Rochester Center for
Economic Research

Adaptive Estimation of Error Correction Models

Hodgson, Douglas J.

Working Paper No. 410
September 1995

University of

Rochester




Adaptive Estimation of Error Correction Models
Douglas J. Hodgson
Rochester Center for Economic Research

Working Paper No. 410

September 1995






ADAPTIVE ESTIMATION OF ERROR CORRECTION MODELS

Douglas J. Hodgson!
Department of Economics
University of Rochester
Harkness Hall
Rochester, NY
14627-0156

June 9, 1995

The paper considers the adaptive maximum likelihood estimation of reduced rank vector
error correction models. It is shown that such models can be asymptotically efficiently
estimated even in the absence of knowledge of the shape of the density function of the
innovation sequence, provided that this density is symmetric. The construction of the
estimator, involving the nonparametric kernel estimation of the unknown density using the
residuals of a consistent preliminary estimator, is described, and its asymptotic distribution

is derived. Asymptotic efficiency gains over the Gaussian pseudo-MLE are evaluated for

elliptically symmetric innovations.
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I. INTRODUCTION

Contemporary empirical researchers in macroeconomics and finance make considerable
use of error correction representations in the modeling of cointegrated systems. Such
representations are always possible (Engle and Granger (1987)), and derive their name
from the fact that the deviations of a system from its cointegrating relationships are
explicitly modeled as impacting upon subsequent short-run dynamics. An error
correction representation can be derived from a vector autoregression (VAR) by taking
first differences. The fact that the system is cointegrated implies that among the
regressors in the differenced VAR will be a term in the lagged levels of the variables,
with an accompanying coefficient matrix that has reduced rank equal to the number of
cointegrating relationships. |

A natural approach to estimating such a model is reduced rank regression. For
the case of stationary VAR's, reduced rank regression estimators have been analyzed
by Ahn and Reinsel (1988) and Velu, Reinsel, and Wichern (1986). In the
nonstationary case, the reduced rank structure implies an error correction
representation, as the reduced rank matrix can be decomposed into a matrix of
cointegrating vectors and a matrix of error correction coefficients, or factor loadings,
characterizing the effects of the deviations from the cointegrating relationships on the
transitory dynamics of the system. The estimation of cointegrated systems by reduced
rank regression has been analyzed by Johansen (1988, 1991) and Ahn and Reinsel

(1990). These authors derive maximum likelihood estimators (MLE's) of the model



assuming Gaussian innovations to the underlying VAR. The Gaussian reduced rank
MLE has been widely employed in applied cointegration analysis. For example,
Johansen (1992), Johansen and Juselius (1990), and Friedman and Kuttner (1992)
estimate monetary models, Johansen and Juselius (1992) estimate exchange rate
models, Kunst and Neusser (1990) estimate real business cycle models, and Kasa
(1992) estimates models of stock prices and dividends.

If the assumption of Gaussianity is correct, then the estimators of Johansen
(1988) and Ahn and Reinsel (1990) are asymptotically efficient and should have
performance superior to that of alternatives such as the least squares estimator of Engle
and Granger (1987). Indeed, Ahn and Reinsel (1990) report a simulation study
comparing their estimator of the cointegrating parameter in a Gaussian bivariate model
with OLS. They find a large improvement in mean squared error, for all sample sizes
considered (50 through 400), when the efficient MLE is used. An extensive and
general analysis of efficient estimation of cointegrated models in the Gaussian case is
provided by Phillips (1991).

Although the MLE’s discussed above are asymptotically efficient when the
innovations are Gaussian, they are inefficient when the innovations are non-Gaussian.
In the latter case, the efficient MLE will take a different form. As Ahn and Reinsel's
(1990) own simulations show, it matters in the estimation of cointegrating vectors
whether or not an efficient estimator is used. Some of the applied studies cited above
(Johansen and Juselius (1990, 1992) and Kasa (1992)) test and reject the Gaussianity

hypothesis for the estimated residuals. The rejections are due primarily to excess



kurtosis. This result is not surprising, given that many economic time series, especially
speculative prices, are well documented to be driven by leptokurtic processes (see, for
example, Mandelbrot (1963), Fama (1963, 1965), Mittnik and Rachev (1993), and
McGuirk, Robertson, and Spanos (1993)). That Gaussian reduced rank estimators can
give poor estimates when using thick-tailed data has been demonstrated by Phillips
(1993) in the context of empirical exchange rate models.

In problems for which a Gaussian MLE is inappropriate, adaptive estimation,
which can be employed when the underlying density function of the data generating
process is of unknown shape, provides a highly attractive alternative. An adaptive
estimator shares the asymptotic optimality properties of the MLE, differing from the
latter in that a nonparametric estimate of the score function of the log-likelihood
replaces the analytic expression that would be used if the density were known. An
adaptive estimator can be viewed as an MLE when the shape of the likelihood is
unknown. A simulation study by McDonald and White (1993) finds that adaptive
estimators compare quite favourably with OLS, LAD, GMM, and M-estimators in the
estimation of a (non-cointegrating) non-Gaussian linear regression model.

The present paper analyzes adaptive estimators for reduced rank regression in
cointegrated error correction models. It builds on and follows the work of Jeganathan
(1994), who analyzes the adaptive estimation of linear cointegrating regressions. In
section II, the model and notation are introduced. In section III, we show that this
model falls within the locally asymptotically normal (LAN) and locally asymptotically

mixed normal (LAMN) family of models, with the component of the model associated



with short-run dynamics being LAN and the component associated with long-run
dynamics being LAMN. In section IV, we introduce a class of estimators termed
asymptotically centering (AC), and describe the optimality properties of these
estimators in LAN/LAMN models. Although AC estimators are asymptotically
equivalent to the MLE, they require knowledge of the shape of the density function of
the innovations, knowledge we are assumed to lack. In section V, we show how to
construct estimators that are asymptotically equivalent to AC estimators, and so share
their optimality properties, but do not require knowledge of the shape of the density of
the innovations. These estimators, termed adaptive, utilize nonparametric density
estimates to consistently estimate the score and information of the log-likelihood
function. We derive the asymptotic distribution of an adaptive estimator and, for the
special case of elliptically symmetric innovation densities, evaluate its efficiency gains
over the Gaussian pseudo-MLE. Section VI extends the basic stochastic model
specification to allov? for non-zero intercept terms in the cointegrating vectors. Section
VII discusses possible extensions of the research. The Appendix contains the proofs of
all lemmas and theorems.

The following notation is used throughout the paper. I, denotes the identity
matrix of dimension s, |x| the Euclidean norm of the vector x, /(-) the indicator
function, N(x, V) the distribution of a random variable that is normal with mean vector
X and covariance matrix V, and MN(x,V) a mixed normal distribution, i.e. one in

which the covariance matrix Vis random. The vectorization operator vec(X) stacks the

transposed rows of the matrix X, while the inequalities X> Y and X>Y , when applied



to matrices, signify that the difference X-Y is positive definite and positive semi-
1 1
definite, respectively. We simplify the notation by writing J.B in place of JB(r)dr
0 0

when B(#) is a Brownian motion process defined on the interval [O,1]. L(X]P)

denotes the distribution (or law) of X with respect to the probability measure P. When

P is the distribution of X itself, L(X|P) is abbreviated to L(X). The weak

convergence of probability measures is denoted by the symbol = .

II. THE MODEL AND NOTATION

We assume that the ¢g-dimensional stochastic process X, is observed for all z=1,...,n.

Considered individually, each of the ¢ series is integrated of order one, but we shall
assume that there exist r cointegrating relationships among the variables, with

1<r<gq, and that r is known. We also assume that the data generating process for X,

can be characterized by the following VAR, of known order &:

) X =TLX_ +.+ILX_  +¢,.

In addition, we assume that initial observations X,_,,..., X, are available. The

k
implications for the lag polynomial Il(z) =1 - ZH jzf of our assumption that r
j=1

cointegrating vectors exist are that det{I1(z)} =0 has ¢-r roots on the unit circle and r

roots outside the unit circle.



So far, our model is identical to those of Johansen (1988) and Ahn and Reinsel
(1990). Where we differ from these authors is in our assumptions regarding the

distribution of the iid innovation process &,. Whereas they assume that this

distribution is Gaussian, we allow it to belong to a much broader class and to be
unknown to the investigator. This class is restricted by assuming that the true
distribution has a Lebesgue density function, p(g), that is symmetric about the origin

2+8
il

in the sense that p(e)= p(—¢), and that satisfies the moment condition E(|g ) <

for some 6 >0, for all i=1,...,q. The symmetry assumption is important for our
purposes because it implies that the g-vector of partial derivatives is anti-symmetric,

i.e. that &p(g)/ O = —p(—¢€)/ Je. Consequently, the g-dimensional (negative of the)
score function of p(¢), which we denote by w(g) = ((e)/ &) /p(e), is also anti-

symmetric in ¢ . This latter property facilitates our derivation of an adaptive estimator
because it allows us to apply a result of Jeganathan (1988) in showing that the sample
score function of the model can be consistently estimated through the use of a

nonparametric kernel estimator of y(&). Finally, we assume that the information
matrix of p(e), Q= J.l//(é‘)l//(é‘)' p(&)de | is finite and positive definite.] Note that in

the special case where p(¢) is Gaussian, Q=2_', where £, = cov(¢). If Gaussianity

does not hold, then Q>X".

L 1t follows from this assumption that 0 < A* = J]y/(g)x2p(£)d8 <oo,since A = trace(Q).



As noted in the Introduction, first differencing the VAR (1) yields the following

error-correction representation:

k-1
@)  AX,=ABX,_ + > ®AX,_ +s,

j=1

where the g x r matrix A is a matrix of error correction coefficients and the rows of
the r x ¢ matrix B are cointegrating vectors. This model is analyzed by Johansen

(1988) and Ahn and Reinsel (1990) under the Gaussianity assumption. The primary

goal of our paper is to adaptively estimate 4 and B.

As the model stands, A and B are unidentified. In what follows, we only
consider the estimation of an identified model. Following Ahn and Reinsel (1990), this
is achieved by partitioning the variables in X, as X, = [Xl,' »th']' , with X, having r |
elements and X,, having ¢-r elements, such that the subsystem X, contains g-r unit
roots, and by writing B =[I,,-B,|, where B, has dimensions r x (¢ —r). The r(g-r)

elements of B, are the long-run coefficients in this model. We can then rewrite (2) as
@) A =4X, -BX, |+9Z, +¢,
where @=[®,,...,®, ] and Z,, =[AX, ',... ,AX_,,'].

1t is clear from equation (3) why the representation is termed an error correction

model. The bracketed expression is an r-vector of transitory fluctuations of the system



about its cointegrating relationships, while A determines the reactions of the system to
these fluctuations. The system’s remaining transitory dynamics are characterized by

®, the matrix of coefficients on lagged first differences, which is treated as a nuisance
parameter in most applications. Our primary objective is to efficiently estimate 4 and

B, , adapting for the unknown density p(¢). However, we would also like to adapt for
the unknown nuisance parameter ®. It will be shown below that this can be done for
B, , but not for A. In fact, we will show that B, can be efficiently estimated adapting
for unknown p(e), ®, and A. In other words, if our interest is confined to estimating

the system’s long-run dynamics, we can do as well, asymptotically, not knowing its
short-run dynamics as we can knowing them. Conversely, we can estimate the short-
run dynamics as well not knowing the long-run dynamics as we can knowing them.
However, we can always improve our estimates of certain short-run cbmponents, even
asymptotically, if other short-run components are known, vis-a-vis the case where the

latter are unknown.

The development of the asymptotic theory in subsequent sections will be
facilitated by the arrangement of all of the model’s unknown parameters into a single

vector. To this end, we define a =vec(4), ¢ = vec(®), and S =vec(B,), of
dimensions gr, ¢*(k —1), and r(g-r), respectively. These vectors are gathered into the
m-dimensional full parameter vector, =[a',¢',f}=[1,F] , wheren = (', ¢') ,
m=2qr—r*+q*(k-1), and 8 belongs to the parameter space ® , which is taken to

be all of R™ (excepting points at which either 4 or B, is of deficient rank). Defining



s=qr +q*(k—1) as the total number of parameters in the stationary component of the

model (i.e. the dimension of 7) allows us to define the m x m scaling matrix
S = a’iag{n“” I, n"[,,,_s] . We can then write the local representation of the full

parameter vector 8 as 8, =6 +6,h,, where {h,} is a sequence of bounded m-vectors.

n'ns

Note that 8, converges to &, but does so at different rates in different directions of the

parameter space. In directions associated with transitory dynamics, the rate of
convergence is v» , whereas in those associated with non-stationary dynamics, the rate
is n.

III. LAN AND LAMN LIMIT THEORY

In this section, we derive the asymptotic distribution of the log-likelihood ratio,

dp,
7,0 =tod T/ ),

where £, is the distribution of the sample of size n with parameter 8. We find that

the limit theory is such that the model falls within the LAN/LAMN family. This is
important because a theory of optimal estimation applies to such models. In Section

IV, optimal estimators for this family are characterized.

We prove that the component of the model associated with the
parameters describing the long-run relationships in the model (i.e. the cointegrating

coefficients B, ) has an LAMN limit theory, while the component associated with

parameters describing short-run dynamics (i.e. A and @) has an LAN limit theory.



We show that these two components are asymptotically independent, allowing separate
adaptive estimation of the coefficients associated with long-run and short-run dynamics,
respectively, but not allowing adaptive estimation of the error-correction coefficients

(A4) separately from other parameters characterizing short-run dynamics (®).

To derive the limit theory of A,(8,,0), we couch the model in terms of the

framework of a general non-linear model, as described by Jeganathan (1994). We

assume that the initial observations X, = (Xl,k, ,Xo) have density f(X,,6), with the
property that f,(X,,6,)— f,(X,,0) =0,(1) in F,, as 6, — 0. We define
X, = (/_YO,XI, ,Xt) and denote by F; the o —field generated by X,. Applying this

notation to equation (27) of Jeganathan (1994), where we set o (X, ,_1,9) =1, yields:
‘Xt = gt(&t—l’e) + &,

where ¢, is as in equation (2) and, also using (2), we have

k-1
4) g(X,1,0)= X, +ABX,, + J};l D%,

=X _,+4BX_ +DZ,_,.

The following result is derived within the preceding non-linear framework and

is useful in our subsequent development of the LAN/LAMN limit theory:

10



Lemma 3.1 : Defining d, (6,,, 9) =g(X, ,0,)-g(X, ,0), we have

5) d(6,6)=h'6H_ (O)-n""X,, 'b a,

n n

where H, () = [(Iq ® VVt—l) ) (Iq ® ZH) > (“A' ®X2,:—1)]' , Wi =X, - BX,,.,, and

{a,} and {b,} are bounded sequences of matrices of dimensions q xr and r x(q—7),

respectively.
Remarks:

(a) The g-vector d,(6,,0) plays an important role in the theory developed below.

Since the essential goal of this paper is to construct an adaptive version of the
maximum likelihood estimator, the derivation of expressions for the sample score

vector and information matrix is necessary. Writing d,(6,,6)' as in (5) is instructive in
this regard because postmultiplying d,(8,,6)' by the score of the innovation density
evaluated at observation ¢, ~y/(&,), and summing over ¢, results in an expression for a

linear combination of the elements of the sample score vector (scaled by &,) plus an
asymptotically negligible component. The scaled sample score is —Z 0,H, ,(Oy(e,).
t=1

We show below that this quantity is O,(1) in £, and that the second term on the right-
hand side of (4), postmultiplied by w(&,) and summed over ¢, converges in probability

to zero. We shall also show that an expression for the asymptotic information matrix

11



of the model can be obtained by postmultiplying @,(6,,6)" by w(g,), summing the

squares over ¢, and considering the limiting behaviour of the sum. The result is a

quadratic form in the asymptotic information matrix, the weak limit of the standardized

sum Zé‘,,H,_,l(H)QIi*I(H)' 6, . Once again, only the first term in (5) is asymptotically
t=1

relevant.

Note that in these expressions for the sample score vector and information

matrix appear the quantities (&) and Q, which are, respectively, the (negative of the)
score and the information of the innovation density p(¢). The basic problem addressed
in this paper is the fact that we assume that p(e), and consequently also y(g) and Q,

are unknown to the investigator. In Section V, we show how this problem can be

addressed through the estimation of y(g) and Q using nonparametric density

estimates.

(b) Note that d,(6,,6) € F;_,. Recognition of this fact simplifies the proof of

Theorem 3.2 below because we deal throughout the proof with statistics containing

d,(6,,0) that are analyzed conditional on F,_,. Furthermore, since ¢, is independently

distributed, w(e,) is independent of F,_, and therefore of d,(8,,8), so that the two

Brownian motion processes appearing in our derivation of the limit theory for the

nonstationary component of the scaled sample score W, (6), given below, are

independent. Our LAMN limit theory for the nonstationary component is a

consequence of this independence.

12



The key result in showing that our model falls within the LAN/LAMN family is
Theorem 3.2, given below. A more general family of models than the LAN/LAMN is
the locally asymptotically quadratic (LAQ) family. A model falls into the LAQ family

when its sample likelihood ratio A, (6,,6) can be asymptotically approximated by a
quadratic function of the vector A, (recall that #, =5.'(6, — 6)). Jeganathan (1994)

and LeCam and Yang (1990) formally define LAQ families. Theorem 3.2 shows that
the likelihood ratios in the present model can be asymptotically approximated by the

quadratic given in equation (6).

Theorem 3.2: The likelihood ratios A, (6,,6) have the following asymptotic quadratic

approximation.

n 1 n
© A0,,0)==2 h'6,H, (O)(e,)- Ezhn' 6, H, ,(O)QH, ,(0) 6,h,
t=1 t=1
+o,(l) ink,,.

Remark: The linear term in the quadratic approximation given by (6) is the scaled
sample score vector, while the quadratic term is the scaled sample information matrix.

We shall denote these quantities as follows:

D WO =-8H, ,O)wle)

=1

13



®)  S,(0)=6,H,.(00H, ()5,

In deriving our LAN/LAMN limit theory, the asymptotic behaviour of both of these

statistics is of central importance. The limiting behaviour of W,(6) is analyzed

following the statement of Definition 3.3 below, but we have already, in the course of

proving Theorem 3.2, derived the asymptotics for S,(6). In equation (65) in the

Appendix, we find that S,(6)= S(8), where

Q® E[MM,] 0

®)  SO= 0 404® j[Bsz'

is the asymptotic information matrix, and where we use the notation
M,_, = [WH' ,Z,_l']' for the r+¢g(k-1)-dimensional vector of stationary variables in the
error correction model. Note that since M,_; appears in each of the ¢ equations in the

system, the number of coefficients in the stationary component of the model, s, is equal

to ¢ multiplied by the number of variables in M, _, .

The structure of §(8) is very important to our theory. Recall that the first s
rows of H,_,(0)consist of stationary variables, while the remaining m-s rows are
nonstationary. Since S(f) is the limit of the scaled sum of generalized outer products
of H, ,(0), its leading s-dimensional submatrix is associated with the stationary

component of the model and the second submatrix on the diagonal, of dimension m-s,

14



is associated with the nonstationary component. Not surprisingly, the former submatrix
is non-random and the latter is random, corresponding to the fact that stationary models
typically have non-random Fisher information matrices while cointegrated models
typically have random ones. In our model, the information matrix has both non-
random and random components, since we are modeling both stationary and
nonstationary dynamics. This structure is important because, as will be formally shown
below, it implies that the stationary component of the model has LAN limit theory and
the nonstationary component has LAMN limit theory. Finally, the block diagonality of
S(0) has important implications for the question of which components of 8 can be
adaptively estimated treating the remaining components as nuisance parameters. We

discussed this question in the second-last paragraph of Section II.

We now show formally that the likelihood ratios for this model have a limit
theory that is LAN with respect to the component of 8 associated with transitory
dynamics, and LAMN for the component associated with long-run dynamics (i.e. the

cointegrating parameters). The following definition is used.

Definition 3.3 (Jeganathan (1994)): The family {P&,,;H € G)} is said to have LAMN
likelihood ratios at 0 €©® if the quadratic approximation (6) holds, and, furthermore,
L(Wn(ﬁ), SH(B)!P,,’,,) = L(S%N(O, D), S(Q)), where S(8) is positive definite almost

surely and N(0,1) is a standard Gaussian independent of S(8). In the special case

where S(0) is non-random, LAMN likelihoods are called LAN.

15



According to this definition, a model falls into the LAMN family if its likelihood ratios
can be asymptotically approximated by a quadratic in which the linear term has an
asymptotic mixed normal distribution with a covariance matrix equal to the random
quadratic term. Furthermore, the LAMN family is more general than the LAN family,

as the latter requires the quadratic term to be non-random.

To prove our assertions regarding LAN and LAMN likelihood ratios for this

model, we need only show that L(Wn(e)iPan) = L(S % (O)N(O, ])). Since the upper-left

block of $(&) is non-random, and the lower-right block is random, our earlier claims

regarding the LAN and LAMN limit theory for the respective components will then

hold. To analyze the limit distribution of the score W, (8), we write it as follows:

v ®M,,
10) - wo=3 .
= —4 (//(gr)®X2.z—l

n

The first s elements of the m-vector W,(6) are sums of stationary random variables

1/

scaled by n™'"* | while the remaining m-s elements are sums of products of stationary

and nonstationary random variables, scaled by n™'. Hence, we would expect the first
component to have a limiting Gaussian distribution with non-random covariance matrix

and the second component to converge weakly to a stochastic integral of the form

IdB ® B. We now show that these conjectures are correct, beginning with an analysis

of the first component of (10),



1 n
"'\‘/—;—7—;‘//(&)@]\4_14

Since y(¢,) is independent of M, , and E[l//(g,)] = 0, a central limit theorem for

martingale difference sequences (e.g., White (1984, p. 130)) can be used to show that
1 & o
(11) L[—\—F;Z w(e,) ®A4_11P9,,,) = L(N(0,.0® H{MM, )
C =1
As for the second component of (10), we know that

n 1
IS apeyox,, = [4dB, ®B,
n t=1 0

Since B, and B, are independent, it follows that

1
(12) L( [4aB ®B,
0

1
Panj = L(MN(O, 4040 | BZBZ'D,
0

as shown by Phillips and Park (1988). To show that ZL(#,(6)|F, ) = L(MN(0,(6))),

we need only verify the following equation:
1 & .
(13) -—3—/2—2 Ay(e)y(e)®X, M,_'=0,01) in B,
7 t=1

To this end, we rewrite the left-hand side of (13) as

17



1 - 1 ! 1 1 ¢ ' '
—%ZA (l//(gt)l//(gt) _Q) ® X2,t-lM—l +—_3/:ZA Q® X2,t—lM—l
e =1 n t=1

=o0,(D+o,(N)=0,(1) inF,,.

The second term is o0,(1) by equation (63) in the proof of Theorem 3.2, and the first

term is o,(1) because

and

Y (W) -0) = 0,0) in B,

X;;Z,JM,—] . .
nax, '\m —=0,(1) inF, Vi=l.,q-r; (=1, ,r+qk-1).

This completes our derivation of the LAN/LAMN limit theory for our model.

One important consequence of this theory is that the sequences of probability measures

{Pg’n} and {Pgn,n} are contiguous, and therefore have the property that the sequence of

statistics {T,,} is 0,(1) in £,  if and only if itis 0,(1) in F,, (see LeCam and Yang

(1990, p. 20)). This fact is used below because statistics will be computed using

residuals &(6,) from a consistently estimated model in lieu of the true innovations

£(0), and the fact that the latter statistics are o,(1) in £, , will be used to show that the

former are 0,(1) in £, .

18



IV. EFFICIENT ESTIMATION IN LAN/LAMN MODELS

In this section, we are concerned with the efficient estimation of our model under the
assumption that the innovation density p(¢) is known to the investigator. The results
of the preceding section are important in this regard because they permit us to draw
upon the theory of efficient estimation that has been developed for LAN/LAMN
models. According to this theory, the class of estimators termed asymptotically
centering (AC) by Jeganathan (1994) is optimal according to the locally asymptotically
minimax (LAM) criterion. We begin this section by defining AC estimators and
discussing their optimality properties. We then describe the construction of such
estimators for our model. The following definition of AC estimators is given by

Jeganathan (1994).

Definition 4.1: If the model is LAMN or LAN at 6, a sequence { @n} of estimators is

called AC if
(14) 8,0, -0)- S, (OW,(0) =0,1) inP,,
where W (0) and S,(0) are defined in (7) and (8).

Remark: We can see from this definition that an AC estimator for our model will have
an asymptotic mixed normal distribution when appropriately scaled and centered.
Furthermore, the asymptotic covariance matrix is the inverse of the Fisher information,

so that an AC estimator has the same asymptotic distribution as the MLE and so shares

19



the latter’s efficiency properties. AC estimators are optimal according to the LAM
criterion, which means that for any symmetric, bowl-shaped loss function and for any
0 €©, they achieve a lower bound for the limit inferior of the supremum of the risk
over a ball around 6 whose radius converges to zero as » — o« (for a discussion, see,

for example, Ghosh (1985, pp. 318-320)).

Before showing how to construct AC estimators for our model, we introduce
some notation and assumptions. We assume that consistent estimates S'n of S,(6)
exist. Under the assumptions of our model, conditions (C2) and (C5) of Jeganathan

(1994) hold ((C2) because © is open and &, — 0, and (C5) because &, does not

depend on ). Let {9:} be a sequence of preliminary estimates such that
5HE -6) = 0,(1) inF,, V0e0,

and let &, be a discretized version of 7. The following definition of discretization is

quoted from Jeganathan (1994):

Partition the space R" into cubes C,72>1, of sides of length unity, and

let C,=6,C,={6wueC} If 6, c®ONC

ni?

take 8, =1, where 1, is

= nis

some fixed pointin @ ~C

»» which will necessarily be non-empty since
6, €®. The 6, constructed in this way preserves the properties of 6"

in the sense that 6, €® and &,'(8, - 6) = 0,(1) in F,, forall  €@.

20



In practice, any preliminary estimator &, will effectively already be discretized, since

it will be computed to a prespecified finite number of decimal places.

We define the quantity W, (¢) as in Proposition 3 of Jeganathan (1994). (The

definition is not repeated here because it would involve the introduction of a

considerable amount of new notation. For our purposes, the important characteristic of
W, () is the fact that W, (6) = W,(6) - S'nhn +0,(1) in F,, for every bounded {h,,}.

This is proved in Proposition 3 of Jeganathan (1994)).

Given the above definitions and assumptions, Theorem 2 of Jeganathan (1994)

establishes that @n as given in equation (15) below is an AC estimator:
15)  0,=6,+5,5"W6,).

The following discussion, based on that of Jeganathan (1994), shows heuristically why
(15) is an AC estimator and why the notion of a discretized estimator is employed. As

noted above, Proposition 3 of Jeganathan (1994) proves that
(16) W (0,)=W,(0)~S,h, +0,(1) inF,,
for every bounded {hn} and for every 8 € ®. Defining the estimator

(A7) 0.=6,+65'W'6),

nn
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and replacing 4, in (16) with §.'(8) — ) (which, recall, is 0,(1) in F, ), it would

seem that (16) and (17) could be combined to conclude that

5, (6.~ 6) =8 W,(0)+0,(1) inP,,

so that 6, is an AC estimator. However, it is not strictly correct to replace 4, with
5,'(6, - 6) in (16), since &, (8, - 6), although confined with probability arbitrarily
close to unity to a bounded interval, may assume any of an uncountably infinite number

of values within such an interval. This would require the replacement of (16) with the

stronger condition that

sup
|nl<y

,(0,)~ W, (0)- 81| = 0,Q1) inB,, Ya > 0.

This problem can be avoided by replacing 6, with 6, . For then the quantity

§,1(6," - 6) can only assume one of a finite number of points in any bounded interval.
n n y y

V. ADAPTIVE ESTIMATION

The asymptotically efficient estimator derived in the preceding section is of no

immediate use to us because of its assumption that the density p(¢) is known to the

investigator, an assumption we wish to avoid. In this section, we argue that our model

can be efficiently estimated even if p(¢€) is unknown. We show how to construct an

estimator that is asymptotically equivalent to the AC estimator given by (15). To
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accomplish this equivalence, we employ nonparametric kernel techniques to estimate
the density, p(e), its score, w(¢), and its information matrix, 2 ; these estimates are
then substituted into equations (7) and (8) to give us consistent estimates of the sample
score and information, with which we can construct a one-step Newton-Raphson

estimator similar in form to that given by (15).

Our analysis belongs to the body of research stemming from Stein’s (1956)
investigation of the problem of efficiently estimating a parameter of interest in the
presence of an unknown infinite-dimensional nuisance parameter. The problem of
adaptively estimating a location parameter using a sample of iid observations from a
symmetric density of unknown shape was solved by Beran (1974) and Stone (1975), the
former using Fourier series methods and the latter using a Gaussian kernel. To prevent
misbehaviour of his score estimator, Stone (1975) required that extreme outliers be
trimmed in its computation. Similar procedures were adopted by Bickel (1982), Kreiss
(1987b), Manski (1984), Linton (1993), and Jeganathan (1994), among others, and are

also employed here.

Our first step in this section is to formulate a nonparametric kernel estimator of

the score w(eg,). We therefore introduce the following notation:
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T(xX,o)= 1 X —}x!2)
(x,0) (Gm)q} p(zaz ,

2(n-1) Z{”(x +¢&,(0),0) +n(x - £,(0), 0')}

i1
izt

Dy i(x,0) =

and let Py ,(x,6) be the partial derivative of p, ,(x,8) with respect to the j* element
of x, for all j=1,...,q. In these expressions, z(x,o) is a g-dimensional normal kernel

with smoothing parameter o . The larger is o, the smoother is the estimate of p. We

further define

iy Dotny(x,0) 2 m]
p:r(n),t(x: 6) ot

Ny i <al
Vi (50 =15  (x,0) n x| < @
’ |Po'(n),t(x: 9)' < Cipcr(n),t(xa 9)
0 otherwise

where ¢, > ©, a] — ®, 0(n) > 0, m — 0. The trimming parameters ¢/, &’ , and
m! serve to omit extreme outlying observations that would distort the behaviour of the
score estimator [&n given by equation (19) below. Our derivation of an adaptive

estimator hinges on the consistency of A,, as an estimator of A, (given in (18)). The

above conditions on the trimming parameters and on the smoothing parameter o are

used to prove this consistency.

At this point, a problem arises that is common in nonparametric estimation.

The theory only describes the limiting behaviour of the smoothing and trimming
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parameters. In practical problems, with a fixed sample size, knowing this theoretical
limiting behaviour provides little assistance in selecting the values to be used. An
extensive literature éxists regarding the selection of smoothing parameters in density
estimation problems (see, for example, Marron (1987) for a survey), but the
applicability of this literature to the case at hand has not been much investigated, nor

has the problem of trimming parameter selection.

The question of smoothing and trimming parameter selection in the adaptive
estimation of (non-cointegrating, single equation) linear regression models was
addressed in a Monte Carlo simulation study by Hsieh and Manski (1987), which
extends a similar study reported by Manski (1984). Hsieh and Manski used sample
sizes of 25 and 50, and considered six possible distributions for the (univariate) errors
(normal, variance-contaminated mixture of normals, ¢, bimodal mixture of normals,
beta, and log-normal). In all cases, the standard deviation of the error density was set
equal to unity. They found that the adaptive estimator’s performance was fairly
insensitive to the selection of trimming parameters (although being more sensitive to
mild overtrimming than to mild undertrimming). They found that good values of

¢,, a,, and m, for n=50 were 8, 8, and exp(-32), respectively. Regarding the
smoothing parameter o(n), they found that the estimator was quite sensitive to its

selection. Depending on the true distribution of the errors, it was found that from a set

of preselected possible values of o(n), the best value was anywhere from 0.1 to 0.5

for n=>50. It should be emphasized that the range of smoothing and trimming



parameter values used by Hsieh and Manski (1987) is roughly appropriate for their*
simulated data because the innovations had unit standard deviation. In empirical
'applications, the range of values that an investigator would want to consider will
depend upon the scale of the data. The smaller is the scale, the smaller will be the
most appropriate smoothing and trimming parameter settings. For example,
Silverman’s (1986) rule of thumb formula for bandwidth selection in density estiféation
problems is linear in the standard deviation of the sample, while Hsieh and Manski’s

(1987) trimming procedure is effective at approximately eight standard deviations from

the origin.

Hsieh and Manski (1987) found that estimator performance improved if a data-

based bootstrap method was used to select o(n). Their procedure took the preliminary

(least squares) parameter estimates as the true values, and the sample distributions of
the regressors and the least squares residuals as the population distributions. From this
artificial population, they drew a number of independent samples, choosing the value of

o(n) that minimized the mean square error of the parameter estimate over these

samples. They concluded by recommending the use of such a method in empirical

applications and strongly recommending against using preselected values for o(n).

It has been assumed above that the same bandwidth setting is used to estimate
both the density and its partial derivatives. However, Hardle, Hart, Marron, and
Tsybakov (1992, p.219) suggest that better results may be obtained in practice by using

different values of o(n) for the density and derivative estimation problems. For both
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problems, data-based methods such as cross-validation could conceivably be employed.
For density estimation, the literature in this area is extensive. It is much less so for
derivative estimation, although Hardle, Marron, and Wand (1990) explore the use of
data-dependent methods and prove an optimality result for a least-squares cross-
validation procedure. In addition to allowing the bandwidth to vary berween the
density and derivative estimation procedures, we may wish to let it vary within each
procedure. Since observations are more dense in the body of the distribution than in
the tails, it would seem reasonable to smooth more heavily in the latter, and various
methods for using variable bandwidths have appeared in the literature. For our
problem, increased smoothing in the tails would reduce the need to trim, which arises
because undersmoothing causes the density estimate to approach zero more rapidly than
the derivative estimate, causing an explosion in the estimated score at outlying

observations.

Most work that has been carried out on the selection of smoothing parameters in
density estimation problems analyzes univariate densities. In the model considered
here, however, a multivariate density is being estimated, which may complicate matters

since it may be desirable to employ a ¢ x ¢ matrix of smoothing parameters rather than

a scalar. Alternatively, we may choose to rescale the data prior to employing the
kernel. Furthermore, the multivariate character of our analysis increases the number of
trimming parameters to be selected from three to 3¢. In practice, it would be simplest
to use the same settings of the trimming parameters for all ¢ equations, but there could

be a potential accompanying loss of effectiveness in the estimator.
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The theory developed in this paper assumes that the values of the smoothing and
trimming parameters are selected in advance of the analysis. However, there is strong
reason to believe that the performance of the adaptive estimator can be improved by the
use of data-based methods to select these parameters. This point implies that it would
be desirable to extend the theory to allow for data-dependent smoothing and trimming

parameters.

Returning to the analysis, we define the g-dimensional score estimate as
W, (x,60)= (y?L,(x, 0),.... w2 (x, 9)) . Assuming that p(g) is symmetric about the
origin implies that y(¢) is anti-symmetric about the origin. Furthermore, ¥, ,(x,6) is

anti-symmetric about the origin in x by construction. We also define

18 A,O=-UOpO)

19) 4,0 = -2 U0,,(0),0)

where U,,(0) is some m x ¢ matrix. This notation is introduced in order to facilitate

our statement of Proposition 5.4, which will be used in our derivation of an adaptive
estimator. As mentioned earlier, a central problem in constructing an adaptive
estimator is the consistent estimation of the score vector for the sample. The discussion

leading up to Proposition 5.4 develops the properties that the matrix U,,(6) must

possess in order for A,,(@) to be a consistent estimator of A, (6). After these
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properties have been outlined, it will be shown in Lemma 5.5 that they are indeed

satisfied by the matrix 6,H,_,(0). Therefore, after stating Proposition 5.4, the setting

of U, (0)=46,H, ,(6) will be used to show that AH(B) 1s a consistent estimator of the
score vector A, (6). This will allow the derivation of an expression for an adaptive
estimator in Theorem 5.6. First, the desired properties of the matrix U ,(0) are stated

in Conditions 5.2 and 5.3.

Define

X,6) = 3 U0 (2.(0)

B,(0) =~ U007, (2.(0),0)

where UJ,(6) is the j” column of w”(¢,(6)) and v/ (g,(0)) is the j* element of

w(&,(6)). We seek to prove that
A6)-4,0,)=0,(1) inF,,

for which it is sufficient to show that

(200  N(0,)-4,6,)=0,(1) inP,, Vji=1,.4q,

because
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3,0,-,0)=3(%,0,- 8,6,)

The consistency result (20) is a consequence of Proposition 5.4, the statement of which

requires our introduction of the following three conditions.

Condition 5.1 (condition (28) in Jeganathan (1988, p. 35)):

} p(x)dx < .

o{[

p'(x)
p(x)
Condition 5.2 (condition (B.2) in Jeganathan(1988, pp. 38-39)):

Verify that there is a suitable sequence {5 ,,} of normalizing matrices such that for

every bounded {h,} (where 8, =6+6h,) it holds that, for all j=1,...,q:

n

@y X [(&h(0,)-g.0) b, ULO)] = 0,) in B,

t=1

(where the superscript denotes the j* element of the vector g) for the m-vectors

)
U

LU such that

n

@ Y

=1

h' UL@®) =0,(1) inF,,, and

n="nt

nUL@f =0,(1) inF,

23

Condition 5.3 (condition (B.3) in Jeganathan (1988, pp. 44-45)):
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Verify that, for every j=1,...,q, there are w-vectors V2(0),t=1,...,n, and non-random
(m-w)-vectors R(6),t=1,...,n, such that for every bounded {hn} and for every u, it

holds that

2

=o,(1) inPF,,

n

24) >

t=1

VY7 o V;Jt(e)
o440

and, for some & €[0,1),

vio)f = 0,0’ in By,

(25) n}ax} n

tefl,...,

Our proof of adaptive estimation uses the following proposition (based on

Proposition 15 of Jeganathan (1988, pp. 46-50)):

Proposition 5.4: For every j=1,...,q, assume that Conditions 5.1, 5.2, and 5.3 hold,

and that ¢, — o, ol — o, m, —0, o(n)— 0, o(n)c. — 0, and

el o(n)y ' — 0, with & as in (25). Furthermore, assume that p(e) is
symmetric about the origin and that the sequences {Pg,n} and {P,,M} are contiguous for
every bounded {hn} . Then, for every bounded {h,,} , it follows that, for every

j=1,...,q,

26) A(8,)-4,6,)=0,01) inP,,

It follows from (26) that
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Q@7 A,0,)-A,0,)=0,0) inF,,

Proposition 5.4 shows that A,,(@) is a consistent estimator of A,(6) when the
matrix U, (8) satisfies the conditions laid out above. We can use this result to derive
an adaptive estimator for our model by showing that §,H, ,(6) satisfies the conditions

specified for U,(8). We do so in Lemma 5.5.
Lemma 5.5: Setting U, (0)=6,H,_,(6), Conditions 5.1-5.3 are satisfied by our model.

With Proposition 5.4 and Lemma 5.5 together showing that the score for our
model is consistently estimable, we are nearly ready to propose an adaptive estimator
for 8. We need only find a consistent estimate of the scaled sample information

matrix S,(6). Recall that

S,,w):Z A (0)QH,_(6) 6,

t=1

X

I
M-

i S, H! (OH! (6) 5, @,

1 =]

~,
il

q
Z w J!Sr{g (9)'

=1 £=

H
. M““

where S7(8)= 5,7 (O)H" (6) 5,

For the moment, we shall assume the existence of a consistent estimate @ 2 of

@, (the construction of such an estimate is discussed below). Now, given a 5-

32



consistent sequence {0, }, we have S7(8,) - S5"(0) = 0,(1) in F,, for every

J:£=1,...,q, the result holding because S¥(8,)=>5"(8) and S’*(6) = S*(6).
We now define the estimate

q

S(0,)= i >3 ,870,).

j=1£=1
From the preceding discussion, it follows that
28)  S5,0,)-S,(0)=0,(1) inB,.
Using (27), (28), and arguments in Jeganathan (1994), we can show that
29)  A,6,)=A,6)-S,Oh,+0,(1) inP,,.

The above results can be used to derive an adaptive estimator for @, as shown in the

following theorem:

Theorem 5.6: The estimator 5,, given in (30) is adaptive for our model:
B0)  6,=6,+5,5(6,)A,6,).

In other words,

B 6'0,-8)=0,0) inP,,,

where 9,1 Is given by (15).
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Remarks:

(a) In deriving our estimate 5’,,(9,,) of §,(8), we assumed the existence of a consistent

estimator of @ ,. The argument of Kreiss (1987b, p. 123) can be used to show that
@ j as defined in (32) below is such an estimator (the proof uses the fact that {Pg,n}

and {P,,m,,} are contiguous):
D b= 2 (e 00),00)7(2.06).67).
t=1

(b) We now derive the asymptotic distribution of the adaptive estimator 6,. Since 6

n n

is an AC estimator, we can use the definition of the latter to obtain
5,6, 0) =S OW,0)+0,() inF,,.

We showed above that
L(S; @)W, (B)|F,,.) = L(SO) " N, D)),

so it follows that

33 1(6;'@,-0\R,) = L(mN(0,5" ),

where S(&) is the block diagonal Fisher information matrix. It therefore follows that
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G0 = ff) > L{y{o.er @ (epans )

and

(35) L(n(,Z’,, - ,B)|PH’,,) = L[MN{O, (4 Q4" @ UBZBZ') D .

(c) The asymptotic efficiency gains to be obtained from employing the adaptive

estimator developed here rather than the Gaussian pseudo-MLE when p(g) is not

Gaussian can be investigated using (35). The covariance matrix of the scaled and

centered Gaussian pseudo-MLE is

36) (4%;4) ®UBZB2'j_ ‘

0

If p(g) actually is Gaussian, then X' = Q| so that (36) is identical to the covariance
matrix in (35). However, if Gaussianity fails, then Q> 2", so that

(4 E;IA)_1 > (4 QA4)" and the Gaussian estimator is inefficient. The degree of

inefficiency can be measured using the following ratio of generalized variances (cf.

Mitchell (1989)), where ER is mnemonic for “efficiency ratio”:



1r(q-r)
[detii(/l' QA) ﬂ
1/r(g-r)
{de{ j B,B, H
i r/r(g-r)
[der(a 5 )" ”{ ( [ Bsz'ﬂ

1 rir(g—r)
[det(4 Q)" ”{ (I H
_ {det(A‘ £74) }”’

det(4' QA)

ER =

@37 =

Now suppose, for example, that p(¢) is elliptically symmetric, with characteristic

function ¢f(s) = ¢(s s), where £, =k.2, with k, = -2¢'(0), and where
(38)  ple)=|detZ " f (=)
Then, as shown by Mitchell (1989),

(39) Q=daks

pee

where a, is defined in Mitchell (1989, p.296). (In the Gaussian case, k, =1 and

a,=1/4, giving us the familiar result that Q= ¥:'.) Substituting (39) into the last

line of (37) gives us
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det(4a k.4 27'4
1
4ak

£

{ det(4 3;4) T'
ER=
(40) )

This result is interesting because the ratio obtained is identical to that derived by
Mitchell (1989) for the estimation of the location of a distribution from which a
sequence of iid observations are drawn. Thus, the efficiency gains to be obtained
through maximum likelihood estimation of the nonstationary components of a reduced
rank VAR are identical to those to be obtained through maximum likelihood estimation

in a very wide range of stationary and nonstationary models.

Mitchell (1989) illustrates this ratio for the case where p(g) has a r-distribution
with v degrees of freedom. She finds that k£, = v/ (v—2) and

a,=(v+q)/4v+q+2), so that

ER=(1-2/v)-(1+2/(v+q)).

Thus, the asymptotic efficiency gains to be obtained from using the adaptive estimator

are increasing in ¢, the number of variables in the model.

(d) The preceding remark suggests that our adaptive estimator will provide better
relative performance the larger is the system. In finite samples, however, its
performance will worsen with increasing ¢q. This is because we have used kernel

methods to estimate a density of dimension g. From a computational standpoint, kernel
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estimators can perform poorly when ¢ is large. For sample sizes typical in
econometrics, g need only equal three or four for a kernel estimator to give inaccurate

results.

If we assume elliptical symmetry, however, this dimensionality problem can be
alleviated. This is because, as equation (38) shows, one property of elliptically
symmetric densities is that they can be expressed as a function of a scalar random
variable, where the latter is a quadratic term in the underlying vector-valued random
variable (see Fang, Kotz, and Ng (1990, p. 46)). We could therefore proceed by using

a normal kernel estimator such as the one used in the multivariate case to get an
estimate f" " of 7 in (38). We could then estimate i as above, using the derivative

ZE‘IJ " . Proposition 5.4 would still apply, with the condition

149 —-(1-8)

alo(n)**” — 0 being replaced by n” " alo(n)” 0. In doing the

computations, X could be replaced with a consistent preliminary estimate.

VI . INCLUSION OF INTERCEPTS IN THE COINTEGRATING RELATIONS

The model considered above is entirely stochastic, which is clearly a limitation since
most econometric models contain deterministic components. Especially common is the
presence of non-zero intercepts in the cointegrating relations. In this section, we
extend the model to allow for intercepts, but still maintain the restriction that none of

the time series contain deterministic drift. Johansen (1994) investigates the various
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possible ways in which deterministic components may enter a reduced rank regression

model. We consider only the model that he denotes by H, (7).
Maintaining our earlier notation, we may now write the model as
(@) AX = A[Xx,t—l - B, - BOX;,t—l] +@Z,_, +&,,

where B is the r-vector of constants in the cointegrating vectors. By now allowing 4,

to have m+r elements, redefining &, as diag[n“” 7, ,
qr+q° (k-1)+r

n"[r(q_,)] and H,_,(0) as

[(I ® W,_l) ,(I . ® Z,_l)' —A4, (—A‘ ®X2’,_1)]' , we obtain the following generalization of

q

Theorem 3.2:

Proposition 6.1: The likelihood ratios A,(6,,0) have the following quadratic

approximation:

A(0,.0)=~3 h'S,H_ (O)y(e,)
(6 >) 1 ) t=1
3 2N O H O (0) 5,y w0,V in By,

Using analogous definitions for W,(8) and S,(6) to those given in (7) and (8),

our LAN/LAMN limit theory will hold, with S,(8) = S(6), where
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Q® HMM, ] 0 0

S(6) = 0 A QA A QA@?E'

0 AQI®B; A4Q4® (BB,
0

1

and B, = jB2 . We can then obtain an adaptive estimator @, as in (30), with the
[¢]

asymptotic distribution:

33) L(8;'0, - 0\R,) = L(MN(©0,56)™)).

so that

64)  L{nG, - nle,) = L{No.0" @ 5T,

(35) L(n(B,-B)R,,)= L[A/HV{O,(A‘ Q)" ® U BB B ]_32')_ n ,

and

@) Ln(B,-B)R,)= L(A/HV(O, (4 Q4)" (1 + B U B,B,-B, E‘jfazm .

We can see from these results that not knowing the true value of the intercept vector
adversely affects our ability to estimate the slope parameters B, even asymptotically.

This point is illustrated by the fact that the asymptotic information matrix is not block
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diagonal and by the fact that the covariance matrix of En as given in (35°) differs from

that given in (35) - the case where the intercept is known - by a positive definite matrix

with probability one.

VII. CONCLUSIONS

In this paper we have demonstrated that reduced rank error correction models can be
adaptively estimated, assuming that the innovations in the underlying VAR are drawn
from a symmetric density function. We have shown how to construct consistent
nonparametric estimates of the score function of the unknown density of the
innovations, and we have demonstrated that the asymptotic efficiency gains to be
obtained from employing the adaptive estimator rather than a Gaussian pseudo-MLE
are identical to those obtained in an extremely broad class of statistical and econometric

models, including the most basic location parameter problem.

As they stand, the theory and methods developed here should be of substantial
value to practitioners. Nevertheless, further developments would be desirable. The
relaxation of the symmetry assumption is one direction in which the generality of the
analysis could be increased significantly. Conversely, in cases where elliptical
symmetry is a reasonable assumption, further investigation of techniques of kernel
estimation to reduce a multidimensional density estimation problem to a one-
dimensional problem would undoubtedly produce improved estimators for large
systems. Finally, the range of empirical situations to which the methodology is

applicable would also be increased by generalizing the analysis to allow for various
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possible specifications of deterministic components, including the case of drifting

variables.
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APPENDIX

Throughout the Appendix, we simplify notation by writing g, ,(6) in place of

8(X,,,0).

Proof of Lemma 3.1: We decompose /4, into components of respective dimension gr,

q°(k-1), and r(g-r) by writing 4, = (h,,', h,',h,') . These components can be
thought of as vectorizations of the matrices a,, ¢,, and b,, whose respective
dimensions are g xr, gxq(k-1), and r x (g —r). Using this notation, and (3), we

have

@ 5.@= X AT B, 107,

and
8.(0,)=X_+ A+ a) X~ By +lbn)X2,t—1:|+((D+__1\/;‘¢n)Zt—l
(43) =& 1(9)+\/—a [an 2tl] X1
y anbn‘X,Zt 1 \/;¢nZt—1'

Subtracting (42) from (43) yields:

1 1 1
(44) dt(em ) 7: n J_¢n -1 n ‘A,Z,t—l _Téanbn‘x;,t-—l'

n
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Noting that d, (6?", 9) is a vector, and applying the formula for vectorizing products of

matrices, we can rewrite (44) as follows:

! 1 1 ' ]'
d\6,,6) = h,, w;7-(1‘;, ®W,_,)+h,, ﬁ(lq ®Z.,)
1 1 1 1 1 t '
- hﬂn ;(A ®X2,t~1) - —n._372—X2,t-—1 bn a,
I,®W,,

1
= (han' 3 h(pn' > hﬂn')5n Iq ® Zt—l - —3—/;)(2,%1' bn' an' >

—A®X,, | "

from which (2) immediately follows. .

Proof of Theorem 3.2: We begin by quoting Conditions A.1-A.5 and Proposition A.6

below, as stated by Jeganathan (1994). According to Proposition A.6, the likelihood

ratios A, (8,,0) have an asymptotic quadratic approximation if Conditions A. 1-A.5

hold. The proof then proceeds in two steps, the first showing that the approximation
given by Proposition A.6 is asymptotically equivalent to that given by (6), and the

second showing that Conditions A.1-A.5 are satisfied for our model.
Conditions A.1-A.5 and Proposition A.6 are as follows:

Condition A.1: The density p(e) is absolutely continuous with respect to Lebesgue

measure in €.

Pp(e)

Condition A.2: The partial derivative vector P exists.
s
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Condition A.3: If {«9,,} €® is a sequence such that

43 D 6.0 |FL] = 0,0 inB,,
t=1
then the quantities

4, (0,0 (e~ xd,(6,,0) - ' ()] dedic = 0,(1) in B,

(46) Zj |

t=1 ¢

where w'(g) = égfl Jp(e), and, Yo >0,
E

@D Y HA 0,0 14 0, 00E)] > 0)F.] = 0,0) B,

Condition A.4: E[w(gt)[E_,] =011
Condition 4.5 £,(X,.6,)~ £,(X,.0) =0, in B,, as 6, 6.

Proposition A.6 (Theorem 11 in Jeganathan (1994)):

Assume that Conditions A.1-A.5 hold. Then, for every {9,,} such that (45) holds, we

have
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n

A,0,,0) - {—Z (8(0,)—£..(0) w(e)

=1

(48) _%iE[!(gl—l(gn)_g[—l(e)) 1//(3[)!2[[:;_1]}

=o0,(1) inkF,,.

Lemma A.7 establishes the aforementioned asymptotic equivalence between (48) and
(6). Combined with Lemma A.10, which shows that Conditions A.1-A.5 hold for our
model, it proves the theorem. Lemmas A.8 and A.9 are used in the proof of Lemma

A.10.
Lemma A.7. For our model, the asymptotic approximation (6) follows from (48).

Proof: Since the expression 4,(8,,6) appears in (48), we can substitute (5) into (48) to

obtain

n noq
An(gn’ 9) = —Z hn‘ 5nHt—l(9)l//(gt) + Z—;/Z—XLz—l' bn' an' l//(gl)
t=1

t=1 11
(49)
——l—iE (h'5H (9)——1—X 'b'a'jl//(g)
2 n n -1 n% 2,t-1 n n t

t=1

2
lEﬁlil +o0,() inFE,,.

To prove the Lemma, we will shall establish that all terms involving the quantity
n>"?X,, 'b'a, areasymptotically negligible. This entails proving that the right-hand
side of (49) is equal to

60 X8 H @)~ 23 H]

t=1

by 8, Ho O (e ) 1| +0,00) in B,
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The proof that (50) equals the right-hand side of (49) proceeds in two steps. Step (i)

shows that the second term on the right-hand side of (49) is 0,(1), and step (ii) shows
that the second component inside the parentheses in the quadratic term can be ignored

asymptotically.

Step (i): We seek to prove that
1 . 1 t 1 ;'
S =7 > X, 'b'a wle)=0,(1) ink,,
ne o=l

Since each term in this sum is a scalar, the sum is equal to its own vec, allowing us to

rewrite the left-hand side of (51) as

1 n

TZ (Xz‘,_,'®t//(g,))vec(bn' an')

n’? =

| 1 . \
=vec(b,' a,') [TAZXZH ®wl(e,) |
n- o=l
This expression is 0,(1) in F,, because
nia

n 1
}"ZXE,H ®y(e) = J-Bz ®db,',
0

where B, and B, are independent Brownian motions with respective covariance

matrices of O and £,'Y,,Q, ¥,,' B, . The latter matrix is derived on p.818 of Ahn and

Reinsel (1990) and is stated in terms of the notation of that paper. This completes step

Q).

47



Step (i1): We now consider the quadratic term in (49), and prove that it can be

)

by 8,H O (e ) | +o,0) B,

simplified as follows:

4
52)

3]

t=1

1 tt '
(hn| 5nHt—1(9) - % X2,t—1 bn an jl//(gt)
n

This step involves proving the following two results:

1 & .
(53) 2 E[AH (OW(e)X, ' b, a, y(e )E.]=0,0) inF,,, and
H* t=1

1 & .
9 2K b e () | |=0,0) inB,.
t=1

Since (54) will follow as a consequence of (53), the remainder of this step proves (53).

We can use the facts that

1 1
' an'+———Zt—l' ¢n"“_X2 t—l' bn' 4,
n -

1
hn| 5nHt—1(9) = .\/—; Ith~l \/E

and that X, ,'d,' a,'w(e,) is a scalar, and so equals its own transpose, to rewrite (53)
2.1 U 4, t eq P

as follows:
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1 n
2 E[I/Vt—l' anl (//(gt)(//(gt)' ananZ,t—l|E—1]

1 n
2

65+ Hz. ¢, wl(e)w(e) ab X, R ]

n o

t
1 n
___-S—ZZE[‘XZ,I—l' bn| A' l//(gt)l//(gt)' anbn‘X'Lt—l lE—l ]
n“ t=1

We now show that each term in (55) is 0,(1) in F,,. The first term can be rewritten

as
1 n
LS a, Hy el [ Jab X
t=1
1 n
== 2. Wi a'QabX,,
noa
1 n
= 7 (8%, Jrec(a, Qab,
1 n
= VeC(an' Qanbn)|:';17 (VV; 1 ® XZ,Fl)}
t=1
= op(l) ink,,,
since
1 :
_Z(WH ® Xz,t_l) = IdBW ® B, + const,
n t=1 0

where B, is a Brownian motion with covariance matrix E[W,W,'] and the constant

depends on the correlation between B, and B,.

The second term in (55) is
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1 <&
;—2—2 Zt—l' ¢n' E[l//({;‘t)l,//(é‘,)' |Ff—1 ]a"b"Xz’t_l
t=1
1 &
= TZ Zt—]' ¢n. mﬂb"Xz"_l
no9
1
= _{Z(Zt_l'®X2,l—l')vec(¢"' mnbn)

noa

= VeC(¢”' ‘()‘anbn)' |:_’;1§_Z”:(Zl"l ® Xz»‘_l)}

t=1

= oP(l) inFk,,,

since

-}11—22:(2:_1 ®X2,,_1) = j[dBZ ® B, + const,
0

t=1

where B, is a Brownian motion with covariance matrix E{ZtZt'] and the constant

depends on the correlation between B, and B, .
Finally, we rewrite the negative of the third term in (55) as:
1 - [} ] t
-—-SZZX’ZJA bn A E[l//(gl)l//(gt) IE—I]anbn)(Z,t—l
n- =1

1 . ' toA
= 5/2 Z‘X;,t—l bn A g)ananZ,t—l
ne o=

= > (K O, Jrec(ty 4 Qap,)
n’? =

1 n
- vec(bnv A Qanbn)' LS/; Z (Xz,,_1 ® Xz,t_l)}
t=1

= op(l) ink,,,

since
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n 1
_E; (‘Xz,r—l '3 /Y;,t_l):> JBz ®Bz.
L o

This completes step (ii).

We have proved that the right-hand side of (49) is equal to (50), so that Proposition

A.6 yields the approximation:

hy 6, H, @&, 1F |+ 0,0,

n 1 n
A(0.,6)=-2h, 6, (Ow(e) -5 2]
t=1 £=1
from which it follows that
n 1 n
An(en’ 6) = —Z hn. §nHt—1 (9) l//(gt) - 5 Z hn' 5nHt~1 (Q)Q[{t~l (9)| 5nhn + Op (1)’
t=1 t=1

establishing Lemma A.7. o
The follewing two lemmas are used in the proof of Lemma A.10.

Lemma A.8 (Lemma 19 in Jeganathan (1994)):

Let W(y) be Lebesgue measurable such that J‘|W(y)[2dy <. Then

2
dy—0

J ]W(y 2] wo)

asw—>0and 6§ > 1.
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Lemma A.9 (equation (2.32) of Hall and Heyde (1980, p.46)):

nn

Foreach n=1, let (&,,...,£,,) be an array of random variables and let Gy, G,)
be an array of o —fields such that G, c...c G,, and &,, is G, — measurable.
Furthermore, let G,, be the trivial o —field. Then, for any constants >0 and

w>0,

n

> r) <w +P(ZE[§3,[ I

t=1

G,

2

S

ént
n

> T)

To complete the proof of Theorem 1, we must establish Lemma A.10.
Lemma A.10: Conditions A.1-A.5 are satisfied for our model.

Proof: Conditions A.1 and A.2 are primitive conditions on p(¢) that are assumed to
hold. Condition A.4 is satisfied by (108) of Jeganathan (1994), and Condition A.5
holds by an earlier assumption. Consequently, the remainder of the proof deals with
the verification of Condition A.3. To this end, we must show that equations (45),
(46), and (47) are satisfied for our model. Upon the substitution of (5), this entails

checking the following three conditions, respectively:

t 1 1 1 [
hn 5nHt—-] (e)l//(gt) - 3/ )(Z,t—-l bn an V/(Et)
n 2

t=}

(56) ZE[

2
!E-lJ = Op(l) in ‘Pﬂ,n:
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1

”‘(h 8,H,,(6)- né

[ ( h5H1(9)

and, for every @ >0,

)

2E b 5, H (Oy(e)~

'f(h 8., ., (O)y(e,) -

1 t
3/ 2t1b a,'y(e,)

X,4' 0, a, )
X,.'h,'a )J—l//*(é‘)}

2

dedx =o0,(1) inPF,,,

21 1I b a l//(gt) > a))l];t‘—l} = Op(]‘) in 1)9,n'

These equations are respectively verified in steps (i)-(iii) below.

Step (1): To prove (56), it is sufficient to verify equations (59) and (60) below:

(59)

t=]

(60) ZE[ !

t=1

3 2:1'b a,'y(e,)

'8, H Oy () |EL] = 0,0 ink,,

2
|F }—0 (1) inF,,.

First note that (60) is the same as (54) above, and so is already established. We

therefore proceed with (59), whose left-hand side equals

t=]

B, [Z 5,H, (0)QH,_,(6)

o
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For convenience, define M, | = [WH' ,Z,_l']'. Note that M,_, is the r +q(k —1)-

dimensional vector of stationary regressors in the error correction model. With this

notation, we can carry out the following calculations:

]q ® M—l
H_()QH, ,(6) = dr,em. -40x,]

~A®X,, |
_| LM Qe oM, -40X,, ]
-4®X,, @ e
QOM,_,
T4 Q@Xz,t_l}[lq OM —A9X,]
T QOM, M, —QAM,_ X, ,
| AQ®X,, M. AQARX, X, '

from which it follows that

Q ®M_1M_1' -Q4 ®M—I/Y;,t—l|
n n y
i — n n 2
(61 ; 5nHt_1(9)QHt_‘(9) 0= ; —4Q1 XZ,I—IM—I' 4Q4® /Y;,t—l‘X;,t~l' '
n% 712

To verify (59), we must show that the matrix on the right-hand side of (61) is 0,(1) in

£, .. To achieve this, we show that the following limit theory holds:

e

l n
62) =2 QOM_M_'=Q@HMM,.|+0,(1) inF,,

nyo

and

.n?

] & , .
(63) '}?Z;m®M—I‘X;,t—] =0,(l) inF,
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n 1
(64) —I;ZA' QU®X,, X, ' =404 [B,B,.
t=1 0

H

To complete the proof of step (i), we prove these equations in turn. We obtain (62) as

follows:

LS aem .,
noo

1 & \
= Q@3 MM,
C o t=1

= Q@ HMM,|+0,(1) in P,

The second equality in this expression holds since, by Lemma 1(iv) of Ahn and Reinsel

(1990, p. 815),
1 n
=2 M. M, = E[MM.]+0,(1) inP,,.
n o
To show (63), we rewrite its left-hand side as follows:

1 n
QA® TZM—]Xz t~1‘
77/2 t=1 ,

=Q4®o,() ink,
=o0,(1) ink,,.

The o,(1) result in the first equality holds because

1. )
—ZA/[:—le,z—ll = _[dBMBz| + const,
0

no
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where B,, is a Brownian motion with covariance matrix E[M,A/[,'] and the constant

depends on the correlation between M, , and X, ,,

We finish step (i) by proving (64), whose left-hand side we rewrite as

AQA® 22 2,t~1 2t1~

We obtain (64) because

1
Z 2.1~ 1 1':>J.Bszl-

n =
In consequence of (62), (63), and (64), we have

Q® E[MM,] 0

n , 1
(65) leﬁnHt_](H)QH,_l(G) S, = 0 4040 (BB, |
0

This completes step (i) by verifying (59) and therefore (56). As remarked in the text,

(65) is important in its own right because it gives us an expression for the asymptotic

information matrix of the model.

Step (ii): To verify (57), it is sufficient to check the following two conditions:

S [1]h

(66) 1o

Oy (e x(h, 8,50 -, b a))

n

- y/*(g)]‘za'gdic =o0,(1) inF,,.
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n

[

67) =10

32
X

2.t~-1

' b,,‘ anq [l//*(g _ K‘(hn' 5,,]{,_1(0) _ 71—3/2X; . 11 bn« anc))
-—l//*(&‘)]!zd&‘dl(' =0,(1) inPF,,.
Most of the remainder of this step is devoted to proving (66), since (67) will then

follow directly. We begin our proof of (66) by noting that its left-hand side is less than

or equal to

., 0f

S

=1

ot—
L, N

ma’i,;f ‘1// (e—x(n, 6,8, (O)-n"PX, b a))

=0,(1)- 'lfop(l)dic =o0,(1) inF,,.

The O,(1) result follows from (65). The 0,(1) result will follow from Lemma A.8 and

the fact that j ll//*(g)lzdg = &’ <, provided we can prove that

(68) max

tefl,.

L (0)-n"X,

é.n°

To prove (68), note that its left-hand side is less than or equal to

max h" 5,H,_,(0) + max In X, '8 a).

tefl,.,n} 7 7 Th reql,

To show that this sum is o,(1), it suffices to show

(69) r{nax

(0)|=0,(1) inF,,

-



and

n‘B/ZX

2,11

(70) max

tef{l,...,n}

[} bnl anO

=o0,(1) ink,,

We only prove (69), since (70) then follows easily. We begin by rewriting (69) as

I® M-]M—]' -4 ®M—1‘X2,t—1'
, n w2 3 )
D tg},%},(n}h" AKX, M. 44X, X ' f=0,() in k.
32 n

We verify (71) by checking the following three equations:

MM
ax [ =0, Wink, i,

te{l,..,n} n p 8
M—leé -1 . .

max |=EE = o (ind,, )
X X o

t r{rllax} ——=—{=0,()ink,,Vj ¢,

{l,..., n n°

where the superscripts j and ¢ represent the j” and (" elements of the respective

vectors.

Using the inequalities



j £ f (4
M M;, ML ML
max < max max ,
tefl,....n} H tefl,...,n} ,/n tefl,..., n} ,,/n
’ y 4 g £
M—IXZJ—I qu ‘ |X2,r—1 I
max Y < max max .
tefl,..,n} n tefl,...n} «/7’[ tefl,..n}l p
X; 1—1X2l t—1 Xéf,t—l X2l,t—1
max 5 < max max ,
tefl,...,n} 1 te{l,..n}l pn tefl,...nfl  n

proving (69) reduces to proving

j

-1 . .
(72) zg}axn} \/Z _Op(l) n PB,nn v.]’
and

.
(73 max == =o0,(1) ink,, Vj

To prove (72), we use the following representation:

©
7
M—l - chet—:
s=1

where the e, are iid innovations and )

c¢,| <o, It follows that
s=1
74y max | M <(icj max || = 0. (1) in P,
teflen) fn | T\ e NI oo
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—L

Jn

To show that max
tefl,...,n}

=0,(1) in F,,, we apply Lemma A.9, setting &, =n"""%¢, and

G,=0(...e_,e). By Lemma A.9,

"o | e? (e
>t|<w+P Y El+. ]| |-
) (g {n Jn

¢

Jn

-

Gn’,_l} > rza)}

P( max
te{l,.. n}

The desired result follows since

%Zn:E[ef -I(‘etl > T\/;)] = o(1).

=]

To show (73), we use the Beveridge-Nelson (1981) decomposition:

-1
Xiz—l = C(I)Z e, +e, ~ €

5=0

where C(1) <o, {es} are iid innovations, and {ES} is a stationary process defined in

Phillips and Solo (1992). To prove (73), note that:

=0, +0,()=0,(1) inP,,

the second term being o,(1) by an argument analogous to that used to show (72) and

the first term being o0,(1) by result (10.10) on p.70 of Billingsley (1968). From
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verification of (72) and (73) we obtain (69) and therefore (68), completing our proof of
(66). As noted, (66) implies (67), since the left-hand side of the latter is less than or

equal to

(max [y (e =x(n, 6,0 -0, ' ba))

—

=0,(1)- j 0,(Ddx=0,(1) inP,,.

0
We have finished step (ii), so the Lemma will follow immediately from step (iii).

Step (iii): It remains to verify (58), whose left-hand side can be rewritten as:

n

2

t=1

2

hn' 5n]—]t—1(0) - 71—3/2)(2,2—1' bn' an'

Ll 1

(n'6,H (0)-n""X,, b a (e

> w)]E_l]

n 2
<

hn' 5nHt—l(0) - nA3/2X'2,t»l' bn' an‘

iﬁ{lw(s»ﬁ 1

< (Z b 6,H_(6)-n"X,, b a, )

t=1

hn' 5nHt—l (9) - n_a/z‘XvZ,hl' bn' an'

v(e) > o) ]

b

0]
hn' 5nH;—I (6) - nﬁ3/2)(2,t—l' bn' an'

B |y (e)f J[lw(s»l >

max
{l.....n}

=0,(1)-0,(1) inF,, Vo >0.

The o,(1) result follows from the facts that
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h,5,H_(6)~n"X

max 2.0-1

te{l,...,n}

1 bn! an'

= op(l) in b,
and
Hlw(e |F] = 2 <o

This completes our proof of step (iii) and therefore of Lemma A.10. o
Theorem 3.2 now follows immediately. .

Proof of Lemma 5.5: Condition 5.1 is satisfied by assumption, so we proceed in two

steps, checking Conditions 5.2 and 5.3, respectively.

Step (i): To show that Condition 5.2 holds, it is sufficient to verify the following three

equations (corresponding, respectively, to (21), (22), and (23)):

[ 8,5, O - X, 8 0, Y) - B 8, HELO)]

t=1

= i[’1_3/2‘X;,t~]' (' a )’]z =o0,(1) inF,,
t=1

(75)

n

(76) >

t=1

b 8HL(Of =0,() inF,,, and,

(77) h'8,H.(O) =o0,() inP,

ntte-1

max
te{l ,,,,, n}

Denoting the vector (5,'a,')’ by y, the left-hand side of the second equality in (75)

can be written as
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X, X0y
t=1

=ny' ("'ZZXz,t_le,z_l')}’ =0,(1) inF,
t=1

because

n 1
7 (n‘ZZXz,t_,Xz,t_l'jV =y’ (IBZB;)V-
t=1

0

We now turn to (76), which can be rewritten as

2

' OM,
78 h' ‘,/;7— =0,1) inP,,,
® 2P apex,, | =0 "k
n

where ¢/ denotes the j” column of the identity matrix and A(j) denotes the j* row of the

matrix 4. Verification of (78) follows in the same manner as verification of (65).

To verify (77), we must show that

U OM, M, ~TANOM, X, '
max A n n” h,=o0,(1) inP,
B 4Gy X M A ADO Ky, K, [T D T o
IR 7

which is easily shown using the facts that

In

MLI‘:OP(U inP,, Vi=1,.,r+q(k-1), and
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2,1-1

=o0,(l) ink,, Vi=l..,q-r.

Step (ii): It remains to verify Condition 5.3. To do so, we set w=m and

Vi(6) = U’ (8), so that (24) becomes

79 D 5,HL(6,)-u 5an'_1(9)\2 =o0,(1) inP,,

t=1

while, by setting 6 =0, (25) becomes

(80) 5H.(6) =0,1) inP,,

i |

max n
te{l,...,n}

We begin by checking (79), which can be rewritten as

u 5,.(2 H,’LI(H,,)H,’LI(&)‘JQH —u 5n(zﬂfll(9)fi’;l(9n)') S ,u
t=1 t=1

~ 5(2 H:;(&)H:;l(e)'j&,,u +u 5,,[2 H, (9>H:'_1(9>')5nu
t=1

t=1

=o,() ink,,,

which holds because
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S, Z L (0)H], (6, ))5 = 57(0),
S, Z L (0)H; 1(9))5 = 87(6),

3, Z L (O)H; x(9))5 = $7(0),

S, ZHtJ {(OH; 1('9)}5 = 57(0),
where S7(0) is defined by writing

S(6) =Zi LS0).

This proves (79). We verify (80) by writing its left-hand side as

7® M,
Jn
oA ®X,
o
= r{nax}n[lj‘ LM, M., + AO)AU)'®2XL:—1' XZ,[—]}
te{l,..,n 7] n

= max [M, M+ (ADAGY )X, ) X,

< max ]\/I”]\/[Hthr{nax n (A(])A(])) 2t Kooy

le{l ,,,,, n}

=0,H+0,()=0,() inF,,.
This completes step (ii) and proves the lemma.

Proof of Theorem 5.6: From (15) and (30), it follows that _

B 5,20, -6,)=8"w @)~ 51 (0A, 0.
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Using (29), we have

®2)  A0))=A,0)-S,0)h,+0,(1) inB,.
Combining (82) and (27) gives us

82 A6))=A,(0)-S,0)h,+0,(1) inPF,,

so that the second term on the right-hand side of (81) becomes, using (28), (83), and

the fact that A, (0) = W,(0),
(84) =S/ (OW,(O)-S,(O)h,]+0,(1) inP,,.
By definition,

®85) §,=S,0)+0,() inP,,,

while (16) gives

ge OO -Sho,0) ink,
=,(0)=5,O)h,+0,1) inF,,

the second equality holding due to (85). Combining (85) and (86) gives
&) SW(6)) =S OW,(6)-S,O)h,]+0,(1) inP,,.

Using (81), (84), and (87), the desired result (31) follows.
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