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THE COMPETITIVE EQUILIBRIUM TURNPIKE ‘

It was first shown by Truman Bewley (1982) that it is possible to combine
the Ramsey turnpike theorem and the theorem on existence for a competitive
equilibrium over an infinite horizon to provide a turnpike theorem for the
competitive equilibrium. His result was generalized and extended by Yano (1984a,
1984b, and 1985), Marimon (1989), Coles (1989), Epstein (1987), and Lucas and
Stokey (1984). The theorem which I will prove in this paper is close to the
theorem of Yano (1984a). It dispenses with differentiability which is assumed by
Bewley and uses a convex cone for the social production set rather than a
collection of firms owning convex production sets. My purpose is to present a
proof which exploits a theorem on existence for an economy with an infinite
horizon (Boyd and McKenzie (1993)) and a theorem on turnpikes for an optimal
growth problem (McKenzie (1982). Thus attention is focused on how these
theorems can be combined to give the result. This may show more clearly the
relation between the assumptions needed for existence and those needed for
optimal growth and the further steps required to establish the competitive
turnpike theorem. |

Since the turnpike theorem was proved for a model in which separability is
assumed both for consumer utility and for production, the model in which the
competitive turnpike theorem is proved will not have the generality of the infinite
horizon economy of Boyd and McKenzie. In their existence theorem mneither type
of separability appeared. We will also make the assumption that future utility is
discounted by a constant factor which is the same for all consumers. Separability
for consumption and constant discounting has been partially relaxed in optimal
growth models by Lucas and Stokey (1984) and Epstein (1987). However we will
not pursue this generalization here.

The existence theorem of Boyd and McKenzie (1993) is specialized to an



economy with the production sector used by Malinvaud (1953) to discuss efficiency
for inﬁnite programs. The model is in discrete time and production has the
property of separability between time periods. We also introduce a consumption
sector with separability between time periods. Thus the economy has the Markov
property that the possibilities of production and consumption in any period
depend only on the state of the economy in that period. The state of the
economy is given by the stock of capital, the technology, and the consumption
possibility sets.  The technology set and the consumption possibility sets are
constant over time. On the consumption side this may reflect a set of families
for which the distribution of abilities and tastes do not change from one
generation to another. On the production side capital accumulation may occur.
However the social production set is assumed to be a convex cone which is
constant over time. This production set may still represent an economy of firms
if entrepreneurial factors are introduced (McKenzie (1959)).

The commodity space is s* = H‘:ZO R%(t), the space of sequences of
n—vectors. This space is given the product topology where each R"™ has the 11
topology (|x| = EIilzllin). Separability in the production sector is recognized
by setting Y = )3‘,?:1 Yt where Y,; " contains vectors of the form
1

y = (0,---,0,——kt_1,vt,0,---). The vector —kt—l € IRE represents inputs of capital

stocks at the beginning of the tth period and v, € R™ represents inputs and

t
outputs during the tth period including terminal capital stocks and inputs of goods
and services supplied by consumers. Let the set 'Yt be the set of all
y(t) = (K,_yv,) € R° = R*  for  which there is y' €Y,  with

yt= (0, "0’_kt—1’vt’0" -+). The capital stocks -kO are inputs for the production

processes of the first period. Outputs v, = k’t”+ X where kt € [R_?_ are terminal
stocks and X € R" are goods and services either taken by consumers or provided

by consumers.



Possible consumption sets are Ch = E‘,;’:O Ultl where C'}tl contains vectors of
the form x™ = (0,+-,0x%0,-+). Th = {(xD0,- )} with xf = 4l Thus T
represents the provision of initial stocks. Let Clt1 be the set of all xil € R* such
that there is xht € Cil with xht = (0,- - -,O,XItl,O,- -+). Negative components of xlt1

are quantities of goods and services provided by the hth consumer during the
period and positive components of x% are quantities of goods and services received

by the consumer during the period. We assume that some components of xil are

n
necessarily not positive.  These are included in x%h € [R_land the remaining
: . 2h _ M2 n_ ot Mo
components are included in Xy € R © where R = R ~ x R “ with n,,n, # 0 and

n, + 1y =0 Then we may write x% = (x%h,x%h . We will say that y € s™ is

feasible when y = 5;]:0 yt = E?:O = x, where Yt E:l Xt

with 't ¢ C'}t‘.

EYtandxtzz

The initial capital stocks are allocated among consumers, that is,
k0 = 211?:1 kg. Subsequent capital stocks need not be explicitly allocated since
only their values are relevant and the value of a consumer’s holding of capital
stocks is implied by the value of his initial stocks and the spending he does in
earlier periods. @ We abstract from timing during the period of the use of
consumption goods and intermediate products. This comes from modeling the
competitive economy in discrete time. A periodwise utility function uil is defined

}tl for t = 1,2,---. A preference relation Ph

h

on the periodwise consumption set C
: : | Rp— h @ h
is defined on consumption streams by zP x if Yooq uilzy) > 5y u(x). R

and Ih are defined in terms of Ph

in the usual way. The use of a periodwise
consumption possibility set and this definition of the preference relation is the
meaning of separability in consumption. |

In this paper we will say that an economy is irreducible if, whenever the

consumers are divided into two subsets and the allocation to consumers is



producible, there is another producible allocation in which everyone in the first
subset is better off, and the allocation to the second subset is a positive multiple
of some consumption bundle which is sufficient for their survival. We will say
that an economy is strongly irreducible if it is irreducible and, in the definition of
irreduciblility, whenever the second subset contains only one consumer his
allocation lies within his possible consumption set. The Malinvaud economy Em
1 H 1 H

u).

is given by (Y,,C, ;,---,C, ,,pu", -, Let e = (e,e,--+), where
& V-1 t-1 ‘ 0°°1

e, = (1,--+1) € R for all t. Let Cy EI;} 1 Ch. We make the following
assumptions.

1. The periodwise production set Yt C [RE x !Rn, t = 1,2,--+, is a closed
convex cone with vertex at the origin, and Yt =Y, all s and t> I y(t) =
(-ky_vy) € Y, then k; o >k, and v; < v, implies (<k;_,,vi) € Y*.

2. Let (= -k, _ e v,) € Y,, where v, = k, + x,. Then k, ; =0 and x% =0

implies v, = 0. Also there is ¢ > 0 such that |kt—ll > ( and X, € Ct implies
[k | < 7|k 4| for v < L.

3. The periodwise consumption set Cil c R" is convex, closed, and bounded

h

below by z for all h. Also CI' = C" for all b, and s,t.

4. The utﬂity function uil = ptuh, where uh is a real valued function on
C:;l, which is concave, continuous, and bounded. Also if x; € C% and zy > X
h h h
then z, € C; and u'(z,) > u'(x,).
5. The economy Em is strongly irreducible.
6. There is Wh € Ch - Y, for all h, with Wh 3-0. Moreover, for some

6> 0, Eh =1 Wh— w < —be. For any oo € cl _ vy there is Ty such that for

any 7 > 7, there is a > 0 with (xg,---,xl;,aW"I;_I_l,aW}Tl_*_T---) e b
Define U (z) = Et 1P uh(zt) for z € CM We first prove
Lemma 1. The function Uh is concave, continuous, and bounded on Ch.

Proof. The fact that uh is uniformly bounded with respect to t on Cltl and



that p < 1 implies that Uh is well defined and bounded on Ch. Concavity is an
immediate consequence of the concavity of uh. For continuity it is sufficient to
show that for any open neighborhood V of v = Uh(z) there is an open
neighborhood Z of z relative to Ch in the topology of s™ such that z’ € Z
implies Uh(z') € V. We may assume that V contains all v/ € R such that
|[v —v’| < e>0 In the product topology all but a finite number of the

factors of an open set must be unrestricted. Choose small open sets Wt of z;

relative to C% for 1<t <T. Then the open set
7 = lR_I; x H’le W, x I o C% is a neighborhood of z. The W, and T may
be chosen so that z’ € Z implies that Erle ptl(uh(zé) - uh(zt)l < €/2 and

2?=T+1 ptb < €/2 where b is an upper bound on ]uh(wt)| for w, € C% for all

t. It is implied by the continuity and boundedness of u and the fact that v < 1
that these choices can be made and define an open set Z of z relative to Ch that
maps into V under Uh. n|

We may now prove that a competitive equilibrium exists.

Theorem 1. The economy Em has a competitive equilibrium.

Proof.  Existence of competitive equilibrium follows from Theorem 3 in
Boyd and McKenzie (1993) if we can show that Assumptions 1 — 7 in that paper
are implied by Assumptions 1 - 6 above. The Assumptions ‘for the existence
theorem are

B-M.1. Y is a closed convex cone with vertex at the origin that contains
no straight lines.

B-M.2. For each y € s” the set {y € Y| y > y} is bounded.

B-M3. c!is convex, closed, and bounded below by z € I

B-M.4. For all h the correspondence Ph is convex valued and, relative to
Ch, open valued with open lower sections. The preference relation Ph is

irreflexive and transitive. The weakly preferred set Rh(xh) is the closure of



PP(x™) for all ™ € CP, unless PA(xD) = 4.
B-M.5. Let xh € Ch. If z? > xil, with strict inequality for some t, then
z € Ph(xh).

B-M.6. The economy is strongly irreducible.

B-M.7. For all h, there is X' € CP — Y with T < 0. Moreover,

X = 2§=1 M < 0 and it = J_(S for all s and t. For any xh, let 2 ¢ Rh(xh) -

Y and 6§ > 0. Then there is a 7o such that for each 7 > Ty there is an a > 0
. h h h -h h, h

with (z0+5e0,z1,---,zT,axH_l,---) e R(x) -

The first part of Assumption B-M.1 is implied by Assumption 1. For the

Y.

second part note that y € Y and y # 0 implies that y(t) € Y, and y(t) # 0 for
some t. Then Assumption 2 requires that either —k0 $# 0, or x% # 0 for some t.
In either case —y fails to satisfy the conditions of membership in Y. Thus Y
cannot contain a straight line. The assumption that Yt is constant is only
needed for the optimal growth theorem. It could be replaced by a boundedness
assumption but this would complicate the application of the turnpike theorem
from McKenzie (1982). By a classical boundedness argument we have that k0
given and X bounded below implies that v, is bounded above. Thus ky is
bounded. Then by induction vy is bounded in every period. Thus Yy is bounded
in ‘every period. This is boundedness of y in the topology of s®.  Thus
Assumption B-M.2 holds. Assumption B-M.3 is immediate by Assumption 3.
Again the constancy assumption of Assumption 3 can be replaced by a
boundedness assumption that would complicate the argument. Assumption B-M.5
is .immediate from the last part of Assumption 4.  Assumption B-M.4 is
established in

Lemma 2. Ph is open valued and has open lower sections in s and Rh is

the closure of Ph in s™.

Proof. Suppose zP"'x holds. Then Uh(z) > Uh(x). Since U™ is continuous



by Lemma 1, there is a neighborhood W of z relative to Ch such that z2 ¢ W
h(z') > Uh(x). Since z is arbitrary Ph(x) is open. A similar argument
h

implies U
shows that the lower section of P" at x is also open. Since x is arbitrarily
chosen from Ch we have established that Ph is open valued and has open lower
sections. The continuity of Uh and the fact that Ch is closed imply that Rh(x)
is closed. Since there are preferred points in every neighborhood of z for any
z € Ch by monotonicity, Rh is the closure of Ph for any x ¢ Ch. Convexity and
transitivity are obvious. O

Assumption 5 is the same as Assumption B-M.6. A strengthened form of
the ﬁrsf part of Assumption B-M.7 is contained in Assumption 6. For the
second part we may add 5e1 to xlll rather than 6e0 to zg without weakening the
arguments of Boyd-McKenzie. Then the modified version of the second part of
Assumption B-M.7 is implied by monotonicity and the definition of Ph. Indeed,
‘let Au}I1 be an increase in u}l1 made possible by the addition of 6e1 to the
consumption vector xlll. Choose 7 so that Z‘;’___T ptb < Aulll. Then B-M.7
follows. This completes the proof of Theorem 1. 0o

Let p = (pO,pl,---) with D, € R™. A competitive equilibrium for the
economy E_ is given by a list (p,y,xl,---,xH). In Boyd-McKenzie competitive
equilibrium is defined by the following conditions.

B-MI px" < 0 and z € PR(xD) implies pz > 0.

B-MII. y €Y, py = 0 and lim sup,_,_ pz(7) < 0 for any z € Y.

H h
Eh:l X =y.

B-M.III.
In the case of Em it is convenient to restate the equilibrium conditions in a
slightly modified form. Let pz = 2?:0 p,z, when the sum exists as a finite
number or +a.

L pxh < 0, and Uh(z) > Uh(xh) implies pz > 0.
II. y(t) € Y, and (pt_l,pt)-y(t) = 0, for all t. Also (pt_l,pt)-z(t) < 0 for



all z(t) € Y,.
Im. X

The definition of Ph

in terms of Uh implies that I is equivalent to B-M.I
as defined in Boyd-McKenzie. It follows from separability in production and the
definition of Y that II implies B-M.II in E . Finally III is unchanged from
B-M.IIL. ) |

Let Hh(m) = {z| z € c? ana pz < m}. It is proved in Boyd and
McKenzie that an equilibrium p lies in l‘f and is nonnegative. Since Ch is
bounded below, pz is well defined as a finite number or 4o. See Lemma 8 of
Boyd and McKenzie.  Thus Hh(m) is well deﬁned. By Condition I the
competitive equilibrium consumption stream xh for the hth consumer satisfies the
condition that Uh(xh) maximizes Uh(z) over Hh(O) for z e CM Let
g(m) = sup Uh(z) over Hh(m) The supremum is finite since Uh(z) is bounded
over CI by Lemma 1. Let I = {m| thereis z € c? and pz < m}.  The
subgraph G of g(m) is defined by G = {(v,m)| v < g(m)}. The concavity of g
implies that G is convex. Consider the point (v*,0) in R  where
v = g(0) = Uh(xh). This is a boundary point of G and therefore by a
separation theorem (Berge (1963),' p 163)‘ there is a vector (fyh,u) such that
7hv — pm < 'yhv* for all (v,m) € G. Monotonicity implies that g = 0 is not
possible. = Monotonicity also implies that m is unbounded above. Therefore y > 0
must hold. On the other hand irreducibility implies that a cheaper point at
equilibrium prices p exists in Ch. That is, there is m < 0 with m € L
Therefore 'yh = 0 is excluded. We may choose (fyh,u) so that 4 = 1. Then
letting v = g(m) we have g(0) > g(m) - (1/7h)m. In other words

(1) Ul > uBER) - (/Mo for any 2 e P,

We refer to 1/ fyh as the marginal utility of wealth for the hth consumer. Let

1 H ;
7= (7, ) and wnte v = Ap).



Define a social welfare function W, for z € C and a discount factor p < 1,

by W(z,7(p)) = maximum Egzl 'yhUh(zh) over all z' e T such that
2%____1 zh = z. |
Lemma 3. At the competitive equilibrium the welfare function

Wixp) = Bh_, Uhah).

Proof. Suppose not. Then there is another allocation {zh} of x such that

EI&:l 'yhUh(zh) > E§=1 7hUh(xh). Multiply the inequalities (1) by fyh and
sum. Since EE=1 g = 2113:1 2 we have Elg:l pzh = 0. Thus
EE=1 fyhUh(zh) < Egzl fyhUh(xh). This is a contradiction, so no such allocation

{zh} exists. O

Lemma 4. At the competitive equilibrium W(x,7(p)) maximizes the welfare
function over all y € Y.

Proof. The profit condition II of competitive equilibrium requires
(pt—l’pt)'z(t) < 0 for all z(t) € Y, when p are the equilibrium prices. However
summing (1) over h we find that W(z,v(p)) > W(x,¥(p)) implies pz > 0. Since

Y = Zle Yt’ this is inconsistent with the profit condition. Thus no such z

exists. O
. . H h
Define the correspondence ' mapping C into Hh:l C by
I'(z) = {(zl,---,zH}| 2" € CP for all h and ZE:l = z}. We first prove
Lemma 5. T is lower semicontinuous in the product topology.
Proof. Let V be an arbitrary open neighborhood of z€C = HE:l ch in

the product topology relative to é We must show that there is an open
neighborhood U of z € C = S_, C, relative to C, such that 2’ € U implies
that T'(z’) N V is not empty (Berge (1963) p. 109). If z is an element of the

open set V then for a finite number of indices ht we have z% € V?, where Vlt1 is
an open set properly contained in C}t1 and for the remaining indices Vl,c1 = Cltl.

Similarly the open set U has a finite number of indices t such that z € U implies
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z, € Ut where Ut is an open set properly contained in Ct while for the remaining
indices Ut = Ct' We must select the Ut so that z; € Ut implies there is
h, h
g € Vy

with no loss of generality that Vlt1 = {th1, € C%I ]z%' - z%l < € > 0} for an

7 € I'(z) with z for all t. For t such that Vi‘ # C{l we may assume

appropriate €. For a given t let U, = {2, € C;| |z, — 2| < § > 0}. Each
z{ € U, can be expressed by H%zl zil' € I'(z{). Moreover if |z£ - z,| is‘
reduced by a factor o then the | thl, - z%] may be reduced by the same factor.
Since the Clt1 are bounded below, the z?’ are bounded and it is possible to choose

6 so small that for every z{ € U, it follows that I(z{) N VI # ¢. This
h
-
for z € U that I'(z) N V # ¢ and therefore I' is lower semicontinuous (compare

construction may be repeated for each t for which Vi‘ $ C Then it will hold

Berge (1963), p. 109). o

Lemma 6. W is concave and continuous on C.

Proof. Consider  W(z,7(p)) = EE-—-I 7hUh(Zh) and  W(z’,7%(p)) =
31111:1 'YhUh(zh')- Let z' = az + (1-a)z’, 0 ¢ @« < 1. By Lemma 1, ot s

H h.-h

concave for all h. Since  W(z'",%(p)) 2 B, _; 7 U (zh") > aW(z,7(p) +

(1-a)W(z’,%(p)) it follows that W is concave.

Consider zs—»z, s =12,---, where z° and z lie in C. Suppose

W(z°,1(p)) = Eil:l fyhUh(th). Since z'° is bounded below by z and

S = 2H hs

h=1 Z 2 it follows that Z18

is bounded. Since Ch is closed a

subsequence {zhs} (retain notation) converges to a limit e o for all b By

Lemma 1, ot s continuous. Therefore EEZI yhUh(th) converges 1o
21}?:1 'yhUh(zh). Let w be an arbitrary element of I'(z). Suppose
W(z,7(p)) = 2{3:1 fyhUh(wh) > EEZI 'yhUh(zh). Since T is  lower
semicontinuous by Lemma 5 there is a sequence th - wh where whs € Ch and
EE___l whs = 5 Continuity of uh implies Uh(whS - Uh(wh). However
EE=1 'yhUh(whS) < 2%___1 'yhUh(th). Therefore 2%:1 'yhUh(wh) <



Eh —1 7 hUh(zh). This contradicts the property assumed for \;v, so no such w

H

exists and W(z,7(p)) = By fyhUh(zh). Therefore W is continuous over C. n

The definition of Y as the sum of the Yt implies that if x € Y then for
+k;) € Y. Let F(k, k) = {zt| (k1> t+kt) €Y,

t~1%¢
and z, € C.}. Define w(k, ,,k,) = maximum i habh ) for sH oy
t © Vil 1%t/ = h=1 7% % h=1%t T %

each t there is (—k

€ F(kt—l’kt)' These definitions are independent of t since Y, and C, are
constant. = The maximum exists at some X, € F(k 11K k) since F(kt l’kt)

compact by the proof of Lemma 1 in Boyd-McKenzie and uh is continuous by
Assumption 4 for all h and t. Then x € Y n C and W(x,7(p)) > W(z,%(p)) for
all z€YNC  The fact that Zp_, 7™u(x)) = wik,_, K,
W(x ) = 55_; ptw(k,_ v k). Moreover W(x,2(p)) > W(z,7(p)) implies that

k. ) implies that

Yo_q P w(kt ok 2 55 g0 W(kt _1-kj) for any choice of (k{){_,, with kj =

11

0 0’

for which W(kt _pk; k7) is well defined. This is the condition for a path of capital
accumulation to be optimal. In order to prove that a path of capital
accumulation for a competitive equilibrium exists and satisfies a turnpike theorem
we must look for a set of assumptions that are consistent with both the
assumptions used that imply the existence of a competitive equilibrium and the
assumptions that imply a turnpike for optimal paths.

We will use the turnpike theorem proved in McKenzie (1982). This is a
neighborhood turnpike theorem which implies that an optimal path enters a
neighborhood of a stationary optimal path and remains there. In the following
discussion we will sometimes use small latin letters without the t subscript to
represent vectors of R™ rather than vectors of s®. The context should distinguish
these uses. Let Dt C IR_?_ x lel_ be a convex set which contains the combinations
of initial stocks k and terminal stocks k’ that are consistent with the production
and consumption sets of the t¢h period. That is, D, = {(k,k")| there is z € C,

and (-kk’+z) € Y.} Since C, and Y, are constant this definition is
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independent of t, so we may put Dt = D for all t. Since services cannot be
stored capital stocks kt lie in the subspace Sg of R" spanned by the coordinate
axes for goods. Thus kt is an n—vector whose services coordinates are equal to 0.
By assumption S g has dimension legs than n. Then D is contained in the
nonnegative orthant of S g Sg which is a proper subspace of R® x R".

We will say that a convex set S is relative interior to another convex set S’
if S lies in the interior of S’ relative to the smallest affine subspace that contains
5. A concave function f(z) defined on a closed convex set S is said to be closed
if when y is a relative boundary point of S we have f(y) = lim sup f(z) as
z » y. (See Fenchel (1953), p. 58). The assumptions for the turnpike theorem in
McKenzie (1982) may be written in our present notation as

M1. D, =D andwtzptw(ktl, ) for 0 < p<p< 1, for all t. The
function w is concave and closed.

M2. There is ¢ > 0 such that |k,_;| > ¢ implies for any (k, ..,k.) € D,

t—=1""t
[k | < 7lk;_;[, where v < L

M3. I (kt—l’k) €D, then (k; ki) € D for all ki ; 2k _, and
0 < ki <k, where w(k{_;k{) > w(k,_ k).

M4. There is (k,_; k) € D such that rk, > k4

Let A be the set of all (kk) € S x S such that k > 0 and |k| < ¢ Let
A be the set of (k,k) € A n D such that W(kk) > w = wk,_; k).

M5. The utility function w is strictly concave in A. ‘

Define a nontrivial stationary optimal path as an optimal path kt = kP, all
t, which satisfies the condition that w(k”k’) > w(k’k’/) for all (k' .k’ ") such
that pk’’ — k’ > (p~1)k’. Note that the set of vectors satisfying this condition
always includes (k,_, k) from Assumption M4. So w(k? XP) » w(k,_, k) and
(k’kP) € B. These paths are proved to exist in McKenzie (1982). Let & be

the projection of e on the Sg subspace.



M6. Let kt = k° , t = 0,1,--+, be a non-trivial stationary optimal path for
p<p<1 Let (kk’) € D. Then there is # > 0 and ¢ > 0 such that
|k - kX?| < 7 implies that (k,k+eeg) e D.

In McKenzie (1982) a further assumption is stated: "If (k,k’) € D and
k| < ¢ < @, then there is ¢ < o such that k'] < ¢." ~ However this
assumption is easily seen to be an implication of Assumptions 2 and 3. Let
Y=AnD If (kk) € ¥ we say that k is a sustainable stock. If unbounded
terminal stocks are possible with any given initial stocks then they are possible
with larger initial stocks, given free disposal. But stocks of sufficiently large size
are not sustainable.  Therefore no given initial stocks in a period can support
indefinitely large terminal stocks for that period.

Let kgbe the projection of k on the Sg subspace. Define a stock k to be
ezpansible if there is (kk’) € D where ké > kg. Define a stock k to be
sufficient if there is a finite path {kt}’ t = 0,1,---,T, such that k0 = k and ke
is expansible. Let kt =k t = 0,1,---, be a non—trivial stationary optimal path
for p < p < 1. The turnpike theorem is

Theorem 2. Let {kt(p)}, t = 0,1,---, be an optimal path with kO(p)
sufficient. Then given an e-ball Se(kp) about kP, there are p’ and T such that
k,(p) € Se(kp) for all t > T and all p with p’ < p < 1.

We will establish prove Theorem 2 on the basis of our Assumption 1-6.
This will be done if we can show that our Assumptions 1-6 imply Assumptions
M1-M6. The first part of Assumption M1 is implied by Assumptions 1 and 4
given the definitions of D and W(kt—l’kt)' The second part of Assumption M1 is
established in

Lemma 7. The utility function w(k, ,k,) is concave and closed.

h

Proof.  Recall that w(k, k) = maximum Ei{:l uh(zil) over all z,
h h H h

h = 1,---H which satisfy z, € C°, Xy zy =z, and (_kt—l’zt+kt) S

13
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The concavity of uh and the convexity of Yt imply concavity of w.  Let
(3 1) t) -+ (k;_;)k;) along a line segment. Then concavity of w implies that
w(k, ;k,) < lim sup W(kt T t) Therefore w(k,_,.k;) < lim sup (k{_;k,') as
(k’ 1,k') - (kt 1% k. ) along any path. However Y and c! closed and ut

continuous implies that W(kt 1 t) cannot be less that lim sup w(k® t) along

t— 1’
any path. Thus W(kt_l, t) = lim sup (ké—l’ t') s (k; R 1) = (kt 1 t). o

Assumption M2 1is the same as the second part of Assumption 2.
Assﬁmption M3 follows from free disposal in capital stocks which is the second
part of Assumption 1 and monotonicity of the utility function which is the second
part of Assumption 4.

To establish Assumptions M4 and M5 we must prove that stocks expansible
by a factor p -1 exist for some choice of p < 1.

Lemma 8. In the Malinvaud economy E_ there is p <1 and
-1

kt—l'

Proof. By Assumption 6 there is y € Y and z € C with y —z > f > 0.

(tl’ )EDsuchthatk > p

This means that it is possible to increase each capital stock kt’ all t > 0, in
every period by 6e > 0, where eg € Sg has all goods components equal to 1 and
other components equal to 0. Thus D is not empty. By convexity the average
initial capital stocks ka and terminal gapital stocks ké over the period of
accumulation from 1 to T also give an element (ka,ka’) € D. Since the capital
stocks are uniformly bounded along the path, ka and ké are arbitrarily close for
large T. Since the terminal stock kt of any period can be increased by more
than 6eg, it follows that k;l can be increased by §eg. Since ka can be made
arbitrarily close to k; by choice of T it follows that, for any ratio o < (k+6)/x
where x is an upper bound on capital stecks,. there is a capital stock which is
expansible in a ratio arbitrarily close to ¢. Thus p < 1 may be chosen so that

ﬁ_1<a. O



Lemma 8 implies that Assumption M4 will hold for an appropriate choice of
p. By Assumption M3 which has been established and Lemma 8 we have that A
is not empty. Moreover A is closed since the Ch are closed and Y is closed.
Since A is bounded by Assumption 2, it belongs to a compact set. Thus it is
compact (Berge (1963), p.68). The maximum of w(k,k) on A is achieved by the
continuity of w. Let this maximum be attained at (k,k). Then k is the stock of
the unique nontrivial stationary optimal path for p = 1. Assumptions M5 and
and M6 must be made explicitly in addition to the Assumptions 1 — 6 since they
involve notions which are special to the reduced utility function wik, k)
Recall that ¥ = A nD. Note that A c¥cA It may be shown that
Assumption M6 is implied by the following alternative assumption.

M6-. The optimal stationary stock k is expansible. Also A lies in the
relative interior of .

Lemma 9. Assumption M6’ implies Assumption MS6.

Proof. We first show that M6’ implies that stocks in A are uniformly
expansible.  Since k is expansible by Assumption M6, there is e’ such that
(kk + f’eg) € D The convexity of D implies that ¥ is convex. Let ¥’ be a
compact set contained in the relative interior of ¥ with A in the relative interior
of ¥/. Let ¥ be a compact set contained in the relative interior of ¥ and
containing ¥’/ in its relative interior (see Berge (1963), p.68). Since
Y77 c relative interior ¥’ and (kk) € A, any (kk) € A’ may be expressed as
(kk) = ok’ k') + (1-a)(kk) for some a with 0< a< 1 and some
(k’,k’) € X\E’. Then (k,k+(1—a)e’eg) = ok’ k') + (1—a)(E,E+€'eg) € D. Let
a, satisfy these relations for the stock k. If there were a sequence (kS,kS) € X/

with @ . - 1 it would follow that %’ and X\L’ have a point in common
k

contradicting the fact that %’/ lies in the relative interior of ¥/. Therefore we

15
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may select an a < 1 valid for all k € ¥//. For this a choose ¢ = (1-a)e’.
Then (k,k+eeg) € D, or k is uniformly expansible for (kxk) e X/’. Let
|z - k°| < 6§ > 0. Recall that (k”k°) E‘E. For sufficiently small § we have
(z,z) € £//. Then by uniform expansibility (z,z+eeg) eD. o

Let k” be a nontrivial optimal stationary path for the welfare function
W(k,,7(p)). We may now prove the competitive equilibrium turnpike theorem.

Theorem 3. Assume that Assumptions 1 — 6, M5, and M6 or M6’ hold in
the Malinvaud economy E . Then there is a choice of p < 1 such that a
competitive  equilibrium  path (p,y,xl,---,xh) from a sufficient stock
k0 = Egzl kg defines an optimal growth program for the objective function
W(x,7(p)) for any p with 1 > p > p. Given an e-ball S (k”) about k”, there
ate p° > p and T such that ky(p) e S (k”) for all t > T and all p with
pr < p < 1l

Proof. The existence of a competitive equilibrium path is provided by
Theorem 1. The competitive equilibrium path is an optimal path for the welfare
function W(z,%(p)) by Lemma 4, given the initial stock of capital ko It should
be noted that the utility weights 'yh depend on the distribution {kg} of the initial
stock. Then Theorem 2 provides the conclusion of Theorem 3. O

The convergence of the capital stock vector k, of the competitive

t
equilibrium to a neighborhood of a capital stock vector kP does not obviously

imply the convergence of the consumption vectors X, to a neighborhood of
consumption vectors. However we will be able to show that such a convergence
is implied to an neighborhood which may be arbitrarily small of the set consisting

H H

. . = = p p
of all the consumption vectors z, with z, = 2h=1 Zh =1 (-k ,zt+k ) € Y., and

t
2, € C, that satisfy ¥j_, u"(z) = w(k’k?). We will need
Lemma 10. If (k,_;k,) is relative interior to D the correspondence F is

continuous at (k,_;k,).



Proof. If ( kt 154 +ks) €Y, and xs € C; and (= kt 1%t +k,§) converges to

(-k +k;), then (=k +k;) € Y and x, € C;. Thus F is closed. Since it

t-1%¢ -1
is also compact valued it is upper semicontinuous. We must show that F is
lower semicontinuous when the interiority condition is met. Let SE(xt) be a ball

of radius e about x, where x, € F(k,_;,k). We must show that, for a

f-1ky) € Sl pky
X{ € Se(xt) with x,7 € F(kf—l’kt/)’ Let x{ be the element of F(k,;_l,k,g) closest

t

sufficiently small § > 0, for every (k{ ) it follows that there is

to x Let the Euclidean distance between x{ and X, equal 7. Choose the

t
largest a with 0 < a < 1 so that an < ¢. Then x{7 = oxi + (l-a)x; € 8 (x,).

But (k{’;ki’) = o(k;_ pki) + (1-a)(k,_; k) € D. By convexity of D and

=171

{7 € F(k;7yki7).  Since x{ is bounded by classic

arguments given Assumptions 2 and 4, a is bounded above 0 as (ki_l,k,;) Tanges

over S 6(k

concavity of F we have x

t—pK)- Let o* be a lower bound of & over S sk _1%;)- Then the set

of (kfil’k‘gl) for § < a*e is an open neighborhood U of (k,_; k) relative to D.
k{) for any (ké:l,kéf) € U lie

Moreover by construction the points x;’ € F(k;’

t t-1’
in § (x;). Therefore F is lower semicontinuous at (ki ;K)o
We define a correspondence ¢ which maps D into R® by yi € (p(kt_l,kt) if

y, realizes w(k, k). Recall that w(k, ,k ) equals maximum EE:l u?(zil) over

t=1""¢
H h
z, € F(k,_; )k ) where zp =3y _q 2
Lemma 11. The correspondence ¢ 1s upper semicontinuous at

(kt—l’kt) € relative interior D.

Proof. The correspondence F is a continuous at (kt—l’kt) by Lemma 10.
Also W(kt—l’kt) is continuous in the interior of D since it is concave by Lemma 7
(Fenchel (1953), p.75). Therefore by the same argument used in Lemma 6
go(kt__l,kt) is upper semicontinuous (this is the theorem of the maximum (see
Berge (1963), p. 116)). @

Lemma 11 allows us to prove the convergence of the consumption vectors
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along a competitive equilibrium path.

Theorem 4. Make the assumptions of Theorem 3. Let (kt-l’kt)’
t = 1,2,-.., be the capital stock vectors of a competitive equilibrium path. Let
W(z,7(p)) be the welfare function for which this path is an optimal path of
accumulation. Then there is a choice of p < 1 in the economy Em such that a

1,---,xh) from a  sufficient stock

competitive  equilibrium path (p,y,x
k0 = EE___I kg defines an optimal growth program for the objective function
W(x,7(p)) for any p with 1 > p > p. For any e > 0 let Se(go(kp,kp)) be the set
of vectors z, which lie within ¢ of ga(kp ,kp). Then there are p < p <1 and T
such that x, € S (¢(k” k")) for all t > T and all p with p < p < 1.

Proof. By Theorem 3 given any 6§ and p with p* < p < 1 we may chose
T so that ki € Sé(kp) for t > T. Assumptions 6 or 6/ imply that
(kp,kp) € relative interior D. Then ¢ is upper semicontinuous at <p(kp X7 ) by
Lemma 11. This implies for any open neighborhood V of cp(kp ,kp) there is an
open mneighborhood U of (k°k”) in the relative interior of D such that

(k,_;)k;) € U implies that ¢(k, ;.k.) € V. Therefore for any ¢ > 0 we may

-1 t=1""t
choose 6 small enough that SE((p(kp kP)) contains all go(k,;_l,k{) for ki ; and k{
in S é(kp). It follows for t > T and p’ < p <1 that x, must lie in

S (¢(k” k7). o

t
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