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SUMMARY

The paper reports simulation and empirical evidence on the finite-sample performance of
adaptive estimators in cointegrated systems. Adaptive estimators are asymptotically
efficient, even when the shape of the likelihood function is unknown, and so provide an
attractive alternative to commonly employed Gaussian pseudo-MLE’s when the data are
believed to be generated by some unspecified non-Gaussian distribution. We consider
two representations of cointegrated systems - linear cointegrating regressions and error
correction models. The motivation for and advantages of adaptive estimators in such
systems are discussed and their construction is described. A Monte Carlo study compares
the finite sample performance of the adaptive estimators with the Gaussian pseudo-
MLE’s for various thick-tailed densities for the innovations, and obtains very
encouraging results. An empirical application to estimating a forward exchange market
unbiasedness model in an error correction representation finds that the daily data are
thick-tailed and that the adaptive estimator provides a much stronger inference in favour
of the unbiasedness hypothesis than does the Gaussian pseudo-MLE.






1. INTRODUCTION: ADAPTIVE ESTIMATION OF COINTEGRATED MODELS

This paper reports the first attempts to gauge the finite-sample performance, through
Monte Carlo simulations and an empirical application, of the new technique of adaptive
estimation of cointegrated systems. We obtain highly encouraging simulation results and
a very striking empirical result, but before presenting and discussing these results, we
provide an expository discussion on the technique of adaptive estimation, its history, its
motivation, and its application to cointegrated models.

The data used to estimate econometric models often possess characteristics that do
not conform to the assumptions under which standard estimation techniques have
desirable properties like consistency, asymptotic normality, or efficiency. In such cases,
empirical inference can be improved through the use of methods that do perform well
given certain nonstandard characteristics of the data. Two basic examples are feasible
generalized least squares and instrumental variables. The former is designed to deal with
autocorrelated or heteroskedastic residuals in a linear regression model, a situation in
which the ordinary least squares (OLS) estimator is inefficient, while the latter deals with
endogenous regressors, in which case OLS is inconsistent.

Hodgson (1995a) falls within this general sphere of research concerned with the
improved estimation of models when the data are nonstandard. Specifically, it deals with
efficient estimation in the presence of data that are both nonstationary and non-Gaussian
(1.e. non-normal). We consider data whose nonstationarity is due to the presence of unit
roots, and investigate the asymptotically efficient estimation of cointegrated models

whose underlying innovations are drawn from unknown and possibly non-Gaussian



distributions. Two popular representations of cointegrated systems are considered: (i)
linear cointegrating regressions with possibly endogenous regressors and time dependent
errors, and (i) reduced rank vector error correction models.

The presence of a unit root (i.e. an integrated, or difference stationary) component
is often an implication of economic theory and is a more or less debatably well-
established empirical fact for many economic and financial time series. The work of
Samuelson (1965) and Mandelbrot (1966) provides theoretical justification for the
existence of unit roots in speculative price series, and there is a large empirical literature
devoted to testing the martingale hypothesis in such series (see, for example, Cootner
(1964) and Fama (1970)). The seminal study by Nelson and Plosser (1982) found that
the unit root hypothesis could not be rejected in favour of the trend stationary alternative
for several key U.S. macroeconomic time series. That real aggregates possess stochastic
trends is an implication of neoclassical growth theory, as noted by King, Plosser, Stock,
and Watson (1991).

There is also considerable empirical evidence of non-Gaussianity in many
integrated economic and financial time series. That speculative price returns are non-
Gaussian is by now a widely accepted stylized fact. Such series are prone to occasional
large shocks and bouts of high volatility, which can be associated with excess kurtosis or
thick tails in the density of the return process. Seminal works in this area are Mandelbrot
(1963) and Fama (1963,1965). Modeling conditional heteroskedasticity in the returns
series can only partially account for the high kurtosis - researchers commonly find the

innovations in ARCH models to still be non-Gaussian, as noted by Bera and Higgins



(1993) and Bollerslev, Chou, and Kroner (1992). The presence of infrequent large
shocks, and a corresponding thick-tailed innovation density, has also been found in
several macroeconomic series by Blanchard and Watson (1986) and Balke and Fomby
(1994).

In econometric models containing two or more integrated time series, we
frequently need to estimate long-run, or cointegrating, relationships. A collection of
integrated, I(1), time series are cointegrated if they share stochastic trend components, in
which case there is common long-run co-movement among the series. Formally, they are
cointegrated if there exist among them one or more linear relationships that are stationary,
or I(0), and so have spectral density functions that are positive and finite at the origin.
Such linear relationships are known as cointegrating vectors and it is their estimation that
is the topic of Hodgson (1995a).

The cointegrating vectors characterize the long-run dynamics present in a system
of I(1) time series. However, most systems generally also have short-run, transitory
dynamics. These can be modeled in a variety of ways, giving rise to different
representations of cointegrated systems. One approach is to employ a linear cointegrating
regression, with the regression errors and regressor first differences following a jointly
stationary process that that may or may not be explicitly parameterized. Phillips and
Durlauf (1986) and Phillips and Hansen (1990) analyze cointegrating regressions with
nonparame;tric transitory components. Hodgson (1995b) assumes a parametric model in
which the regression errors follow an ARMA process and the regressors follow a random

walk.



A second approach is to employ an error correction representation, in which the
first differences of the variables are expressed in a vector autoregressive representation
with a lagged levels term included among the regressors. The coefficient matrix on the
latter term has reduced rank equal to the number of linearly independent cointegrating
relationships in the system, and can be factored into two matrices, one consisting of the
system’s cointegraﬁng vectors and the other consisting of error correction coefficients,
which reflect the adjustment of the variables to transitory deviations from their
cointegrating relationships. Any cointegrated system has an error correction
representation (see, for example, Engle and Granger (1987)), with the short-run dynamics
being fully parameterized through the error correction coefficients and the coefficient
matrices on the lagged differences. Hodgson (1995¢) considers the estimation of error
correction models.

Engle and Granger (1987) recommend estimating cointegrating vectors by OLS,
which possesses the property of superconsistency, i.e. consistency at the rate »n, where n
denotes the sample size. The OLS estimator is the subject of analyses by Phillips and
Durlauf (1986) and Stock (1987). Although being superconsistent, OLS is asymptotically
mixed normal and asymptotically efficient only under the restrictive assumptidns of
exogenous regressors and iid Gaussian errors. The exogeneity and independence
assumptions are relaxed by Phillips and Hansen (1990), whose fully modified OLS
estimator is asymptotically mixed normal under very general nonparametric
specifications of the endogeneity and dependence. Similar properties hold for the

estimators of Park (1992), Phillips and Loretan (1991), Saikkonen (1991), and Stock and



Watson (1993). These studies all obtain estimates in a linear regression representation
that are asymptotically mixed normal and that, furthermore, are asymptotically efficient
(i.e. have an asymptotic covariance matrix equal to the inverse of the asymptotic
information matrix) under Gaussianity assumptions on the innovations to the Wold
moving average representation of the regression errors and regressor first differences.

Little work has been carried out to date on efficiently estimating cointegrated
models when the innovations are not Gaussian. Phillips (1993b) has derived robust fully
modified LAD and M-estimators that account for endogeneity and dependence in the
same manner as do Phillips and Hansen (1990) in the fully modified OLS case.
Jeganathan (1994) has derived adaptive estimators for the case of iid errors whose joint
density function with the innovations to the random walk regressors is elliptically
symmetric. Hodgson (1995b) extends this analysis by using Kreiss’ (1987) results on the
adaptive estimation of ARMA processes to allow the errors to the cointegrating
regression to have a stationary and invertible ARMA representation, although
Jeganathan’s (1994) assumptions of elliptical symmetry and random walk regressors are
maintained. A further extension to allow for more general dependence and endogeneity
along the lines of Phillips and Hansen (1990) would be desirable.

Estimation of the cointegrating parameters in error correction models is
considered by Johansen (1988) and Ahn and Reinsel (1990). Both analyses derive
superconsistent, asymptotically mixed normal, and asymptotically efficient Gaussian
maximum likelihood estimators. If the data are non-Gaussian, then the first two

properties hold but efficiency fails for these authors’ estimators. Hodgson (1995¢)



considers the extension to non-Gaussian (but symmetric) innovation densities and derives
asymptotically efficient adaptive estimates.

As outlined above, existing methods allow us to efficiently estimate cointegrated
models containing transitory dynamics only if we are willing to assume that the
innovations are drawn from a Gaussian distribution. Hodgson (1995a) is concerned with
the efficient estimation of such models when the innovation density is unknown to the
investigator and may be non-Gaussian. If the density is assumed to belong to some
known parametric family, Gaussian or otherwise, then asymptotic efficiency can be
achieved by computing the maximum likelihood estimator, as in Johansen (1988) for
Gaussian error correction models, or by employing an asymptotically equivalent iterative
estimator, as in Ahn and Reinsel (1990), also for Gaussian error correction models.
However, if the parametric family to which the innovation density belongs is unknown,
then the shape of the likelihood function is unknown, rendering infeasible the
computation of the maximum likelihood estimator or asymptotically equivalent iterative
estimator. Nevertheless, the question arises as to whether efficient estimation is
somehow possible - in other words, is it possible to “adapt” for the fact that the density is
unknown by using an estimate of it.

The concept of adaptive estimation, as employed here, was first formulated by
Stein (1956), who asked if there were models whose parameters of interest could be as
efficiently estimated not knowing some infinite dimensional nuisance parameter as they
could be if the nuisance parameter were known. In our framework, the nuisance

parameter is the density function of a model’s iid innovation vector. Can we estimate the



model as well, asymptotically, not knowing this density function as we could do if it were
known? Over the years, this question has been answered affirmatively for several
important models. The location parameter problem, in which a sequence of iid
observations are used to estimate the location of the density from which they are drawn,
was considered by Beran (1974) and Stone (1975). They showed that in the case of a
symmetric univariate density of unknown shape, adaptive estimation is possible, and
derived expressions for adaptive estimators. Linear regressions (among other models)
were analyzed by Bickel (1982), who showed how to adaptively estimate the intercept
and slope parameters assuming a symmetric error density and the slope parameters
without assuming symmetry. Manski (1984) studied the adaptive estimation of nonlinear
econometric models, and Kreiss (1987) brought the concept of adaptive estimation into
the time series literature with hisv analysis of ARMA models. Steigerwald (1992a)
adaptively estimates linear (non-cointegrating) regressions with ARMA errors, and
Linton (1993) investigates the adaptive estimation of ARCH models, an important step in
light of the aforementioned empirical findings of conditional non-Gaussianity in ARCH
models. Finally, there is Jeganathan’s (1994) work, referred to above, on the adaptive
estimation of cointegrating regressions with iid errors.

Our understanding of how to efficiently estimate a model whose likelihood
function is unknown is aided by first considering the case where the likelihood is known.
In this situation, an alternative approach to calculating the maximum likelihood estimator
is to begin with a preliminary estimator that is consistent (at some prespecified rate) and

discretized (i.e. that belongs to one of the finite number of points resulting from drawing



a fine grid, whose fineness increases with sample size, over the parameter space). We
then adjust the preliminary estimator by a quantity consisting of the sample score
function for the model premultiplied by the inverse of the sample information matrix for
the model, both evaluated at the preliminary estimator. The resulting iterative estimator
has an asymptotic mixed normal distribution with covariance matrix equal to the inverse
of the asymptotic information matrix, and so is efficient. This construction requires
knowledge of the score function and information matrix of the innovation density, and so
of the density itself. This is where the problem arises in using such techniques to
efficiently estimate a model whose innovation density is unknown.

The preceding iterative estimation strategy provides a clue as to how adaptive
estimation can be achieved. Although we do not know the innovation density, and
specifically its score function and information matrix, we may be able to efficiently
estimate the model if we can consistently estimate these quantities. A natural possibility
is to use the residuals of the model as evaluated from a consistent preliminary estimator
to form nonparametric kernel estimates of the unknown density and of its score and
information. These estimates can then be substituted into the formula for the iterative
estimator in place of the unknown score function and information matrix.

Since Stone (1975), the adaptive estimation literature has proceeded in the
foregoing manner by employing trimmed Gaussian kernel estimates of the innovation
score and information. The investigator selects a value for the bandwidth parameter and
computes kernel estimates of the density and its vector of first partial derivatives. These

estimates are then evaluated at each of the estimated residuals, with the ratio between the



derivative estimate and the density estimate constituting the score estimate at each point,
excepting certain points which are trimmed by setting the score estimate equal to zero.
Trimming typically occurs at isolated tail observations, where the kernel density estimate
is so close to zero that the score estimate is exploding. The more heavily smoothed is the
density estimator, the less need there is for trimming. In the computation of adaptive
estimators, the amount of trimming, as with smoothing, is left to the discretion of the
investigator.

Section 2 briefly summarizes the details of the construction outlined above for the
two respective representations of cointegrated models. We show how to use a trimmed
Gaussian kernel estimator to compute adaptive estimates for each representation. Section
3 evaluates the finite sample performance of the adaptive estimators through a series of
Monte Carlo simulations similar in structure to those performed by Hsieh and Manski
(1987) for linear non-cointegrating regressions. We consider bivariate models with
normal, 7, variance contaminated mixture of normal, and bimodal mixture of normal
innovation densities and report interdecile and interquartile ranges, bias, and truncated
and untruncated mean squared errors for adaptive and Gaussian estimators and, for linear
regression models, least absolute deviations. Sample sizes range from 100 to 500 and
various settings of the smoothing and trimming parameters are considered. For non-
Gaussian densities the adaptive estimators substantially improve upon the Gaussian
estimators, a result insensitive to smoothing and trimming parameter selection, with the
efficiency loss when the Gaussian assumption is correct being moderate to small. Section

4 contains an empirical implementation of adaptive estimation to the problem of



estimating the cointegrating parameter in a forward exchange market unbiasedness
model. In a model consisting of daily observations on the logarithms of a spot exchange
rate and the associated lagged forward rate, several researchers have evaluated the
evidence for the hypothesis that the slope parameter in the regression of the spot rate on
the lagged forward rate is unity, i.e. that the forward rate is an unbiased predictor of the
spot rate. It is not uncommon for investigators using a Gaussian pseudo-MLE to get
estimates some distance from one. Since daily exchange rate data can be highly non-
Gaussian, one would imagine that sharper inferences could be obtained through the use of
more efficient estimators, which may also serve to reduce finite sample bias induced in
the Gaussian estimator by outliers. We report estimates of a forward unbiasedness model
for the Canada-U.S. exchange rate, specified as an error correction representation, using
both Johansen’s (1988) Gaussian pseudo-MLE and the adaptive estimator developed in
Chapter 2. The Johansen estimate is 0.937, approximately two estimated asymptotic
standard errors from unity, while the adaptive estimate ranges from 0.995 to 0.998,
depending on the bandwidth setting, and clearly leads to a stronger inference in favour of

the unbiasedness hypothesis.

2. THE MODELS AND ADAPTIVE ESTIMATORS

This section summarizes the methodology for computing adaptive estimators as
developed in Hodgson (1995b and c) for cointegrating regressions with ARMA errors and
error correction models, respectively. For each representation in turn, we present the

model to be estimated and the details of its adaptive estimation.



(a) Linear Regression with ARMA Errors

We assume that a single cointegrating relationship exists among m+1 observed time
series, each of which is I(1), and that the deviations of the system from this relationship
follow a stationary and invertible ARMA(p,q) process, with p and ¢ known. For every
=1,...,n, we have

(1) ¥ =BX +y
p q
@ w=au.,+Y e
Jj=1 J=1
3) X =X_+v,
where X, and B are m-vectors and (&,,v,')" are iid from the unknown elliptically
symmetric density p(g,v). We define

W(é‘, V) = (@(‘99 v)’ a‘9)/17(‘5‘3 V)

and
- f J'[ w(e, v)]2 ple,v)dvde ,
assuming 0 < A’ <o, where || denotes the Euclidg:an norm. Since p(g,v) is unknown,

so are w(&,v) and A’; in computing an adaptive estimator, we will require consistent
nonparametric kernel estimates of these latter two quantities.
We denote the vector of ARMA coefficients by n=(a,,..., a,b,,....,b,) , the

prqtm-dimensional full parameter vector by 8=(r/,B )", and a p+g+m-dimensional

scaling matrix by &, = diag[ L oonT ] We use the parameters of the MA process

p+g> m

to define the infinite sequence of constants {;/ k(@)} as follows:



(1 +hz4 qu")—‘ = iyk(ﬁ)z" :
’ k=0

such that
7/3(0) + bl}/S"l(H) + e + bq)/ﬂ—q(g) = 0 vs Z 1’

with y (0)=0 Vs <0 and y,(6)=1. We further define

—1
Zl—l(nni‘ 7, B) = Zyk(B’ n)l)(ul—l—k""’ul—p—k;gl—l—k""’8/—([—/()"

k=0
= P
rl—l(ﬂn’ B) = Z}’j(B, 77;;){)(/—/ - Zallcl)(l—j—k:' Vs
=0 k=1

where 17, —7=0(n""?) and a} —a, = O(n™""?), and

H,(0)=(Z,(n,m.B) ., (n.B)).
The ptg+m-vector H,_ (6) plays an important role in our derivation of an adaptive

estimator because it enters the expressions for both the score function and the information

matrix for the model, which we can write respectively as

@ IO =25, H O e,y

and

©)  SO=FY5H(OH, 0)5,,

If w(s,v) and A* were known, we could use W (6) and S"(B) , evaluated at some

consistent preliminary estimate, to form an asymptotically efficient iterative estimator.

Instead, we must replace w(&,v) and A* in (4) and (5) with kernel estimates.



To derive these nonparametric estimators, we follow Jeganathan (1994), using our

assumption of elliptical symmetry to write:

()

* @y, a)z|' -1 1/2
for some [, where Q= a ) We define /,, =(a)” - Wy, sza),l) , 5o that
@5, 2 )

where z =& - @,,' Qv . Our elliptical symmetry assumption implies that the conditional

ple,v) =|det) " f*(

-1 ' -1
£ (6 —@,"Q,v

-1/2
Q" v

ple,v) = }detQ]"mf*(

=f(zV),

density of & given v is symmetric with mean @,,' Q;,v, and that, given v, fis symmetric
about zero in z.

In nonparametrically estimating y(&,v), we employ the following definitions:

2(0) = £,(0) - 0, v,
{5 e 1))

fo (,3,0)=(1/2(n - 1))i {#(x +2(0),y+v,,0) + 2(x — 2,(),y + v;,0)}.

i#l
We additionally define f_,'(x,y,6) as the partial derivative of f:, , with respect to x.

Note that fg, , 1s a Gaussian kernel density estimator, symmetric by construction, with

bandwidth parameter o. Given fixed y, we employ the above notation in our definition

of a score function estimator, as follows:



~

fay,(x,y,ﬁ) =m,

fot (x,3,0) o
. ) — SO f |(x,3)]<a,
Wu,l(x)ya )_ fo—t(x7y’9) ~ . ~ .
’ Jod (x.3,0) <. f,,(x..0)
0 otherwise

where ¢, — 0, @, = 0, 0 — 0, m, — 0. We discuss and illustrate the selection of these
smoothing and trimming constants in Sections 3 and 4.
As indicated above, we may employ our kernel estimates to compute the

following estimates of the score and information of the model:

(6) VAVN(H) = —i 5!1[{1—](9)1?11,1(81 (9)3 1')t>9)a

(=1

7 5O =EO) 6,H (O)H.®©)5,,

where 1(6) = n' ), ,(£,(0),v,,6) . Anadaptive estimator is then obtained by taking

=1

a discretized', &' -consistent preliminary estimator 6", and adjusting it by an iterative

* ok

term involving the quantities in (6) and (7), evaluated at &, as follows:

®)  0,=68"+58 O ).

n~n

The asymptotic distribution of 5,, is mixed normal with a covariance matrix equal to the

inverse of the asymptotic information matrix for the model, so that 5,, is asymptotically

efficient. Specifically, we have

5,6, - 6) = MN(0,47J7())

For a definition of discretization, see, for example, Jeganathan (1994). It essentially involves rounding
off an estimate to the nearest point on a fine grid whose fineness increases with the sample size.
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where the information matrix is *J(0), J(8) = diag(J,,(6),J.(0)), J,,(0)=E[Z,Z],

] 2 P 2 1
and J.-(6)= lrz yj(ﬁ)} {1 - Zak} J-MQMQ' , where M, is a Brownian motion with
j=0 0

k=1
covariance matrix E[v]v] ’ ]
(b) Error Correction Model
The procedure involved in obtaining an adaptive estimator for the error correction
representation is similar to that for the regression model with ARMA errors, the chief
differences being in the form of the model’s score function and information matrix, and
in the fact that we must nonparametrically estimate the entire vector-valued score

function for the multivariate innovation density, rather than just its first element.
Allowing {X, }:’zl to be a g-vector of I(1) time series with » cointegrating

relationships, and assuming it has a vector autoregressive representation of known order

k, we may write the following error correction representation:

k-1
(9)  AX, =4BX,_ +) ®AX,_ +¢,,

J=1

where 4 is a ¢ x r matrix of error correction coefficients, B is an » x ¢ matrix whose
rows are cointegrating vectors, and { 8,} are 1id from the unknown density p(g), the

negative of whose g-dimensional score vector we denote by y(g) = (@J(g) / ﬁg) / p(e),

and whose finite, positive definite g x ¢ information matrix we denote by

Q= [y(e)y(e) ple)de.



We assume the model is identified, and follow Ahn and Reinsel (1990) by

partitioning X, as [Xl,’ ,Xz,’]' , where X, hasr elements, X,, has g-r elements with g-r
unit roots, B= [],,—Bo] , and the 7 x (¢ — r) matrix B, contains the model’s cointegrating
coefficients. We can rewrite (9) as

AX, = A[X,,_, - BX, ]+ 7, +¢,,
where @ = [CDD...,CD,(EIJ and Z,_, = [AX,_,’ ,...,AX,_,M’]' . We define
a =vec(A), p =vec(®), and f = vec(B,), which we then gather into the m-dimensional
full parameter vector =[a',¢', B, where m=2gr —r* + ¢’ (k—1). Defining

s =gqr+q’(k — 1), the number of parameters in & and ¢, the stationary component of

the model, we can then introduce the scaling matrix &, = diag[n'” 2[s,n_llm_s] .
Analogously to the previous model, we define the matrix H,_(6), which is
central to our derivation of expressions for the model’s score function and information
matrix, and hence to the construction of an adaptive estimator, as follows:
H_(8)= [(lq oW, ).(I,®Z.,).(-48X,,) ] :
where W,_, =X, — B)X,, ;. We can the write the scaled score and information,

I

respectively, as:

W,(0)=-3 5,H_@w(e),

SH(Q) = Z5nf{1—1(9)[—[1-1(0)' 5,,-
(=1



Also analogously to the previous model, we must obtain nonparametric estimates
of w(g) and Q. and again we employ a Gaussian kernel technique. We write the kernel

and symmetric density estimator respectively as follows:
m(x,0)=1/ (0'\/2%)4 exp(—‘xl2 /20" ),

Py, (x,0)=(1/2(n— 1))i {m(x + £,(0),0) + m(x - £,(0),0)},

i=1
it

where o again denotes the bandwidth parameter, and the partial derivative of p, (x,8)
with respect to the j* element of x is denoted by p’,(x,0). Our estimate of the j”

element of the score vector is given by

f)a’,(x, 6)> m,j,

7 o ]
S i RN R
Wn,l(x’ ) pd,(x,ﬁ) ~j A
’ |52, (x.0)| < c)p,,(x,0)
0 otherwise

where c,{ —> 00, af; —> 00,0 — 0, m{, — 0, for every j=1,...,q. We then have

Wy (5,0) = (), (£, 0),..., 108 (x.6)) .
With these nonparametric estimates in hand, we define our estimated model score

and information as

W,(0)=-3 8,5, (), (£,6).0)

and

‘§n(0) = Z 5}7[_11-] (Q)QM(H)IJPI (9)’ 5;1 ?
1=1
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where Q (0)=n" Z v, (0,0, (£(6),0) . Anadaptive estimator can then be

=1

*%

computed, employing a &' -consistent, discretized preliminary estimator &°" , as follows:
p ploymnga o, p

"o’

0,=6"+580)" W@,

The asymptotic distribution of 5” is
5,6, ~0)= MN(0,5(0)").

where the asymptotic matrix is
1
S(0) = diag{Q ® E[MM,],4Q4® [B,B, |,
0

where M, = [W,’ , Z,']' and B, is a Brownian motion with covariance matrix

E[AXz,AXz,'].

3. SOME SIMULATION EVIDENCE ON THE FINITE SAMPLE PERFORMANCE
OF ADAPTIVE ESTIMATORS IN COINTEGRATED MODELS

That it is possible to asymptotically efficiently estimate the models presented above in the
absence of parametric assurhptions on the likelihood is a result that should be of
considerable value and interest to empirical researchers. Nevertheless, the foregoing
description of the technique of adaptive estimation leaves the empirical researcher with
numerous questions and doubts regarding the implementation and performance of
adaptive estimators in particular applications. Paramount among these concerns are the

sensitivity of results to the selection of the smoothing and trimming parameters that
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typically appear in the expression for the kernel estimate of the score function of the
density of the model’s innovations, and the extent to which asymptotic theory accurately
represents the finite sample efficiency gains to be obtained, a concern common in
econometrics but heightened in the present case by the fact that kernel density estimates
are being employed. Little published work has appeared to address these problems, with
the Monte Carlo studies of Hsieh and Manski (1987) and Steigerwald (1992b) providing
important exceptions. In the context of a linear non-cointegrating regression, Hsieh and
Manski (1987) compare the finite sample performance of adaptive estimators with
various alternative estimators, including ordinary least squares, for several different error
distributions, using root mean squared error and interquartile range as the standards of
comparison. They evaluate the sensitivity of the results to smoothing and trimming
parameter selection by calculating adaptive estimators for a range of possible settings of
these parameters.

In this section, we are concerned primarily with the extent to which theoretical
asymptotic efficiency gains over Gaussian pseudo-MLE’s, for the two representations of
cointegrated systems described above, can be realized in a fairly small sample (100
observations) when no elaborate data-based methods are used to select the smoothing and
trimming parameters (Hsieh and Manski (1987) found that the use of such methods can
substantially improve estimator performance). Although we are not concerned with the
question of how to optimally select smoothing and trimming parameters for given
samples, we do conduct simulations for a variety of parameter settings in order to get

some idea about how sensitive finite sample efficiency gains are to the settings selected.
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Our primary criterion for evaluating the adaptive estimator’s performance is the ratio of
the mean squared error (MSE) of the estimator to the MSE of the Gaussian estimator.
This statistic is used because we can compare it with the ratio of asymptotic variances to
see how well the theoretical efficiency gains are realized. Recognizing the fact,
discovered by Phillips (1994), that the Johansen estimator has a very heavy-tailed finite
sample distribution, which lacks moments of any order, we calculate for the error
correction representation a modified MSE ratio, using only the central 80 per cent of
realizations of the estimators. We also report interdecile and interquartile ranges for the
estimators. Since an estimator’s MSE involves the square of its bias, we also report bias
statistics in order to indicate the relative extents to which differences between estimators’
MSE’s are due to bias and variance. For the linear representation, we report all of these
performance statistics for the least absolute deviations (LAD) estimator as well, in order
to get some idea of the relative robustness properties of LAD and adaptive estimation. To
provide some indication of the rate at which asymptotic efficiency gains can be
approached with increasing sample size, we also report MSE statistics for samples of 250
and 500.

In subsection (a), we describe our simulated models, which are special cases of
the general frameworks described above. Subsection (b) discusses issues involved in the
implementation of our study, including the selection of smoothing and trimming
parameters and the finite sample distribution of the Johansen estimator. In subsection (c),

we report and discuss our simulation results.
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(a) The Simulated Models

In this subsection we describe the data generating processes used for the two models. In
both cases we consider bivariate models with sample sizes of 100, 250, and 500, and
innovations ¢ = (&,, &,)" drawn from the pdf p(¢), which takes on each of the following
four forms:

) variance-contaminated mixture of normals: p(e) =09N(0,1/31)+ 0.1N(0,271]),

(ii) Student’s ¢ with 3 degrees of freedom: p(¢) =1,(0,31);

(iii) bimodal mixture of normals: p(&) = 0.5N(\/2,1)+ 0.5N(—/2,1);
(iv) normal: p(g) = N(0,31).
These densities are designed to each have the same covariance matrix, viz. 3/. The
Gaussian case is considered in order to gauge the extent of the finite sample efficiency
loss we may obtain through the use of the adaptive estimator in place of the correctly
specified MLE. In all cases, we run 1000 iterations. We now present the particular
details of each simulation setup, in turn.

The error correction model has one cointegrating relationship and is derived from
a VAR of order one, and so can be written as follows:
(10) AX, =ab X _, +¢,,
where X, =(X,,,X,,), a=(a,,a,)", b=(,-b,) ,and ¢, is iid from the unknown
density p(¢). In estimating the model, the first element of b is restricted to equal unity in

order to achieve identification, so that b, is the sole cointegrating coefficient. Our
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simulation study is concerned only with estimation of this parameter. In the simulations,
weset g, =a, =1 and b, =2.

For the linear regression model, we assume iid errors and a univariéte regressor
whose first difference is iid and uncorrelated with the regression errors. The Gaussian
MLE of this model is ordinary least squares, and adaptive estimation is analyzed by
Jeganathan (1994)2. The data generating process is as follows:

A1) X, =b%, +¢,

(12)  AX, =g,

with &, =iid p(¢), with p(e) assumed to be elliptically symmetric. Again, we are
concerned with estimation of the cointegrating parameter b,, and in the simulations set
b, =2.

The asyfnptotic efficiency gains available through use of the adaptive estimators
in these models can be measured by the ratios of their asymptotic variances to those of
the relevant Gaussian pseudo-MLEs, whose asymptotic distributions are also mixed
normal, but with larger variances. The ratios turn out to be the same for both models, as
shown in Hodgson (1995a). In the Gaussian case, the ratio is obviously equal to unity.
For the densities specified above, it equals approximately 0.47 for the ¢, 0.13 for the

variance-contaminated mixture of normals, and 0.47 for the bimodal mixture of normals’.

> Ifthe independence assumption on the errors is dropped, then the fully modified OLS procedure of
Phillips and Hansen (1990) is asymptotically equivalent to the Gaussian MLE, while adaptive estimation in
the case where the errors admit an ARMA representation is described in Section 2.

® The first figure was obtained from Mitchell (1989), while the latter two were computed numerically.
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(b) Implementation of the Study
The objective of this study is to evaluate the finite sample performance of the adaptive
estimators of the models described above relative to alternative estimators, especially the
Gaussian pseudo-MLEs but also LAD for the linear model. Two varieties of problems
arise in implementing such a study. The first concerns the specification of the smoothing
and trimming parameters called for in the nonparametric score estimator. The second
deals with the standard adopted for comparing the performances of alternative estimators.
It is quite common for theoretical analyses of nonparametric kernel estimators to
specify the asymptotic behaviour of bandwidth parameters without providing much
direction to the applied investigator regarding the selection of such parameters given a
particular sample. For the estimators described above, the problem of choosing the
bandwidth o is compounded by the fact that the trimming parameters m,,c,, and a,
must simultaneously be chosen®. Our approach is to compute the adaptive estimator for
each sample at each of nine combinations of these parameters (for samples of 100; for
larger samples we only use one combination because our main concern in such cases is

with the effect of sample size on estimator performance). Following Hsieh and Manski

(1987), we reduce the trimming parameter problem from three dimensions to one by
selecting h, where «, =h,c, =h/3, and m, = (67)" exp(—h* / 3). For n=100, we allow

h to take the values 10, 15, and 20, while o is set at 0.67, 0.77 (Silverman’s (1986) rule-

* We delete the superscript j on the trimming parameters in the error correction model because the same

trimming values will be used for estimating both components of the score vector in our simulations.
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of-thumb bandwidth for bivariate density estimation problems), and 0.87. For n=250, we
set (o ,h)=(.75,15) (Silverman’s rule-of thumb is 0.65), while for »=500, the setting is
(o ,h)=(.70,20) (rule-of thumb=.58). Hsieh and Manski (1987), analyzing a univariate
model, redubed their trimming préblem to one dimension in such a way that if the
innovation density were normal, then all three parameters would be effective at the same
point. Our settings roughly follow Hsieh and Manski’s, although in our case they won’t
be effective at exactly the same point in the case of a Gaussian density.

As one of the objectives of Hsieh and Manski’s (1987) study was to shed light on
the question of optimal trimming and smoothing parameter selection, they calculated
adaptive estimates for a much wider range of settings than do we, and also considered
data-based bootstrap methods. Our goals here are less ambitious in that we vary the
parameters not in order to acquire evidence on their optimal selection but in order to get a
rough idea of the sensitivity of efficiency gains to their variation. We ask whether
efficiency gains can be obtained though the crude choice of the rule-of thumb bandwidth
with a moderate degree of trimming (A=15 corresponds to trimming observations that lie
more than nine standard deviations from the origin; for samples of size 25 and 50, Hsieh
and Manski (1987) advised trimming at about eight standard deviations), and if so, we
seek to determine the sensitivity of these gains to slightly different settings of the
parameters.

In speaking of efficiency gains, we assume the existence of some yardstick for
their measurement. In the preceding section, we compared asymptotic efficiency in terms

of asymptotic covariance. Using variance or MSE as a criterion in finite samples can be
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undesirable, however, since the estimators’ finite sample distributions need not be
normal, symmetric, or unbiased. They may not even have moments, as is the case for the
Johansen estimator of the error correction model, as shown by Phillips (1994). Thus,
although a comparison of MSE’s is a potentially attractive finite sample analogue of the
asymptotic variance ratio derived in the previous section, it also has clear shortcomings.
In the next section, we report the ratios of the simulation MSE’s between the adaptive and
Gaussian estimators for linear regressions, but for the error correction model report
truncated MSE’s obtained by throwing out the upper and lower ten per cent of realized
parameter estimates. We also report interdecile and interquartile ranges, which
complement the latter two MSE statistics in providing evidence on the concentration of
the estimators’ distributions around the true parameter value.

(¢c) The Simulation Results

Linear Regression Model

Tables 1-4 report results on MSE, bias, and interquartile and interdecile ranges for the
adaptive, OLS, and LAD estimators. The results are probably biased in disfavour of the
adaptive estimates because, in their computation, the restriction that the regression errors

and the regressor first differences are uncorrelated was not used. This means that in
computing our density estimate, rather than using the estimated residuals &,,, we use the
residuals of an OLS regression of &,, on &,, (see Jeganathan (1994) and Subsection 2(a)

above). This presumably adds some extra noise to the adaptive estimates.
The results for Gaussian innovations, given in Table 1, indicate that the losses that

one should expect to obtain from using the adaptive estimator are moderate, ranging from
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18% to 30%, and are fairly insensitive to smoothing and trimming parameter
specification. The loss from using the robust LAD estimator is considerably larger, at
71%. The interquartile and‘interdecile range statistics support these conclusions, as they
vary only slightly with the (o ,h) setting and indicate considerably larger dispersion for
LAD. The bias statistics indicate slightly larger bias in the adaptive and LAD estimators
than in OLS, but with differences small enough to affect the differences in MSE only
negligibly.

The Student’s ¢ and variance contaminated mixed normal are both unimodal
thick-tailed densities, and the results obtained for them, in Tables 2 and 3, respectively,
are quite similar. Broadly speaking, the adaptive estimator provides moderate efficiency
gains but is outperformed by LAD. The adaptive estimator provides efficiency gains for
the ¢ distribution ranging from 9 to 24 per cent, while the gain from using the LAD is 40
per cent. For the mixture of normals, the adaptive range is 1 to 43 per cent, while the
gain for LAD is a very impressive 82 per cent. The interquartile and interdecile ranges
tell a similar story, while the bias statistics are again too small to account for much of the
MSE differences.

Finally, we present results for the bimodal mixture of normals in Table 4. The
results are quite drastic. The OLS and LAD estimates are heavily biased, as is clearly
illustrated by a perusal of the interquartile and interdecile range statistics. The efficiency
gains to the adaptive estimator are large, ranging from 72 to 74 per cent. In contrast, the
LAD estimator has very poor properties, with an MSE of more than two and a half times

that of OLS.
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Overall, the adaptive estimator performs fairly well in comparison with OLS and
LAD. For none of the error distributions considered does it perform the worst of the
three, whereas the other two estimators are both worst in two cases. For unimodal thick-
tailed distributions, LAD performs extremely well, but the adaptive estimator still
improves significantly upon OLS. In addition, the adaptive estimator does not share the
extremely bad performance of LAD for the Gaussian and bimodal mixed normal
distributions. As noted above, the adaptive estimator is at a disadvantage in these
simulations because we have not used the restriction that the errors are uncorrelated with
the regressors. Also mitigating against the adaptive estimator is the fact that we have not
used the fact that the distributions considered are elliptically symmetric, which would
allow us to reduce the dimensionality of our density estimation problem from two to one,
which would definitely improve the estimator’s efficiency.
The Error Correction Model
The simulation results for the error correction model are presented in Tables 5-8. The
patterns here are similar to those for the linear regression model. The losses from
employing the adaptive estimator in the case of Gaussian innovations are small to
moderate, ranging from 7 to 21 percent. The gains for non-Gaussian innovations are
moderate to moderately large, and go a significant proportion of the way to the
asymptotic efficiency gains. The results are fairly robust to smoothing and trimming
parameter selection and are negligibly affected by finite sample bias. For the Student’s ¢

model, the gains are in the 9 to 22 per cent range, for the variance contaminated mixture
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of normals they range from 23 to 65 per cent, and for the bimodal mixture of normals the
range is 48 to 59 per cent.

Larger Sample Sizes

Tables 9 and 10 present MSE and truncated MSE results for the linear regression model
and error correction model, respectively, for sample sizes of 250 and 500. We only
consider one setting of the smoothing and trimming parameters in computing the adaptive
estimates. For the linear model, the qualitative nature of the results changes little as the
sample size is increased. There are moderate improvements in the adaptive estimator
relative to both OLS and LAD, with little change in the relative performances of the latter
two estimators, except that the losses from using LAD in the Gaussian case fall from 71
per cent when #=100 to 46 per cent when and #=500, and increase from two and a half
times to over three times as large for the bimodal mixture of normals model. There also
appear to be improvements in the adaptive estimator relative to the Johansen estimator
with increasing sample size. For the normal model and both mixed normal models, the
truncated MSE ratio between the estimators falls as the sample is increased from 250 to
500 and in the latter case is approximately equal to the best ratio that was obtained by
varying the smoothing aﬁd trimming parameters for the sample of 100. The
improvements are more significant for the Student’s f model, where the best truncated
MSE ratio for »=100 is 0.78 while the ratio is 0.62 and 0.61 for respective sample sizes of

250 and 500.

28



TABLE 1: LINEAR MODEL, NORMAL ERRORS (n=100)

(a) MSE of Adaptive Estimator and Ratio with MSE of OLS

o\ h 10 15 20
.67 5929 %107 5971x107 6107 %107
1.26 1.27 1.30
T7 5729 %107 5865x107* 5867 x107*
1.22 1.25 1.25
.87 5.542 x 107 5.605x 10~ 5.605%x 107
1.18 1.20 1.20
MSE,,; =4.690 x10™
MSE,,, =8.012x10™
MSE,,, | MSE,,; =171
(b) Interdecile and Interquartile Ranges of Adaptive Estimator
o\ h 10 15 20
.67 1.974-2.028 1.974-2.028 1.973-2.029
1.988-2.013 1.989-2.013 1.989-2.013
77 1.974-2.028 1.974-2.028 1.974-2.028
1.989-2.013 1.989-2.013 1.989-2.013
.87 1.974-2.028 1.974-2.028 1.974-2.028
1.990-2.013 1.990-2.013 1.990-2.013
OLS: 1.977-2.025
1.989-2.011
LAD: 1.969-2.033
1.987-2.014
(c) Bias
Adaptive
(0 =.87h=15) 1292 x 1072
OLS 8.435x10™*
LAD 1.047 x 1072
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TABLE 2: LINEAR MODEL, STUDENT’S ¢ ERRORS (n=100)

(a) MSE of Adaptive Estimator and Ratio with MSE of OLS

o\ h 10 15 20
67 5151x107* 5663 %107 5755x107*
0.78 0.85 0.87
77 5.042 x 107 5494 x 107 5980 %107
0.76 0.83 0.90
.87 5149 %107 5623 %107 6.019x10™
0.78 0.85 0.91
MSE,,; = 6.625x10™
MSE, ,, =3.985x10™
MSE, ,, | MSE,,; = 0.60
(b) Interdecile and Interquartile Ranges of Adaptive Estimator
o\ h 10 15 20
67 1.976-2.024 1.975-2.027 1.973-2.025
1.990-2.011 1.990-2.011 1.989-2.011
77 1.975-2.024 1.975-2.026 1.974-2.026
1.990-2.011 1.989-2.011 1.989-2.012
87 1.975-2.026 1.975-2.026 1.974-2.026
1.990-2.012 1.989-2.012 1.988-2.012
OLS: 1.973-2.027
1.989-2.012
LAD: 1.978-2.020
1.991-2.010
(c) Bias
Adaptive
(o =.87,h=15) 3688 x 107
OLS -1369x107*
LAD -1.847x107*
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TABLE 3: LINEAR MODEL. VAR, CONTAM. MN ERRORS (n=100)

(a) MSE of Adaptive Estimator and Ratio with MSE of OLS

o\ h 10 15 20
67 4750 x 107 4564 x107* 4749 x 107+
0.59 0.57 0.59
77 6.007x107™ 5778 x 107 5762 x107*
0.75 0.72 0.72
87 7.940x 107 6.887 x107* 6.869x 107
0.99 0.86 0.85
MSE,,; =8.040x10™
MSE, ,, =1.468x10™
MSE, ,, | MSE,,; =018
(b) Interdecile and Interquartile Ranges of Adaptive Estimator
o\ h 10 15 20
67 1.980-2.020 1.981-2.021 1.980-2.023
1.992-2.009 1.992-2.008 1.992-2.008
77 1.979-2.024 1.978-2.023 1.977-2.023
1.991-2.011 1.991-2.010 1.990-2.010
87 1.974-2.028 1.974-2.026 1.974-2.026
1.988-2.013 1.990-2.011 1.989-2.011
OLS: 1.971-2.028
1.986-2.012
LAD: 1.987-2.012
1.994-2.005
(c) Bias
Adaptive
(o =.87,h=15) 5480 x 107
OLS ~8.004 x 107
LAD ~1275x107*
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TABLE 4: LINEAR MODEL, BIMODAL MN ERRORS (n=100)

(a) MSE of Adaptive Estimator and Ratio with MSE of OLS

oc\h 10 15 20
.67 37731074 3.786 x107* 3.765x 107
0.26 0.26 0.26
7 3.787x107* 3.775x107* 3.775x 107
0.26 0.26 0.26
.87 4077 x107 4038x107* 4038x10™
0.28 0.28 0.28
MSE,,  =1453x107°
MSE, ,, =3.715x107
MSE, ,, | MSE,,; =2.56
(b) Interdecile and Interquartile Ranges of Adaptive Estimator
oc\h 10 15 20
67 1.978-2.021 1.978-2.021 1.978-2.021
1.989-2.008 1.989-2.008 1.989-2.008
77 1.974-2.016 1.974-2.016 1.974-2.016
1.986-2.005 1.986-2.005 1.986-2.005
87 1.971-2.013 1.971-2.013 1.971-2.013
1.983-2.003 1.983-2.003 1.983-2.003
OLS: 2.001-2.061
2.008-2.037
LAD: 2.002-2.099
2.016-2.060
(c) Bias
Adaptive
(o =.87,h=15) ~7170 x107°
OLS 2.633x1072
LAD 4371 %1072
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TABLE 5: ERROR CORRECTION MODEL., NORMAL ERRORS (n=100)

(TMSE denotes the MSE of the central 80% of the empirical distribution)

(a) TMSE of Adaptive Estimator and Ratio with TMSE of Johansen

o\h 10 15 20
.67 4937x107° 4851x107° 5015%x107
1.19 1.17 1.21
77 4662 x10°° 4769 %107 4.768 x107°
1.12 1.15 1.15
.87 4439x107 4529%107° 4.529%x107°
1.07 1.09 1.09
TMSE ), = 4156 x107°
(b) Interdecile and Interquartile Ranges of Adaptive Estimator
o\ h 10 15 20
67 1.986-2.015 1.986-2.015 1.985-2.015
1.993-2.007 1.993-2.007 1.993-2.007
77 1.986-2.014 1.986-2.014 1.986-2.014
1.993-2.007 1.993-2.007 1.993-2.007
.87 1.986-2.014 1.986-2.014 1.986-2.014
1.994-2.007 1.994-2.007 1.994-2.007

JOH: 1.987-2.014
1.994-2.007

(c) Bias (over central 80% of distribution)

Adaptive
(c=87h=15) | 2.001x10"
Johansen 2818 %107
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TABLE 6: ERROR CORRECTION MODEL, STUDENT’S 1 ERRORS (n=100)

(TMSE denotes the MSE of the central 80% of the empirical distribution)

(a) TMSE of Adaptive Estimator and Ratio with TMSE of Johansen

o\h 10 15 20
.67 3.085x107 3.245x107 3.521x107°
0.79 0.83 0.90
77 3.064 x107° 3274 %107 3.570x107°
0.78 0.83 0.91
.87 3.097x 107 3312x107° 3.470x107°
0.79 0.84 0.88
TMSE ,,,; =3.926x107°
(b) Interdecile and Interquartile Ranges of Adaptive Estimator
o\h 10 15 20
67 1.988-2.012 1.988-2.013 1.988-2.013
1.995-2.005 1.995-2.005 1.994-2.006
77 1.988-2.012 1.988-2.012 1.988-2.013
1.995-2.005 1.995-2.006 1.994-2.006
.87 1.988-2.012 1.988-2.012 1.988-2.012
1.995-2.006 1.995-2.006 1.995-2.006

JOH: 1.987-2.013
1.994-2.006

(c) Bias (over central 80% of distribution)

Adaptive
(0=.87h=15) 2,509 x 107
Johansen 3.731x 107
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TABLE 7: ERROR CORRECTION MODEL, VAR. CONTAM. MN ERRORS (n=100)

(TMSE denotes the MSE of the central 80% of the empirical distribution)

(a) TMSE of Adaptive Estimator and Ratio with TMSE of Johansen

o\h 10 15 20
67 2108x107° 1.487 x 107° 1.630x107°
0.49 0.35 "0.38
77 2.722x107° 1.778 x107° 1906 x107°
0.63 0.41 0.44
.87 3323%107° 2272x107° 2279%107°
0.77 0.53 0.53
TMSE ,,;, = 4306 x 107
(b) Interdecile and Interquartile Ranges of Adaptive Estimator
o\ h 10 15 20
67 1.989-2.009 1.992-2.009 1.991-2.009
1.995-2.004 1.996-2.003 1.996-2.004
77 1.988-2.011 1.990-2.009 1.991-2.010
1.995-2.005 1.996-2.003 1.996-2.004
87 1.987-2.012 1.990-2.010 1.990-2.010
1.994-2.005 1.996-2.004 1.996-2.005

JOH: 1.987-2.016
1.995-2.007

(c) Bias (over central 80% of distribution)

Adaptive
(0=.87,h=15) 4941 x10°°
Johansen 7.799 x 10~
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TABLE 8: ERROR CORRECTION MODEL, BIMODAL MN ERRORS (n=100)

(TMSE denotes the MSE of the central 80% of the empirical distribution)

(a) TMSE of Adaptive Estimator and Ratio with TMSE of Johansen

o\h 10 15 20
.07 9246 x107° 9191x107° 9.234x107°
0.41 0.41 0.41
77 1.019x10™ 1.014 x107° 1.014x10™*
0.46 0.45 0.45
87 1.159%x 107 1.165x107 1.165x107
0.52 0.52 0.52
TMSE ,,,,, =2.231x 107
(b) Interdecile and Interquartile Ranges of Adaptive Estimator
o\h 10 15 20
67 1.979-2.022 1.979-2.022 1.979-2.022
1.991-2.009 1.992-2.009 1.992-2.009
77 1.977-2.023 1.977-2.023 1.977-2.023
1.990-2.009 1.990-2.009 1.990-2.009
87 1.976-2.024 1.976-2.024 1.976-2.024
1.990-2.010 1.990-2.010 1.990-2.010

JOH: 1.973-2.035
1.988-2.015

(c) Bias (over central 80% of distribution)

Adaptive
(c=87h=15) | —4333x10~
Johansen 2161x107°
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TABLE 9: MSE RESULTS FOR LINEAR MODEL AND LARGER SAMPLES

(adaptive estimator settings of (o .4 ) are (.75,15) for n=250 and (.7,20) for n=500)

(a) Normal Errors

n=250 n=500
OLS 7.775%107° 2.233%x107°
Adaptive 8.809 %107 2.435x107°
Adaptive/OLS 1.13 1.09
LAD 1.343x 107 3.267x107°
LAD/OLS 1.73 1.46
(B) Student’s ¢ Errors
n=250 n=500
OLS 8714 %10 2231x10°°
Adaptive 8215%x107° 1673 %107
Adaptive/OLS 0.94 0.75
LAD 5707 x107 1469 x107°
LAD/OLS 0.65 0.66
(c) Var. Contam. MN Errors
n=250 n=500
OLS 1.019x107* 2.454%x107°
Adaptive 6123107 1337107
Adaptive/OLS 0.60 0.54
LAD 2.010x107° 4.696 x107°
LAD/OLS 0.20 0.19
(d) Bimodal MN Errors
n=250 n=500
OLS 2122 x107* 5846x107°
Adaptive 7227 x107° 2.007x107°
Adaptive/OLS 0.34 0.34
LAD 6.893x107* 1.970 x 107
LAD/OLS 3.25 3.37
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TABLE 10: TMSE RESULTS FOR ECM AND LARGER SAMPLES

(adaptive estimator settings of (o ,4 ) are (.75,15) for n=250 and (.7,20) for n=500)

(TMSE is MSE for central 80% of distribution of estimator)

(a) Normal Errors

n=250 n=500
Johansen 6.458 x 107 1.628 x 107
Adaptive 7.047x107° 1.772x107¢
Adaptive/Joh 1.09 1.09
(b) Student’s ¢ Errors
n=250 n=500
Johansen 6.613x107° 1.610x107°
Adaptive 4122x10°° 19.790x 1077
Adaptive/Joh 0.62 0.61
(c) Var. Contam. MN Errors
n=250 7=500
Johansen 6.524x107° 1.556 x107°
Adaptive 2.895x107° 5.967x107"
Adaptive/Joh 0.44 0.38
(d) Bimodal MN Errors
n=250 n=500
OLS 3357x107° 7.882x107°
Adaptive 1.577x 107 3241x107
Adaptive/OLS 0.47 0.41
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4. FORWARD EXCHANGE MARKET UNBIASEDNESS, COINTEGRATION, AND
ADAPTIVE ESTIMATION

The extensive literature on forward market unbiasedness attempts to determine whether
or not forward exchange rates are unbiased predictors of future spot rates. The question
is of interest both in terms of its bearing on the question of the efficiency of speculative
markets, and in terms of its implications for the treatment of exchange rates in
macroeconomic models (the former aspect of the question is emphasized by many
analysts, including, for example, Fama (1984), Froot and Frankel (1989), and Hansen and
Hodrick (1980); the latter aspect is emphasized by McCallum (1994); both aspects are
discussed by Baillie and McMahon (1989)).

There are two alternative épproaches to modeling and estimating forward
exchange market unbiasedness models. One involves a levels cointegrating regression of
the spot rate on the lagged forward rate, while the second involves specifying a single-
equation error correction model in which the first difference of the spot rate is regressed
on the lagged spread between the forward and spot rates. The latter approach typically
proceeds under the a priori assumption that the slope parameter in the cointegrating
regression is unity. The relationship between these two alternative (actually
complementary) approaches is analyzed by Hakkio and Rush (1989) and Barnhart and
Szakmary (1991).

Working with an error correction representation has the advantage of providing a
unified framework for modeling and estimating parameters associated with both the long-

run and short-run aspects of the forward unbiasedness problem. In this section, we
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estimate an error correction representation with emphasis placed upon the cointegrating
parameter (although we hope to devote attention to the error correction coefficients in
future work). In empirical applications, this parameter is typically estimated using
ordinary least squares or some variant (see, for example, McCallum (1994), Hakkio and
Rush (1989), Corbae, Lim, and Ouliaris (1992), Baillie and Bollerslev (1989), Baillie,
Lippens, and McMahon (1983) and Barnhart and Szakmary(1991)). However, it is a
well-documented fact that returns to speculative price series are poorly approximated by a
normal distribution, and are usually found to be leptokurtic vis-a-vis the normal. The
lack of robustness of least squares procedures in the presence of significant deviations
from Gaussianity motivated Phillips (1993a), in an application to the Australian dollar -
U.S. dollar exchange rate, to employ a robust least absolute deviations estimator for the
forward market unbiasedness cointegrating regression. Phillips found that inference in
such models can be quite sensitive to the estimator used and advised against the use of
least squares and Gaussian reduced rank regression procedures.

We report the results of forward market unbiasedness cointegrating parameter
estimation for the Canadian dollar’s exchange rate with réspect to the U.S. dollar using
daily data from the early 1990’s. Noting Phillips’ objections to the use of Gaussian
procedures such as least squares and the Johansen approach, the estimation strategy
followed here employs the adaptive estimation techniques developed in Hodgson (1995¢)
for error correction representations and described in Section 2. The illustration of
adaptive estimation in action should be of considerable interest in its own right. Adaptive

estimators have appeared mainly in the theoretical statistics and econometrics literature.
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Several questions arise regarding the actual empirical implementation of adaptive
estimators. These questions are addressed, discussed, and illustrated in the analysis
reported below.
(a) The Empirical Model
We consider the cointegrating relationship between the logarithm of the 90-day forward
exchange rate of the Canadian dollar in terms of the U.S. dollar, denoted by f,, and the
logarithm of the spot exchange rate on the date of delivery of the forward contract sold at
t, denoted by s,,,,. We use daily noon rates throughout, with ¢ running from November
29, 1990 to June 30, 1993, for a sample of 650 observations. Since we are estimating an
error correction representation, eight additional days of data immediately preceding this
sample period are used to fit an eighth-order VAR. The data were obtained from the
Bank of Canada and we matched the appropriate spot rate with each day’s forward rate
according to the procedure described in Cornell (1989).

We stack the forward rate and the future spot rate, as of period ¢, into the data

vector X, =(,,q,f,) , which we model as being generated by an error correction model

as follows:

k-1
(13) AX,=4B X, +Z®jAX,ﬁ. te,,

J=1
where A is a vector of error correction coefficients, B is a cointegrating vector, & is the

number of lags in the VAR from which (13) is obtained, ¢ runs from 1 to »=650, and
{g , } is a sequence of iid innovations drawn from the unknown bivariate density p(g),

which we assume to be symmetric. We assume an identified model by imposing the
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normalization B' ={1,—b]. Our concern in this paper is with efficiently estimating the
cointegrating parameter b.

Some comments on this model are in order. First, we proceed under the
maintained hypothesis that the cointegrating relationship has a zero intercept. Most
studies also estimate an intercept; we choose not to because our focus is on the efficient
estimation of the slope parameter and because the equality to zero of the intercept is
generally less debatable than the equality to unity of the slope. Second, the symmetry of
p(¢) is a strong assumption (although considerably more general than the standard
assumption of Gaussianity) necessitated by the fact that the analysis in Hodgson (1995¢)
relies on this assumption. Extension of the model to allow for a more general class of

densities for p(¢) is a topic for further research. Third, the selection of the lag order % is
problematic. The series {SHQO - bﬁ} follows an MA(89) process. Since (13) essentially

involves fitting an autoregression to this series, £ should be infinite. Our approach to this
problem is rather crude. Rather than employing any advanced order selection procedures
or information criteria, we set k=8 and test the estimated residuals for autocorrelation, a
procedure also adopted by Johansen and Juselius (1990).

Several empirical studies have attempted to estimate b, for different currencies,
using different frequencies of data observation and time periods, and using different
estimation procedures. Most studies have estimated a linear cointegrating regression
using some variant of ordinary least squares. We shall argue below that because
exchange rate data, especially those sampled at short intervals, tend to be driven by

innovations whose distributions are more thick-tailed than the Gaussian, least squares
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estimators are inefficient and can be improved upon by adaptive estimators. First, we

present in Table 11 some of the results obtained in the literature for the estimation of 4.

This is not an exhaustive list of all work estimating the forward unbiasedness parameter,

nor even of all the results obtained in the studies quoted.

TABLE 11: SELECTED ESTIMATES OF 5

daily, 1/84-4/91, 90-day

Study and data Estimator Exchange Estimate (S.E.)
rate
McCallum (1994) OLS US/GM 9898 (.016)
monthly, 1/78-7/90, 30-day US/BP 9770 (.016)
Barnhart, Szakmary (1991) iterative SUR US/CD .987 (.009)
monthly, 1/74-11/88, 30-day US/GM 975 (.011)
-Baillie, Bollerslev (1989) OLS CD/US 9599 (NR)
daily, 3/80-1/85, 30-day JY/US .8476 (NR)
SF/US 9756 (NR)
Corbae, Lim, Ouliaris (1992) CCR CD/US 9777 (.071)
weekly, 1/76-1/85, 90-day SF/US 9386 (.043)
FF/US 9417 (.037)
JY/US .8670 (.049)
Baillie, Lippens, McMahon (1983) OLS BP/US 9560 (.0219)
four-weekly, 6/73-4/80 or CD/US 6418 (.1143)
12/77-5/80, 30-day FF/US .8840 (.0397)
SF/US 7974 (.1204)
Phillips (1993a) RRR AD/US .934 (NR)

* x/y denotes currency x in terms of currency y; US=US dollar, GM=German mark, BP=
British pound, CD=Canadian dollar, JY=Japanese yen, SF=Swiss franc, FF=French

franc, AD=Australian dollar

As mentioned above, the estimates presented in Table 11 are just a selection of all

the estimates of the forward unbiasedness cointegrating parameter reported in the

literature’. The estimates quoted are generally somewhat farther from unity than those

not quoted. Nevertheless, the former share with the latter two characteristics: first, they

> In all the regressions reported, an intercept is estimated in the cointegrating relationship.
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are obtained from estimation techniques that are only asymptotically efficient under
Gaussianity assumptions on a model’s underlying innovations; and second, they are
almost always less than unity. We have chosen to report some of the more extreme
deviations from unity, but the result that 5 is usually estimated to be less than one is quite
general. As we shall report below, the Johansen (1988) reduced rank regression estimate
of b for our data set is also less than one. These findings could be due to a failure of the
forward unbiasedness hypothesis, but they may also be a statistical phenomenon arising
from the fact that inefficient estimators are being used for highly non-Gaussian data. -
That the estimates are always away from unity in the same direction suggests that bias,
rather than dispersion, is the main problem if the problem is indeed statistical in nature.
However, this suggestion is mitigated by the fact that the various estimates reported in the
literature are not independent of one another, as they all involve exchange rates between
some currency and the U.S. dollar and are usually for very similar sample periods.

(b) Empirical Results

The logarithms of the spot and forward rate series are plotted in Figure 1 and the results

of the Phillips (1987) Z, and Z, unit root tests and the Johansen and Juselius (1990)

trace and maximum eigenvalue cointegration tests, with & in (13) set at 8, are presented in
Tables 12 and 13, respectively. For both series, the null hypothesis of a unit root is easily
accepted by both statistics, while the null hypothesis that the variables are not

cointegrated is strongly rejected by both statistics reported.

44



TABLE 12: RESULTS OF UNIT ROOT TESTS

Statistic Spot rate Forward rate 90% Crit. value
Phillips (1987) Z, 0.96 -0.16 -11.3
Phillips (1987) Z, 0.69 -0.10 -2.57

Note: The autoregression contained a constant and the spectral density matrix was estimated using a Parzen
window and a lag truncation of 10.

TABLE 13: RESULTS OF COINTEGRATION TESTS

Statistic Value 95% C.V. 97.5% C.V.
Trace 21.56 20.17 22.20
Max. Eigenvalue 18.20 15.75 17.62

Note: The critical values are for the null hypothesis of no cointegration and are obtained from Table A3 in
Johansen and Juselius (1990).

The Johansen (1988) reduced rank regression Gaussian pseudo-ML estimate of b,
with k=8, is b Jorr =0.937 with an estimated asymptotic standard error of 0.033. We then

obtain estimates {2" ,} of the residuals by running an OLS regression of AX, on seven

owﬁ lags and a lagged error correction term. The estimated residuals are plotted in
Figures 2 and 3, and Gaussian kernel estimates of the marginal density of each residual
series, calculated using Silverman’s (1986) rule-of-thumb bandwidth, are plotted in
Figures 4 and 5, along with plots of normal densities whose variances equal the sample
variances of the respective residual series. Table 14 reports the results of Box-Pierce
(1970) Q statistics for autocorrelation and Jarque-Bera (1980) tests for non-Gaussianity
and excess kurtosis as applied to both residual series. The results strongly suggest that
the residuals are uncorrelated and non-Gaussian, with excessively thick tails. The latter
conclusion is supported by a glance at the density estimates in Figures 4 and 5. However,

our assumptions that the innovations to the system are iid from a symmetric density are
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placed into question by Figures 2-5. The time series of the estimated residuals in Figures

2 and 3 seem to indicate the presence of conditional heteroskedasticity, while the density

estimates in Figures 4 and 5 appear to be significantly asymmetric.

TABLE 14: AUTOCORRELATION AND NORMALITY TESTS ON

OLS RESIDUALS
Statistic and asymp. distn. Value for { 3“} Value for {:921}
Box-Pierce Q(5) (~ x3) 0.03 0.15
Box-Pierce Q(10) (~ x1, ) 2.76 533
Box-Pierce Q(20) (~ 130) 14.01 16.80
Jarque-Bera skewness-kurtosis 147.99 169.50
- 2
(~x3)
Jarque-Bera kurtosis (~N(0,24)) 53.58 62.29

Note: { :91 . } denote the estimated residuals to the spot rate equation, and {2"2 , } are the estimated

residuals to the forward rate equation.

We use the Johansen (1988) estimate of the cointegrating parameter and the OLS

estimates of the short-run coefficients as our preliminary estimator in arriving at an

adaptive estimate. We compute adaptive estimates for a grid of smoothing and trimming

parameter estimates and report the estimates and estimated asymptotic standard errors in

Table 15. We reduce the trimming parameter selection problem to a univariate one in a

manner similar to that of Hsieh and Manski (1987), but with modifications to account for

the scale of our data. Our estimated residual series both have standard deviations in the

neighbourhood of .0026, so we reduce the trimming parameter problem to the selection of

r,where a, =7, ¢, =r/(002)*,and m, =exp(-r> /(.002)*). We allow r to take the

values 0.04, 0.05, and 0.06, meaning that we trim at roughly 8, 10, and 12 standard

deviations from the origin. Regarding the values of the smoothing parameter o that we
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employ, the Silverman (1986) rule-of-thumb value for estimating the bivariate density of

our estimated residual series is 0.00084, so we allow o to assume the values 0.00084,

0.00093, 0.00103, and 0.00113.

TABLE 15: ADAPTIVE ESTIMATES AND STANDARD ERRORS FOR
VARIOUS SMOOTHING AND TRIMMING PARAMETER SETTINGS

o\ 7 0.04 0.05 0.06
0.00084 995 (.026) 1995 (.026) 995 (.026)
0.00093 997 (.028) 997 (.028) 997 (.028)
0.00103 1998 (.030) 1998 (:030) 1998 (.030)
0.00113 997 (.032) 997 (.032) 997 (.032)

As can be seen from Table 15, the adaptive estimator adjusts the Gaussian
pseudo-MLE much closer to unity, a result that is quite robust to selection of smoothing
and trimming parameters. In fact, the results are entirely insensitive to variation in the
trimming parameter, suggesting that over the range of variation considered the amount of
trimming is not changing. Since this range is fairly substantial relative to the scale of the
data, it is very probable that little or no trimming is taking place at the settings
considered. The estimated asymptotic standard errors are more sensitive to variation in
the bandwidth than are the parameter estimates. They increase with the bandwidth o, an
expected result because the inverse of the estimated asymptotic information matrix of the
innovation density appears in the expression for the parameter estimator’s covariance
matrix, and our kernel estimate of this information matrix decreases with o, the reason
being that with more smoothing the tails of the kernel density estimate descend to zero
more slowly, so that the estimated score functioﬁ at tail observations is smaller, causing

the sum of the squared score estimates, i.e. the information matrix estimate, to be smaller.
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5. CONCLUDING REMARKS

This study has investigated both the finite sample efficiency gains to be obtained by using
adaptive estimators for two popular representations of cointegrated models and the effects
on inference regarding the forward exchange market unbiasedness hypothesis of
employing adaptive rather than Gaussian pseudo-ML estimators. In the simulation study,
we found that for non-Gaussian data the gains over the Gaussian pseudo-MLE were
significant for samples ranging in size from 100 to 500 while the losses when the data
generating process actually is Gaussian were fairly modest. The results were not very
sensitive to the user-specified trimming and smoothing parameter values selected, at least
for bandwidths in a rough neighbourhood of Silverman’s (1986) rule-of-thumb value.

For the linear cointegrating regression model, we also computed robust LAD estimates in
order to evaluate the robustness properties of the adaptive estimator. It stood up to
comparison quite well, being outperformed by LAD for thick-tailed unimodal densities
but performing much better for Gaussian and bimodal mixed normal innovations. We
conjecture that the adaptive estimator’s performance could be improved for the
distributions considered by making use of elliptical symmetry restrictions.

The empirical study applies the methodology of adaptive estimation in error
correction models, developed in Hodgson (1995¢), to the problem of estimating a forward
exchange market unbiasedness model. A survey of the literature finds that such models
are commonly estimated by Gaussian pseudo-MLE techniques which often obtain

estimates of the cointegrating parameter between spot exchange rates and lagged forward
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rates that are less than the value of one implied by the forward unbiasedness hypothesis.
We estimate a model of the Canada-U.S. exchange rate with daily data using Johansen’s
(1988) Gaussian pseudo-MLE for error correction models and obtain a result
considerably less than unity. We find that the estimated residuals have thicker tails than
the normal, a common result for daily exchange rate data. We then adaptively estimate
the model and obtain estimates much closer to unity, a result robust to smoothing and
trimming parameter selection. The adaptive estimator produces a much sharper inference
in favour of the forward market unbiasedness hypothesis than does the Gaussian pseudo-

MLE.
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