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I. INTRODUCTION

In many econometric models, maximum likelihood estimators (MLE's) are used
because of their appealing properties of asymptotic normality and asymptotic
efficiency. However, use of ML techniques requires the specification of the underlying
density function generating the data. In many cases, it is appropriate to ﬁse the
analytically tractable normal distribution as an approximation to the true distribution
and compute the Gaussian MLE. However, in many important situations, the Gaussian
assumption is highly unrealistic and can lead to the use of very inefficient estimates. In
economics, an important example of such a situation is the anaiysis of financial time
series such as stock prices or exchange rates, whose generating processes are well
documented to have excessively thick tails (see, for example, Mandelbrot (1963), Fama
(1963, 1965), Mittnik and Rachev (1993) and McGuirk, Robertson, and Spanos

(1993)).

In such estimation problems, where a Gaussian MLE is inappropriate, adaptive
estimation provides a highly attractive alternative. Adaptive estimation is employed
when the underlying density function of the data generating process is of unknown
shape. An adaptive estimator shares the asymptotic optimality properties of an MLE,
differing from the latter in that a nonparametric estimate of the score function of the
log-likelihood replaces the analytic expression for the score that would be used if the _
density were known. An adaptive estimator can be viewed as an MLE when the shape

of the likelihood is unknown. A simulation study by McDonald and White (1993) finds



that adaptive estimators compare quite favourably with OLS, LAD, GMM, and M-
estimators in the estimation of a (non-cointegrating) non-Gaussian linear regression

model.

Adaptive estimators can be expected to lead to considerable efficiency gains in
the estimation of many cointegrated models, especially in the areas of financial
economics and international finance. This is because the estimation methods most
commonly employed in applied cointegration studies rely on Gaussianity assumptions in
order to claim optimality properties. Optimal estimation of cointegrated models in the
Gaussian case is extensively analyzed by Phillips (1991). The estimation of single-
equation models using least squares techniques can be expected to give inefficient and
misleading estimates when applied to thick-tailed time series such as speculative prices.
That this is indeed the case has been illustrated by Phillips (1993) in the context of the

estimation of exchange rate models.

The present paper is concerned with the adaptive estimation of single equation
cointegrating regressions whose errors follow a stationary and invertible ARMA
process. It draws on previous work by Kreiss (1987b), Steigerwald (1989,1992), and,
especially, Jeganathan (1994). Kreiss (1987b) 'derives adaptive estimators of stationary
and invertible ARMA processes, and many of his results are directly applicable to the
adaptive estimation of the ARMA component of the model considered here.
Steigerwald (1989,1992) analyzes linear regressions with an ARMA error process, but

the regression is not a cointegrating one. Jeganathan (1994) provides a very



comprehensive review of adaptive estimation in time series models and introduces
adaptive estimation of cointegrated models. The latter analysis deals with cointegrating
regressions whose errors are iid. The present analysis extends Jeganathan's by drawing

on results of Kreiss (1987b) and Steigerwald (1989) to allow for ARMA errors.

In section II below, we present the model to be analyzed and introduce some
notation. In section III, we compute the limit distribution of the sample log-likelihood
ratios, showing that this distribution has a locally asymptotically normal (LAN)
component, associated with the parameters of the ARMA process, and a locally
asymptotically mixed normal (LAMN) component, associated with the parameters of
the cointegrating vector, and that these two components are mutually independent.
This independence is important because it implies that if we treat the parameters of the
ARMA process as nuisance parameters, with the cointegrating vector being the
parameter of interest, the latter is adaptively estimable. In other words, knowledge of
the true values of the ARMA parameters will not lead to any asymptotic gains in
efficiency in the estimation of the cointegrating vector. In section IV, we obtain an
expression for an optimal estimator of the model given the preceding LAN/LAMN
results and assuming knowledge of the underlying density of the innovations. In
section V, a method of computing an adaptive estimator using nonparametric estimates
of the density of the innovation process is given. The asymptotic distribution of the
adaptive estimator is derived, and its efficiency gains relative to the Gaussian pseudo-
MLE are evaluated. In section VI, we extend the analysis to allow for an intercept in

the cointegrating regression.



The following notation is used throughout the paper. I, denotes the identity
matrix of dimension s, |x| the Euclidean norm of the vector x, /(-) the indicator

function, N(x, V) the distribution of a random variable that is normal with mean vector x
and covariance matrix V, and MN(x,V) a mixed normal distribution, i.e. one in which
the covariance matrix V'is random. The inequalities X>Y and X>7Y, when applied

to matrices, signify that the difference X-Y is positive definite and positive semi-
1 1
definite, respectively. We simplify the notation by writing J.M in place of JM(r)dr
0 0

when M(r) is a Brownian motion process defined on the interval [0,1]. L(X|P)

denotes the distribution (or law) of X with respect to the probability measure P. When

P is the distribution of X itself, L(X|P) is abbreviated to L(X). The weak convergence

of probability measures is denoted by the symbol = .

II. THE MODEL AND NOTATION

The observable data consist of the univariate series {Yt}:’:l and the m-vector series

{X,}_, . Itisassumed that all m+1 series are I(1) and that a single cointegrating

relationship exists among them. It is further assumed that deviations of the variables
from their cointegrating relationship follow a stationary and invertible ARMA(p,q)

process. Formally, we have:

() Y =BX +y,



P q
2 w=au_ +ybs  +¢,
j=1 j=1

3 X=X, +v.
Furthermore, we assume that:

(i) p and q are known;

P
(i) the ARMA process is stationary and invertible, i.e. the polynomials 1— )" a,z’

J=1

q
and 1- Z bz’ have zeros strictly outside the unit circle, and that these polynomials
j=1

have no zeros in common;

(iif) the innovations (¢,,v,')" are iid from the unknown elliptically symmetric

Lebesgue density p(e,v), which has the property that

0< = ”ll//(é‘, V)|2P(€,V)dVdE < oo, where y(g,v) = (@(8,V)/5€)/P(€,V) ; and

(@iv) the initial conditions are (&,_,,...,&0; Y ,,...,Y5; X _,,..., X;). They are assumed to
be drawn from the distribution Jg(al_q,.‘.,go;Yl,p,...,YO;X]_I,,...,XO;H,,), which has the

property that

/Y CNNE-IND SUNNS /9. GNP, 661/ Ll A CRININ N SIS A9, SN, 61)
=0,() inF,,



as 8, > 6, where @, and 6 are parameters defined below.

Remark: In assumption (iii), y(&,v) denotes the (negative of the) first element of the
score vector p(e,v), and A* denotes the first element on the diagonal of the
information matrix of p(e,v). The fact that these quantities are unknown to the
investigator is the central problem to be addressed in formulating an adaptive estimator.
Our elliptical symmetry assumption implies that y(&,v) is anti-symmetric in ¢, i.e.
that y(—¢,v)=—y(ev). This property is important in our derivation of an adaptive

estimator.

We denote the vector of ARMA coefficients by 7= (a,,..., a,;b,...,b,) and the
P +4q +m-dimensional full parameter vector by 8 = (1,B). We let
{n}= {(hﬂn' g, )'} be a bounded sequence (where &, eR™**" h eR**? h, eR™)
and define the scaling matrix §, = diag{n‘” I, q,n‘llm] . We can then write the local
representation of the full parameter vector 6 as 6, =0+6,h,=(n,,B,). We assume
that @ and {0,,} belong to the parameter space © , defined by allowing B to take any

value in R” and 7 to take any value in R**? subject to the restrictions mentioned in

assumption (ii) above (this also implies restrictions on the possible values of the vectors

h,). Note that &, converges to 6, but does so at different rates in different directions

of the parameter space. In directions associated with transitory dynamics, the rate of



convergence is n'"?, whereas in those associated with nonstationary dynamics, the rate

is n.

We use the parameters of the MA component of the model to define the infinite

sequence of constants, {;/ k(@)} , as follows:

@) A+ bz+. 48,27 =3 v, (0)F,
k=0

with the following formula holding:

7@ +by, (Ot . +by, (0)=0 Vsz],

with ¥ (0)=0 Vs<0 and y,(f)=1. Note that y,(6) >0 as k —> . Using this,

we can show that:

’ P t-1 P q-1 s
& =uU, - Zaiut—i + Z?’k(‘g)(ut~k - Zaiut—k—i) + Z E_; (Z 7 si(O)a,)
in1 k=1 i=1 k=0

5=0

6)  =T-BX-Ya,-BX)+ Sy Ok - BX) - YT,
k=1

i=1 i=1

- BAX;_/C_,*)] + Z__: 8—: (Ej: yt+s——k(0)ak)'

This is a standard result giving a formula for the innovations of the ARMA process in
terms of observed variables, parameter values, and initial conditions. We now

introduce the following (p+¢)-vector:

t-1

Z,_,(n,,nB)= Zyk(Ba nn)(ut—l-kr”?ut—p~k;gt—l—ln"‘2 Ergoi) -

k=0



This vector is important to our theory. It consists only of stationary variables and is
used in our derivation of an expression for that part of the score vector of the sample

that is associated with the ARMA component of the model. We obtain y ;(B,m,) from

(4) by replacing b,,...,5, with 47,...,b7, where & is the relevant element of 7,.

In the following, we will sometimes write &,(6)=¢, to denote the true

innovations in the ARMA process (i.e. the innovations as evaluated at the true

parameter vector #). When we write &,(6,), where 8, # 6, we refer to the
innovations as evaluated at 6, when @ is still the true parameter vector. We can then

cite the following result, derived by Steigerwald (1989, p. 20) (see also Kreiss (1987b,

p. 115) and Jeganathan (1994)):

t-1

gt(en) - gt(g) = (9_ en)l Z}/](‘B7 nn)[ut—l—jr":ut_p..j)gr-]-j)"’agtwq_ja

j=0

®) )
X, - DX, )7

In (6), a; denotes the relevant element of the vector 77,. We can rewrite the right-

hand side of (6) as follows:

t-1

m-n)Z_(n,0,B)+B~-B) Q. r,BnX_, - Z_)aZX,_,-kD.

j=0

t-1 » ?
Defining T}, (n,,B)=2.y,(Bn)X,_, - > a;X, ] gives us
k=1

j=0



7 e0)-60)=-n)Z_(n,nB)+(B-B)I.(1,B)

We furthermore define T, (7,,B) =T, ,(,,B)-v,. Note that I',_,(57,,B) and

I (n,,B) are both m-vectors integrated of order one. The subtraction of v, from
I, .(n,,B) ensures that T, ,(,,B) is independent of (&,,v,) and therefore also of
w(&,,v,). This property allows our derivation of the LAMN theory for the

nonstationary component of the model in the argument following Definition 3.2.

We now place our model within the framework described in Section 4 of

Jeganathan (1994), where we let ¥, = (¥, 1;,...,1}),

_ZO = (‘le—pa""X

ns

B o056 45, 6,), and 4, =o(¥,) be the o —field generated by
Y,. We also let jg(l_’ 0> 9) be the density of ¥, with respect to a o —finite measure.

Our model can then be writtenl:
(8) Yt = gt(Zt—l’e) +é&,

where, writing g,(¥, ,,6) = g,_,(0), we have

g0 = BY, + Y a (¥~ BX, )~ S r (O, - BX,,)

i=1

r

- Zai (K—k—i - BfYt«k—i)] - _i £ (zj: 7zws—k(9)ak)-

i=]

1 Note that since X, and therefore v, , is present in g, ,(6), it is generally the case that g,_,(6) is not
independent of £, , so that our model does not have the non-linear time series structure given by equation
(27) of Jeganathan (1994). In our model, the conditional density of Y, given At~l is the same as the

conditional density of &, given V,.



Since I/t = gt—l (9) + gt(e) = gt_l (en) + gt(gn)) we have
8:1(0,)~ 8.1(0)=£.(6) - £,(0,)=4d,(6,,6). From (7), we have
dt(gna 9) = (77,, - 77)' Zt—l + (Bn - B)' I1:‘41
©® =(0,-0) H_,
= hn' 5nH:-l
where H, =(Z,_',T,'). In(9), we have simplified notation by writing
Z (n,mB)=Z,_,, with T and H,  defined analogously. We also define

rt—l = rm(’?m na B) ’ Ht—l = (Zt—l' :rt—l')' ’ and ‘ZII—I(B) = Ht—l (n: U’B) . NOte that

. o
=M, - [v } , so that (9) becomes
t

0
(10)  d(6,.0)=h,'5,H,, +h, 5,,[v }
t

Equation (10) is fundamental to the theory developed in this paper. The first
component on the right-hand side is a linear combination of the elements of the

(» +q+m)~—vector 8,H, ;. The first p+q elements of this vector are stationary

variables scaled by #n™"*, while the last m elements are nonstationary variables scaled

by n. As will be shown below, multiplying this vector by w(a,,v,) and summing over

¢ will give us an expression for the score vector of the sample, while summing the outer

products of 5,,Ht_1y/(g,,v,) over ¢ will give us an expression for the information matrix

of the sample. The structure of H, , implies that the first p+¢q elements of the score

10



are associated with stationary dynamics, with the remaining m elements being
associated with nonstationary dynamics. The second component on the right-hand side

of (10) turns out to be asymptotically negligible.

III. LAN AND LAMN LIMIT THEORY

In this section, we derive the asymptotic distribution of the log-likelihood ratios of the

sample. Let F,, be the distribution of the sample of size n with parameter 6. We

seek the asymptotic distribution of the log-likelihood ratio

dP
An(ena 0) = IOg( en%Pg n)’

We shall derive, in Theorem 3.1, the probability limit of the log-likelihood ratio,
which will be used to show that the component of the model associated with the ARMA
parameters is LAN and the component associated with the cointegrating vector is
LAMN, and that, furthermore, the two components are asymptotically independent.
This independence allows us to adaptively estimate the vector B when 7 is treated as
an unknown nuisance parameter. Formal definitions of LAN and LAMN (and of the
important associated property of contiguity) are given below. It is important to show
that our model falls within the LAN/LAMN family because characterizations of
optimal estimators for the parameters of such models have been derived in the statistics
literature (see Fabian and Hannan (1982), LeCam and Yang (1990, pp. 80-88), and

Jeganathan (1994)).

11



The key result in showing that our model falls within the LAN/LAMN family is
Theorem 3.1, given below. A more general family of models than the LAN/LAMN is

the locally asymptotically quadratic (LAQ) family. A model falls into the LAQ family
when its sample likelihood ratio, A,,(Q,,, 0) , can be asymptotically approximated by a
quadratic function of the vector A, (recall that A, = 8.1(0, - 6)). Jeganathan (1994)

and LeCam and Yang (1990) formally define LAQ families. Theorem 3.1 shows that
the likelihood ratios in the present model can be asymptotically approximated by the

quadratic given in equation (11).

Theorem 3.1: The likelihood ratios A,(8,,6) have the following quadratic
approximation in our model:
n /12 n
An(en: 6) = _Z hn‘ 5nH;—l l//(gt’ vt) - &é‘hnl 5nth—1Ht—1' 5nhn + Op (1) in g,n
t=1

t=1

1D
n /12 n )
= —Z hn' 5nHt~l (H)V/(ngt) - _é‘hn' 5nth—1 (Q)Ht—l (6)' 5nhn + Op (1) n })H,n'
t=1

t=1

Remark: Theorem 3.1 shows that the likelihood ratios A, (6,,6) can be asymptotically
approximated by a quadratic function of the vector 4,, where the linear term is the

scaled sample score vector and the quadratic term is the scaled sample information
matrix, which, as shown by (87) in the Appendix, converges weakly to the asymptotic
information matrix A°J(), where

Juz(0) 0 }

70) { 0 J(6)

12



The non-random (p+q)-dimensional submatrix J,,(6) is defined in (77) and is

associated with the ARMA component of the model. The random m-dimensional

submatrix J..(6) is defined in (78) and is associated with the cointegrating vector.

The block diagonality of the information matrix is important because it is a necessary
condition for our claims that the cointegrating vector can be efficiently estimated

adapting for the ARMA parameters.

We now show how Theorem 3.1 implies the stated LAN/LAMN limit theory

for our model. We begin with the following definition (Jeganathan (1994)):

Definition 3.2: The family {Pam ;0 € ®} is said to have LAMN likelihood ratios at

0 €O if the quadratic approximation (11) holds and if

)

t=1

L(i‘ 5, H, O, v, 28,1, (O)H,.,(6) 5,
(12) =

- L(S(e)%N(o, 1, S(H)),

where S(0) is positive definite almost surely and N(0,1) is a standard Gaussian

independent of S(6). When S(6) is non-random, LAMN likelihoods are called LAN.

For our model, we shall verify that (12) holds and that S(8) = A>J(6), which is block
diagonal. The first block, 4°J,,(0), is of dimension p+gq, corresponds to the
coefficients of the ARMA process, and is non-random. The second block, A*J..(6), is

of dimension m, corresponds to the cointegrating vector, and is random. Hence, we

13



will show that the first component is LAN, that the second one is LAMN, and that the

two are independent.

We begin the verification of (12) by noting that

1
n n —Zt~1(ﬂa7]’B)W(3tavt)
1) 38HOver)=3| V" |

=1 ; t-1 (77’ B)l//(et,v,)

Kreiss (1987b) analyzes the first component of (13), showing that

L(%Z;]Zt_l(n, n, B)l//(e,,v,)P,,,g] = N(0,227,,(0)).

As for the second component, we can show that
n 1
1
~2 T By (e, v)= ¢,y O Myt
t=1 0

where M, is a Brownian motion independent of M, and with variance A*. Since, by

Phillips and Park (1988), we have

LUMdM] =MV[0, MMM]
[ 0

it follows that

L(—f;ir,_lm, B)w(et,v,)m,,.] = MN(0, ;1 6)).

14



To show that (12) holds with S(8) = 2>J(6), we must show that
1 & .
(14) _5/;_Zrt—l (ﬂaB)Zt-l (77, U,B)' Wz(gt’ vt) = Op(l) In IDB,n *
n'< =1
The left-hand side of (14) can be rewritten as

12 , r 3 \
nTAert—l (n,B)Z,_,(n,m,B) ('/Iz(gnvt) - ’12) + —’;E/;'err—l (n,B)Z,_,(n,n,B)
t= t=

=0,N)+o0,()=0,(1) inPF,,
by arguments similar to those used to show (63).

One important consequence of the LAN/LAMN result derived above is that the
sequences of probability measures {Pg,n} and {Pgmn} are contiguous, and therefore
have the property that the sequence of statistics {]:,} is 0,(1) in F, , if and only if it is
0,(1) in P, (see LeCam (1960, p. 40) and LeCam and Yang (1990, p. 20)). We
shall use this fact below because we shall compute statistics using residuals £(6,) from

a consistently estimated model in lieu of the true innovations (@), and shall use the

fact that the latter statistics are o,(1) in F,, to show that the former are 0,() in £ .

IV. CONSTRUCTION OF AC ESTIMATORS

In this section, we are concerned with the construction of efficient estimators for the
model described above. Jeganathan (1994) describes a class of estimators termed

asymptotically centering (AC) that possess certain optimality properties in

15



LAN/LAMN models. Since the calculation of such estimators assumes knowledge of
the distribution of the density function of the innovation process, which is generally not
known, it is not of immediate practical use. However, as will be described in the next
section, nonparametric estimates of this density can be used to construct adaptive

estimators that share the asymptotic optimality properties of AC estimators.

The following definition of AC estimators is given by Jeganathan (1994):

Definition 4.1: If the model is LAMN or LAN at 6, we call a sequence { 8’”} of

estimators AC if
15) 5,10, -6)- S OW,(0)=o0,(1) inP,,

where

16)  S,(0)=£6,H, ,(O)H, ©) 3,

t=1

AD (0= 5 H O Ev).

Remark: In Definition 4.1, W,(6) denotes the scaled sample score vector and S,(6)

denotes the scaled sample information matrix.

Before proceeding to the construction of AC estimators, we present some

notation and assumptions. We assume that consistent estimates S’,, of §,(0) exist.

16



Under the assumptions of our model, conditions (C2) and (C5) of Jeganathan (1994)

hold ((C2) because ® is open and &, — 0, and (C5) because &, does not depend on

0). Let {0:} be a sequence of preliminary estimates such that:
5,(6,-6)=0,(1) inP,, VOO,

Define 8, as a discretized version of .. The following definition of discretization is

quoted from Jeganathan (1994):

Partition the space R***"™ into cubes C,,i21, of sides of length unity,
andlet C,, =6,C,={6uuecC} If 6, c®NC,, take 6" =1, where
7,; 1s some fixed point in ® N C,,, which will necessarily be non-empty
since ¢, €®. The 8, constructed in this way preserves the préperties

of @, in the sense that 6, €® and &,(¢" - 6) = O,(1) in P, for all

0.

In practice, any preliminary estimator ¢, we may want to use will effectively already
be discretized, since we will only compute it to a prespecified finite number of decimal
places. Define the quantity W, (6) as in Proposition 3 of Jeganathan (1994). (We do

not repeat the definition here because it would involve the introduction of a

considerable amount of new notation. For our purposes, the important characteristic of

17



W, () is the fact (proved in Proposition 3 of Jeganathan(1994)) that

W, (6) = W,(6) - S,h, +0,(1) inE,, for every bounded {,}.)

Given the above definitions and assumptions, we have from Theorem 2 of

Jeganathan (1994) that @n as given in equation (18) below is an AC estimator:
(18)  0,=06,"+8,5"W ).

The following discussion, based on Jeganathan (1994), shows heuristically why
(18) is an AC estimator and why we require the notion of a discretized estimator. As

noted above, Proposition 3 of Jeganathan (1994) proves that

(19 W, (0,)=W,(0)-5h,+0,() inF,,

for every bounded {hn} and for every 8 € ®. Defining the estimator
Q0 0.=6,+5,5'W(0,),

and replacing 4, in (19) with &,'(@, - 6) (which, recall, is 0,(1) in F, ), it would

seem that we could combine (19) and (20) to conclude that
8, (0.~ 0)=S,'W,(8) +0,(1) inP,,,
so that 6, is an AC estimator. However, it is not strictly correct to replace s, with

5,1(6, - ) in (19), since 5;'(0, — 6), although confined with probability arbitrarily

18



close to one to a bounded interval, may assume any of an uncountably infinite number
of values within such an interval. This would require the replacement of (19) with the

stronger condition that

sup

|h|za

W,(0,)~(W,(8)- 8,1 = 0,(1) inB,, Ya >0

We can avoid this problem by replacing 8, with 6.. For then the quantity

8,1(6," - 6) can only assume one of a finite number of points in any bounded interval.

AC estimators are asymptotically equivalent to maximum likelihood estimators,
being asymptotically normal (or mixed normal) with covariance matrix equal to the
inverse of the Fisher information matrix. They are therefore optimal according to the
locally asymptotically minimax criterion (for a discussion, see, for example, Ghosh
(1985, pp. 318-320)) and are consequently also known as locally asymptotically

minimax estimators.

V. ADAPTIVE ESTIMATION

As mentioned earlier, the construction of the AC estimator given in equation (18)

requires us to know the density function of the innovations (¢,,v,). In particular, the
quantity w(&,,v,) is required. In this section, we show how to calculate an adaptive
estimator. Our main problem is to estimate y . This is done nonparametrically, using

density estimators of the density function p(e,v). The density estimator described

19



below is similar to ones used by Bickel (1982), Kreiss (1987b), Jeganathan (1988), and

Linton (1993).

Following Jeganathan (1994), we assume that p(e,v) is elliptically symmetric,

so that

o

t
" 0, Dy

for some [, where Q= )
a)21 Q22

e |

Denote the characteristic function of (g,v) as

cf (s) = g(s’ Qs).

We then have

where k = -2¢'(0) (see Fang, Kotz, and Ng (1990, p.43) and Mitchell (1989, pp.290-

291)). If p(e,v) is Gaussian, then k=1 and cov(e,,v,') =Q.

1
Define £, =(@,, — @, Q;;a)ﬂ)é, so that

20



e;xl (6-w, QZ")D

_ -3 e
ple,v)=|detQ) Zf( Q;z%"

)

where z=¢e-w,,' Qv.

We have assumed that the density p(e,v) is elliptically symmetric. This means
that the conditional density of & given v is symmetric with mean w,,' Q;,v (see Fang,

Kotz, and Ng (1990, p. 45)), and that, given v, fis symmetric about zero in z, so that
adaptive estimation following the methods of Bickel (1982) and Kreiss (1987b) can be’

carried out using nonparametric estimates of the density f{z,v).

In what follows, the construction of a nonparametric estimator of w(s,,v,) is

described. We define

Zt(e) = 81(0) - 0)21' Q;;Vt:

o) [ /(am)"’“J exp(—(lzr )/ J

n

20— 1) ,Z=1: {ﬂ(x +z,(0),y +v,0)+w(x—z,(6),y +v, o‘)}’

izt

£.:(6,3,6) =

and let f;,t(x, ¥,6) be the partial derivative of ]Ai,’, with respect to x. In this
formulation, 7(z,v,0) is a normal kernel density estimator with smoothing parameter

o ; the larger is o, the smoother is the density estimate. Silverman (1986) gives a

detailed description of kernel estimators and the selection of the value of smoothing
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parameters. Note that, by construction, f’ 1s symmetric about zero in x and f‘ "is
anti-symmetric about zero in x. It follows that v, ,, as described below, is also anti-

symmetric about zero in x. This fact is important to our development of an adaptive

estimator below.

Given fixed y, define

~ .;Co- mt\ %> Vs 0) 2 m,
AT A
,/*,n t(x’J’: 9) = j; (x 9) if A (x,Y) { - Ofn
, oot o lf o(n)t (x,ya 6)’ < Cn o(n)t (x’ Vs 9)
0 otherwise

where ¢, - ©, &, = ®, o(n) - 0,m, — 0. These conditions on the asymptotic

behaviour of the smoothing parameter o(#) and the trimming parameters c,, @,, and

m, are used to show that our score estimator An , given in (21), is consistent. The
trimming parameters serve to omit extreme outlying observations that would distort the

behaviour of the estimate An .

At this point, a problem arises that is common in nonparametric estimation.
The theory only describes the limiting behaviour of the smoothing and trimming
parameters. In practical applications, with a fixed sample size, knowing this theoretical
limiting behaviour provides little assistance in selecting the values to be used. An
extensive literature exists regarding the selection of smoothing parameters in density

estimation problems (see, for example, Marron (1987) for a survey), but the
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applicability of this literature to the case at hand has not been much investigated, nor

has the question of trimming parameter selection.

The question of smoothing and trimming parameter selection in the adaptive
estimation of (non-cointegrating) linear regression models was addressed in a Monte
Carlo simulation study by Hsieh and Manski (1987), which extends a similar study
reported by Manski (1984). Hsieh and Manski used sample sizes of 25 and 50, and
considered six possible distributions for the errors (normal, variance contaminated
mixture of normals, t, bimodal mixture of normals, beta, and log-normal). They set
the standard deviation of the errors equal to unity. They found that the adaptive
estimator’s performance was fairly insensitive to the selection of trimming parameters
(although being more sensitive to mild overtrimming than to mild undertrimming).

They found that good values of c¢,, «,, and m, for n=>50 were 8,8, and exp(-32),
respectively. Regarding the smoothing parameter o(n), they found that the estimator

was quite sensitive to its selection. Depending on the true distribution of the errors, it

was found that from a set of preselected possible values of o(n), the best value was

anywhere from 0.1 to 0.5 for n=>50. It was also found that estimator performance

improved if a data-based bootstrap method was used to select o(n). Hsieh and Manski

(1987) concluded by recommending the use of such a method in empirical applications

and strongly recommending against using preselected values for o(n).
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We now turn to the use of the above error density score estimator for the
consistent estimation of the score function and information matrix of the entire model.

Define

ey 4,0 =-3 VOO

@ A,0)=-XU.OWEOv)
From (16), we have
@) D=3 0 H OF.0) 5,

With the foregoing notation, we can now derive an adaptive estimator for our
model. We begin by introducing the following three conditions and a result of

Jeganathan (1988):

Condition 5.1 (condition (28) in Jeganathan (1988, p. 35)):

AENT .
O<J f(x,y)} J(x,»)dx < .

Condition 5.2 (condition (B.2) in Jeganathan (1988, pp. 38-39)):

We must verify that there is a suitable sequence {5,} of normalizing matrices such that

Jfor every bounded {h,} (where 6, =6+ 6,h,) we have:
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@) Y[(81(0)-2.6)~h U@ =0,0) in B,

t=1
Jor suitable (p+q+m)-vectors U,,,...,U, such that

@5 S| U0 =0,0) inP,,, and

t=1

(26) sup

tefl,...,n}

hn' Unt(e)lz = 01’(1) in Pa,”'

Condition 5.3 (condition (B.3) in Jeganathan (1988, pp. 44-45)):

Verify that there are s-vectors V,,(0),t=1,...,n, and non-random (p+q+m-s)-vectors

R,(0),t=1,...,n, such that for every bounded {h,,} and for every u, we have

2

27 Zn:

t=1

vo,6)-| o)

R.(0)

=o,(1) inP,,

and, for some § €[0,1),

V(0 =0,0°) inP,,

(28) rrllax} n

tefl,...,

We now state the following proposition (based on Proposition 15 of Jeganathan

(1988, pp. 46-50)):

Proposition 5.5: Assume that Conditions 5.1, 5.2, and 5.3 hold and that f{z,v) is

symmetric about zero in z for given v. Further assume that ¢, — o, a, —>©, m, — 0,
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a(n)—0, o), >0, and n""Pa,a(n)y "™ -0, with § as in (28). Furthermore,
assume that the sequences {Pg,,,} and {Pgmn} are contiguous for every bounded {hn} .

Then, for every bounded {h,,} , the following hold:
@9  A,0,)-4,0,)=0,0) inP,,
(B0 A,6,)=A,(0)- 5,0, +0,(1) inPF,, and

S,(0 S,(6 .
”iz”) = 5 )+op(1) ink,,.

€2Y) pe

The condition n™""?q,c(n)"**™ — 0 is not exactly the same as the analogous

condition given in Jeganathan’s (1988) statement of the proposition. How this changes

the proof of the proposition is described on p. 74 of Jeganathan (1988).

Using the results of Proposition 5.4, we can prove the following' theorem, in
which an expression for an adaptive estimator of the parameters of our model is

derived.

Theorem 5.5: By setting U, (0)=6,H,_,(6) in equations (21) and (22), the following

estimator is adaptive for our model.:

o\ 1
(32) 6 :9**+5,,(f,,§"(7€ﬂ—)) A6

n n

where fn =X +0,(1) in F,,. (Computation of f" will be described below.)
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In other words,
33) 5,'8,-8,)=0,0) inP,
where 8’,, is as in (18).

Kreiss (1987b, p. 123) shows that f,, as defined in equation (34) below is a
consistent estimator of A’ (the proof uses the fact that {Pg,,,} and {E,m,,} are

contiguous):

> 52 (2,060, 67).

G4y I=

n

I | =

We now derive the asymptotic distribution of our adaptive estimator 5,,. Since

5,, is an AC estimator, we can use the definition of the latter to get:
5,'6,~0) =5 (OW,(0) +0,()) inP,,

Since we have (from equation (14) and the ensuing discussion)
L{s; @W,0)R,)= L{ (216 *N0,D),

it follows that

G J‘I(H)D
35 L5, 9)1139,,,):1:(1\41\/(0, =) |
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We therefore have

66)  L(YnG, - m|p,)= L[”[O%@D

and

@7 L(n(B,-B)B,)= L(A/ﬂv(o, fﬁ%@))

The block diagonality of J(6) is important because it will often be the case in
applications that B is the parameter of interest and # is a nuisance parameter. Block
diagonality implies that not knowing 77 implies no loss in asymptotic efficiency in
estimating B vis-a-vis the case where 7 is known. In other words, if we regard the
nuisance parameters of the model as being the infinite-dimensional nuisance parameter

p(g,v) and the finite vector 77, then En is an adaptive estimator of B .

Another consequence of this block diagonality is that, if we are only interested

in estimating B, we need not construct the entire estimate 5,, given in (32). We need
only estimate the lower right-hand m x m submatrix of S,(8.") and the final m

elements of the vector A (6.), since the off-block-diagonal elements of S0

converge in probability to zeros. In other words, we can compute the following

adaptive estimate of B:
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38 B - (zz 0 X )) ( Z O @O0, vt,ez*)],

such that (B} - B,)=0,(1) in B,,.

We now give an example to illustrate the gain in asymptotic efficiency that can
be obtained from employing the adaptive estimator rather than the Gaussian pseudo-

MLE. For the illustration, we assume that p(e,v) follows a multivariate #-distribution.

Suppose that the deviations of the system from its cointegrating relationship are iid, so

that », = ¢,. Further suppose that o, =0 and that p(e,v) is the density of an (m+1)-

dimensional r-distribution with 7>2 degrees of freedom. The asymptotic covariance

matrix of the scaled and centred Gaussian MLE (OLS in this example) is
1 -1

ka)n( _f ]\422\12'} , where k = v /(7 —2), while the asymptotic covariance matrix of the
]

1
3 +m+3
MLE, and therefore of B, , is A~ j MM, | where 27 = a)n(f__ﬂ__) .
5 T+m+1

One way to evaluate the relative efficiency of the two estimators is to take the
ratio of the determinants of their asymptotic covariance matrices. In this example, the
problem then reduces to taking the ratio between A and kw,,. We then have (see
Mitchell, 1989):

U :(T+m+3)(f—2)
t T+m+1 T

=(1-2/7)-(1+2/(x +m+1)).
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This quantity is decreasing in the number of regressors so that the more variables are
included in the model, the greater the loss of asymptotic efficiency through the use of

the OLS estimator.

In finite samples, however, there is good reason to expect that the performance
of the adaptive estimator will worsen as m increases. This is because, in deriving our
adaptive estimator, we employ a kernel estimator for a density of dimension m+1.
From a computational standpoint, this kernel estimator can perform poorly when m is
large. For sample sizes typical in econometrics, m need only equal three or four for

our kernel estimator to give inaccurate results.

One way to alleviate this dimensionality problem is to take advantage of our
elliptical symmetry assumption. One property of elliptically symmetric densities is that
they can be expressed as a function of a scalar random variable, where the latter is a
quadratic term in the underlying vector-valued random variable (see Fang, Kotz, and

Ng (1990, p. 46)). In our case, we have from above that:

o)

=|det Q" £7(224;7 +v Q).

pe,v)=|det Q™ f*(

We could therefore proceed by using a normal kernel estimator such as the one used in

the multivariate case to get an estimate f " of f7. We could then estimate y as

above, using the derivative 2z¢;} 7. Proposition 1 would still apply, with the
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~-(1-6)

condition n”“"?a, o (n) "™ — 0 being replaced by n 'Y« ,a(n)” — 0. In doing the

computations, we would replace {2 with a consistent preliminary estimate 9

throughout.

VI. INCLUSION OF A CONSTANT TERM

One limitation of the model given in equation (1) is that the regression lacks an

intercept. In this section, we generalize the analysis through the addition of an
intercept. It is shown that the asymptotic covariance matrix for En , the adaptive

estimate of the slope parameters, differs in the present case from the covariance matrix
in the no-intercept case by a positive-definite matrix. It is shown that if the intercept is
treated as a nuisance parameter, then the slope vector B cannor be adaptively

estimated. We can estimate B more efficiently if the intercept is known.
We modify equation (1) as follows:

1) Y =B,+BX +u,

with our other assumptions remaining the same. Carrying through the analysis of

Section II, we arrive at the following modification of equation (7):

gt(gn) - 51(9) = (77" m) Zt—-l (77,., n:BO’B) + (Bo - BOn)?n

™) *
+(B-B,)T.\(,.5,.5),

© 14
where y, = [Zy}.(BO,B, nn)j(l - Za,:’j, 6, = (77"' ’BOn,Bn-)«, and B,,-B, = ———hBon.
j=0 k=1 '\/_";
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It follows that

dt(enie) = (ﬂn - 77)' Zt—l + (B - B )7;, + (Bn - B) rt*—l
=(6,-6)H _, =h's H,

n- -1

©®)

where H, | = ( T ,1) S5, a’zag( I 1,,,), and A, (h,]n,th,h )

We then arrive at the following modification of Theorem 3.1:

Proposition 6.1: In the model with intercept, the following approximation obtains:

A,(6,,0) = —Zh 5, (O (s,.v,)

t=1

2 n
8, HOH (0 8.1, +0,() inE,,

t=1

(11

@ 14
Where }It—l(g) = (Zt—l (77, 775 BOB)' ’73 rt—l(anmB)')' and 5; = (Z}/j(BO’Ba 77)}(1 - Zak)'

j=0
As above, we can show that

J,,(6) 0 0
(87) 52 (OH,(6)5,=| 0 7P e[ |=J0).

0 wyOfM,  Jr(0)

Our LAMN limit theory holds since
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L[i 5,,&_1;”(8“\),)[1)9,,,] = L(MN(0, 22J,(6)))

The formula for our adaptive estimator 5" s still given by (32), using our
redefinitions in (9°) and (11°) of A,'6,H, ,. The asymptotic distributions of our

estimators are as follows:

N Jl(erljj
@s) (67, 9)‘}39’n)::>L(1\/ﬂV(0, =)

36) L(Vn(i, - n)B,)= L(N(oi%—)]

(39 L(Vn(B,, - B)F,,) DL[MN{O,W[l +JM[JMM - JMJMJ IMD]

0

and

B 1 1 | 1 1 "1
(37) L(n(B,,~B>!Pg,n):~f;[m{o,m@%% - IM JM) N

As mentioned above, our estimate En is not adaptive if B, is considered to be a

nuisance parameter. This can be seen in two ways. First, the component of the

information matrix J,(f) associated with the vector (B,,B)' is not block diagonal.
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Second, the covariance matrix of En in (37°) differs from that of En in (37),

1 -1
ey () (J.]\/[zz\/[z'j , by a positive definite matrix (with probability one).
0

VII. EXTENSIONS AND GENERALIZATIONS

There are two immediate directions in which the results above could be extended. In
the first place, the first differences in the regressors are assumed to follow an iid
process. It would be desirable to extend the present analysis to allow for time
dependence in these first differences. Maintaining a fully parametric specification, we
could allow the first differences in the regressors and the innovations to the
cointegrating regression to follow a joint vector ARMA process. Carrying out such an
analysis would require results on the adaptive estimation of vector ARMA processes
(an extension of Kreiss (1987b) to the multivariate case). Alternatively, and more
interestingly, we could explore the possibility of treating the time dependence and

endogeneity nonparametrically, as in Phillips and Hansen (1990).

A second extension would involve relaxing our assumption of an elliptically
symmetric density function for the errors. This assumption (or that of symmetry in the
univariate case) is used in the proofs of Bickel (1982), Kreiss (1987b), and Jeganathan
(1988). However, Kreiss (1987a) uses an alternative method of proof which allows for
an asymmetric density function in the univariate case. It would be desirable to
investigate the application of this method to the present analysis, allowing for a class of

density functions more general than the elliptically symmetric.
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APPENDIX

Proof of Theorem 3.1: We begin by stating Conditions A.1-A.5, Proposition A.6, and

Lemmas A.7-A.9. These results will be used in Lemmas A.10 and A.11, which
together prove the theorem. Conditions A.1-A.5 are specializations to our model of

Conditions (A.1)-(A.5) of Jeganathan (1994).

p(&v)

Condition A.1: The conditional density of ¢ given v, o) is absolutely continuous
e(v

in £, where e(v) is the marginal Lebesgue density of v.
Condition A.2: The derivative %‘2’«@ e(v) exists.
Condition A.3: If {6?,,} < O is a sequence such that
@ SHdO.0pe S |00 n,
then the quantities

2
4, (0,,9)v (¢ - xd,(6,,60),v,)~ v (e.,v,)] dedx = 0,(1) inP,,

@ X

(2
V(e )/fe®)

where " (g,v) =

and, Yo > 0,
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@) SHW 00w v 1 0,0 ) > a4 | =0,0) inB,,

Condition A.4: E|y(s,,v)|4,,]=0,121
Condition A.5:  f,(Y,,0,)~ f,(¥,,6) = 0,() in B, as 6, — 6.

Proposition A.6 (Theorem 11 in Jeganathan (1994)):

Assume that Conditions A.1-A.5 hold. Then, for every {«9,,} such that (40) holds, we

have
A, 6,,0)- {—Z (81(0,) - £, (0) wis,v)
“3) - %éﬁ[[(g,-l<e,,> - 84(0) w(e,,vaﬁA,-l]}

=0,(1) inF,,.
Lemma A.7 (Lemma 19 in Jeganathan (1994)):

Let W(y) be Lebesgue measurable such that f [W(y)[zdy <. Then

2
dy—>0

5w

as o —> 0 and 6> 1.

Lemma A.8 (Lemma 24 in Jeganathan (1994)):
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For each n>1, let (&,.,...,£,,) be an array of random variables and let (B,,..., Bon)
be an array of o —fields such that 8,, ... 3, and &,, is B,, — measurable.

Furthermore, let ., be the trivial o —field. Assume that

@) Y HEI.]-0,0

and, Vo > 0,

@5 Y e 12,

>a))

Bria| =0, ().

Then

0 SHEIp..]-FE 0,0

Lemma A.9 (equation (2.32) on p. 46 of Hall and Heyde (1980)):

Let &, and B,,, t=1,...,n, be as in Lemma A.8. Then, for any constants t>0 and

w>0,

ax ént

> T) <o +P[iE[§it J(&] > ) B |> Tza)j.

t=1

~ )

We shall complete the proof of Theorem 3.1 in two steps. We first show, in Lemma

A.10, that if Conditions A.1-A.5 are satisfied, then (11) is implied by Proposition A.6.
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We then show, in Lemma A.11, that Conditions A.1-A.5 are indeed satisfied for our

model.
Lemma A.10: Equation (43) implies equation (11).

Proof: Substituting (9) into equation (43) above, we have

A8, 0) = =3[0, - 6) H' \y(e,,v,)]
A7 11 i .
=5 2O, - 0y HLy (e, )| |41+ 0,0) in B,

We now show that the right-hand side of (47) can be rewritten as

@9 206, ~ O How(e,v)l- 2 S B0, - 6) Hay(eom)| |41+ 0,) inB,

. 0
Noting that H, , = H, , +{
v

} we have
t

x

6, - 6) H \we,,v)]

t=1
n |

-3 6,0 [H o, ﬂw(w)

.
=37 (0, ~ 0y H_y, +(, -0 [V

t

w(snv,)}

=2[(0, - 6) H_y(s,v)]+0,Q1) inPF,,,

t=1

since
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;[(9 —9)[ Jw(ep »} Z[ [V,(O)H

=y 3N o) in,

the final equality holding because {v,y(¢,,v,)} is an iid sequence, because

e )] < (5] (Eweny)” <o

(by the Cauchy-Schwartz inequality and our assumptions), and because, as shown by

Jeganathan (1988, p. 69), E[wy (e, v)|=
We also have
1 . 2
EZE[’(Q,, - 9)' H:_ﬂ//(gtrvz)l IAt—l]
t=1
1 0 0 I 5
49) =-> E(,-0)|H,,+ H, , + 0, -0 (e,v)4,.,
2 t=1 vt vt

1 )
= 2 E0, -0 H H, (0, - Oy (e, v )]+ 0,) in P, .
t=1

The o0,(1) result in the final line of (49) holds due to the final line of (50) below and to

the final line of (57) below. We begin the verification of (49) by noting that
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" 0
S2HO,-0) [ }H O, -G, >IAH}

:*Z (9 9) l:‘?il[ - 1' rt—l'](en - O)V/z(gtavz)lAt—l}

—7 0 —7 0
1 - O [} 1
=—h, ZE Vn 1 IV }[Zt—l I ] Vn 1 '//Z(Envt)]At—l n
2 t=1 0 __[ vt 0 _
LL n n
| T 9o 0
:Ehn' ZE th;—'l Vi r 4 (gt’ vt)lAt 1
= | T
1 - 0 0
=—h'l& AVvZ v, *vIL e,y A
2]1" ZE -1 %(t t)’At—l} ZE[ - t—-1 nz t z){At_l A
t=1 [ n t=1

G0) = 0,(1) inF,,.

‘We need to show that the two non-zero blocks of the matrix in the second last line of

equation (50) are o,(1) in F,,, i.e. that the following two conditions hold:

1) ZE[ S ACR Jzo,,(l) inp,,,

n
1 .
(52) 2 EVLL W EovAa]=0,0) in P,

We begin with (51). Consider the (7,£)" element of the matrix on its left-hand side:
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n

1
'n_%‘ o E[vitZZ,t—lwz (gt: Y, )!At—l]

1 n t-1 ]
3 ZE{"&(Z 7 (B, nn)ut—k—lj y’ (gtrvt)lAt—I:l fl<i<p
n’? = k=0

I

1 t-1 . :
—TAZEI:VH(Z}/I((B) nn)gt—k—l-!-p) y/z(gt’vt)lAt—l} I.fp + 1 < f
n- t=1 k=0

We shall prove the o,(1) result for the first case only, since an identical argument can

be used for the second case.

We have

Oz LEARIERS VR

n< =1

= %/;i !E[vitzz,t—N//Z (&,,, )IAT—I ]’

(53) ZE[} eV (@4

= op(l) . OP(I) =o0,() inPF,,.

The O,(1) result follows since E[l//2 (8t,vt)|At_1] is an iid sequence with finite mean.

We must now show that

—= max

.\/_—te{l Z}’k(B T )Vilhy iy

=0,() inPF,,.

Now,
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1 t-1
B max} Z (B v,

n te{l..., o

-
S——Ete{n}- kzlyk(B nn)vlt t—k— ZI

,,,,,

This final equality holds because

<A Vt>1

t—-1
JA<oos 1. Z|yk(B, 7,)
k=0

and because

(54) max vilut—k~l

tefl,...,n} \/E = 011(1) n ])0,71‘

To verify (54), we apply Lemma A.9, setting &, = &l\if‘_ﬁ‘—‘l and F,, =o0(..(¢,V,), so
n

that we have

Y20

To obtain our desired result, we must show that

E[ tkl vzzutkzl>7\/)
ntl

Poia| = 0,0 in B,
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Since the summation is over a sequence of stationary and ergodic random variables

with finite mean, it follows that

n;E{(vztutwk ¢ U 4 z{ > TI) B 1]
E[( :k.e) xttk£!>T\/—)]_0(1) ink,,.

The result (54) follows from the fact that

E[(vitut—k-—l)z 'I(lvitut~k~z] > T\/;?—)] = o(1).

This verifies (51). To verify (52), we write the absolute value of the(i,£)” element of

the matrix on its left-hand side as:

EOD (RN VA

< ;{ Z ‘E[vitrl,[——l '//2 (gt > vt)|At—1 ]l
65 < _ZE“ r=14 (gt:vt)“At 1]

< (l max ‘v,,I‘“ 10(;11—iE[l//2(8,,vt)]At—1D

nle

=0,1)-0,()=0,(1) ink,,.

The first component of the second last line of (55) can be rewritten
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t-1
- maXn}ZJ’j(Bann [ Li-j Za".XM - k)vit—vltvit
j=0

1
ﬁ—m
nteft, {

ZVJ(B Un)zak Lt-j-kY,

+|v,v, I}

yJ(B nn Zak L, t—j— kvzt

(56) '(B717n)‘X'L’t J lt

1 t-1
<— max
Y RRE

.....

We now show that each of the three terms on the right-hand side of the final inequality

in (56) is 0,(1) in F,,. We begin with the third term, for which we can show in the

same way as we showed (54) above that

VoeVie

57 max =0,(1) inF,,.

We now consider the second term on the right-hand side of the final inequality in (56),

showing that

B,
(58) max 2}71( 77,;1) “J’}:

o,() inkF,,

tG ,,,,,

The left-hand side of (58) is less than or equal to

‘X;,I— jvit

=0,(1) inF,

a.n
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since

X, v

Lt-f"it
n
=0,10)-0,(1) inF,,,

Ky (max Y
NI AN

where the o,(1) result can be verified in a manner analogous to the proof of (54) and

the O,(1) result follows from (10.10) on p. 70 of Billingsley (1968).

We now consider the first term on the right-hand side of the final inequality in (56):

p
ViB) Y @ X,

k=1
" l

t-1

E ia’z{ max 3 '71»(]3, nn)‘Xl,t—j—kvz‘tI:l

tefl,....n} =0 | n

P
=X ao,\)=0,(1) inB,,
k=1

using (58).

We have shown (51), (52), and therefore the final equality of (50). We complete the

verification of (49) by noting that:
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n 0
s e )0 e -ore.]

1 n 0 0
(59) :Ehn'ZE {O _YL}//Z(EHV!‘)‘A,_] n

n2

= op(l) infk,,,

because

n

1 .
60 =3 B! v (v ]=0,0) inB,,

t=1

The (7,£)" element of the left-hand side of (60) is

1 |
;2— Z E[vitvet l/lz (gt > vt)lAt*l ]
t=1

t$a§}|vitv[t| 177 )
o ( 2 Ey (a,,v,ﬂA,_l]j
t=1

n n

=0,()-0,()=0,(1) in P,

by (53) and (57).

We have now established the equality of (48) and the right-hand side of (47). The

negative of the second term in (48) is (using the notation that

w’ (v,)= E[l//z(gt: vt)lAt—l]):
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LS H6, -0 H, 0, - O e,
=230, 0 B H L 0, OF e,

l n
= -2—2 6,-60)H,_H,_'6,-0W W)
(61) S
2{ n
= 72 6,-6)H, H,_'©,-06)
t=1

4320, O H\H 0, ~ 0\ W) - 7)
t=1
A
=220~ 0y H H 6, 0) 0, in B,
t=1

the final equality of (61) holding because

2 (0.~ O Hosl, ! (6, - 0\ - 7)

Zt—lzt«l' Zt—lrt—l'
n %

1 n

= N N AL
2T,z ol pre)-7)
n’? n

=0,(1) inkF,,.

To prove the final equality above, we must show that the following three results hold:

6 2.2 (W0)-F)=0,0) inB,,

t=1

(63) ~§7iZHFH' (W)~ 4) = 0,Q1) inP,,, and
n’? 4

1< .
6)  F XL (W 0)=2)=0,0) inF,,
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To show (62), (63), and (64), note that

I3 2 2\ _ .
~ (W) - &) =0,) in B,

t=1

because W*(v,) is iid with mean A*. The results follow because it is easily shown that

(65 max|Z,,.Z,,|=0,() inP,, Viiec{l..,p+gq)

te{l,....n}

z,, T . |

(66) max “j;’” =0,) inP,, Vle{l,.,p+q},iell, . ,m
(67) m Levilin =0,() inP,, Viie{l, .  m
te{l,...n} _\/E Y o.n 5 5eeey .

Results (11) and (48) are equivalent since (8, — ) = &,h,. This completes the proof of

Lemma A.10.

Lemma A.11: Our model satisfies Conditions A.1-A.5 above.

Proof: Conditions A.1 and A.2 are primitive conditions on p(g,,v,) that we assume to

be satisfied.

We now verify condition A.3. We verify equations (40), (41), and (42) above, which

can be rewritten as the following three equations, respectively:
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(68) ZE[

* 2 .
b 8,8, (e v |4.]=0,@) B,

2
dedx =o0,()inF, .

h' 5nH:_1[1//*(5 ~xh'S H, v) -y'(e, vt)]

n =10 Tt

n 1
(69) Z”
t=1 0
and, Vo >0,

x 2
hn' 5nHt—ll//(€t: vt)| I(

ne

) >H b 8, H. w(e,v)| > o)A, ] =0,() inB,
t=1

We begin by verifying (68). It is sufficient to verify that:

71) ;E{

b8 Hoy (e, v |4.]=0,() inB,,

and that

n ' O 2 )
(72) ZE hn 5;1 v V/(gt>vt) IAt—l = Op (1) n })H,n'
t=1 t
(72) has been verified above, so we need only verify (71). To do this, we proceed by

showing that our model satisfies equations (44) and (45) of Lemma A.8, where we use

the following notation:

&= Bl 5,8 (e, v |4}
ﬂnt = q-((gjavj))j = la---at):

so that (44) and (45) become, respectively,
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hn' é‘n‘[{t«l l//(gt)vt )I2,At~l] ﬂn,t—l ] = Op (1) il’l PZP,m

(73) Z;E[E[

n qlhn' 5nHt—1W(8t>vt)!zlAt—l}

™ E

According to Lemma A.8, verification of (73) and (74) is sufficient to verify (71).

=o0,() inF,, VYo>O0.

h, 5nHt—1W(gt7vt)l2|At~l] > a’) :Bn,t—l

This is because if (73) and (74) hold, we get the result that

3 6., e 14,.)

-2

=0,() +0,(1)=0,(1) inP,,.

hnl 5nH;—1 W(gt’ vt )Iz lAt—ll

ﬁn,t—l] + Op(l) in })fi’,n

The left-hand side of (73) can be rewritten

Z lhn' é‘nHt—l le[E“ W(gta vt )|2|At—l] ﬂn,t—l]
t=1

since H, , is independent of y(¢,,v,) and incorporates only information known at #-1.

Since

ey e,
- Eh'//(gt»vt)|2 Bt

=1’ <o,

B

verifying (73) amounts to verifying
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n

75 >

t=1

h'6H, [ =0,Q)inF,,

We explicitly calculate the weak convergence properties of the left-hand side of (75).
The result of this calculation will be important not only to the verification of (75) but
also because it will give us the matrix in the quadratic term of the expression for the

asymptotic distribuﬁon of the log-likelihood ratio, which we can use to distinguish

between the LAN and LAMN components of the model.

The left-hand side of (75) is equal to:

hn| 5n‘[It——1}‘It—l' énhn
t=1

1 1
-1 0 —1 0
n Z-—
(76) =) A Vn 1 [rt I}Zt»-l‘ rt~1'] Vn 1 h,
t=1 0 — [ 0 -7
L n n
1 1
n ;Zt—IZt—ll “3ZZt—1rt—1'
_ ' h
= 3| ] o e
=t _?;rHZz—l n_2r1~1rt—l
LR ‘

We shall consider the four blocks of the matrix in the final line of (76) separately, but

first we introduce the following notation:
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t-1

r'(Ly=>y,Bn ),

J=0

t=1-r

v =Yy (B, Bn);

j=0

=370

7, (L)=>7,0) .. OF.
j=0
First, from Lemma 21 in Jeganathan (1994),
1& ~ ~ .
(77) ;Z Zt—IZt—l' :7/(1)2 Var(”l » gl) + Op (1) n P6’,n:
t=1

where

and with (u;,7=0,%1,...) defined as follows (see Lemma 20 of Jeganathan (1994)):
* 2 * i * *
u =y au_ +y be  +e,
j=1 j=1

for all #=0%1,..., with (&],7=0,£],...) forming an iid sequence with &, =&, V¢>1.
Denote the probability limit of the right-hand side of (77) by J,,(6).

It will now be shown that:
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| -
x

P 1
(78) ) rt—lrt~1' = 7(1)2 (1 - Zak)z IMMZ'a
k=1 0
where M, is a Brownian motion with covariance matrix E[‘GVI']’ and that
1 & \ }
(79) _‘%”Zzt—lrt—l = Op(l) n Pa,n-
n t=1

We denote the right-hand side of (78) as J;.(6). To verify (78), note that

1 n
Y rt~1rl—l'
n oo
1 &Gy S
=— y'(L) /Yx‘"zakXt—k =V
no k=1

[refs-gan] ]

k=1

Also note that
r p -1 s
X - ZakXt—k = (1 - Zakj‘Xt—p + Z(l B Zaﬁjvt_s‘
k=1 k=1

s
Denoting c; =1-> a; , we have
k=1
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1< \
?Zrt—lrt—l
t=1
1 , p-1
(80) = -7—7‘2—21: 4 (L)(CZ‘X;~p + zoc:vt—s -V
1= s=
-1
: l:yt(l‘)(c;/‘ft—pl +Z csnvt—s') _vtl'
§=0

We consider the following six non-redundant components of the right-hand side of (80)

separately:
1 < n "y
@) X[ DX, [y @ex.,]
t=1

n

1 t n t = n '
®) =Xl <L>cht_,,]{y DXe, }

=1

n

6 —>[rwex.,

no

(84) 72 },t(L)Z csvt—s 7t(L)Z csvt—s'}
n t=1[ 5=0 Al s=0
1 n [ , p-1 g
(85) — 4 (L)Zc:vt—s Vt'
n t=1] §=0 __
1 & ,
@6) —). vv'.
n e

We begin by showing that (82)-(86) are each 0,() in £,

ne

54



We begin with (82), which can be rewritten as (using results analogous to those on pp.

978 of Phillips and Solo (1992)):

-—Zc (m(l}X pu+27 (X *Xv)j

t=1

— 1
= Z creny (1) [ Mydd,'
5=0 0
because

18, < ,
;ZC:CP (},0(1) t—p t s +Z}/ (1)( t-p t s-r +)‘(:‘—p—rvt~s )j
s=0 t=1

p-1 1
= > el (1) [ My,
5=0 0

We now consider (83). We can rewrite it as:

1 . , .
o2 (v'@Wepx,_, v, =0,Q) inB,,

because

n

1 1
~2 (7 (DX o =y (e, [ Modndy.
0

t=1

We can rewrite (84) as

" E PZ 3 (Vt(L)vt_s)(Vt(L)v,‘,’)} =0,(1) inkF,,,

1
r=0 tl
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because, using results on p. 980 of Phillips and Solo (1992), we have

n

Y @y ) @) =7, Ew ] as.inB,

t=1

We can write (85) as follows:

n!:nz[ Z?’j(Baﬂn)C:"t_j_s :H“O (1) inP,,

t=1] j=05=0

because

1|l e! )
_Z!:Zzy (‘B nn)cs t—j—s t} }/OCOE[VIV1|]+OP(1) ZnPH,n‘

Ry j=0s=0

It is obvious that (86) is o,(1) in F, .- Therefore, in order to verify (78), we need to

show that (81) converges in probability measure to J.(f). We can write (81) as

follows (see Phillips and Solo (1992, p. 978)):

n2

c t-1
- {yg(1))4_p&_p'+27£<1>()@_px X, X )}o,,(l) in 8,

r=1

) 1
= ey () (MM, in B,
0

We have shown (78) and must now show (79), which can be written
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;}%tz; Zt—l (rt*—l - vt)l
[ Ot e Y D)

1 & .
——nTAZ_;[(}f’(L)(ut_l,.‘.,ut_P,gt_l,...,gt_q)'>v, ]
=o0,()+o0,(1) inF,,,

the second term in this sum being o0,(1) because

n

%Z[(W(L)(u,-l,.--,u,“l,,é‘t_l,...,8,_4)’>Vt'] =o0,(l) inFk,,,

t=1

and the first term being o,(1) because

I3 (2105 NSRRI ) (21055 A

nn

:»yafc,,UcMMm)

where M, is a Brownian motion and 7 is a constant.

We then have:

1 1
—Z 2\ Z 57 Z L
n 35 -1 1 J (9) 0
@n | ] m :>J(<9)E[ ZZO !
=1 7rt—lzt-l' — Ll t
n n

Equation (87) confirms (75) and therefore (73). In order to complete the verification

of (68), we must now verify equation (74). Its left-hand side can be written as
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[(vnoria)

(83) Z A Vo> 0.
= 1w, ol >0)lB.

Recall from above that
Hyeonf 4= [lyen 22 ds =),

since v, belongs to the information set 4, , (although not to Brii)-

We can therefore rewrite (88) as

(89) @(h, 8, H |- PO > @), ] Yo >0.

We can rewrite (89) as

Z A W) > IJ W*(We(v)dv,
which is less than or equal to
(Z wtley )R_‘; I [| W) > te{l x ha) S H. 1'] W (v)e(v)dv

=0,)o,(M)=0,(1) ink,,.
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The O,(1) result is just (75). The o,(1) result holds because

tg{??’,x wtde on (We(V)dv =1 <.
v.n» NOte that
Zt—IZt—l' Zt_lrt_ll
n n’ "
rt—lzt—l' rt—lrt-l' "
n n’

w.n» SO that

max
te{l,...,n}

h'S H, , =o0,() inPF,,.

n U nt -1

So (74) and therefore (71) is verified, and so is (68). We must now verify (69) and

(70) to complete the verification of Condition A.3.

0
We now verify (69). Using the fact that H, , = H,_, + L }, verifying (69) involves
t

verifying that the following two conditions hold:

(90) “dedic =0 (1) inP,

Ht—l[l/f &- Kh 5nHt—-1> ) W*(g’vt)]

.n?
=] g

and

2

dedk = 0,(1) inF,,.

©1) Z”

t=1 ¢

B, 5[ }[ e-xh! 6, H )~y (sv,)]
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To verify (90), we again apply Lemma A.8, defining &2, as follows:

2
dedx.

n -1

So we have

i j [[[yo(e =, 8,H )~ y.(e,v)] dedvix

(92)215[5 " 1]

where y.(g,v) = li@g;—v—)}p(g, v)_%.

The right-hand side of (92) is less than or equal to

Sms,

=0,(1) j 0,()dx =0,(1) inF,,.

tefl,...

t 1| )j‘( max H[l//*(é'—ldln' 5 H ,v)- t//*(g,v)]zdgdv)dic

That the component under the integral is 0,(1) follows from Lemma A.7, the fact that

flwc

k'S8 H \|=0,(1) in B,,.

n U nttt-1

w.(e,v) dedv= 7% <o, and the fact that max

.....

This result satisfies both conditions of Lemma A.8, so that (90) follows immediately.

We can rewrite (91) as
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“‘[l//*(a —-«xh, 5,,H,t1,vt) ~-v'(s, vt)]2 dedx

07"
h'&n[ J
y

2

_ZhB" Vi hB"J‘H[V/* g xh'S H, ., ) z//*(g,v)] dedvdx
S(ZM) ( max H[l//* e-xh'S H, ) w*(e,v)]zdgdv)dx

pam) n tefl,...,

= oP(l)j‘ o,(Ddx =0,(1) inF,,.

So (90), (91), and therefore (69) are verified.

To complete the verification of Condition A.3, it remains to verify (70). This entails

showing that

Heweov) 1 5,1 w(e.v)|> 0)4.]

©®3)
=o,() inF,, Vo >0,
and
o) ZE{h s [ }//(st, v) 1, 6By (ev) > )4, }

=o0,(1) inF,, Vo>0.

We begin by showing (93). Again applying Lemma A.8, we set

Gro =B, 0, H, e v Y 1) 6,5, 1y (zov)] > 04,

so we have
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> E{£]pu]

©s) ",
=B Hph, 5,5 ey 1{n;

Hy e )| > o), |

Bru]

2
Showing that the right-hand side of (95) is E[! w(&,v,) ﬂn,,_l] =X <. g sufficient to

verify (93). It can be rewritten as

| { {lw(et,v)l 1[!5//(8,,%)!

ﬂn,tlJ
which is less than or equal to

(et frst g |

The first component is O,(1) in F,,, so we need only show that the second component

s

t-1

n

[1 "]

1~ Op(l)

is 0,(1) in F,, V@ >0. This will follow from the facts that r{rllax} !
f te{l,...,n

in F,, and that E[‘l//(et, ,){

IBnt 1] /12<00
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All that remains in order to verify (70), and to therefore verify Condition A.3, is to

|

) Bz 1 UW8~%N X ]M

t-1

verify (94), which can be written as follows:

hé’

L“H

=0,(1)-0,()=0,(1)inF,,.

vleus) ol

t_.

,,,,

Condition A.4 is satisfied due to equation (108) of Jeganathan (1994), where it is

shown that Jw(a, v)(p(e,v) / e(v))de =0. As for Condition A.5, we must verify that
ﬁ,(Y 0 n) ﬁ,(Y 0,6) 0,(1) in £, as 6, — 6. The result follows from the following

facts:

XO;H)

X181 o> V-5 NS AP, 68

1~p>-

@) £(¥2:6)= (..
.fo(gl_q,,..,go;Yl_P, ST X X6

@Ahww SRS ANRNS A5 SIS 418
_]g( . E_gs-- 80;Yl_p,...,I{,;Xl_l,,...,%;ﬁ)

since {X,}"  are drawn independently of 6; and
OFACINERS SRS A5 AR a8

R0 GRS AN A9 AERN A7)
:op(l)inPgm
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as 6, — 0, by an earlier assumption.

This completes the proof of Lemma A.11.

We have shown Lemmas A.10 and A.11, proving Theorem 3.1.

Proof of Theorem 5.5: We begin by verifying the following lemma:
Lemma A.12: Conditions 5.1-5.3 are satisfied for our model.

Proof: Condition 5.1 holds by earlier assumptions.

To verify Condition 5.2, set U,,(0)=6,H,_,(6). We first verify that {U,,t}f=1 SO

defined satisfy (25) and (26).

The left-hand side of (25) can be rewritten as :

n

2

t=1

h, 8,H._(6) .

This quantity can be shown to be O,(1) in F,, in the same manner as was the left-hand

side of (75). The left-hand side of (26) can be written as

max
te{l,...,n}

hn' 5n‘H;-l (g)l’
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which is 0,(1) in F,,. (Recall that in the process of verifying (74), we showed that

max
te(l,...n}

hn' 5nflt~l| = Op(l) in I)B,n')

To verify that (24) holds, recall that
gt—l (en) - gt—l (6) = hn' 5;1[{[—1 (nnnB)

so we must verify that

n

[k 6. (H (1, B) - H @) =0,() inB,

t=1

or that

hn' 571 [Z Ht—l (nna B)Ht—l (n;n B)' }6nhn + hn' é‘n !:Z }It—l (g)fjt—l (6)’ :lé‘nhn
. t=1

t=1

®6) -n, 5n[§n:Ht_1(9)fi_l(77n>B)' }5,,}'" —h, 5n[if% (n,, B)H, ,(6) }5,,}1”

t=1

=o0,() inF,,.

Equation (96) will be satisfied, since

3

s ZH -1(77,1,B)H,_1(77,,,B)'}5n = J(6),

3

5 iqu(e)Ht_l(e)'}&,,aJ(e),

X

5 rifﬁA(e)H_l(n,,,B)'}a,, = J(0), and

| t=1

3

5 ifiq(m,B)H,_l(e)'}an=>J<6>.
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To verify Condition 5.3, set p+q+m=s and V,(6) = U, (), so that (27) is

Z":|zz 8,H_(0,)-v35,H,_©O) =0,1) inPF,,, or
d 6{& H,,, >Ht_1(9n>'}5,,u v 5@ H, \(0)H, ,(8) }&u

t=1

- an[i H, (6,)H, ,(6) }Lu s 5,,[2 H, (O, ,(6,) }@u

t=1

=o0,(1) inF,,.

This can be verified in the same manner as was (24) above.

To verify (28), set & = 0, so that we must show that

§,H,_,6) =0,0) inP,

(95) rrllax} n

tefl,...,

The left-hand side of (95) is

1 ’ 1 :
max n EI ’ [ZH(H)} = max n—ﬁZH(Q)
tefl,...n} 0 l[ r,_.(0) te{loon} —I—TH(H)
n n
_ Z,0) Z,,(0)) , (L. (0) T,,(6)
- telga)i} nl:( n ) * ( 7% )}
= max ':Zt_l(é’)' Z_(0)+ (—————r*‘l(e) 1.9 )}
tefl,..,n} n

) m?.xn}(Zz—l(e)' Zt—l(e)) + max (rtﬂ(e)' r,_l(H))

te{l, {L.-..n} n
= 0,)+0,()=0,(1) inP,,
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We have verified that Conditions 5.1-5.3 are satisfied for our model. Since the
remaining conditions of Proposition 5.4 are also satisfied, equations (29), (30), and

(31) hold for our model, so we may now proceed to verify (33).

From (18) and (32), we have

wxy 1
00 80,856 -| L35 A,

By the definition of fn , and using (31), we have

©7) [1‘ —‘5—(})} = 5(0)+0,()) ik,

n

Using (30), we have

©8) A,6)=A,(0)-S,Oh, +0,() inP,
Combining (98) and (29) gives

09  A,6)=A,0)-S,(0h,+0,(1) inB,,

so that the second term on the right-hand side of (96) becomes, using (97), (99), and

the fact that A, (6) = W,(6),
(100) —S,' (O W,(6)~S,(O)h,]+0,(1) in By,

By definition,

67



(101) S, =S8,(0)+0,Q1) inP,,
while (19) gives us

W, (6,)=W,(6)- S, +0,(1) inF,,

(102)
= W,(0)-S,(Oh,+0,(1) inPF,,,

the second equality holding due to (101).

Combining (101) and (102), we get
103) 8w 6,) = S, @YW, (0) - S,(O)h,]+0,(1) inF,,.
Using (96), (100), and (103), we get

5,'@6,-6,)=0,(1) ink,,

our desired result.
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