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1 Introduction

When a firm goes bankrupt, how should its liquidation value be divided
among its creditors as a function of the claims they hold against it?

This essay is an introduction to the literature devoted to the formal anal-
ysis of such bankruptcy problems. The objective of this literature is to
identify well-behaved methods, or rules, of associating with each bankruptcy
problem a division between the creditors of the net worth of the firm.

We will present several rules that are commonly used in practice or dis-
cussed in the theoretical literature, formulate a number of appealing proper-
ties that one may want rules to enjoy, compare the rules on the basis of these
properties, and search for rules satisfying the greatest number of the prop-
erties together. Our methodology will therefore be mainly axiomatic. This
methodology underlies most of the developments on which we report here,
and this survey will provide an illustration of the increasingly important role
it has played in recent years in the design of allocation rules. However, we
will also discuss a variety of strategic analyses of bankuptcy problems. ;

The best-known rule is the proportional rule: awards are chosen propor-
tional to claims. In fact, proportionality is often taken as the definition of
fairness for this class of problems. We will challenge this position and start
from more elementary considerations. Is there any reason to believe the pro-
portional rule to be superior to others? An important source of inspiration
for the research described here is the Talmud, in which several numerical
examples are discussed, and recommendations are made that conflict with
proportionality. Are these recommendations rationalizable by means of well-
behaved rules, and if there are several such rules, do grounds exist for pre-
ferring one of them to the others? Are there yet other rules that deserve to
be considered?

This survey is organized as follows. First, we introduce a number of
important rules. Then we show how a number of them can be obtained by
applying solution concepts developed in the theory of cooperative games.
These concepts originate in the theory of bargaining and in the theory of
coalition form games. Next, we formulate a variety of properties of rules,
first in a setting in which the number of claimants is fixed, then in a richer
framework in which this number is allowed to vary. We continue with a
presentation of several models of bankruptcy as a non-cooperative game.



Finally, we consider extensions of the model, “duai” «ituations where the

amount to divide is more than sufficient to cover the «lainns this is the
problem of surplus sharing — and models where the feaubie et is specified
in utility space.

We close this introduction by noting that the probicn of identifying well-

behaved taxation rules is formally identical to that of identifving bankruptey
rules, and all of the results that we present here can be rewterpreted in the
context of taxation.

2 Bankruptcy rules

First, we formally introduce the class of problems that we will study and
the necessary notation. The net worth E of a bankrupt firm has to be
divided among a group of agents IV, ¢; being the claim of agent : € N
and ¢ = (¢;)ien the vector of claims. We designate by n the cardinality of
N. Initially, we take N to be a finite subset of the set of natural numbers
N. Later on, we extend the model so as to cover situations in which the
population of claimants varies, and we generalize the model and the notation
accordingly.

Definition A bankruptcy problem is a pair (¢, E) € Rf x Ry with 3" ¢; >
E.' Let BN denote the class of these problems.

An application of the model is to estate division: a man dies and the
amounts he bequeathed separately to his heirs are found to add up to more
than the worth of the estate. How should the estate be divided?

A pair (¢, E) as above can alternatively be interpreted as a taz assess-
ment problem: then, N is a group of taxpayers with incomes given by
the coordinates of ¢, and who among themselves must cover the cost E of
a project. Although the mathematical models are identical, and the axioms
that we will find relevant to the analysis of bankruptcy problems and taxa-
tion problems are essentially the same, the appeal of each particular axiom
may of course depend on the application. In what follows, we will mainly

1'We denote by R]_,Y the cartesian product of n copies of R4 indexed by the members of
N. A summation without explicit bound should be understood to be carried out over all
agents.



think of bankruptcy. Our model is indeed a more accurate description of
the actual situation faced by bankruptcy courts. By contrast, the issue of
taxation is rarely specified by first stating an amount to be collected, per-
haps due to the uncertainty pertaining to the taxpayers’ incomes. In most
cases, taxation schedules are published first, and the amount collected falls
wherever it may, depending upon the realized incomes.?

A bankruptcy rule is a function defined on the class of bankruptcy
problems that associates with each problem in the class a division of the net
worth of the firm between the claimants. This division is interpreted as a
recommendation for that problem.?

Definition A bankruptcy rule, or simply a rule, is a function that asso-
ciates with every bankruptcy problem (c, E) € BN a vector z € R]X whose
coordinates add up to E: Y z; = E.

In the statement of the axioms in Sections 4 and 5, we designate a generic
solution by the letter F'.

2.1 Bankruptcy rules

The basic notation being out of the way, we can proceed with a presentation
of two intriguing problems discussed in the Talmud. The Talmud specifies
only a few numerical examples, but the desire to understand these examples
has provided much of the impetus underlying the theoretical efforts described
in these pages.

The contested garment problem: two men disagree over the ownership
of a garment, worth 200. The first man claims half of it (100) and the other
claims it all (200). Assuming both claims to be made in good faith, how
should the worth of the garment be divided among them? The Talmud
recommends 50 for the first one and 150 for the second (Baba Metzia 2a).*

2However, we should note that a number of conditions that we will use later have been
first considered in the context of taxation.

3We will limit ourselves to the search for single-valued solutions, since for this model,
in contrast with a number of models commonly studied, a great variety of interesting
solutions have that property.

4All references to the relevant passages of the Talmud and of the secondary literature
are taken from O’Neill (1982), Aumann and Maschler (1985), and Dagan (1994).
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Figure 1: The Talmudic rule. The value of the estate is measured hor-
izontally and the awards vertically. (a) The two-claimant case. Claims are
(c1,¢2) = (100,200). The Talmud considers the case when the estate is
worth 200 and recommends the division (50,150). (b) The three-claimant
case. Claims are (¢y, ¢, ¢3) = (100,200,300). If the estate is worth 100, the
Talmud recommends equal division, (100/3,100/3,100/3); if it is worth 200,
it recommends (50, 75, 75); if it is worth 300, it recommends proportional
division, (50,100,150).

The estate division problem: a man has three wives whose marriage
contracts specify that in case of his death they should receive 100, 200 and
300 respectively. The man dies and his estate is found to be worth only
100. How should the amount be divided among the wives? The Talmud
recommends equal division. If the estate is worth 300, the Talmud recom-
mends proportional division, but if it is worth 200, it recommends (50, 75,
75)! (Kethubot 93a; the author of this Mishna is Rabbi Nathan.)

To clarify the mystery posed by the numbers given as resolutions of these
problems, we should first of all find a general and natural formula that gen-
erates them. Consider the following algorithm proposed by Aumann and
Maschler (1985) for the general n-person case (see Figure 1 for the two prob-
lems of the Talmud): the first units of the estate are divided equally until
each claimant has received an amount equal to half of the smallest claim;
then the claimant with the smallest claim does not receive anything for a
while; instead, any additional unit is divided equally among all others until
each of them has received an amount equal to half of the second smallest
claim ... the algorithm proceeds in this way until a value of the estate equal
to 3_¢;/2; then, each claimant has received half of her claim; for values of
the estate greater than ¥ ¢;/2, awards are computed in a symmetric way by
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starting from a value of the estate equal to the sum of the claims, (in which
case each claimant receives her claim), and considering shortfalls of increas-
ing size. Initial shortfalls are divided equally until all claimants experience
a loss equal to half of the smallest claim; the loss incurred by the claimant
with the smallest claim stops at that point. Any additional shortfall is born
equally by the others, until their common loss is equal to half of the second
smallest claim ... The process continues until a value of the estate equal to
S ¢;/2. It is a simple matter to check that Aumann and Maschler’s proposed
method, applied to the two problems in the Talmud, does yield the numbers
given there. Henceforth, we will call it the Talmudic rule.® We will also
refer to the restriction of this method to the two-claimant case as the con-
tested garment rule. As we will see, there are other ways of generalizing
this rule to the case of more than two claimants.

Talmudic rule, T: For all (¢, E) € BN and for all : € N,

1. If (1/2) ¥ ¢ > E, then T;(c, E) = min{c;/2, A}, where X is chosen so
that 3" min{c¢;/2,A} = E

2. If (1/2) ¥ ¢; < E, then Ti(c, E) = ¢; — min{c;/2, A}, where ) is chosen

so that 3 [c; — min{c;/2,A}] = E.

In actual practice, the most commonly used rule is the proportional
rule, the rule for which awards are proportional to claims.

Proportional rule, P: For all (¢, E) € BN, P(c, E) = Ac, where ) is chosen
so that - Ac; = FE.

A version of the proportional rule is obtained by making awards propor-
tional to the claims truncated by the value of the estate:

Truncated-claims proportional rule, P*: For all (¢, E) € BN and for all
i € N, P!(c, E) = Amin{c;, E}, where X is chosen so that }> Amin{c;, E} =
E (that is, A = E/ Y min{c;, E} if c# 0 and E # 0, and A = 0 otherwise).

50f course, the Talmud not offering any example for the case E > >~ ¢;/2 when n > 3,
we can only speculate as to what it would have recommended then. However, we find
the sort of considerations that led Aumann and Maschler (1985) to the interpolation and
extrapolation they define very compelling, and this is why we refer to the rule they propose
as the Talmudic rule. Moreover, the formula is also consistent with another numerical
example in the Talmud (Aumann and Maschler, 1985).
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The following rule, which always makes equal awards, will be useful
mainly as a benchmark. The idea of “equality” underlies many theories
of economic justice. The question is what exactly should be equated, espe-
cially when agents are not identical. Here, agents differ in their claims and
the objective is precisely to take proper account of these differences.

Equal award rule, EA: For all (¢, E) € BN, EA(c, E) = (E/n,...,E/n).

An undesirable consequence of the rule being independent of claimsis that
some agents may receive more than their claims. The next rule preserves the
spirit of egalitarianism but it does not suffer from this problem. It awards
the same amount to all agents, adjustments being made to ensure that no
agent receives more than his claim. It has been advocated by many authors,
including Maimonides (12th Century). Although this departure from egali-
tarianism does not seem to go far enough in recognizing differences in claims,
we will nevertheless show that appealing axiomatic justifications for the rule
can be provided. Moreover it is an “ingredient” in the definition of other
interesting rules defined later:

Constrained equal award rule,® CEA: For all (¢, E) € BY and for all
i € N, CEA(c, F) = min{c;, A}, where A is chosen so that " min{c;, \} = E.

The rule proposed by Pineles (1861) can be understood as resulting from
a “double” application of the constrained equal award rule: first, the rule is
applied to the division to the lesser of two amounts, the estate and half of
the sum of the claims. If the estate is greater than half of the sum of the
claims, the rule is applied again to divide the remainder.

Pineles’ rule, Pin: For all (c,E) € BY and for all : € N, Pin;(c,E) =
CEAi(¢, E)if Y ¢;/2 > E, and Pini(c,E) = ¢;/2+ CEA{(c/2,E — ¥ ¢;/2)

otherwise.

A dual of the constrained equal award rule focuses on the losses claimants
incur (what they do not receive), as opposed to what they receive (the par-
tial compensations awarded to them). It too is suggested by Maimonides

(Aumann and Maschler, 1985).

6In the context of taxation, this rule is known as head tazation.



Constrained equal loss rule’, CEL: For all (¢, E) € BY and foralli € N,
CELi(c, F) = max{0,c; — A}, where A is chosen so that 3 max{0,c; — A} =
E?

The next rule requires first calculating the “minimal right of each agent”.
This is the amount that is left over if every other agent receives his claim,
or zero if that leftover is negative. Then, the rule selects the allocation at
which each claimant receives his minimal right (these payments are feasi-
ble), the remainder being divided proportionately to the minimum of the
remainder and his minimal right. For all (¢, E) € BY and for all i € N, let
mi(c, E) = max{E — ¥ ;cn\() ¢, 0} be the minimal right of claimant i. Also,
let m(c, E) = (mi(c, E))iEN- ,

Adjusted® proportional rule, A: (Curiel, Maschler and Tijs, 1988) For
all (¢, E) € BN and for all i € N, Ai(c, E) = my(c, E) + P(c — m(c, E), E —
Y mi(e, E)}).

Another method is formulated by O’Neill (1982) as a generalization of
a rule that he attributes to Ibn Ezra (12th Century). The problem dis-
cussed by Ibn Ezra is that of dividing an estate worth 120 among four sons
whose claims are 30, 40, 60 and 120. He recommends the division 30/4,
30/4 +10/3, 30/4+10/3 +20/2, and 30/4+10/3 +20/2+ 60/1. Rabad (12th
Century) suggests the following estate division method, defined for problems
such that the net worth of the firm is less than the greatest claim. It gives
Ibn Ezra’s numbers in his particular application. It is discussed by Aumann
and Maschler (1985): when the estate is worth less than the smallest claim,
it is divided equally; as its value increases from the smallest to the second
smallest claim, the claimant with the smallest claim continues to receive 1/n
of his claim and the leftover is divided equally among the other claimants. In

7In the context of taxation, this rule is known as the leveling taz. Landsburg (1994)
considers a version of the solution that does not meet the non-negativity condition on
awards.

8Dagan, Serrano and Volij (1994) note that the Talmudic rule can be expressed as a
function of the constrained equal award and constrained equal loss rules in the following
way: T(c, E) = CEA(¢/2,min{}_ ¢;/2,E}) + CEL(c/2,max{E — ) ¢;/2,0}). This can
also be written as T(¢c, E) = CEA(c/2,E) if 3 ¢i/2 > E and CEL(c/2,E — 3 ¢i/2)
otherwise.

9Note that several adjustments are performed.



general, when the value of the estate increases from the kth smallest claim to
the (k + 1)th smallest claim, the agents with the k£ smallest claims continue
to receive the same amounts, and the leftover is divided equally among the
other claimants.

O’Neill noted that Ibn Ezra’s numbers can be generated as follows. As-
sume that agents are ordered by claims. Then, do not think of them as
claiming an arbitrary part of the estate but instead a specific part, equal
division being applied to each part separately among all agents claiming it.
Moreover, choose which parts of the estate are claimed by the various agents
so as to maximize the part of the estate claimed only by the claimant with the
greatest claim, and subject to that, so as to maximize the part of the estate
claimed by the second highest claimant but not by anyone with a smaller
claim ... and so on.

Minimal overlap rule, MO: Claims on specific parts of the estate are
arranged so that the size of the estate claimed by exactly k + 1 claimants
is maximized, given that the size of the estate claimed by k claimants is
maximized, for £ = 1,...,n — 1. Once claims are arranged in this way, for
each part of the estate, equal division prevails among all agents claiming it.

O’Neill shows that the arrangement of the claims solving this exercise is
(essentially) unique. When one of the claims is equal to the whole estate,
the solution to the exercise consists in nesting the claims. Any claim greater
than the whole estate is replaced by the whole estate.

2.2 Rules inspired by concepts of cooperative game
theory |

Other rules have been inspired by the theory of cooperative games. For this

theory to be applicable, we need first to define a formal way of associating

with each bankruptcy problem a cooperative game. Two main classes of such
games have been studied, bargaining problems and coalition form games.

2.2.1 Bargaining solutions

We start with bargaining problems. A bargaining problem is a pair (S, d),
where S is a subset of RV and d is a point of S. The set S, called the



feasible set, consists of all the feasible utility ‘o« tor< attaimable by the
group N by unanimous agreement, and d, called the disagreement point,
is interpreted as the utility vector that obtains if thes fa:l ti reach an agree-
ment. A bargaining solution is a function defined «ni « «lasv of bargaining
problems, which associates with each problem in tlie «la-s & unique point
in the feasible set of the problem. Important solutions are the following.
The egalitarian solution (Kalai, 1977) selects the maximal point of S at
which utility gains from d are equal. The lexicographic egalitarian so-
lution (Imai, 1977) selects the point of S at which these gains are maximal
in the lexicographic order.!® The Kalai-Smorodinsky solution (Kalai
and Smorodinsky, 1975) selects the maximal point of 5 on the segment con-
necting d to the ideal point of (S,d), the point whose ith coordinate is the
maximal utility agent ¢ can obtain subject to the condition that all other
agents receive at least their utilities at d. The Nash solution (Nash, 1950)
selects the point maximizing the product of utility gains from d among all
points of S dominating d. Given a vector of weights « € A", the weighted
Nash solution with weights o selects the point of S at which the prod-
uct II(z; — d;)* is maximized among all points of S dominating d. The
extended equal loss solution (Bossert, 1993, in a contribution building
on Chun, 1988) selects the maximal point of S at which the losses from the
ideal point of all agents with a positive utility are equal and the utilities of
the others are zero.

To associate a bargaining problem to a bankruptcy problem, the most
natural choice is perhaps to take the feasible set to be the set of all non-
negative distributions of £ dominated by the vector of claims, and to set
the disagreement point equal to the origin.!' This makes good sense if we
require that claimants never receive more than their claims (see below). How-
ever, solutions satisfying this requirement could be responsive to changes in
claims that do not affect the associated bargaining problems as just defined
(the proportional solution is an example), and we could argue that too much
information is lost in the passage from bankruptcy problems to bargaining

10Given z,y € R", ¥ designates the vector obtained from z by rewriting its coordinates in
increasing order, § being similarly defined. We say that = is lexicographically greater
than y if, either [£; > §], or [§1 = § and #; > §s], or more generally, for some
ke [1,...,”— 1]) [il :gla"')i’k—l :gk—l, and Zy > gk]

11This amounts to assuming that agents have utility functions that are linear in money
and normalized so that the utility of zero is zero.
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Figure 2: Bankruptcy problems and their associated bargaining
problems. The shaded area represents the set of feasible award vectors that
are dominated by the claims points. This area is taken as the feasible set
of the associated bargaining problem. The egalitarian bargaining solution
selects the maximal feasible point at which awards are equal. At such a
point, the whole estate need not be divided, as is clear in panel (b). The
equal loss bargaining solution selects the maximal feasible point at which
losses from the ideal point are equal. If there are more than two claimants,
such a point need not exist. Key for bargaining solutions; N: Nash solution,
K: Kalai-Smorodinsky solution, EL: lexicographic egalitarian solution, N°:
weighted Nash solution with weights ¢, X EL: extended equal loss solution.
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problems. Another formalization is possible however, in which the claims
point remains as separate data. The relevant concept here is then the gener-
alization of the notion of a bargaining problem obtained by adding a claims
points (Chun and Thomson (1992) call these problems “bargaining problems
with claims”. See Section 5 for further discussion.)

Definition Given a bankruptcy problem (c, E) € BY, its associated bar-
gaining problem is the problem B(c, E) whose feasible set is equal to
{z e RY : " z; = E,z < ¢}, and whose disagreement point is the origin.

This operation is illustrated in Figure 2 for two examples. For the first
example, the point of equal awards is efficient and for the second it is not.

An alternative specification of the disagreement point is proposed by Da-
gan and Volij (1993): it is the vector of minimal rights entering the definition
of the adjusted proportional solution.

In bargaining theory, the feasible set is allowed to be an arbitrary com-
pact, convex set, but here, we have the special case of a feasible set whose
efficient boundary is a subset of a plane normal to a vector of ones. An
extension of the model accommodating more general shapes i1s discussed in
Section 5.

If for each bankuptcy problem, the recommendation made by a given rule
coincides with the recommendation made by some bargaining solution ap-
plied to the associated bargaining problem, we say that the rule corresponds
to the solution. The next lemma describes a number of such correspondences.

Lemma 1 (Various authors) The following correspondences between
bankruptcy rules and bargaining solutions hold:

1. The constrained equal award rule and the Nash bargaining solution

(Dagan and Volij, 1993).

2. The constrained equal award rule and the lexicographic egalitarian so-
lution.

3. The proportional rule and the weighted Nash solution with weights
chosen equal to the claims (Dagan and Volij, 1993).

11



4. The truncated-claims proportional rule and the Kalai-Smorodinsky so-
lution (Dagan and Volij, 1993).12

5. The constrained equal loss rule and the extended equal loss solution.

The recommendations made by various bankruptcy rules and the bar-
gaining solutions to which they correspond are indicated in Figure 2 for two
examples.

Although the lemma establishes useful links between the theory of
bankruptcy and the theory of bargaining, one should perhaps not attach too
much importance to any particular one of them. Indeed, since the bargain-
ing problems associated with bankruptcy problems constitute a very narrow
subclass of the class of bargaining problems traditionally studied, it follows
that bargaining solutions that give different answers in general often coin-
cide on this subclass. This phenomenon is illustrated by the fact that the
constrained equal award rule corresponds to both the Nash solution and the
lexicographic egalitarian solution.!®

2.2.2 Solutions to coalitional form games

We now turn to the richer class of coalitional form games. Such games are for-

mal representations of situations in which all groups, called coalitions, (and

not just the group of the whole) can achieve something. Formally, a (trans-

ferable utility!?) coalitional form game is a list v = (v(S))scny € R¥1,
where for each coalition S C N, v(S) € R is the worth of S. This num-

ber is interpreted as what the coalition can achieve on its own. A solution

associates with every such game v a payoff vector, a point in RY whose

coordinates add up to v(N).

12Dagan and Volij also show that the adjusted proportional rule corresponds to the
Kalai-Smorodinsky solution applied to the problem in which the disagreement point is set
equal to the vector of minimal rights instead of the origin.

13The reader may wonder why a solution that is scale invariant (invariant with respect
to positive linear transformation, independent agent by agent, of their utilities), such as
the Nash solution, coincides with a solution that is based on utility comparisons, such as
the lexicographic egalitarian solution. The answer is simply that the subclass of bargaining
problems associated with bankruptcy problems is not rich enough for the operation of scale
transformation to ever be applicable.

141 Section 5, we discuss the non-tranferable utility case.

12



In order to be able to apply the solutions introduced in the theory of
coalitional form games, we need to find a natural procedure of associating
with each bankruptcy problem a coalitional form game. The following one
was proposed by O’Neill (1982). In the two-claimant case, set the worth
of each claimant equal to the net worth of the firm minus the claim of the
other agent if this difference is non-negative, and zero otherwise,'® and set
the worth of the grand coalition equal to E. Dividing equally the amount
that remains when each claimant is first paid his own worth leads to the
following recommendation, which coincides with the recommendation made
by the contested garment rule:

z; = max{E — z;,0} + %[E —max{F — 21,0} — max{F — z,,0}]

If there are more than two agents, set the worth of each coalition equal to
the net worth of the firm minus the sum of the claims of the members of the
complementary coalition if this difference is non-negative and zero otherwise.
This amount is “conceded” by the complementary coalition. It is what the
coalition can secure without going to court.

Definition (O’Neill, 1982) Given a bankruptcy problem (c, E) € BV, its
associated coalitional form game is the game v(c, E) € R*"~! such
that for each S C N, v(c, E)(S) = max{E — s, 0}.

Note that as defined here, the worth of each coalition is a somewhat
pessimistic assessment of what it can achieve. However, the bias being sys-
tematic across coalitions, we might still expect the resulting game to appro-
priately “summarize” the actual situation.!®

It is useful to observe that the game v(c, F) is convex!” (Curiel, Maschler
and Tijs, 1987).!® Therefore, its core!? is non-empty, and its Shapley value
(see below) belongs to it.

15Note that we called the minimal right of an agent is simply the worth of the “coalition”
consisting only of that agent.

16 A coalitional form game is a point in a space of considerably greater dimension than a
bankruptcy problem. In the passage from bankrupcty problems to coalitional form games,
the necessary increase in dimensionality is bound not to be entirely natural.

17This means that the contribution of a player to a coalition is always greater than his
contribution to any subcoalition.

18Conversely however, it is not true that any positive convex game can be generated by
a bankruptcy problem.

19This is the set of payoff vectors such that no coalition in aggregate receives less than

13



Just as we saw for bargaining solutions, a number of links exist be-
tween bankruptcy rules and solutions to coalitional form games. If for every
bankruptcy problem, the recommendation made by a bankruptcy rule coin-
cides with the recommendation made by a solution to coalitional form games
when applied to the associated coalitional form game, once again we say that
the rule corresponds to the solution.

The first correspondence that we will describe involves a rule based on
the following scenario. Imagine agents arriving one at a time in order to get
reimbursed, and suppose that each claim is fully honored until money runs
out. The resulting schedule of awards will of course depend on the order in
which claimants arrive. To obtain independence, take the average over all
orders of the schedules obtained in this way. This proposal was made by
O’Neill (1982). It is inspired by the well-known solution to coalitional form
games introduced by Shapley (1953) and its “random order” interpretation.
There is in fact a formal relation between the two solutions. This relation
is described in Lemma 2. The Shapley value of player 1 € N in the
game v € R?"~! is the expected amount by which his arrival increases the
worth of the coalition consisting of all the players that have arrived before
him, when all orders are equally likely: Let IV be the class of bijections from
N into itself. Then, Shi(v) = & T env[v({j € N : 7(j) < n(8)}Ui)—v({j €
N () <m(2)}).

Random order rule®, RO: For all (¢,E) € BY and for all : € N,
Roi(ca E) = % ZWEHN min{ciama‘x{E - ZjEN,r(j)<7r(i) CJ',O}}.

O’Neill (1982) discusses a method of recursive adjustments (under the name
of “recursive completion”) that produces the Shapley value.?!

its worth: more precisely, the core of v € R2"~1 is the set of payoff vectors z € RV such
that > z; = v(N) and forall SC N, Y 5 ;i > v(S).

20This rule coincides with the constrained equal award rule in the two-claimant case
(Dagan, 1994).

210’Neill (1982) defines another method of random claims defined as follows: agents
randomly make claims on specific parts of the estate, the total amount claimed by each
agent being equal to his claim. For each part of the estate, equal division prevails among
all agents claiming it. Unfortunately, this method may not attribute the whole estate (it
is not efficient, as formally defined below). Moreover, when claims are compatible, it need
not give to each agent his claim. Of course, we could take the amounts awarded by this
method as a starting point and apply the method iteratively to distribute the leftover.
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Another important solution in the theory of coalitional form games is the
nucleolus (Schmeidler, 1969). First, define the dissatisfaction of a coalition
at a proposed allocation as the difference between the sum of the awards
to its members and its worth. Then the nucleolus is obtained by solving
the following sequence of minimization exercises: first, identify the points
at which the dissatisfaction of the most dissatisfied coalition is minimized;
among the set of minimizers, identify the points at which the dissatisfaction of
the second most dissatisfied coalition is minimized®. .. and so on. Lemma 2
describes a formal relationship between this solution and the Talmudic rule.

A relatively new solution to coalitional form games was proposed by Dutta
and Ray (1989). It selects the point in the core that is Lorenz-maximal. It
too corresponds to a bankruptcy rule, namely the constrained equal award
rule.

Consider next the solution to coalitional form games introduced by Tijs
(1982) under the name of 7—wvalue. It consists in identifying a minimal and
a maximal payment for each agent, and in choosing the schedule of awards
on the segment connecting the vector of minima to the vector of maxima.
Given v € R¥! and ¢ € N, let M;(v) = v(N) — v(N\{z}) and pi(v) =
maxscn,ies(v(S) — Tjesvy Mi(v)). Then, 7(v) = AM(v) + (1 — Au(v),
where X is chosen so as to obtain efficiency.??

The next lemma gathers the known correspondences between bankruptcy
rules and solutions to coalitional form games.

Lemma 2 (Various authors)
The following correspondences between bankruptcy rules and solutions to
coalitional form games hold:

1. The random order rule and the Shapley value (O’Neill, 1982).
2. The Talmudic rule and the nucleolus (Aumann and Maschler, 1985).2¢

3. The constrained equal award rule and the Dutta-Ray solution (Dutta
and Ray, 1989).

22Gee our earlier definition of the lexicographic egalitarian solution.
Z3For a convex game v, M (v) indeed dominates m(v).
24Lee (1992a) gives a short proof of this result.
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4. The adjusted proportional rule and the 7-value (€ ariel Maschler and

Tijs, 1988).

Of course, not all bankruptcy rules correspond to scane <olution to coali-
tional form games. A necessary and sufficient condition for <uch a correspon-
dence to exist is that the rule depend only on the truncated claims and the
net worth of the firm (Curiel, Maschler and Tijs, 1988;.¢"

3 Properties of bankruptcy rules

In this section and the next, we formulate properties of rules and examine
how restrictive the properties are. We start with what we consider to be the
most natural ones. As we progress, we formulate requirements that we may
or may not want to impose depending upon the range of situations to be
covered, and depending upon the legal or informational constraints we face.

3.1 Feasibility and efficiency

Feastbility is simply the requirement that the sum of the awards should not
exceed the net worth of the firm, and efficiency the requirement that for
every problem, the rule should allocate the entire net worth of the firm. For
convenience, we have incorporated efficiency in the definition of a rule. It is
obvious that we cannot distribute more than there is, but conceivably, we
could distribute less, and depending upon which additional conditions are
imposed, we may be satisfied with this.2¢

3.2 Bounds

Next are requirements placing bounds on what each claimant can receive as
a function of the data of the problem. First, each agent should receive a
non-negative amount. This requirement too is embodied in the definition of
a rule since rules take their values in RY.

25This means that F(c, E can be written as F((min{c;, E})ien, E) for some function F.

261t may seem that we should never allocate less than is available, but in other settings
this option has proved extremely useful. In the context of public good decision, the so-
called Clarke-Groves mechanism succeeds in eliciting truthful information about agents’
preferences only because it allows that some of the private good be wasted.
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The following requirement provides a natural upper bound on awards: no
agent should receive more than his claim. It too is often incorporated in the
definition of a rule.

Claims boundedness: For all (¢, E) € BY and for all : € N, Fi(c, E) < ¢;.

It turns out that a rule selects a point in the core of the coalitional form
game associated with a bankruptcy problem if and only if it satisfies claims
boundedness (Curiel, Maschler and Tijs, 1988).

Another condition is that each claimant receive at least his “minimal
right”, a quantity that appears explicitly in the definition of the adjusted
proportional rule: recall that this is the difference between the net worth of
the firm and the sum of the claims of the other claimants if that difference
is non-negative, and zero otherwise.?”

Respect of minimal rights: For all (c,E) € BY and for all ¢ € N,
F‘,‘(C, E) > maX{E - ZN\{i} Cis O}

3.3 Symmetry and related requirements

The next requirement is that the amounts awarded to two agents with equal
claims should be equal.

Symmetry: For all (¢, E) € BY and for all 7,5 € N, if ¢; = ¢j, then
R(c> E) = Fj(ca E).

This requirement may not always be justified. In actual bankruptcy pro-
ceedings, some claims may have higher priority than others. In order to allow
differential treatment of otherwise identical agents, we can enrich the model
and explicitly introduce “priority” parameters. Let a bankruptcy problem
with priorities be a list (c,p, E) where (¢, E) € BY and p is a function
from N to [1,...,m] where m < |N|, interpreted as follows: given ¢ € N,
p(t) is the priority class of agent i: two agents in the same priority class
are treated differently only to the extent that their claims differ, but agents
in different priority classes can be treated differently even though their claims
are identical.

27Using the language of the theory of cooperative games, this condition could be called
“individual rationality”.
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All rules can be adapted to accommodate priorities by applying them to
priority classes in succession. To illustrate, a version of the proportional rule
for such problems would make awards proportional to claims within each
priority class, but would fully satisfy the claims of higher priority classes
before attempting to satisfy the claims of the lower classes. In fact, this is
common practice. The role of the different classes of creditors in bankruptcy
law is discussed in Aggarwal (1992).

Alternatively, we could define a bankruptcy problem with weights
to be a list (c,a, E), where (¢, E) € BY and a« € A™! is a point in the
(n —1)-dimensional simplex indicating the relative priorities (as opposed to
the absolute priorities of the previous paragraph), that should be given to
agents.

Rules can easily be adapted to this setting too. For instance, to ob-
tain a version of the proportional rule, make awards proportional to claims
multiplied by the weights.?®

A stronger version of symmetry is that the rule be invariant under per-
mutations of agents. Recall that I denotes the class of bijections from N
into itself.

Anonymity: For all (¢, E) € BY, for all # € IIV, and for all i € N,
E(W(c)7E) = er(i)(c’ E)

3.4 Order properties

An obvious generalization of symmetry is that the rule respects the ordering
of claims: if agent ¢’s claim is greater than agent j’s claim, he should receive
at least as much as agent j.?°

Order-preservation: For all (¢, E) € BN and for all 1,5 € N, if ¢; > ¢;,
then Fi(c, E) > Fj(c, E).*°

All of the rules that we have seen satisfy this property but few satisfy the
stronger condition of strict order-preservation, which says that if agent

Z8Lee, N-C (1984) discusses a weighted version of the constrained equal award solution.

29This property first appears in Aumann and Maschler (1985).

3%Dagan, Serrano and Volij (1994) add to this requirement the inequality ¢; — Fi(c, E) >
¢j — Fj{c, E), a condition first used by Chun (1989).
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¢’s claim is greater than agent j’s claim, then he should receive strictly more
(equality is not permitted any more).

Next is the requirement that claimants with greater claims should receive
proportionately less:
Regressivity: For all (¢, E) € BY and for all ¢, € N, if ¢; > ¢; > 0, then
Fi(c,E) < Fj(c,E).

c ¢

In the context of taxation, it is mainly the dual condition of “progressiv-
ity” that has been used. The underlying motivation is based on the objective
of imposing “equal sacrifices” on all agents, under the assumption that they
have concave and identical utility functions:

Progressivity: For all (¢, E) € BY and for all 5,5 € N, if ¢; > ¢; > 0 then
Fi(oB) - Fi(eB)

ci ¢y

The next requirement is that if claims and estate are multiplied by the
same positive number, then so should all awards. In situations where minimal
guarantees to agents are justified, this is not a reasonable property to impose,
but then, as argued by Young (1988), the problem should really be redefined
as pertaining to the division of whatever surplus exists after these minimal
guarantees have been honored.

Homogeneity: For all (¢, E) € BY and for all « > 0, F(ac,aE) = aF(c, E).

3.5 Independence, additivity and related properties

In this section, we consider requirements stating the independence of the rule
with respect to certain operations performed on the data of the problem.

The first requirement is that a rule should not depend on any part of a
claim that is greater than the net worth of the firm: replacing ¢; by E if
¢; > E should not affect the recommendation.

Invariance with respect to claims truncation:*! For all (c, E) € BV,
F(c, E) = F((min{c;, E})ien, F).

31By analogy to the condition used in bargaining theory, this condition has been called
“independence of irrelevant claims”. We prefer our more neutral phrase since it can be
legitimately argued that the part of an agent’s claim that is above the net worth of the
firm is not irrelevant.

19



If we feel strongly that invariance with respect to claims truncation should
be imposed, we could of course redefine the domain and only consider
bankruptcy problems in which no claim is ever greater than the net worth
of the firm. Alternatively, we could define a bankruptcy problem to be a list
(c, E) € [0,1]" xRy, where for each ¢ € N, ¢; is interpreted as the percentage
of the net worth claimed by agent :. This restriction might be particularly
meaningul in the context of estate division: think of contradictory wills in
each of which it the proportion of the estate that some heir should receive is
specified.??

If a rule is not invariant with respect to claims truncation, it can easily
be modified so as to satisfy the property by s1mply replacing the truncated
claims in its definition.

Now consider the following situation: after a firm’s net worth has been
divided among its creditors, its assets are reevaluated and found to be worth
more than originally thought (perhaps their market value has changed in the
meantime, or new assets are discovered). To deal with the new situation,
two options are available: (i) either the first division is cancelled altogether
and the rule is applied to the revised problem, or (ii) the rule is applied to
the problem of dividing the incremental value of the firm after adjusting the
claims down by the amounts received in the first division. The requirement
formulated next is that both ways of proceeding should produce the same

answers.33

Composition: For all (c, E) e BN forall E' € Ry, if Y ¢; > E' > E, then
F(c,E') = F(¢,E) + F(c— F(c, E), E' — E).

The following theorem provides a characterization of the constrained
equal award rule on the basis of several of the properties just defined.

Theorem 1 (Dagan, 1994) The constrained equal award ruleis the only rule
satisfying symmetry, claims boundedness, invariance with respect to claims
truncation, and composition.

320°Neill calls these problems “simple claims problems”.

33This condition was introduced in the context of taxation by Young (1987). A condition
of step by step negoliation in the same spirit was analyzed in the context of bargaining by
Kalai (1977).

34This is a well-defined problem if F' satisfies claims boundedness.
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A particular form of composition is obtained by requiring first that the
rule respect minimal rights. Then, if the net worth of the firm is equal to
the sum of the minimal rights, the rule can only award his minimal right to
each claimant:

Composition from minimal rights: For all (¢, E) € BN, F(c,E) =
m(c, E) + F(c—m(c,E), E — Y my(c, E)).*®

Theorem 2 (Dagan, 1994) The contested garment rule is the only two-
claimant rule satisfying symmetry, claims boundedness, invariance with re-
spect to claims truncation, and composition from minimal rights.

The next requirement says that the problems of dividing “what is there”
and that of dividing “what is not there” should be treated in a symmetric
way. The condition was formulated by Aumann and Maschler (1985), who
note a number of passages in the Talmud where the idea is central:

Self-duality: For all (¢, E) € BN, F(¢,E) = c— F(¢,S¢; — E).%

An operation associating to each rule its “dual” can easily be defined
(this is simply the right-hand side of the formula appearing in the state-
ment of the axiom). To say that a solution is self-dual is to say that it
coincides with its dual. Many rules are self-dual, including the proportional
rule, the Talmudic rule, and the adjusted proportional rule. Dagan (1994)
notes that invariance with respect to claims truncation and self-duality to-
gether imply composition from minimal rights. Aumann and Maschler (1985)
observe that the Talmudic rule is the self-dual solution that coincides with
the constrained equal-award rule on the subdomain of BY of problems (c, E)
such that Y~ ¢;/2 > E. We also have:

Theorem 3 (Young, 1988) The proportional rule is the only rule satisfying
continuity, symmetry, self-duality, and composition.

The following result pertains to the two-claimant case:

35This is a well-defined problem since for alli € N, ¢; > m;(c, EY.
36This is a well-defined problem if F satisfies claims boundedness.
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Theorem 4 (Dagan, 1994) The contested garment rule is the only two-
claimant rule satisfying invariance with respect to claims truncation, claims
boundedness, and self-duality.

The next condition states that no group of agents should ever benefit
by transfering claims among themselves. In situations in which agents are
able to perform operations of this kind, it can be seen as preventing such
manipulation.?” It was analyzed by Chun (1988):

No-advantageous reallocation: For all (c,E) € BV, for all M C
N, and for all ¢j; € RY, if Yy = Yard, then Yp Fi(c, E) =
ZM F‘i(cﬁ\J’CN\M’E)"BS

Obviously, in the precense of efficiency (which is incorporated in our
definition of a rule), this condition is vacuously satisfied for n = 2.

A related condition is inspired by the international trade literature. It
says that a partial transfer of an agent’s claim to the others does not benefit
him. This condition was formulated by Chun (1988):

No-transfer paradox: For all (¢, E) € BY, forall: € N, and for all ¢ € RV,
if ¢} < ¢, and T ¢; = T ¢j, then F(c, E) < Fi(c, E).

Alternatively, we could consider a transfer of claim from one agent to
another agent, and require that the former should lose and the latter should
gain.

In the statement of the next result, we will use the following requirement,
which is often needed for technical reasons, but which intuitively makes much
sense. It simply says that small changes in the data of the problem should
not lead to large changes in the recommended allocation.

Continuity: For all sequences {(c¢”, E*)} of elements of BY and for all

(c, E) € BN, if (¢, E*) — (¢, E), then F(¢”, E¥) — F(c, E).

37A condition of this type was used by Gale (1974) and Aumann and Peleg (1974) in
the context of allocation in classical exchange economies, and by Moulin (1985) in a study
of quasi-linear social choice. :

38By the notation (cfy,cn\ar), we mean the claims vector in which the claim of each
i € M is ¢}, and the claim of each i € N\M is ¢;.
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Partial notions of continuity, with respect to the et worth of the firm
or with respect to a particular agent’s claim, can also be formulated, and in
fact often suffice for proofs.3®

In the next lemma, we do not require rules to take their values in Rf and
that 3° Fi(c, E) = E. We refer to such functions as “grueralized rules”.

Lemma 3 (Chun, 1988) A generalized rule F satisfics ananymity, continuity
and no advantageous reallocation if there exists a continuous function g: R? —

R such that for all (c, E) € BY and for all i € N,

(n—'l) Z C)}.‘I(Z(‘—:,E

Fi(c,E) =
E Ci N\{i)

Also, for n > 3, if a generalized rule satisfies the three axioms, then it
necessarily has that form.%°

Note that the family described in this lemma includes the proportional
and equal award rules (for g(c, E) = E/n and g(c, E) = 0 respectively).

A corollary of this result is a characterization of the proportional rule.
This characterization pertains to the variable population version of the model
and it appears in Section 4.

The next requirement is closely related to no-advantageous reallocation:

Linearity: For all (¢, E), (¢, E') € BN and for all A € [0,1], F(c, \E + (1 —
MNE') = AF(¢, E)+ (1 — A)F(c, E').

Lemma 4 (Chun, 1988) A generalized rule F' satisfies anonymity, continuity
and linearity if and only if there exist continuous functions - : R — R and
g : R®™ — R that are invariant with respect to permutations of their last n —1
arguments, and such that for all (¢, E) € BN and for all i € N,

E
Fi(c, E) = —+—[(n 1h(ci, c Z h{c;,c_j) ]+ [(n—1)g(ci, c—i)— Z g9(cjyc—;)]
JEN\{7} JEN\{s}

where c_; denote the vector ¢ from which the ¢th coordinate has been re-
moved.

3%In all the results quoted below, it suffices to assume that the rule is continuous at one
point of its domain.

4°Chun notes that no-transfer paradoz could be used instead of continuity, but then g
would not have to be continuous.
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The corollary that follows involves the requirements that the generalized
rule be in fact a rule, and that it satisfy claim boundedness.

Theorem 5 (Chun, 1988) The proportional rule is the only rule satisfying
anonymity, claims boundedness, continuity, and linearity.

The next requirement pertains to situations in which the amount to divide
comes in two parts. It states that dividing the first part first and then dividing
the second part yields the same result as consolidating the two parts into one
and dividing the result at one time. The implications of this condition were

studied by Chun (1988).

Additivity: For all ( ¢,E) € BN, and for all E/,E" € Ry, if E = E' + E",
then F(c,E) = F(¢, E') + F(c, E").

This requirement is most appealing in situations in which the vector ¢
is given a broader interpretation than a vector of claims as understood so
far, but instead represents notions of rights that are not commensurable with
the quantity to divide.*! Then, the fact that a first estate has already been
divided cannot be very meaningfully accompanied by an adjustment of the
claims in the division of the second estate. '

Lemma 5 (Chun, 1988) A generalized rule F satisfies anonymity, continu-
ity and additivity if there exists a continuous function A : R* — R that is
invariant with respect to permutations of its last n — 1 arguments, and such

that for all (¢, E) € BY and for all 1 € N:

E
Fi(e,B) = =+ 2 {(n ~ Dhese) = 3 hlese )

N\{:}

A corollary of this lemma is another characterization of the proportional
rule. Here too, it is obtained by requiring that the generalized rule actually
be a rule. In fact, it suffices to require that F(c, F) = Eif }_¢; = E, or that
the generalized rule be self-dual. Alternatively, continuity can be replaced
by net worth monotonicity defined in the next section.

41Then of course the inequality Y ¢; > E has no meaning and it may make more sense
to enlarge the class of problems under consideration by dropping it.
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3.6 Monotonicity

In this section we formulate monotonicity requirements. Requirements of this
type have played an important role in the analysis of other domains and they
often have strong implications. In some contexts they are even incompatible
with efficiency and very elementary notions of fairness in distribution. In
the present context they turn out to be quite weak, and we mainly mention
them for completeness.

First is the requirement that if an agent’s claim increases, his share should
increase.

Claims monotonicity: For all (¢, E) € BN, for all: € N, and for all ¢} > ¢;,
we have Fi(cq,...,Ci-1,C Cig1y. .- Cny E) > Fi(c, E).

Under the same hypotheses as above, we might also want the share of
each of the other agents to decrease. Under efficiency, this condition implies
the previous one.

Strong claims monotonicity: For all (¢, E) € BY, for all 7 € N, for all
¢ > ¢;, and for all j € N\{i}, we have Fj(ci,...,Ciz1,€, Cig1, .. Cny B) <
Fj(C,E).

The next requirement is that when the net worth of the firm increases,
each of the claimants gains.*?

Net worth monotonicity: For all (c,E) € BN forall E' € Ry, if ¥ ¢ >
E’' > E, then for all i € N, we have F(c, E') > Fi(c, E).

As just noted, these properties are not very restrictive. Indeed, all of the
rules that have been considered in the literature satisfy them. However, the
stronger versions obtained by requiring that under the same hypotheses, the
inequalities appearing in the conclusions be strict, are not satisfied by most
of them. “Conditional” versions of these stronger conditions stating that the
inequality be strict only for each claimant : whose award is neither 0 nor ¢;
(this eliminates “corner” situations) are satisfied more generally.

The final condition here is that if the amount to divide increases, agents
with greater claims should receive a greater share of the increment (Dagan

and Volij, 1994).

42The property is used by several authors, including Curiel, Maschler and Tijs (1988)
and Young (1988).
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Super-modularity: For all (¢, E) € BN, for all E' € Ry, if E' < E, and for
all ,57 € N, if ¢; < ¢;, then Fi(c, E) — Fi(¢, E') < Fi(c, E) — Fj(c, E').

Here too, a strict version of the property can be formulated. It is easy to
see that a super-modular rule is order-preserving.

4 Variable population

We now consider a richer framework in which the number of claimants in-
volved may vary. We allow problems involving arbitrary, although finite,
numbers of claimants. There is a set of “potential” claimants, indexed by
the set of natural numbers N, and A is the set of finite subsets of N. A
bankruptcy problem is obtained by first specifying a set of agents N € N,
then a pair (¢, E) € Ri’ X Ry such that Sy ¢; > E. A bankruptcy ruleis a
function defined on the union of all of the BY, for N € N, which associates
with every N € N and every (¢, E) € BY a point of Rf whose coordinates
add up to F.

4.1 Consistency

The first property is an independence requirement. Consider some problem

“and apply the chosen solution to it. Consistency says that if some of the
claimants leave with their awards, and the situation is reevaluated from the
viewpoint of the remaining claimants, the solution should assign to them
the same awards as initially. The problem faced by the group of remaining
agents is called the reduced problem relative to the subgroup and the
initial recommendation. Note that this is indeed a well-defined problem
if the solution satisfies claims boundedness. Then, in the reduced problem,
the sum of the claims is still greater than the amount to divide.**

Consistency: For all M, N € N, for all (c,E) € BY,if M C N and
(ermy Sopr z:) € BM, where z = F(c, E), then zp = F(em, Sag @)

43For a survey of the vast and fast-expanding literature devoted to the analysis of the
consistency principle, see Thomson (1995b). O’Neill (1982) gives the term consistency a
different meaning.
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Bilateral consistency is the weakening of the condition obtained by
considering only subgroups of remaining agents of cardinality 2.

It is clear that the proportional rule is consistent, and that so is the
constrained equal award rule. What of the Talmudic rule? Let us check with
the specific numerical values given in the Talmud (Figure 1). For an estate
of 200 in the 3-person case, the amounts awarded to claimants 1 and 2 are 50
and 75 respectively, for a total of 125. Applying the Talmudic rule to divide
an estate of 125 between the first two claimants returns the same numbers 50
and 75! In fact, given any value of the estate, and given any pair of claimants
{¢,7}, if = denotes the Talmudic solution outcome of the 3-person problem,
applying the same rule to divide an estate of z; + z; between the pair {7, }
yields the settlement (z;,z;). This coincidence occurs for all cardinalities.
The Talmudic rule is consistent.

Aumann and Maschler (1985) show that the Talmudic rule is the only
bilaterally consistent bankruptcy rule to coincide with the contested garment
rule in the two-claimant case.** They also establish an interesting connection
between the following two procedures: let z be the recommendation for the
problem (c, E) € BY, where N € N. Given M C N, consider the reduced
problem (car, Y_p %) and its associated coalitional form game v(cpr, 3ops 2:)-
Alternatively, calculate the coalitional form game associated with the prob-
lem (¢, £') and its “reduced game with respect to the subgroup and the payoff
vector x” as defined by Davis and Maschler (1965): in this game, the worth
of each coalition S is set equal to the maximal surplus obtained when the
coalition “cooperates” with a subset S’ of the complementary group N\M
— this yields v(S U S’) — and pays the members of S’ according to z — for
a total of }°¢ z; (the surplus is then the difference v(S U S") — Y z;). The
result is that the two ways of proceeding give the same game.

The implications of consistency have been described very completely, with
very few auxiliary conditions. Consider indeed the following class of rules,

introduced by Young (1986).

Parametric rules: Let f : Ry X [a,b] — Ry, where [a,b] C [—00, +00], be a
function that is continuous, is weakly monotonic in its second argument, and

44 Actually, they establish a slightly stronger result, namely, that even if the rule were al-
lowed to be multivalued, bilaterally consistency would imply singlevaluedness, and unique-
ness, and coincidence with the contested garment rule in the two-claimant case.
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Figure 3: Parametric rules are consistent. Given the three claims
(c1,¢€2,¢3), the parameter ) is given the value A; so that the three awards
fle1, A1), f(ez, M), and f(es, A1) add up to the amount to be divided, E.
Now, if the amount E' = E — f(c3, ;) is to be divided between claimants
1 and 2, the value X' for which the awards f(c;,A) and f(c;, A') add up to
E' is, of course, N = )\, so that claimants 1 and 2 still receive the same
amounts after claimant 3 has received f (c3y A1).

satisfies f(c;,a) = 0 and f(c;,b) = ¢; for all ¢; € Ry. Then, given N € A and
(¢, E) € BN, the parametric rule relative to f selects the point z € RV
such that for some A € [¢,8], "y i = E and z; = f(¢;,\) for all i € N.

It is straightforward to check that all parametric rules are consistent.

Figure 3 depicts the graphs of such an f for three possible values of the
first argument. The choice of A = \; produces the distribution 5+ 10 + 12,
and the choice of A = ), produces the distribution 8 + 14 + 12. Note that
one of the graphs is not strictly increasing and that the graph corresponding
to c3 does not lie entirely above that corresponding to c; < c3. At this stage,
these are indeed possibilities. It is clear however that they can be ruled
out by imposing additional conditions. For instance, for an order-preserving
rule, the graph corresponding to ¢; lies above the graph corresponding to
¢; whenever ¢; > ¢;. Also, for a supermodular rule, for each value of the
parameter A, the slope of the graph corresponding to c; is greater than the
slope of the graph corresponding to ¢; whenever ¢; > ¢;. Figures 4a and
4b give parametric representations of the proportional and Talmudic rules,
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Figure 4: Parametric representations of two rules. (a) Proportional
rule: The schedules are straight lines through the origin, of slopes equal to
claims. (b) Talmudic rule. The schedule relative to claim ¢; follows the 45°
line up to the point (¢;/2, ¢;/2), continues horizontally until it meets the line
of slope - 1 emanating from (¢max, 0), then again follows a line of slope 1.

the latter in the case where an upper bound on claims exists, cpay.®® In all
of the results presented in this section, any of the axioms introduced earlier
in the fixed population case should be generalized in the obvious way to be
applicable to a variable population.

Theorem 6 (Young, 1987b) The parametric rules are the only rules satis-
fying symmetry, continuity, and consistency.

It is of interest to note that the proof of this result involves showing that
a continuous and consistent rule is net worth monotonic.

In the context of taxation, the following parametric rules have also been
discussed: for Stuart’s rule, z; = max{c; — ¢} ™*,0} and for Cassel’s rule,
5 = &/(ci+1/).

Aumann and Maschler propose one more justification for the Talmudic
rule based on a consistency argument. Let N = {1,...,n} and suppose
that claimants are ordered by increasing claims. F irst, apply the contested
garment rule to the two-claimant problem in which the first claimant faces a
“composite claimant” whose claim is the sum ¢3+---+c,. The first,claimant
leaves with his award. Then the second claimant faces the composite claimant

45This assumption restricts somewhat the scope of the rule but it permits a very simple
(piecewise linear) representation (Chun and Thomson, 1990). See Young (1987b) for a
representation without the upper bound.
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whose claim is the sum ¢z + -+ + ¢, and the amiount 1o divide s what the
first composite claimant received. He leaves with his awarid  1he procedure
continues in this way for n — 1 steps unless a violation of arder preservation
occurs, in which case equal division of what is left i« carriedt out among the
members of the composite claimant of that step and the procedure stops.

Chun and Thomson (1990) define a particular member of the parametric
family. It is inspired by a rule to the problem of fair division when preferences
are single-peaked known as the uniform rule (Sprumont. 1950). Lee (1994)
develops a characterization of his weighted generalization of the constrained
equal award rule based on consistency.®

Consider now the following family of solutions:

Equal-sacrifice rules : Let v : Ry — R be a continous and strictly
increasing function. Then, given N € M and (¢, E) € BY with z > 0, the
equal-sacrifice rule relative to u selects the point z € RV such that for
some A > 0, and for all 7 € N, we have u(¢;) — u(c; — z;) = A

Theorem 7 (Young, 1988) On the domain of problems where claims are
all positive, the equal-sacrifice rules are the only rules satisfying continu-
ity, strict net-worth monotonicity, strict order-preservation, composition, and
consistency. If in addition, homogeneity is imposed, then the rule is an equal-
sacrifice relative to u such that either u(z) = In(z) or u(z) = —¢* for p < 0.*

Within the class of parametric rules, a narrow subclass of great interest
can be identified:

Theorem 8 (Young, 1986) A parametric rule satisfies progressivity, homo-
geneity, and composition if and only if it can be represented in one of the
following ways:

f(ci,/\) = )\C,~ 0 S A S 1

folen ) =c—c/(1+ AP 0<A <00 p>0
foo(€iyA) = max{c; —1/A,0} 0< A<

46This characterization exploits duality relations between cores, anticores and their
reductions.

47Then, in the first case, the rule is flat taxation, and in the second, it is a parametric
rule of the form z = ¢ — [¢? + AP]V/P for A € [0, 00.

30



A requirement related to consistency can be formulated for situations in
which one of the claimants has a claim equal to zero: then, (i) he gets nothing
and (ii) deleting him does not change the amounts received by the others.
Part (i) corresponds to the condition known in the theory of coalitional form
games as the “dummy condition”.*® Part (ii) corresponds to consistency.
Since its coverage is not as wide as that of the condition that we used under
that name, we will refer to it as limited consistency. The condition amal-
gamating the two is used in the context of bankruptcy by O’Neill (1982) and
Chun (1988).%°

Dummy: For all M, N € N, for all (e, E)GBN if M C N and c,-Ofor
all i € N\M, then F(c E)=0for alli € N\M.

Limited consistency: Under the hypotheses of dummy, if z = F(c, E),
then zpr = Flem, Xopr @)-

We are now ready to present the characterization of the proportional rule
announced in Section 3 as a corollary of Lemma 3.

Theorem 9 (Chun, 1988) The proportional rule is the only rule satisfy-
ing anonymity, continuity, no-advantageous reallocation, dummy, and limited
consistency.

4.2 Average consistency

Consider a rule that is not consistent. Then, for at least one problem and one
reduced problem associated with the recommendation and some subgroup
made for it by the rule — let this recommendation be denoted z — there is
at least one claimant in the subgroup, say claimant :, who receives an amount
that is different from what he was initially awarded, z;. Under efficiency, this
means that in that reduced problem at least one claimant receives less, and
at least one other claimant receives more, than initially decided. Of course,
a claimant who receives less in some reduced problem associated with £ may
receive more in some other reduced problem associated with z. Suppose

481t is used in that form in de Frutos (1994).
49Chun uses the term “dummy” for the conjunction of what we call dummy and limited
consistency.

31



however that for each claimant, on average, when all the reduced problems
associated with z relative to subgroups to which he belongs are considered,
he does receive his component of z. Then, we may be satisfied with z after
all. To the extent that the formation of subgroups is a thought experiment
anyway, this weaker notion may be quite acceptable.

Average-consistency: For all N € N, for all (¢, E) € B, and for all: € N,
T = (TJWI-T)"' Ymeniem Filermr, T ).

This form of consistency was studied by Dagan and Volij (1994) who
suggested that the averaging be limited to coalitions of size two. We will refer
to that version as 2-average conststency.’® Dagan and Volij have in mind
situations in which a rule for the two-claimant case has been chosen. Then
the idea of 2-average consistency can be exploited to provide an extension
of the rule to all cardinalities as follows: given N € A, and a problem
(c,E) € BY, select = € RY such that Yy z; = E and for each i € N,
T—ﬁ}—_—f Yieny Filci, ¢, i+ x;5) = ;. Questions are whether such an z exists,
and if it does, whether it is unique. The following theorem shows that no
matter what the two-claimant rule s, both questions have positive
answers.

Theorem 10 (Dagan and Volij, 1994) For all two-claimant rules F, for all
N € N, and for all (¢, E) € BV, there is a unique = € RY such that Y z; = E
and for all : € N, ﬁ- ZjeN\{i} F,-(c,-, ¢, T+ :1:]') = I;.

4.3 Merging and splitting agents

We consider next a condition pertaining to the possibility that a group of
agents may consolidate their claims and be treated as a single claimant,
or conversely that a given claimant divide his claim and be “represented”
by several claimants. It says that no such consolidation or division is ever
beneficial. It was first used in the present context by O’Neill (1982).5! Banker

50This definition is inspired by an idea analyzed in the context of non-transferable utility
games (specifically the class of “hyperplane games”), by Maschler and Owen (1989).

51(O’Neill uses the name of “strategy-proofness”. We refrain from using it here since it
is now generally given a different meaning.
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(1981) considers the stronger requirement that the merging of two agents does
not affect the amounts awarded to the others.>?

Non-manipulability by merging or splitting: For all M, N € N, for all
(c, E) € BY and (¢, E') € BM if M C N, E' = E and there is ¢ € M such
that ¢, = ¢ + Ty\wm¢j, and for all j € M\{i}, ¢, = ¢;, then Fi(c,E) =
Fi(c, E) + v Fi(c, E).

This property is satisfied by the proportional rule and the adjusted
proportional rule, but not by any of the other rules that we have seen.
Chun (1988) established the following logical relations: non-manipulability
by merging or splitting implies no-advantageous reallocation. Efficiency,
anonymity and non-manipulability by merging or splitting together imply
dummy and limited consistency. Finally, non-manipulability by merging or
splitting implies no-advantageous reallocation. We now have: .

Theorem 11 (O’Neill, 1982; Chun, 1988) 53 The proportional rule is the
only rule satisfying anonymity, continuity, and non-manipulability by merg-
ing or splitting.

Theorem 12 (Curiel, Maschler and Tijs, 1988) The adjusted proportional
rule is the only rule satisfying claims boundedness, respect of minimal rights,
symmetry, and non-manipulability by merging or splitting.

In some situations, it may be particularly difficult to merge and in others
it is splitting that might not be easy. It is therefore natural to search for rules
that are either non-manipulable by splitting (if an agent is replaced by two
agents whose claims add up to his claim, then the sum of what they receive
should be no greater than what he previously received on his own), or non-
manipulable by merging (if two agents are replaced by one agent whose claim
is equal to the sum of their claims, this agent should not receive more than

52Banker studies a wider class of problems in which the sum of the claims is not related
to the net worth of the firm.

530’Neill imposes dummy and limited consistency, both of which are shown to be re-
dundant by Chun. Chun derives the conclusion by exploiting the logical relations just
stated, and obtains it as a corollary of Theorem 9. Banker (1981) obtains a closely related
result based on his strengthening of non-manipulability by merging or splitting mentioned
earlier.

33



the sum of what they previously received). These properties were studied by
de Frutos (1994), who searched for consistent rules satisfying either one of
them. Her findings are summarized in the following theorem, which builds
on Theorem 8.

Theorem 13 (De Frutos, 1994) If a continuous and consistent rule is non-
manipulable by merging, then it is a parametric rule relative to a function
f that is concave in its first argument for each value of the parameter A.
If instead, it is non-manipulable by splitting, then it is a parametric rule
relative to a function f that is convex in its first argument for each value of
the parameter A.

4.4 Population-monotonicity

The monotonicity property that is relevant in the context of a variable num-
ber of agents is that if the number of claimants increases, but the amount to
divide stays the same, all agents initially present should lose.>*

Population—monofonicity: Forall N, M € N with M C N, forall (¢, E) €
BN, then Fi(c, E) £ F(em, E).

Like all of the monotonicity properties formulated above for the fixed
population case, this condition is rather weak: as before, all of the rules that
have been studied in the literature satisfy it, although here too, the stronger
version obtained by requiring that the losses incurred by the agents initially
present be positive is considerably more restrictive. A conditional version
of this stronger requirement, obtained by applying it only to agents whose
initial awards are neither zero nor equal to their claims, can be met much
more generally.

5 Non—cooperative models

Here, we present a variety of non-cooperative models superimposed on our
basic bankruptcy problem.

In the game formulated by O’Neill (1982) each agent chooses particular
parts of the estate adding up to no more than his claim, and the outcome

4For a survey of the literature on “population-monotonicity”, see Thomson (1995a).
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function is such that any part that is claimed by several agents is divided
equally among them. Therefore, the less overlap exists between what an
agent claims and what others claim, the more he receives. The following
theorem collects the basic facts about this game, I'C. Nash-equilibria exist
and interestingly the distribution of claims at equilibrium is a “dual” of
O’Neill’s extension of Ibn Ezra’s method:%®

Theorem 14 (O’Neill, 1982) For each bankruptcy problem (c, E) € BV, the
game I'? has at least one Nash equilibrium. Any Nash equilibrium is such
that the part of the estate that is claimed by all claimants is minimized;
subject to that, the part that is claimed by n — 1 claimants is minimized. . .,
and so on.

In the game defined by Chun (1989), agents propose rules instead of
vectors of awards. Apart from efficiency, rules are required to satisfy order
preservation, claims boundedness, and regressivity. A sequential procedure is
defined as follows: the various rules proposed by all the agents are applied to
the problem at hand and the claim of each agent is replaced by the maximal
amount awarded to the agent by any one of them. The rules are applied to
the problem so revised and a second revision is performed... The outcome
function is defined by taking the limit point of this process, if it exists.%®
Chun shows that existence is guaranteed, and that in this game of rules,
['¢, if the agent with the smallest claim announces the constrained equal
award rule, then for any agent, the sequence of awards calculated by his
announced rule converges to what he receives under the application of the
constrained equal award rule. A consequence of this result is the following
characterization of the unique equilibrium outcome of the game I'C.

Theorem 15 (Chun, 1989) For each bankruptcy problem (c, E) € BV, the
game I'Y has a unique Nash equilibrium outcome, which is the allocation
selected by the constrained equal award rule.

Sonn (1994) studies a game of demands similar to the game originally
formulated by Chae and Yang (1988) (in their extension of Rubinstein, 1982)

55To solve the non-uniqueness problem, O’Neill first shows that the set of equilibrium
payoffs is a simplex, and he then suggests selecting its center.

56This game is inspired by a similar procedure developed by van Damme (1986) for
bargaining problems.
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for bargaining problems and characterizes its subgame perfect equilibria. In
this game, agent 1 proposes an amount to agent 2. If player 2 accepts, he
leaves with it and player 1 then proposes an amount to player 3, who again
has the choice of leaving with it. If at some point, a player rejects the offer
made to him, the next stage starts with his making offers to the next player
in line, player 1 being moved to the end of the line. The game continues until
only one player is left. Let I'S denote this game. The constraint is imposed
on offers that no agent be ever offered an amount greater than his claim or
the amount that remains to be distributed. In the proof of the following
result, consistency and monotonicity properties of certain solutions to the
bargaining problem play an important role.

Theorem 16 (Sonn, 1992) For each bankruptcy problem (c, E) € B, as
the discount factor of future utilities goes to one, the limit of equilibrium
allocations of the game I'S converges to the outcome selected by the con-
strained equal award rule.

Serrano (1993) makes use of the consistency of the nucleolus as a solution
to coalition form games to construct a sequential game whose subgame per-
fect equilibrium outcome is the nucleolus of the associated coalitional form
game. Dagan, Serrano and Volij (1993) extend this result to the class of net
worth monotonic and consistent rules. Assume that a two-claimant rule F
has been selected. In the n-claimant game I'" that they define, the claimant
with the highest claim proposes a division of the estate, and each of the other
claimants can (i) either accept his proposed share, in which case he leaves
with it, or (ii) rejects it, in which case he leaves with what the two-claimant
rule would recommend for him in the problem that the proposer and him
would face if they had to divide the sum of the amounts that the proposer
proposed for himself and for the agent. The proposer leaves with the dif-
ference between the estate and the sum of the amounts that the accepters
accepted and the adjusted amounts the rejecters took. Then the game is
played again among all the rejecters. For the statement of the next theorem,
we need the concept of an almost strictly net-worth monotonic rule:
it is a rule such that if the net worth increases, then any agent who is not
already receiving his claim receives strictly more. ‘

Theorem 17 (Dagan, Serrano and Volij, 1994) Let F be a net worth mono-
tonic, consistent and supermodular rule. Then, for each bankruptcy problem
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(c, E) € BV, the game I'F has a unique subgame petfes t expuilibrinm outcome,
at which every agent receives what the consistent exten<ion of F recommends.
The equilibria are coalition-proof®” if and only if the rule i« almost strictly
net worth monotonic.58

The outcome function as specified is not feasible out of equilibrium, but
it can be made feasible without the result being affected.

Note that calculating the outcome requires the planner’s knowledge of the
claims. In a follow-up contribution, Dagan, Serrano and Volij (1994) study
the case when claims are unknown to the planner and can be strategically
misrepresented. They impose the natural restriction that only downward
misrepresentation is possible. They construct a game form that implements
any consistent and strictly claims-monotonic rule in subgame perfect equi-
librium.

In the game defined by Corchén and Herrero (1995), agents propose al-
locations that are required to satisfy claims boundedness. The proposals are
combined, by means of a “compromise function”, so as to produce a final
outcome. The authors establish necessary and sufficient conditions on a two-
claimant rule for it to be implementable in dominant strategies: the rule
should be strictly increasing in each claim, and the amount received by each
agent should be expressable as a function of his claim and the difference be-
tween the net worth and the claim of the other agent. Implementation can
be achieved by a simple averaging of proposals. For the n-person case, the
results are largely negative however, at least when the averaging method is
used.

Landsburg (1994) studies a problem of manipulation in which manipula-
tion is costly. The cost of misrepresenting one’s claim is given by a function
having the property that the greater the extent of the manipulation, the
greater is the cost incurred. In the special case in which the claims add up
to the estate, he finds that there is a single rule giving agents the incentive
to report truthfully. It is the equal loss rule.

In Sertel’s (1992) game, the strategic opportunity of an agent is to trans-
fer a fraction of his claim to the other player (there are two players), payoffs
being calculated by applying the Nash bargaining solution to a certain bar-
gaining problem associated with the bankruptcy problem. He shows that at

57Bernheim, Peleg and Whinston (1987).
58For a strictly net worth monotonic rule, the identity of the proposer is immaterial.
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equilibrium the two players receive the awards the contested garment rule
would select.

In summary, we see that a number of the solutions that we had arrived
at on the basis of axiomatic considerations have been provided additional
support by taking the non-cooperative route.

6 Extensions of the basic model

In this section we briefly discuss extensions of the model to surplus-sharing
and situations where utility is non-transferable.

6.1 Generalization to surplus-sharing

Estate division problems can be generalized in different ways. First, as
O’Neill (1982) notes, the number of documents in which amounts are be-
queated need not be equal to the number of heirs. Also, in each document,
more than one heir may be named. Alternatively, each document may specify
a complete division of the estate among all the heirs.

Problems closely related to bankruptcy problems are the surplus-sharing
problems studied by Moulin (1985a). Such a problem is a pair (c, E) € RY x
R, where ¢; is interpreted as the investment in a joint venture made by agent
t:€ N and E > Y ¢;. The amount £ — Y ¢; is the surplus generated by this
venture. How should it be divided among the investors? Moulin characterizes
one-parameter families of surplus-sharing methods that contain as particular
cases equal sharing and proportional sharing. One of the auxiliary axioms he
uses is homogeneity (see above). Pfingsten (1991) describes how the class of
admissible rules enlarges when homogeneity is dropped. Chun (1987) studies
the implications of monotonicity conditions for this model, and analyses it
from a non-cooperative viewpoint (Chun, 1988).

An even more general class of problems consists of pairs (¢, E) € Rf xR,
in which no restriction is imposed on the value of E as compared to }_ ¢;. This
class includes both bankruptcy and surplus sharing problems as particular
cases. Solutions defined for it can be easily obtained by piecing together
bankruptcy rules and surplus-sharing rules.

Finally, we could consider the class just defined but without the claims
being commensurable with the amount to divide. For instance, ¢; could be
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interpreted as the “contribution”, the “need”, or the “merit”, of agent i.
In such context, comparing Y ¢; to F may not be meaningful. Conditions
such as claims boundedness may not be meaningful either (see our discussion
above of additivity).

Dagan (1994) considers the taxation problem interpretation of the model
and proposes a richer formulation that includes constraints on transfers across
agents. He characterizes a class of equal-sacrifice rules, mainly on the basis
of consistency considerations.

6.2 Generalization to the non-transferable utility case

Chun and Thomson (1988) formulate and analyze a class of bankruptcy prob-
lems in which utility functions are not restricted to be linear. The image
in utility space of such a “non-tranferable utility bankruptcy problem” can
also be seen as a bargaining problem enriched by the addition of a claims
point outside of the feasible set. Such problems are “bargaining problems
with claims”. Chun and Thomson offer several characterizations of the pro-
portional rule: in this setting, this is the solution that selects the maximal
feasible point on the line connecting the origin to the claims point (Figure 5).

Bossert (1992), Herrero (1993), and Marco (1994, 1995a,b) have also
studied this situation and defined other solutions for it. The main one is
the “extended claim egalitarian solution” which selects for each problem the
payoff vector at which the utility losses from the claims point are equal across
agents, subject to the requirement that no agent receives less than zero. This
point can be obtained in either one of the following alternative ways: (i) first,
select the maximal feasible point on the path defined by moving down from
the claims point in such a way that all agents whose utility is still positive
experience equal losses and all other agents receive zero (in Figures 5a, b,
this is the path c,a,0, and the point of equal losses is z.) (ii) The other def-
inition is in two steps. Find the maximal feasible point of equal losses in the
“comprehensive” hull of the individually rational part of the problem (this is
the set of points in R that are dominated by some point of the problem that
lies above the origin; in Figures 5a, b, this is the point b). Then set equal to
zero the utility of every agent whose individuality rationality constraint is vi-
olated at the maximal point of equal losses (this leads us back to z). Further
adjustments in both the proportional and the extended claim-egalitarian so-
lution are needed to get Pareto-optimal outcomes. For that purpose, Marco
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Figure 5: Non-transferable utility bankruptcy problems. In a non-
transferable utility bankruptcy problem the boundary of the feasible set is
not a straight line of slope -1. Two solutions for such problems are illustrated
here for n = 2 in panel (a), and n = 3 in panel (b). For the proportional
solution, P, utilities are proportional to claims. For the extended claim
egalitarian solution, ECE, utilities are obtained by imposing equal losses
from the claims point, subject to the constraint that no agent end up with a

negative utility.

(1995a) uses a lexicographic operation, as in Chun and Peters (1991).
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7 Conclusion

Although bankruptcy problems are among the simplest that one may en- -
counter, we have discovered that the model of bankruptcy is surprisingly rich.
Axiomatic analysis is of great help in providing support for the bankruptcy
rule that is the most commonly used in practice, namely the proportional
rule, but that it is invaluable in justifying the other rules that have played
a role in practice and theory, as well as in uncovering new rules. Together
with the recent studies of bankruptcy problems as non-cooperative games,
we now have an incomparably better understanding of the problem than just
a few years ago.
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