',u’), which differ only in that
is more risk-averse than u;, and such that the associated problems (.5, d) and
(57,d') belong to X3, Fi(S,d) 2 w(¢'), where u'(£) = F(S',d").

In the formulation of the next property, the focus is on the agents whose
preferences are kept fixed. It says that all of them should benefit from the
increase in some agent’s risk-aversion.

Strong risk-sensitivity: Under the same hypotheses as risk sensitivity,
Fi(S,d) 2 ui(¢') and in addition, F;(S,d) < u;(#) for all j # 1.

The concrete problem (C,e,u) is basic if the associated (.5, d) satisfies
PO(S) Cu(C). Let B(Cy) be the class of basic problems. If (C, e, 1) is basic

and wu} is more risk-averse than u;, then (C, e, uf,u_;) also is basic.

Theorem 15 (Kihlstrom, Roth and Schmeidler 1981, Nielsen 1984)

The Nash solution satisfies risk-sensitivity on B(C}) but it does not sat-
1sty strong risk-sensitivity. The Kalal-Smorodinsky solution satisfies strong
risk sensitivity on B(C?).

There is an important logical relation between risk-sensitivity and scale
invariance.
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Theorem 16 (Kihlstrom, Roth and Schmeidler 1981) If a solution on
B(C2) satisfies Pareto-optimality and risk sensitivity, then it satisfies scale
invariance. If a solution on B(CY) satisfies Pareto-optimality and strong risk
sensitivity, then it satisfies scale invariance.

For n = 2, interesting relations exist between risk sensitivity and twisting

(Tijs and Peters 1985) and between risk sensitivity and midpoint domination
(Sobel 1981).

Bibliographic note: Further results appear in de Koster, Pe-
ters, Tijs and Wakker (1983), Peters (1987a), Peters and Tijs
(1981, 1983, 1985a), Tijs and Peters (1985), and Klemisch-Ahlert
(1992a).

For the class of non-basic problems, two cases should be distinguished.
If the disagreement point is the image of one of the basic alternatives, what
matters is whether the solution is appropriately responsive to changes in the
disagreement point.

Theorem 17 (based on Roth and Rothblum 1982 and Thomson 1987a)
Suppose C' = {ci1,ca,e}. Suppose F is a solution on %2 satisfying Pareto-
optimality, scale invariance, and disagreement point monotonicity. Then,
if u; is replaced by a more risk-averse utility u!, agent j gains if u;(£) >
min{u;(e1),ui(cz)} and not otherwise.

Bibliographic note: The n-person case is studied by Roth
(1988). Situations when the disagreement point is obtained as
a lottery are considered by Safra, Zhou and Zilcha (1990). An
application to insurance contracts is discussed in Kihlstrom and

Roth (1982).

6 Variable Number of Agents

Most of the axiomatic theory of bargaining has been written under the as-
sumption of a fixed number of agents. Recently, however, the model has been
enriched by allowing the number of agents to vary. Axioms specifying how
solutions could, or should, respond to such changes have been formulated and
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new characterizations of the main solutions as well as of new solutions gener-
alizing them have been developed. A detailed account of these developments
can be found in Thomson and Lensberg (1989).

In order to accommodate a variable population, the model itself has to
be generalized. There is now an infinite set of “potential agents”, indexed
by the positive integers. Any finite group may be involved in a problem.
Let P be the set of all such groups. Given @ € P, R? is the utility space
pertaining to that group, and Zf)? the class of subsets of Rf satisfying all of
the assumptions imposed earlier on the elements of X7, Let ¥ = UE?. A
solution is a function F' defined on ¥y which associates with every Q € P
and every S € 282 a point of S. All of the axioms stated earlier for solutions
defined on ¥§ can be reformulated so as to apply to this more general notion
by simply writing that they hold for every ) € P. As an illustration, the
optimality axiom is written as:

Pareto-Optimality: For all @ € P and for all S € £F, F(S) € PO(S).

This is simply a restatement of our earlier axiom of Pareto-optimality for
each group separately. To distinguish the axiom from its fixed population
counterpart, we will capitalize it. We will similarly capitalize all axioms in
this section.

Our next axiom, Anonymity, is also worth stating explicitly: it says that
the solution should be invariant not only under exchanges of the names of
the agents in each given group, but also under replacement of some of its
members by other agents.

Anonymity: Given P, P’ € P with |P| = |P'], S € &F and §' € B, if
there exists a bijection y : P — P’ such that ' = {2’ € RF'|3z € § with
T; = T4()Vi € P}, then Fi(S') = F,;y(S) for all i € P.

Two conditions specifically concerned with the way solutions respond
to changes in the number of agents have been central to the developments
reported in this section. One is an independence axiom, and the other a
monotonicity axiom. They have led to characterizations of the Nash, Kalai-
Smorodinsky and Egalitarian solutions.

Notation: Given P, Q) € P with P C Q and =z € R?9, zp denotes its
projection on RF. Similarly, if A C R?, Ap is its projection on RF.
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6.1 Consistency and the Nash solution

We start with the independence axiom. Informally, it says that the desir-
ability of a compromise should be unaffected by the departure of some of
the agents with their payoffs. To be more precise, let Q € P and T € E?,
consider some point z € 7' as the candidate compromise for 7. Assume
that it has been accepted by the subgroup P’, and let us imagine its mem-
bers leaving the scene with the understanding that they will indeed receive
their payoffs zpi. Now, let us reevaluate the situation from the viewpoint
of the group P = Q\ P’ of remaining agents. It is natural to think as the
set {y € R”|(y,zq\p) € T} obtained from points of T' by giving the agents
in P’ the payoffs zp:, as the feasible set for P. Let us denote it by r&(T").
Geometrically, r5(7") is the “slice” of T' through z by a plane parallel to
the coordinate subspace relative to the group P. If this set is a well-defined
member of L, does the solution recommend the utilities zp? If yes, and this
coincidence always occurs, the solution is Consistent (Figure 13a).

Consistency: Given P, Q € P with P C Q,if S € L and T € ZOQ are such
that S = r&(T), where z = F/(T), then zp = F(S).

Consistency is satisfied by the Nash solution (Harsanyi, 1959) but not by
the Kalai-Smorodinsky solution, nor by the Egalitarian solution. Violations
are usual for the Kalai-Smorodinsky solution but rare for the Egalitarian solu-
tion; indeed, on the class of strictly comprehensive problems, the Egalitarian
solution does satisfy the condition, and if this restriction is not imposed, it
still satisfies the slightly weaker condition obtained by requiring zp < F(S)
instead of zp = F(S). Let us call this weaker condition Weak Consistency.
The Lexicographic Egalitarian solution satisfies Consistency.

By substituting this condition for contraction independence in Nash’s clas-
sic theorem (Theorem 1), we obtain another characterization of the Nash
solution.

Theorem 18 (Lensberg 1988) The Nash solution is the only solution on ¥
satisfying Pareto-Optimality, Anonymity, Scale Invariance, and Consistency.

Proof: (Figure 13b) It is straightforward to see that N satisfies the four

axioms. Conversely, let F' be a solution on X, satisfying the four axioms.

We only show that F' coincides with N on Xf if [P| = 2. Let S € X be
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Figure 13: Consistency and the Nash solution. (a) The axiom of
Consistency: the solution outcome of the “slice” of T by a plane parallel
to the coordinate subspace relative to agents 1 and 2 through the solution
outcome of T', F'(T'), coincides with the restriction of F(T) to that subspace.
(b) Characterization of the Nash solution (Theorem 18.)

given. By Scale Invariance, we can assume that S is normalized so that
N(S)=(1,1).

In a first step, we assume that PO(S) D [(3/2,1/2),(1/2,3/2)]. Let
Q@ € P with P C Q and |Q| = 3 be given. Without loss of gen-
erality, we take P = {1,2} and Q = {1,2,3}. (In Figure 13b, S =
cch{(2,0),(1/2,3/2)}). Now, we translate S by the third unit vector, we
replicate the result twice by having agents 2, 3 and 1, and then agents 3,
1 and 2 play the roles of agents 1, 2, and 3 respectively; finally, we define
T e 28 to be the convex and comprehensive hull of the three sets so ob-
tained. Since T' = cch{(1,2,0),(0,1,2),(2,0,1)} is invariant under rotations
of the agents, by Anonymity, F(T) has equal coordinates, and by Pareto-
Optimality, F(T) = (1,1,1). But, since 7’1(.@1’1’1)(71) = S, Consistency gives
F(S)=(1,1) = N(S), and we are done.

In a second step, we only assume that PO(S) contains a non-degenerate
segment centered at N(5). Then, we may have to introduce more than one
additional agent and repeat the same construction by replicating the problem
faced by agents 1 and 2 many times. If the order of replication is sufficiently
large, the resulting T is indeed such that rg""'])(T) = § and we conclude as
before. If S does not contain a non-degenerate segment centered at N(S), a
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continuity argument is required.

Q.E.D.

Bibliographic note: The above proof requires having access
to groups of arbitrarily large cardinalities, but the Nash solution
can still be characterized when the number of potential agents is
bounded above, by adding Continuity (Lensberg 1988). Unfortu-
nately, two problems may be close in the Hausdorff topology and
yet sections of those problems through two points that are close
by, parallel to a given coordinate subspace, may not be close to
each other. A weaker notion of continuity recognizing this pos-
sibility can however be used to obtain a characterization of the
Nash solution (Lensberg 1985), even if the number of potential
agents is bounded above (Thomson 1985b). Just as in the classic
characterization of the Nash solution, Pareto-Optimality turns
out to play a very minor role here: without it, the only addi-
tional admissible solution is the disagreement solution (Lensberg

and Thomson 1988).

Deleting Symmetry and Scale Invariance from Theorem 18, the following
solutions become admissible: For each i € N, let f; : Ry — R be an increasing
function such that for each P € P, the function fF : Hlj — R defined
by fF(z) = Yiep fi(z) be strictly quasi-concave. Then, given P € P and
S e xf, F/(S) = argmaz{fF(z)|z € S}. These separable additive
solutions F7 are the only ones to satisfy Pareto-Optimality, Continuity, and
Consistency (Lensberg 1987; Young 1988 proves a variant of this result).

6.2 Population Monotonicity and the
Kalai-Smorodinsky solution

Instead of allowing some of the agents to depart with their payoffs, we will
now imagine them to leave empty-handed, without their departure affecting
the opportunities of the agents that remain. Do all of these remaining agents
gain? If yes, the solution will be said to be Population Monotonic. Con-
versely, and somewhat more concretely, think of a group of agents P € P
dividing goods on which they have equal rights. Then new agents come in,
who are recognized to have equally valid rights on the goods. This requires
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Figure 14: Population Monotonicity and the Kalai-Smorodinsky
solution. (a) The axiom of Population Monotonicity: the projection of the
solution outcome of the problem 7' onto the coordinate subspace pertaining
to agents 1 and 2 is dominated by the solution outcome of the intersec-
tion of T with that coordinate subspace. (b) Characterization of the Kalai-
Smorodinsky solution on the basis of Population monotonicity (Theorem 19).

that the goods be redivided. Population Monotonicity says that none of the
agents initially present should gain. Geometrically (Figure 14a), this means
that the projection of the solution outcome of the problem involving the large
group onto the coordinate subspace relative to the smaller group of remain-
ing agents is Pareto-dominated by the solution outcome of the intersection
of the large problem with that subspace.

Population Monotonicity: For all P, Q € P with P C Q,if S € »F and
T € ¢ are such that S = Tp, then F(S) 2 Fp(T).

The Nash solution does not satisfy this requirement but both the Kalai-
Smorodinsky and Egalitarian solutions do. In fact, characterizations of those
two solutions can be obtained with the help of this condition:

Theorem 19 (Thomson 1983c) The Kalai-Smorodinsky solution is the only

solution on Xy satisfying Weak Pareto-Optimality, Anonymity, Scale Invari-
ance, Continuity, and Population Monotonicity.
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Proof: (Figure 14b) It is straightforward to see that K satisfies the five
axioms. Conversely, let /' be a solution on X, satisfying the five axioms.
We only show that I" coincides with K on Bf' if |[P| = 2. So let S € ©F
be given. By Scale Invariance, we can assume that S is normalized so that
a(S) has equal coordinates. Let @ € P with P C @ and |Q| = 3 be given.
Without loss of generality, we take P = {1,2} and Q = {1,2,3}. (In the
Figure S = cch{(1,0),(1/2,1)} so that a(S) = (1,1).) Now, we construct
Te E? by replicating S in the coordinates subspaces R1?3} and R{®1} and
taking the comprehensive hull of S, its two replicas and of the point z € R?
of coordinates all equal to the common value of the coordinates of K(S).
Since all agents enter symmetrically in the definition of T and z € PO(T), it
follows from Anonymity and Weak Pareto-Optimality that z = F(T). Now,
note that Tp = S and zp = K(S) so that by Population Monotonicity,
F(S) 2 K(S). Since |P| =2, K(S) € PO(S) and equality holds.

To prove that F" and K coincide for problems of cardinality greater than
2, one has to introduce more agents and Continuity becomes necessary.

Q.E.D.

Bibliographic note: Solutions in the spirit of the solutions
E% described after Theorem 20 below satisfy all of the axioms
of Theorem 19 except for Weak Pareto-Optimality. Without
Anonymity, we obtain certain generalizations of the Weighted
Kalai-Smorodinsky solutions (Thomson, 1983a). For a clarifica-
tion of the role of Scale Invariance, see the next result.

6.3 Population Monotonicity and the Egalitarian solu-
tion
All of the axioms used in the next theorem have already been discussed.

Note that the theorem differs from the previous one only in that Contraction
Independence is used instead of Scale Invariance.

Theorem 20 (Thomson 1983d) The Egalitarian solution is the only solu-

tion on Y satisfying Weak Pareto-Optimality, Symmetry, Contraction Inde-
pendence, Continuity, and Population Monotonicity.

43



Uz

uz

U2

E(S) T

i(T) / Ep(T) '
U F(T,) 1 S 1

ug

(a) (0)

Figure 15: Population Monotonicity and the Egalitarian solution.
(a) The Egalitarian solution satisfies Population Monotonicity. (b) Charac-
terization of the Egalitarian solution on the basis of Population monotonicity

(Theorem 20).

Proof: It is easy to verify that F satisfies the five axioms (see Figure 15a for
Population Monotonicity). Conversely, let F' be a solution on X satisfying
the five axioms. To see that F = E,let P € P and S € ©F be given. Without
loss of generality, suppose E(S) = (1,...,1) and let 8 = maz{) ;cp zilz € S}.
Now, let @ € P be such that P C @ and |Q| = B + 1; finally, let T € £
be defined by T = {z € R}| >icq Zi = |Q[}. (In Figure 15b, P = {1,2} and
Q = {1,2,3}.) By Weak Pareto-Optimality and Symmetry, F(T)=(1,..,1).
Now, let T" = cch{S, F(T')}. Since T' C T and F(T) € T", it follows from
Contraction Independence that F(T') = F(T). Now, Tp = S, so that by
Population Monotonicity, F\(S) = Fp(T') = E(S). If E(S) € PO(S) we are
done. Otherwise we conclude by Continuity. Q.E.D.

Bibliographic note: Without Weak Pareto-Optimality, the fol-
lowing family of Truncated Egalitarian solutions become ad-
missible: let « = {a”|P € P} be a list of non-negative numbers
such that for all P, Q € P with P C Q, o 2 a%; then, given
P € Pand S € £f, let E*(S) = of(1,...,1) if this point be-
longs to S and E*(S) = E(S) otherwise (Thomson 1984b). The
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Monotone Path solutions encountered earlier, appropriately gen-
eralized, satisfy all the axioms of Theorem 20, except for Sym-
metry: let G = {GF|P € P} be a list of monotone paths such
that GF H]: for all P € P and for all P, Q € P with P C Q,
the projection of G¢ onto RF be contained in G¥. Then, given
P € Pand S e Xf, E9(S) is the maximal point of S along the
path G (Thomson, 1983a, 1984b).

6.4 Other implications of Consistency and Population
Monotonicity

The next result involves considerations of both Consistency and Population
Monotonicity.

Theorem 21 (Thomson 1984c:) The Egalitarian solution is the only solu-
tion on Xg satisfying Weak Pareto-Optimality, Symmetry, Continuity, Popu-
lation Monotonicity and Weak Consistency.

In order to recover full optimality, the extension of individual monotonic-
ity to the variable population case can be used.

Theorem 22 (Lensberg 1985a, 1985b) The Lexicographic Egalitarian solu-
tion is the only solution on ¥y satisfying Pareto-Optimality, Symmetry, In-
dividual Monotonicity, and Consistency.

6.5 Opportunities and Guarantees

Consider a solution F' satisfying Weak Pareto-Optimality. When new agents
come in without opportunities enlarging, as described in the hypotheses of
Population Monotonicity, one of the agents originally present will lose.

We propose here a way of quantifying these losses and of ranking solutions
on the basis of the extent to which they prevent agents from losing too much.

Formally, let P, @ € P with P C Q, S € B2 and T € £ with S = Tp.
Given i € P, consider the ratio Fi(T')/F;(S) of agent i’s final to initial utility:
let aP?) € R be the greatest number « such that F(T")/F;(S) > o for all
S, T as just described. This is the guarantee offered to ; by F when
he is initially part of P and P expands to @ : agent i’s final utility
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is guaranteed to be at least a%’P’Q)—times his initial utility. If F' satisfies

Anonymity, then the number depends only on the cardinalities of P and
@\ P, denoted by m and n respectively, and we can write it as ap™:
F,(T)

of" =inf{ IS € 25, T € %5, P CQ,8="Tp,|P|=m,|Q\P|=n)}

We call the list ap = {aF"|m, n € N} the guarantee structure of F.

We now proceed to compare solutions on the basis of their guarantee
structures. Solutions offering greater guarantees are of course preferable.
The next theorem says the Kalai-Smorodinsky is the best from the viewpoint
of guarantees. In particular it is strictly better than the Nash solution.

Theorem 23 (Thomson and Lensberg 1983) The guarantee structure ax of
the Kalai-Smorodinsky solution is given by o2 = 1/(n+1) for all m, n € N.
If F' satisfies Weak Pareto-Optimality and Anonymity, then ax > ap. In
particular, ax > ay.

Note that solutions could be compared in other ways. In particular,
protecting individuals may be costly to the group to which they belong.
To analyze the trade-off between protection of individuals and protection of
groups, we introduce the coefficient

ppn = inf{%: ]ﬁ;g))

and we define fr = {#"|m, n € N} as the collective guarantee struc-
ture of F. Using this notion, we find that our earlier ranking of the Kalai-
Smorodinsky and Nash solutions is reversed.

1Se Xy, Texd, PCQ,S="Te|P|=m,|Q\P|=n)

Theorem 24 (Thomson 1983b) The collective guarantee structure By of
the Nash solution is given by A" = n/(n + 1) for all m,n € N. If F' satis-
fies Weak Pareto-Optimality and Anonymity, then By > Bp. In particular,
BN 2 Pr. Also, fr = ak.

Bibliographic note: Theorem 23 says that the Kalai-
Smorodinsky solution is best in a large class of solutions. How-
ever, it is not the only one to offer maximal guarantees and to
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satisfy Scale Invariance and Continuity (Thomson and Lensberg
1983). Similarly, the Nash solution is not the only one to offer
maximal collective guarantees and to satisfy Scale Invariance and

Continuity (Thomson 1983b).

Solutions can alternatively be compared on the basis of the opportunities
for gains that they offer to individuals (and to groups). Solutions that limit
the extent to which individuals (or groups) can gain in spite of the fact that
there may be more agents around while opportunities have not enlarged, may
be deemed preferable. Once again, the Kalai-Smorodinsky solution performs
better than any solution satisfying Weak Pareto Optimality and Anonymity
when the focus is on a single individual, but the Nash solution is preferable
when groups are considered. However, the rankings obtained here are less
discriminating (Thomson 1987b).

Finally, we compare agent i’s percentage loss Fy(T')/F:(S) to agent j’s
percentage loss F;(T)/F;(S), where both 7 and j are part of the initial group
P. Let

Fi(T)/F4(5)
F{(T)/Fi(S)

e%m = lnf{ !S € EgaT € E(?;P CQ,5= TP7|P| = m7!Q\Pl :n}
and ep = {ef"|(m,n) € N\1) x N}.

Here, we would of course prefer solutions that prevent agents from being
too differentially affected. Again, the Kalai-Smorodinsky solution performs
the best from this viewpoint.

Theorem 25 (Chun and Thomson 1989) The relative guarantee structures
ek and ¢g of the Kalai-Smorodinsky and Egalitarian solutions are given by
exg” = eg" = 1for all (m,n) € (N\1) xN. The Kalai-Smorodinsky solution is
the only solution on g to satisfy Weak Pareto-Optimality, Anonymity, Scale
Invariance and to offer maximal relative guarantees. The Egalitarian solution
is the only solution on ¥o to satisfy Weak Pareto-Optimality, Anonymity,
Contraction Independence and to offer maximal relative guarantees.

6.6 Replication and Juxtaposition

Now, we consider the somewhat more special situations where the preferences
of the new agents are required to bear some simple relation to those of the
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agents originally present, such as when they are exactly opposed or exactly in
agreement. There are several ways in which opposition or agreement of pref-
“erences can be formalized. To each such formulation corresponds a natural
way of writing that a solution respects the special structure of preferences.
Given a group P of agents facing the problem S € XF| introduce for
each ¢ € P, n; additional agents “of the same type” as 7 and let ) be the
enlarged group. Given any group P’ with the same composition as P (we
write comp(P’) = comp(P)), define the problem S’ faced by P’ to be the
copy of S in R¥ obtained by having each member of P’ play the role played
in .5 by the agent in P of whose type he is. Then, to construct the problem 7'
faced by @, we consider two extreme cases. One case formalizes a situation
of maximal compatibility of interests among all the agents of a given type:

gmar — m{SP' % RQ\P’]PI C Q,comp(P/) = Comp(P)}
The other formalizes the opposite:
Smin = CCh{SPIIP/ C Q, comp(Pl) - comp(P)}

These two notions are illustrated in Figure 16 for an initial group of 2
agents and one additional agent (agent 3) being introduced to replicate agent

2.

Theorem 26 (based on Kalai 1977a) In S™® all of the agents of a given
type receive what the agent they are replicating receives in S if either the
Kalai-Smorodinsky solution or the Egalitarian solution is used. However, if
the Nash solution is used, all of the agents of a given type receive what the
agent they are replicating would have received in S under the application
of the Weighted Nash solution with weights proportional to the orders of
replication of the different types.

Theorem 27 (Thomson 1984a, 1986) In S™", the sum of what the agents
of a given type receives under the replication of the Nash, Kalai-Smorodinsky,
and Egalitarian solutions is equal to what the agent they are replicating
receives in S under the application of the corresponding weighted solution
for weights proportional to the orders of replication.
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Figure 16: Two notions of replication. (¢) Maximal compatibility of
interests. (b) Minimal compatibility of interests.

7 Applications to Economics

Solutions to abstract bargaining problems, most notably the Nash solution,
have been used to solve concrete economic problems, such as management-
labor conflicts, on numerous occasions; in such applications, S is the image
in utility space of the possible divisions of a firm’s profit, and d the image of
a strike. Problems of fair division have also been analyzed in that way; given
some bundle of infinitely divisible goods €, S is the image in utility space of
the set of possible distributions of 2, and d is the image of the 0 allocation
(perhaps, of equal division). Alternatively, each agent may start out with
a share of {2, his endowment, and choosing d to be the image of the initial
allocation may be more appropriate.

Under standard assumptions on utility functions, the resulting problem
(S, d) satisfies the properties typically required of admissible problems in the
axiomatic theory of bargaining. Conversely, given S € g, it is possible to
find exchange economies whose associated feasible set is S (Billera and Bixby
1973).

When concrete information about the physical alternatives is available, it
is natural to use it in the formulation of properties of solutions. For instance,
expansions in the feasible set are often the result of increases in resources
or improvements in technologies. The counterpart of strong monotonicity,
(which says that such an expansion would benefit all agents) would be that
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all agents benefit from greater resources or better technologies. How well-
behaved are solutions on this domain? The answer is that when there is
only one good, solutions are better behaved than on abstract domains, but
as soon as the number of goods is greater than 1, the same behavior should
be expected of solutions on both domains (Chun and Thomson 1988).

The axiomatic study of solutions to concrete allocation problems is cur-
rently an active area of research. Many of the axioms that have been found
most useful in the abstract theory of bargaining have now been transposed
for this domain and their implications analyzed. Early results along those
lines are characterizations of the Walrasian solution (Binmore 1987) and of
egalitarian-type solutions (Roemer 1986a, 1988) and Nieto (1992). For a
recent contribution, see Klemisch-Ahlert and Peters (1994).

8 Strategic Considerations

Analyzing a problem (S, d) as a strategic game requires additional structure:
strategy spaces and an outcome function have somehow to be associated with
(S,d). This can be done in a variety of ways. We limit ourselves to describing
formulations that remain close to the abstract model of the axiomatic theory.
This brief section is only meant to facilitate understanding of the relation
between the axiomatic models and the strategic models.

Consider the following game: each agent demands a utility level for
himself; the outcome is the vector of demands if it is in S and d other-
wise. The set of Nash (1951) equilibrium outcomes of this game of de-
mands is PO(S) N (S, d) (to which should be added d if PO(S)NI(S,d) =
WPO(S)NI(S,d)), a typically large set, so that this approach does not help
in reducing the set of outcomes significantly. However, if S is known only ap-
proximately (replace its characteristic function by a smooth function), then
as the degree of approximation increases, the set of equilibrium outcomes
of the resulting smoothed game of demands shrinks to N(S,d) (Nash
1950, Harsanyi 1956, Zeuthen 1930, Crawford 1980, Anbar and Kalai 1978,
Binmore 1987, and Anbarci11992, 1993a. Calvo and Gutiérrez 1994 analyze
yet a different game).

If bargaining takes place over time, agents take time to prepare and com-
municate proposals, and the worth of an agreement reached in the future is
discounted, a sequential game of demands results. Its equilibria (here
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some perfection notion has to be used) can be characterized in terms of the
Weighted Nash solutions when the time period becomes small: it is Né(S,d)
where § is a vector related in a simple way to the agents’ discount rates (Ru-
binstein 1982, Binmore 1987. Livne 1987 contains an axiomatic treatment).

Imagine now that agents have to justify their demands: there is a family F
of “reasonable” solutions such that agent 2 can demand &, only if 4; = Fi(S, d)
for some F' € F. Then strategies are in fact elements of F. Let F! and F?
be the strategies chosen by agents 1 and 2. If F*(S,d) and F?(S,d) differ,
eliminate from S all alternatives at which agent 1 gets more than F}(S,d)
and agent 2 gets more than F(S,d); one can argue that the truncated set S!
i1s the relevant set over which to bargain; so repeat the procedure: compute
F1(S,d) and F?(S",d) ... If, as v — oo, F1(S¥,d) and F2(S",d) converge
to a common point, take that as the solution outcome of this induced game
of solutions. For natural families F, convergence does occur for all F'! and
F? ¢ F, and the only equilibrium outcome of the game so defined is N(S, d)
(van Damme 1986, Chun 1984 studies a variant of the procedure).

Thinking now of solutions as normative criteria, note that in order to
compute the desired outcomes, the utility functions of the agents will be
necessary. Since these functions are typically unobservable, there arises the
issue of manipulation. To the procedure is associated a game of misrepre-
sentation, where strategies are utility functions. What are the equilibria of
this game? In the game so associated with the Nash solution when applied
to a one-dimensional division problem, each agent has a dominant strategy
which is to pretend that his utility function is linear. The resulting outcome
is equal division (Crawford and Varian 1979). If there is more than one good
and preferences are known ordinally, a dominant strategy for each agent is
a least concave representation of his preferences (Kannai 1977). When there
are an increasing number of agents, only one of whom manipulates, the gain
that he can achieve by manipulation does not go to zero, although the impact
on each of the others vanishes; only the first of these conclusions holds, how-
ever, when it is the Kalai-Smorodinsky solution that is being used (Thomson
1994). In the multi-commodity case, Walrasian allocations are obtained at
equilibrium, but there are others (Sobel 1981, Thomson 1984d).

Rather than directly using information sent by agents about their utility
functions, one should of course recognize strategic behavior and design games
that produce the right outcomes in spite of it. Supposing that some solution
has been selected as embodying society’s objectives, does there exist a game
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whose equilibrium outcome always yields the desired utility allocations? If
yes, the solution is implementable. The Kalai-Smorodinsky solution is
implementable by stage games (Moulin 1984). Howard (1992) establishes
the implementability of the Nash solution. Recent work indicates that much
can be achieved by such games. Other implementation results are due to

Anbarci1(1990) and Bossert and Tan (1992).
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