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Abstract

We show that semiparametric adaptive maximum likelihood estimators
have desirable robustness properties when the innovations in a location
parameter model are uncorrelated but not necessarily independent. We
show that such estimators have asymptotic covariance matrices equal to
the inverse of the Fisher information of the unconditional distribution of
the data in the presence of general forms of heterogeneity, including con-
ditional dependence in even moments. This result is important because it
establishes that adaptive estimators can significantly improve upon stan-
dard techniques even when the independence assumption underlying the
adaptive estimator is violated. It should be of great interest to empiri-
cal researchers because it implies that highly robust estimation is possible
without the necessity of specifying a model of the higher order dependence
that may be present in the data. A discussion of the semiparametric op-
timality properties of this estimator is included. We present Monte Carlo
simulation results that illustrate the excellent performance of the adaptive
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estimator for several varieties of conditional heteroskedasticity, including
ARCH, Markov-switching, and threshold models.
JEL C22 - Time series models

1. INTRODUCTION

Econometric time series models generally assume that the stochastic process gen-
erating an observed sample can be reduced to a sequence of uncorrelated innova-
tions. Efficient estimation of the parameters of a model is then carried out under
the further assumption that these innovations are iid Gaussian. However, the
assumptions of independence, of identical distributions, and of normality are all
highly dubious for many forms of economic time series data.

It is by now a well-established empirical regularity that the innovations in
many series, especially asset prices, have unconditional densities whose tails are
considerably heavier than those of a normal. Given the poor efficiency properties
of Gaussian pseudo-MLE’s in such situations, considerable research effort has been
devoted to the formulation of estimation strategies that will optimally account for
this non-Gaussianity.

The technique of adaptive maximum likelihood estimation is emerging as a
highly attractive alternative in this regard. If we are willing to assume that the
innovations to a model are iid, then we can often compute an estimator that is
asymptotically eflicient, in the sense of having asymptotic covariance matrix equal
to the inverse of the asymptotic information, even if we do not know the distri-
bution from which these innovations are drawn. Adaptive estimation has been
shown to be a possibility in many important econometric contexts, including lo-
cation models (Stone (1975) and Beran (1974)), linear regressions (Bickel (1982)),
non-linear models (Manski (1984)), ARMA models (Kreiss (1987a)), stationary
time series regressions (Steigerwald (1992)), ARCH models (Linton (1993)), and
cointegrated models (Jeganathan (1995) and Hodgson (1995a,b)).

It is natural to ask whether adaptive estimators retain their desirable robust-
ness properties when the iid assumption on the innovations fails. The presence
of various forms of conditional heterogeneity seems to be the rule for most eco-
nomic data. Particular emphasis has been placed in recent years on the existence
of dependence in second (and, to a lesser extent, fourth) moments, especially
in financial time series, and on the fact that such dependence will induce non-
Gaussianity in the unconditional density of the data even if a correct model of the



dependence implies Gaussian conditional densities. This has been a major theme
of the ARCH literature.

In the context of a basic location parameter model such as that considered by
Stone (1975), we derive an interesting and important robustness result for adaptive
estimators that are computed assuming the data are iid when in fact they may be
neither independently nor identically distributed. Under the crucial assumption
that the density of each innovation conditional on the past is symmetric about
zero, we find that the adaptive estimator has a normal asymptotic distribution
with covariance matrix equal to the inverse of the information of the density of
the unconditional distribution of the observations.! Qur result allows for various
forms of conditional heterogeneity.

The significance of this result is that the asymptotic efficiency gains obtained
by the adaptive estimator relative to the Gaussian pseudo-MLE (the sample mean
in the location model) are quantitatively identical whether the data are iid or not
. In either case, the efficiency gain is the ratio of the variance of the unconditional
distribution to the inverse of its information. The adaptive estimator is not nec-
essarily fully efficient, since in the non-iid case full efficiency would require correct
specification of the dependence and heterogeneity present in the data. However,
in cases where our ability to achieve such a specification is highly dubious (i.e., the
standard case in econometrics), this robustness property of adaptive estimators
increases their appeal considerably.

As an illustration of the usefulness of our results, consider a situation in which
we would like to estimate the location of a sequence of uncorrelated random
variables for which we suspect the presence of unconditional non-normality and
dependence in second (and possibly higher) moments. The sample mean is clearly
an undesirable estimator. It fails to take account of either the non-normality or
the dependence. Alternatively, we could assume that the data are generated by
a Gaussian ARCH process and compute the corresponding MLE. If our assump-
tions are correct, then we have achieved full efficiency. However, there are several
ways in which our assumptions may be incorrect, all of which are likely to be
relevant in any given empirical application. First, that we have chosen correctly

1Qur results actually allow for a limited degree of nonstationarity in the data, so that different
observations are permitted to have different unconditional distributions. Hence, it is not strictly
correct to speak in terms of the information of the unconditional distribution of the data (except
in the stationary case); we should actually speak in terms of the information of the ”average
asymptotic unconditional distribution”. However, we shall often abbreviate the latter expression
to the former except in cases where our argument requires the more precise vocabulary.
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from the long menu of possible ARCH specifications is unlikely. Second, even if we
have somehow managed to correctly model the second moment dependence in the
data, there is plenty of empirical evidence to suggest that the resulting standard-
ized residuals are neither normally nor iridependently nor identically distributed.
Conditional non-Gaussianity and higher-order dependence, in fourth moments, for
example, have almost assumed the status of stylized facts in financial data. The
virtue of computing an adaptive estimator based on the uncorrelated innovations
is that we are not required to in any way specify the dependence or heterogeneity
that may be present in the data, and yet we get an estimate that is robust to the
presence of such factors, adapts itself optimally to the unconditional distribution
implied by the presence of such factors, and delivers estimates considerably more
efficient than the sample mean.

In Section 2, we present the model, our assumptions, and an analysis of the
pseudo-MLE we would compute if we knew the unconditional distribution of the
data (F, say) and assumed that the data were iid from this distribution (what
Levine (1983) terms a ”partial likelihood”). It turns out that this partial MLE
is consistent and asymptotically normal with a variance equal to the inverse of
the Fisher information of F'. In Section 3, we show that a one-step iterative esti-
mator constructed assuming that F' is known is asymptotically equivalent to the
partial MLE. We then show that an adaptive estimator very similar to that of
Stone (1975), modified as in Bickel (1982) and Kreiss (1987a), is asymptotically
equivalent to this iterative estimator and so to the partial MLE. In Section 4, we
briefly consider the semiparametric optimality properties of the estimator when
the dependence and heterogeneity in the data generating process are treated as
unknown infinite-dimensional nuisance parameters. We conclude that our estima-
tor does not attain the semiparametric efficiency bound and discuss the possibility
of formulating one that would. In Section 5, we report Monte Carlo simulation
results that illustrate the finite-sample efficiency gains possible with the adaptive
estimator for a number of conditionally heterogeneous processes, including ARCH,
Markov-switching, and threshold models. Section 6 discusses the applicability of
our main result to more general models than the location model and Section 7
concludes.



2. THE PARTIAL MLE

Suppose that the observed sample y, € R, t = 1, ..., n, is generated by the following
location model:
yt = 90 + Et, (1)

where the zero-mean innovations ¢; are uncorrelated and have distribution func-
tions F; with the property that F* = n™!Y7" | F, = F. We use the symbol
= to denote weak convergence of probability measures (cf. Billingsley (1968)).
Associated with this model is the sequence of probability measures {Po, n}. All
convergence statements in the paper are under this sequence unless otherwise in-
dicated. We assume that F has a density f = F' which is symmetric about ZEero,
twice continuously differentiable, and has finite, positive information. We define
the o-field Q_; = o(et-1,64-9,...) and assume that, for every ¢, the innovation
€; has a conditional density g; (¢ [€—1) which is symmetric about zero in e, has
finite, positive information, and is absolutely continuous in £. We also assume
the existence of an unobservable initial vector e, which we use to determine the
conditional distribution of the sample and whose density we denote by fo (g0;0).
We assume that

Jo(e0;01) — fo(g0;62) = 0,(1)

in Py, » whenever 01,0, € © and 6, — 6, = 0,(1).

If the data are stationary, then F' is just the unconditional distribution of
the innovations. However, this formulation allows for various forms of non-
stationarity, including deterministic heteroskedasticity. Assuming the innovations
are independent, for example, if an asymptotic proportion of the sample of o has a
normal distribution with variance o? (®;, say) and the remaining sample is normal
with variance o3 (with cdf of ®,, say), then it will follow that F = a®,; + (1—a)®,.

Our ultimate objective is to analyze the properties of an adaptive estimator
of 6y € ©, similar to that of Stone (1975), derived under the assumption that the
{e¢} are iid from an unknown symmetric density. T he first step is to analyze the
behaviour of the "partial MLE” (cf. Levine (1983)) that we would compute if we
knew F' and assumed that the innovations were iid draws from its density. The
partial MLE is

0, =arg max n 1Zlnf yt 6), (2)
1SS t=1



which also satisfies .
w3 oY (- 0.) =0, (3)
t=1

where 1) = f'/f is the (negative of the) score of f. QOur objective in this section
is to show that 8, is consistent and asymptotically normal with variance equal to
the inverse of Iy = [ U—}ﬁ(x)dm, the Fisher information of f. This result is stated
in Theorem 2 below. We shall then see in Section 3 that the adaptive estimator
is ésymptotically equivalent to the partial MLE.

We first prove that 8, is consistent. To this end, we must show that the
criterion function on the right-hand side of (2) satisfies a uniform law of large
numbers (ULLN), for which purpose we appeal to a result of Potscher and Prucha
(1989), who generalize a ULLN of Bierens (1984). We begin with a statement of
our assumptions.

ASSUMPTION 1: (O, p) is a compact metric space.

In order to state our next two assumptions, we must introduce some notation.
Let D(y) = sup {|In f(y — 6)| : 0 € O}, ¢*(y,0,7) = sup {In f(y — ') : p(0,) < 7},
and q.(y,8,7) = inf {In f(y — 6) : p(9,6') < 7}, where 7 > 0.

ASSUMPTION 2: sup,n 'Y 0 F [D(yt)H‘SJ < oo for some § > 0.

ASSUMPTION 3: For all § € © there egists a sequence of positive numbers T; =
7i(0), 7 — 0, such that for each 7; the random variables ¢*(y;, 6, 7;) and g. (yt,0,7:)
satisfy a strong law of large numbers, i.e., as n — oo, :

n——l Z?:l {q*(yta 9) Ti) - Eq*(yta 67 T’i)] - Oa.s.(1)7
n‘l Z?:l [q*(yt, 97 T’i) - EQ*(yty 0) Tz)] = Oa.s‘(l)-

"The pointwise SLLN’s in Assumption 3 are implied by more primitive condi-
tions we can place on the data, such as that they satisfy certain ¢— or a—mixing



conditions. In fact, we shall make mixing assumptions in Section 3 in order to
obtain desirable properties for our nonparametric kernel estimates.

These assumptions allow us to state the following lemma, due to Potscher and
Prucha (1989, Theorem 2):

LEMMA 1: Under Assumptions 1-3, [In f(y — 0)dF(y — 6) ezists, is finite, is
continuous on ©, and

sup
€0

WS (e~ 0) - / In £y ~ 0)dF(y — fo)

WS I 0~ 0) = Bln £y —en[ = (),

sup
CILe)

{n"l S Eln f(y, — 0)} is equicontinuous on ©.
=1

With this Lemma, and with an assumption of identifiability on 6, we can
prove the consistency of the partial MLE 8,. We shall employ the following
identification criterion, due to Domowitz and White (1982, Definition 2.1):

DEFINITION: Suppose that n™* 7 | E'ln f(y; —6) has a mazimum at 6, for every
n=12,.... Let ¥,(¢) be an open sphere centered at 8y with fized radius € > 0. For
each n=1,2,..., define the neighbourhood =, = 9,(€)NO, such that its complement

n O, =%, is compact The mazimizer o is said to be identifiably unique if and
only if

lim inf |min {n™* n Eln ~ @) —n7t 3 Eln -0 >0,
iy iy (73 1 (=60 = 0735 Bln (- 0) )|

for any fized € > 0.

We then obtain the following consistency result, which follows from Domowitz
and White (1982, Theorem 2.2):



THEOREM 1: Under the conditions of Lemma 1, and assuming that 6y is the
—1 I3

identifiably unique mazimizer of n 1 Eln f(ye—0) for everyn = 1,2, ..., we
have

—~

By — 6y = 00 (1).

Having established consistency, we must now prove asymptotic normality and
justify our claim that the asymptotic variance of 8, is the inverse of the informa-
tion of . We shall follow the standard method of proof, employing a mean value

expansion of n™! "% | 9 (yt — §n) about 6y, for which purpose we must make:

ASSUMPTION 4: O is convex and 0y € int©®.

Our expansion is then
nt i¢ (yt - 571) =n"t iw (ye — 60) +nt z“: (03 (Zé/t - gn) (én - 90) ;
t=1 t=1 t=1

where 1)/ is the Hessian and 8,, € [91, 90], from which it follows that

W =80) == [ S0 (a=0)] S e

In analyzing the limiting behaviour of the first term on the right-hand side of (4),

we again apply the ULLN of Potscher and Prucha (1989), making the following
assumption:

ASSUMPTION 5: Assumptions 2 and 3 hold, with "In f(y—6)” replaced throughout
by »w/(y _ 9)”.

As in Lemma 1, we can then show that

sup 17>/ —6) ~ [ Wy~ )y — 80)| = . (1),

fcO

8



from which it follows, using the strong consistency of 6, and Theorem 2.3 of
Domowitz and White (1982), that

= 0,.,(1).

S (- 0) — [W ) (y — 0

But [9'(y — 0o)dF(y — 6o) is the expectation of the Hessian of f, which is equal
to the negative of the information Iy, implying that

[ )] = e )

t=1

To complete our derivation of the asymptotic distribution of ém we now prove
that a central limit theorem for martingale difference sequences can be applied
to the second term on the right-hand side of (4), for which we first establish
that {1 (¢;)} are indeed martingale differences. This follows from our symmetry
assumptions; since we have assumed that f(¢) is symmetric about zero, it follows
that 1(e) is anti-symmetric, i.e. that 1 (€) = — (—¢) . Our martingale difference
result then follows from the symmetry of g; (¢ [€2;_1 ), since ’

Bl (e)190%1] = [w(2) gu (e [0%) de = 0.

We shall apply a CLT given by White (1984, Corollary 5.25); for which we
require the following assumption:

ASSUMPTION 6: (a) E [¢ (st)z] #£0Vt=1,..,n; (b) El (&)™ < oo for some
6>0andallt =1,...,n; (c) Assumptions 2 and 3 hold, with "In f(y—8)” replaced
throughout by "*(y — 6)”. :

Part (c) of this assumption allows us to derive the following convergence result,
using the ULLN of Potscher and Prucha (1989):

n

sup (™" 329 (ye — 0) = [ 92y — 0)AF(y — 60)| = 0., (1),

e t==1



from which it follows that

n! Zj:lﬁz(yt —6p) — /TPQ(Z/ — 6o)dF (y — 0o)

= OaAs.(l)‘ (6)

Combining (6) with parts (a) and (b) of Assumption 6 and using White (1984,
Corollary 5.25), we have:

n—1/2§¢ (e = 00) % N (0, [ 42y - 80)aF(y — 00)). (7)

Recall that [4*(y — 8o)dF(y — 65) = I, so that (4), (5), and (7) yield

THEOREM 2: Under Assumptions 1-6, we have

n'/? (8, — o) S N (0,171). (8)

We have shown that the partial MLE has an asymptotic normal distribution
with variance equal to the inverse of the information of F. This is the case whether
the data are iid from F or not.

3. ASYMPTOTIC EQUIVALENCE OF THE ADAPTIVE
ESTIMATOR AND THE PARTIAL MLE

Stone’s (1975) adaptive estimator of 6 (as modified by Bickel (1982) and Kreiss
(1987a)) is computed by taking some n'/?-consistent preliminary estimator o,
and adjusting it by a single Newton-Raphson iteration in which nonparametric
estimates of the score and information of f, both evaluated at 0, are used. Our
objective in this section is to prove that such an estimator is asymptotically equiv-
alent to the partial MLE described in the previous section. To this end, we shall
first show that an iterative estimator constructed using the correctly specified
score and information of f has the same distribution as the partial MLE. We then
show that an adaptive estimator that uses trimmed Gaussian kernel estimates of
this score and information is asymptotically equivalent to the iterative estimator,
and so to the partial MLE.

10



Our first step is therefore to derive the asymptotic distribution of the one-step
estimator

n

~ -1 n
5. = gt g2 {n-lzw(yt-e:f] [n-“zzzp(yt—e:)}, ()

t=1
where (6} — 6y) = O,(n"'/2). We can then write

n

~ -1 n
n1/2 (gn - 90) = n1/2 (0,: — (90) + {n_l Zw (yt - 9;){] |i7'l/*1/2 Z '(,b (yt - Gz)J
t=1

t=1

n

— 02— 6o) + {n‘l 2 ¥ (= 0:‘)2} _1

t=1

S ) 0 0 S (- %)

t=1

where ,, € [0%,0o] and we have used a mean-value expansion of Yorq ¥ (ye —0F)
about . We can use previous arguments to show that

n

Y W (g — 05)° = I + 04..(1)

t=1

and .
nT YW (3= 0n) = —If + 004 (1),
t—1
so that we have
/2 (51 _ 90) = I Y2 S 4 (g, — ) + o, (1).
=1
But it then follows that

/2 (5] _ 90) 4N (0,177, (10)

so that én and OAn are asymptotically equivalent. It may be possible to derive
(10) under weaker differentiability and boundedness conditions on F through the

11



use of a discretized, /n-consistent preliminary estimator 8*. This strategy is
standard in the eflicient estimation literature and is due to LeCam (1960), but, we
have not investigated its applicability in the case at hand.

The computation of the one-step estimator 4, given in (9) assumes that we
know the functional form of the score ) of the density f of the average asymptotic
distribution F'. Adaptive estimators are employed when these functional forms
are unknown to the investigator. If we assume that the innovations are iid from

f, then 0, is an asymptotically efficient estimator. It has been shown (e.g., by
Beran (1974) and Stone (1975)) that we can obtain adaptive estimators that are

asymptotically equivalent to 8, under iid assumptions on the data as long as f
1s symmetric. We describe below the construction of an adaptive estimator and

then proceed to show that it is asymptotically equivalent to HAn, and so possesses
the robustness properties of the partial MLE, even when the iid assumption fails.

The basic problem in adaptive estimation is to come up with some consistent
preliminary estimates of the score function () and the information I 5. The
standard approach involves the use of residuals from the consistent preliminary
estimate 0 of the parametric component of the model to form nonparametric
kernel estimates of these quantities. We show below that the adoption of such an
approach produces estimates that are ”adaptive”, in the sense of being asymptot-
ically equivalent to the partial MLE, even if the data are not iid. Our adaptive
estimator employs the following Gaussian kernel estimators of the density f and
its derivative f :

fi(@,8) = (n—1) Z?ran —&;(0)),
J#

where

Tan () = (nv/27) " oxp <1‘E—2>

2
2a2

is the Gaussian kernel and {a,} is a bandwidth sequence that converges to zero
as n — oo. We define f/ (z,6) as the first derivative of fi (z,8) with respect to z,

12



and further define

_ filz,0) > dy
L0 if lz] < e,
z,0) =< filz0) 2 P
%(56) 7 (@,6)| < caf (2,0)
otherwise,

where ¢, — 00, e, — 00, dy — 0, ane, — 0, e,a;% = o(n), and our score
estimator is ’

Bu(0,0) = 5 (0.(5,6) ~ 0. (~a,6)).

Note that @t(x, 6) is anti-symmetric in z by construction. We also assume that
¢, = o(n®/?), where 0 < § < oo is such that n=! Y1 Fi(z) — F(2) = O(n®) for
every z. Note that in the stationary case this condition on ¢, is redundant since
n~!y" | F, = F. In the case where {F;} consists of a periodically repeating cycle
k periods long (such as in the examples of deterministic heteroskedasticity given
in the preceding section and in our simulations below), we have § = 1.

We can now derive an expression for our adaptive estimator:

n -1 n
¢=q+mmh*z@@wm@ﬂ %WQJMam%m- (11)
=1 =1

To show that ,, has the same robustness properties as the partial MLE, we must
show that it is asymptotically equivalent to én, i.e., that

7ﬂﬂa_@>=%m, | (12)

for which it is sufficient to prove that our score and information estimators are
consistent, i.e., that

n2 Y (G (e (82),67) — b (20 (62))) = 0,(1) (13
[==3
and .
HUIZ'J)} (Et (9:7,)79;;)2 = If+OP(1)a (14)
respectively.

13



We shall first prove (13), for which purpose we must strengthen our assump-
tions on the data generating process for the innovations {e;}.

ASSUMPTION 7: The innovation process {e;} is ¢— or a—mizing.

In proving (13), we first show that the convergence holds if all quantities are
evaluated at )y, and then we shall argue that this is sufficient to establish conver-
gence when evaluated at ;. The following lemma is proved in the Appendix.

LEMMA 2: Under assumptions 1-7, we have

WS (e (60 60) — (2 00) = 0, (1) (15)

m Peo,n'

REMARK: We have used a trimmed, leave-one-out Gaussian kernel approach to
obtain 1. An alternative estimator, due to Schick (1987), employs a logistic kernel
and requires neither trimming nor the omission of an observation. The estimates
of the density and its derivative are

F(2,0) = a, + (nan)_lj\; K (E‘E:jz_@)

Gn

and
Fz,0)=n" a"QZk’< "an'(é)>,

respectively, where k(z) = e¢™*(1 + ¢ )% and {a,} is a sequence of positive
numbers such that
an — 0 and nal — co.

The score estimator is:




This estimator can be shown to satisfy (15) (at least under stationarity assump-
tions on €) and so seems preferable in practice to the Gaussian kernel estimator.
However, we have found in Monte Carlo experiments that its performance is sig-
nificantly inferior to that of the Gaussian approach. Consequently, we recommend
use of the latter based on our experience and indeed use it ourselves in the Monte
Carlo study reported below.

Lemma 2 establishes that our nonparametric score estimator consistently es-
timates the true score when both quantities are evaluated at the true parameter
value 6p. However, recall from (13) that we seek to prove consistency of the score
estimator when evaluated at the preliminary estimate g%. Now, it follows from
Lemma 2 that

n

nT2Y (Y (e (62),65) — (0:;)) = 0,(1)
t=1
in {P 9:;,71,}7 the sequence of probability measures associated with {#*}. It immedi-

ately follows that (13) holds, by a property of contiguity of probability measures,
due to the following lemma:

LEMMA 3: The sequences of probability measures {Pg;,n} and {Py, »} are con-
tiguous.

We omit the proof, which is a straightforward application of Theorem 11 in
Jeganathan (1995).

The consistency of our information matrix, i.e. (14), then follows by standard
arguments. We can use a WLLN to show that

n

nT YW (e (03)" = I; + 0p(1)

t=1

in P, and so, by contiguity, in Fyon- We then obtain (14) as a consequence of
(13). This completes our argument that the adaptive estimator is asymptotically
equivalent to the partial MLE.

15



4. OPTIMALITY THEORY

The results derived above highlight the impressive robustness properties of adap-
tive estimators. They are designed to be optimal when the innovations are iid
draws from an unknown density, but also turn out to be robust in an important
sense even when the innovations are not iid. In this section, we are interested
in investigating the potential optimality properties that adaptive estimators may
possess in the latter situation. They will obviously not be fully efficient, since the
attainment of full efficiency would require a correct specification of the depen-
dence and heterogeneity present in the data (the information matrix would not
‘be block diagonal between 6 and a nuisance parameter characterizing the struc-
ture of the dependence and heterogeneity; see below). However, we may enquire
as to whether the adaptive estimator is optimal according to some less stringent
criterion than full efficiency, one that would be more relevant to the case where
we are uncertain regarding the true nature of the dependence and heterogeneity
present.

We show in the first subsection that the adaptive estimator is optimal in a
class of symmetric M-estimators but show in the second subsection that it does
not achieve the semiparametric efficiency bound for estimation of # when the de-
pendence and heterogeneity in {,} is treated as an unknown infinite-dimensional
nuisance parameter. We briefly discuss the computation and potential feasibility
of estimators that would achieve this bound.

4.1. Symmetric M-Estimators

It is not hard to see that our partial MLE 4, is optimal in the class of M-estimators
that maximize symmetric, twice continuously differentiable criterion functions.
Consider the M-estimator 6 defined as follows:

0, =argmaxn™' Y p(y, —6),
0co =1
where p (-) is symmetric and twice continuously differentiable. This estimator also

satisfies the equation
n

n~! Z‘P (y: — 05) =0,

t=1

16



where ¢ = p’. Using earlier arguments we can show that,
n'2 (67 —00) 5 N (0,V,),

where

Vo= w-tar -] [ -aar - o).

The partial MLE 6, is optimal among all such 07 because V, > If_l for all p and

f. This inequality holds because the asymptotic distributions of 6r and 6, hold
independently of whether the data are iid or not. But if the data are iid, then 6,
is fully efficient.

4.2. Semiparametric Efficiency Bounds

Econometricians have been paying increasing attention in recent years to the
question of constrained efficient estimation in semiparametric models (see Newey
(1990) and the already very well-known book by Bickel, Klaassen, Ritov, and
Wellner (1993)). Thinking on this subject goes back to Stein (1956), who en-
quired as to the conditions under which it is possible to estimate a parameter of
interest as well, asymptotically, when an infinite-dimensional nuisance parameter
is unknown, as it is when the latter is known. In other words, he sought conditions
under which adaptive estimation would be possible. It turns out that a necessary
condition for adaptive estimation is, roughly speaking, that the score function
with respect to the parameter of interest be orthogonal to the space spanned by
all score functions taken with respect to some finite parameter that correctly char-
acterizes the component of the model that is unknown to the investigator and is
hence being treated nonparametrically. This space is termed the tangent space.
The asymptotic covariance matrix of the adaptive estimator is then equal to the
expected outer product of the score with respect to the parameter of interest.

In cases where this orthogonality of scores does not hold and so adaptive, fully
efficient estimation is not possible, the question arises as to whether some type
of constrained efficiency is possible. The fact remains that we must estimate a
_parameter of interest in the presence of an unknown nuisance parameter, and so we
wish to determine the best that we can possibly do conditional on our ignorance.
It turns out that semiparametric efficiency bounds often can be computed for
such models. In sufficiently regular cases, the lower bound on the asymptotic

17



covariance matrix attainable by semiparametric estimators of the parameter of
interest is given by the expected outer product of the efficient score. The efficient
score is that part of the score of the parameters of interest that is orthogonal
to the tangent space. The identity of these two scores is Stein’s (1956) necessary
condition for adaptation. The efficient score is equal to the score of the parameters
of interest subtract its orthogonal projection onto the tangent space.

We now briefly sketch the argument for why the partial MLE 8, does not
achieve the semiparametric efficiency bound for our model?. We then discuss the
reasons why not, and describe possible estimators that would achieve it. We carry
out our argument for the special case where {¢;} is known to be stationary and
follow an m*-order Markov process. A similar argument can presumably be made
for the more general model. ’

Under our stationary Markov assumption, we can write the density of €, con-
ditional on the past as

g (€t |Qt~1) =g (Et ]5t—17 ey Et—m) .

Suppose we can imagine some parametric specification of the conditional den-
sity that contains the full correct parametric specification. Such a specifica-
tion is referred to in the literature as a parametric submodel. We shall write
the conditional density for a parametric submodel parameterized by the vec-
tor n as g (et |n;€t-1, .-, €t—m ). Now assume that we observe initial conditions
& = (€1-m, -, €0) whose density for this parametric submodel is fo (g, 7). The
log-likelihood for a sample of size n is

InL = Zh’lg (yt -0 |77;yt—-1 - 9) s Yt—m — 0) .

t==1

Recall our symmetry assumption that

g(Ee|m ety €om) = g (—E¢ M5 €-1, o Etom ) -

Our first step in computing the efficient score for our model is to derive expres-
sions for the scores with repect to the parameter of interest # and the nuisance

%A fully general and rigorous analysis of semiparametric efficiency bounds for our model and
estimators that would achieve them is beyond the scope of the present paper and forms the
basis for the next one (Hodgson (1996)).
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parameter 7. These scores can be written respectively as
So=-3 L (efmem) -3 % (s¢ [ et™™)
t=1 9 t=1j=1 9

n

= —anse () —Zisi (e2)

t=1 t=1 j=1
and
n g m
= £ (e
t=1 9
= an (Et)»
=1
where €™ = g;_1,....60m, g = 89/0cs, g; = 8g/Ber_; Vj = 1,...m, Gy =

8g/0n, se(e) = = (erln;e™™), siler) = U (eg|nye™™) Vi = 1,..,m, and
8n (et) = % (e¢|n;€"™™). Note that our symmetry assumption implies that s, (£) =
—se (=€), sj(e) =s;(—¢) Vj=1,..,m, and s, (€) = s, (—e) .

We follow Newey (1990) in deriving the tangent set 7, for our model, which
can be roughly defined as the space spanned by scores of the form S, for all
parametric submodels. Before stating the tangent set for our model, we make a
few observations about S,. In addition to their symmetry property, we can show
that the scores of the conditional densities for the individual observations, sy (£1),
satisfy the zero mean property of score functions, so that E (s, (&) |¢©"™] = 0. It
obviously follows that E [s, (e;) s, (g;—;)] = 0 Vj # 0. We can use these properties
to derive the following representation of the tangent set:

1, = {D (§.0,81, ...,En) : D () = Xn:d(&‘t ‘5t-—m> . d (5t |5t~m) —d (:—Et ‘Et_m) v,

t=1

E [d (et ’et""‘) ]&:t”m} =0 ‘v’t} )
The efficient score is the residual from the orthogonal projection of S5 on 7,. In our
model this orthogonal projection has a particularly convenient form. We can use
our symmetry assumptions to show that the first term in Sy, viz. — Y7, s, (),

is orthogonal to the tangent set, and that the second term, — Y7, ity 85 (&),
actually belongs to the tangent set. Hence, the orthogonal projection of Sy on 7,
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is just this second term, while the residual, and hence the efficient score, is just
the first term. So, using S to denote the efficient score, we obtain the result that

S:~i35(5t).

The semiparametric asymptotic efficiency bound is
-1
B = plimn 'F [32}

-1

= Blsl(e)]

which is the inverse of the unconditional expectation of the square of the score
of the conditional density g (e:|e"™™). The question arises as to Whether this
bound is equal to the asymptotic variance of our partial MLE, ;! s » which is
the inverse of the unconditional expectation of the square of the score of the
unconditional density f(e;). It is easy to show that these two quantities are
unequal, so that the partial MLE (and hence the "adaptive” estimator) is not
semiparametrically efficient. We shall discuss the reason for this inefficiency
and suggest possible estimation strategies to attain B below, but first we an-
alyze B more carefully and show that it is not equal to I}'l. To this end,

we introduce §ome new notation. Let f (e, e"™™) denote the joint density of
= and €™, f,, (¢"™) denote the marginal density of =™ and f (z-:t) denote
the marginal of &, as before. Since g(g|et™) = f(Et, t=m) /o (™), it
follows that Jg (e, |[e"™™) /Oe; = (8 f (e, e™™) /(%t) /fm (™) and hence that
t= m)/@et af(sg,st“m)/ast

se (80) = 6g(cgqlst my T T ey We then have the following expression for

the semiparametric efficiency bound:

B = // {ag €t Iet m)/ag} j?(et,gt—m> d&tdEt_m

5t |5t m)

-1

-1

- / / Eh )/ast) Qdetdgt_m

€t et— m)

In words, B is equal to the inverse of the first element on the diagonal of the
mformatlon matrix of the joint density f (e¢,67™) . This is not the same as I P
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which is the inverse of the information of the marginal density of &;, because
the diagonal elements of the information matrix of a multivariate density are
not the same as the informations of the respective marginal univariate densities.
(Think of the multivariate Gaussian density. The information is the inverse of the
covariance matrix, but we know that the reciprocals of the diagonal elements of
a matrix generally only equal the diagonal elements of the inverse of the matrix
if the matrix is diagonal.)

Our finding, that the semiparametric efficiency bound is equal to the asymp-
totic variance of an estimator the maximizes the sum of the conditional scores
of the sample, rather than the unconditional scores (as in the case of the partial
MLE), is actually quite intuitive. The reason is that these unconditional scores
are in principal nonparametrically consistently estimable. The sample provides us
with information regarding the distribution of £, conditional on the past, even if
we have no knowledge of the parametric structure of this conditional dependence,
and it seems very plausible that the partial MLE, which ignores this information,
can be improved upon. Our finding that the adaptive estimator is asymptotically
equivalent to the partial MLE hinges on our proof that the score function of the
unconditional density f (¢) can be consistently nonparametrically estimated. But
there is no reason why we cannot also consistently nonparametrically estimate
the score of the conditional density g (g;|e™™). In fact, the estimation of such a
score is carried out by Jeganathan (1995) in a different context. The only practi-
cal limitation on such a proceduré would be the curse of dimensionality problem
which would limit the empirical feasibility of such an approach to cases where m is

small. Further investigation of this point shall be carried out elsewhere (Hodgson
(1996)).

5. EXAMPLES AND SIMULATIONS

In this section we illustrate the results derived above and evaluate the finite sam-
ple performance of the adaptive estimator for three examples of stationary, un-
correlated stochastic processes with second-moment dependence, viz., the ARCH,
threshold, and Markov switching models. We report Monte Carlo simulation re-
sults for these three models, as well as for iid and deterministically heteroskedastic
models. We begin by introducing the three models of conditional heteroskedastic-
ity, then we describe the simulation experiment, in which we compare the finite-
sample behaviour of the sample mean and adaptive estimator.
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5.1. The ARCH Model

The model we consider here is the basic Gaussian ARCH(1) process introduced
by Engle (1982), in which the conditional variance is a linear function of the
lagged square of the process. Hence, a large absolute value of the realization
of the process in one period increases the probability of large absolute values in
subsequent periods, leading to the long-recognized phenomenon in economic and
financial time series of volatility clustering. Formally, we have an ARCH(1) model
if the innovations {;} in (1) are generated as follows:

& = 'I,Lt\/;l;

w ~ #dN (0,1)

2

We assume that || < 1 and ap > 0. In this formulation, h; denotes the condi-
tional variance of the process. The unconditional variance is 02 = ag/ (1 — o),
which is also the asymptotic variance of the properly scaled and centered sam-
ple mean. Unfortunately, we do not know the unconditional distribution of the
ARCH(1) process, so a derivation of the information of this distribution, and hence
of the asymptotic variance of the adaptive estimator and its efliciency gain over
the sample mean, is not possible. However, our Monte Carlo results do illustrate
the gains possible for particular parameter settings and sample sizes.

5.2. The Threshold Model

This model is a simplified version of the ARCH model, in which the conditional
variance is an increasing step function of the lagged absolute value (and hence
of the lagged square) of the process. Each point at which a jump occurs is a
threshold value.*In our Monte Carlo exercises, we will consider a, simple case where
there is one threshold value, so that the conditional variance can assume one of
only two possible values, the smaller one when the lagged absolute value of the
series is below the threshold value and the larger one otherwise. The conditional
distribution is always Gaussian.

3Since the ARCH conditional variance is a continuous function of the lagged absolute value
of the process, we conjecture that an ARCH model can be arbitrarily well approximated by a
threshold model as the set of threshold values becomes very fine. This fact may allow us to ap-
proximate the information of an ARCH process arbitrarily well since we know the unconditional
distribution, and hence the information, of a threshold model. See below.
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Our model is formalized as follows:

& = Ut\/};

w ~ #dN (0,1)

ho— o if lewa| <a
' 7 )| o} otherwise,

where 0% > 0% and « is the threshold value. An appealing feature of this model is
that we know its unconditional distribution and so can calculate its information
and hence the efficiency gain of the adaptive estimator over the sample mean.
This unconditional is a mixture of two normals, with variances of 0% and 0%,
where the probability of a low variance draw equals the unconditional probability
that |e;—1| < , which we denote by 7. So the unconditional density of ¢ is

() =N (0,6%) + (1= ) N (0,02),

where

v = prob(lec1] <) =pp/ (1 —pa+ps)
pa = prob (IEtl <a|ht=ai) =®(afo4) — @ — (a)ca)
pa = prob (iet|‘<a‘ht=aé) =& (a/op) — @ (—a/op),

and @ (-) is the standard Gaussian cdf.

5.3. The Markov Switching Model

This model shares with the threshold model the property that the conditional
distribution of the process is Gaussian with a variance belonging to a finite set
of possible values, and, like both models described above, it implies volatility
clustering. However, it differs from both these models in that the conditional
variance is not determined by lagged values of the series but rather follows an
”exogenous” Markov process in which the probability of a high variance state is
higher if the previous state was also high variance than if it was not.4

“See Hamilton (1989) for more on Markov switching models.
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We again consider the simplest case, in which there are only two states, and
formalize our model as follows:

Er = ’U,t\/h:

w ~ #dN(0,1),

and h; follows a Markov process characterized by the following transition proba-
bilities: :

prob (ht = 0’124 hiq = ai) = p
prob (ht =05 |hi_y = Ui) = 1-p
prob (ht =05 |1 = o%) = 1-gq
prob (ht =% |h_y = 0,23) = gq,

where we assume that 0% > 0% and p > 1 — q.

As with the threshold model, we know that the unconditional distribution
of the Markov switching model is a mixture of Gaussian random variables with
respective variances of 0% and 0%. We have

fle) =N (0,6%) + (1 =) N (0,03),
where y=(1-¢)/(2-p—q).

5.4. Simulation Results

The results of our simulation study comparing the finite sample performances of
the sample mean and the adaptive estimator for the models described above are
presented in Tables 1-4, while Table 5 reports similar results for a deterministically
heteroskedastic data generating process and Table 6 for iid data. In all cases
we report bias and mean squared error (MSE) statistics for the sample mean
and the adaptive estimator (the latter for three different bandwidth settings),
as well as computing the ratio between the MSE’s of the two estimators. We
generated data sets of length 100 and 250 (with an additional startup observation
for the ARCH, Markov, and threshold data sets), and in all cases used 1000
iterations. The parameters of each data generating process were selected such
that the unconditional variance was three.
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Table 1: Simulation Results for ARCH(1) Model:
MSE and Bias of Adaptive Estimator (n=100)

a,=03 =09
Sample Mean: MSE=280x 10" Bias=4.97 x 10
Bandwidth MSE(Adaptive) Bias(Adaptive) MSE(Ad)/MSE(SM)
0.65 1.82 x 1072 ~719x10™ .05
0.73 1.74 x 107 - 698 x10™ .62
0.80 1.68 x 107 —121x107° .60
,=0.6 =08
Sample Mean: MSE = 313 x 107 Bias=4.64 x 10
0.65 222 x 1072 ~8.60x 107 71
0.73 2.08 x 107 ~1.01x 107 .06
0.80 2.01x 107 -856x 107 64
=09  ,=0.7
Sample Mean: MSE = 301 x 10 Bias=2.94 x 10
0.65 2.63x1072 -130x107° 87
0.73 2.52 x107 ~153x107° 84
0.80 2.46x 1072 ~151x107 82
Notes: (a) For each parameter setting, 1000 iterations were carried out.
(b) The Silverman (1986) rule-of-thumb bandwidth is 0.73.
Table 2: Simulation Results for ARCH(1) Model:
MSE and Bias of Adaptive Estimator (n=250)
=03 =09 |
Sample Mean: MSE = 9.74 x 10° Bias=—341x 10"
Bandwidth MSE(Adaptive) Bias(Adaptive) MSE(Ad)MSE(SM)
0.50 458x107 -213x107° \ 47
0.60 429 x107 -239%x107 44
0.70 433x 107 -186x 107 44
=06 ,=0.8
Sample Mean: MSE=118x 107 Bias=-421x107?
0.50 822 %107 —286x107° 70
0.60 8.02 x 107 —-326x 107 .68
0.70 7.59 x 107 -285x107 64
a,=0.9  «,=0.7
Sample Mean: MSE =122 x 10 Bias=—441x 107
0.50 1.01x 1072 ~391x107 83
0.60 9.70 x 107 -339x107 -80
0.70 9.44 x 1073 -331x107 77

Notes: (a) For each parameter setting, 1000 iterations were carried out.
(b) The Silverman (1986) rule-of-thumb bandwidth is 0.61.

25




Table 3: Simulation Results for Threshold Model:
MSE and Bias of Adaptive Estimator

(O'j =1/3;0"§=27;a= 1.32)

n=100
Sample Mean: MSE = 292 x 107 Bias=-4.87 x 10™
Bandwidth MSE(Adaptive) Bias(Adaptive) MSE(Ad)/MSE(SM)
0.65 114 x 1072 ~-155%107 ' 39
0.73 130 x 107 ~555x107 45
0.80 1.45x 1072 ~165x 107 50
n=250
Sample Mean: MSE = 121x 10 Bias=—319x 10~
0.50 2.98 x 107 - 627x107" 25
0.60 433x10° -289x10™ 36
0.70 6.72x107 ~530x10™ .56

Notes: (a) For each parameter setting, 1000 iterations were carried out.
(b) The Silverman (1986) rule-of-thumb bandwidths are 0.73 and 0.61, respectively.

Table 4: Simulation Results for Switching Model:
MSE and Bias of Adaptive Estimator

(03 =1/3;05 =27, p=092; g =030)

n=100
Sample Mean: MSE = 298 x 10 Bias=134 x 10
Bandwidth MSE(Adaptive) Bias(Adaptive) MSE(Ad)/MSE(SM)
0.65 1.26 x 107 -153x10° 42
0.73 1.55x 1072 -881x 10 32
0.80 1.92 x 1072 -899x107" 64
n=250
Sample Mean: MSE = 118 x 10 Bias=-289 x 107
0.50 331x107 ~4.95%x 107" 28
0.60 4.60x107 -115x107 39
0.70 6.98 x 107 -202x107° 59

Notes: (a) For each parameter setting, 1000 iterations were carried out.
(b) The Silverman (1986) rule-of-thumb bandwidths are 0.73 and 0.61, respectively.
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Table S: Simulation Results for Deterministic Heteroskedasticity:
MSE and Bias of Adaptive Estimator

n=100
Sample Mean: MSE = 2.91x 107 Bijas=-331x 107
Bandwidth MSE(Adaptive) Bias(Adaptive) MSE(Ad)/MSE(SM)
0.65 1.30 x 1072 ~113x107 45
0.73 1.57 x 107 -141x107° 54
0.80 192 x 1072 -1.90x10°° 66
n=250
Sample Mean: MSE = 119 x 10 Bias =— 583 x 10
0.50 323x107° 722 x10™ 27
0.60 | 4.67 x107 2.72 x 107 39
0.70 738 %10 214 %107 62

Notes: (a) For each parameter setting, 1000 iterations were carried out.
(b) The Silverman (1986) rule-of-thumb bandwidths are 0.73 and 0.61, respectively.
(c) All observations are N(0,1/3), except for every tenth observation, which is N(0,27).

Table 6: Simulation Results for i.i.d. Data:
MSE and Bias of Adaptive Estimator

n=100
Sample Mean: MSE = 313x 102 Bias=2.77x 10
Bandwidth MSE(Adaptive) - Bias(Adaptive) MSE(Ad)/MSE(SM)
0.65 136 x 1072 ~154x107 43
0.73 154 x 107 —2.68x107 49
0.80 182 x 1072 | —326x107° 58
n=250
Sample Mean: MSE = 123x 10?2 Bias=-219x 10~
0.50 327x107° ~320x107 27
0.60 473 x107° -229x107 38
0.70 723 %107 ~329x107 59

Notes: (a) For each parameter setting, 1000 iterations were carried out.

(b) The Silverman (1986) rule-of-thumb bandwidths are 0.73 and 0.61, respectively.
(c) The data are iid 0.9N(0,1/3)+0.1N(0,27).
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In computing the adaptive estimators, we employed trimming parameter set-
tings of d,, = exp(—112) and e, = ¢, = 15 in all cases. Each parameter therefore
trims at approximately eight standard deviations from the origin. We did not
experiment with varying these parameters, as previous simulation studies (Hsieh
and Manski (1987) and Hodgson (1995c¢)) find that the performance of adaptive
estimators is less sensitive to such variation than to variation in bandwidths. We
evaluate this latter sensitivity by employing three bandwidth settings for each
data set, with the median bandwidth approximately equalling Silverman’s (1986)
plug-in bandwidth for density estimation problems. We acknowledge that this is a
very crude and suboptimal approach to bandwidth selection, but our results illus-
trate the point that adaptive estimators, even when suboptimally implemented,
still perform very well.

We consider three parameter settings for the ARCH process, viz. (o, y) =
(0.3,0.9), (0.6,0.8), and (0.9,0.7). We chose the values of a; fairly close to unity
to accord with the stylized facts of economic data and because it is in this range,
as emphasized by Engle (1982), that the sample mean becomes highly ineflicient.
The values of ap were chosen to obtain an unconditional variance of three, as men-
tioned above. The simulation results for the ARCH models, reported in Tables 1
and 2, indicate the finite sample efficiency gains obtainable by the adaptive esti-
mator. We cannot tell how closely these gains come to the asymptotic efficiency
gains because, as discussed above, we do not know the latter in the absence of
knowledge of the unconditional distribution of the ARCH process. However, we
can obtain a fairly close numerical approximation to the efficiency gain obtain-
able over the sample mean by the fully efficient MLE of the correctly specified
ARCH model, using an analytical result of Engle (1982, p. 999). For our param-
eter settings, the respective maximum possible efficiency gains are approximately
0.13, 0.25, and 0.37. Using the Silverman bandwidth, the adaptive estimator’s
efficiency gains for the respective ARCH parameter settings are 0.62, 0.66, and

10.84 when n=100, and 0.44, 0.68, and 0.80 when n=250. These gains are quite
respectable. It would be interesting to compare them with the finite sample gains
obtained by the MLE’s of correctly and incorrectly specified ARCH models.

The parameter values of each of the four remaining models have been chosen
such that the unconditional distribution (or, in the case of the nonstationary
deterministically heteroskedastic model, the ”average” asymptotic distribution)
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is the following variance-contaminated mixture of normals:
f(e) =09N(0,1/3) + 0.1N (0,27).

In both the threshold and switching models, we set 0% = 1/3 and ¢% = 27. We
set o = 1.32 in the threshold model and (p,q) = (0.92,0.30) in the switching
model. The deterministically heteroskedastic model is implemented by having
er ~ N (0,1/3) except when ¢ is a multiple of ten, in which case g, ~ N (0, 27).
The unconditional distribution f (¢) is also employed in simulations by Hodg-
son (1995c) and Hsieh and Manski (1987), the latter authors scaling down the
variances to produce a distribution with unit variance. In all four cases, the
asymptotic efficiency ratio of the partial MLE over the sample mean is the same,
and equals

(021;) " = 0.3,

We would therefore expect similar numbers in each of the Tables 3-6, which we do
obtain. The efficiency ratio is in the .4-.65 range, depending on bandwidth choice,
when the sample size is 100, while for samples of 250, it is in the .25-.6 range. We
can see that for good bandwidth choices, the adaptive estimator is coming quite
close to its asymptotic effciency ratio for small to moderate samples, and is still
improving substantially upon the sample mean even for poor bandwidth choices.

6. EXTENSIONS TO OTHER MODELS

Our main result, that the adaptive estimator is asymptotically normal with vari-
ance equal to the inverse of the information of the unconditional distribution, can
be extended to models more general than the location case. The key point to
recognize is that our result relies on the fact that the score sequence of the partial
likelihood (the ”partial score” sequence) is a martingale difference sequence, a fact
implied by our assumption of conditional symmetry. Now consider a general time
series model with innovations {e;} that are assumed to be iid but are conditionally
or unconditionally heterogeneous as described above. Then, under assumptions
implying that the partial scores of this model are martingale differences, it will be
a straightforward extension of the results derived above to show that the partial
MLE and the adaptive estimator will be asymptotically normal (or mixed nor-
mal in a cointegrated model) with covariance matrix equal to the inverse of the
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asymptotic information matrix based on the unconditional distribution F' of the
innovations.

The assumption of conditionally symmetric innovations will imply this mar-
tingale difference property for many important models that have been shown to
be adaptively estimable. These include Bickel’s (1982) linear regression model,
Kreiss’ (1987a) ARMA model, Steigerwald’s (1992) time series regression model,
and Linton’s (1993) ARCH model®. Asymmetry is permissable for the errors in
a linear regression model (cf. Bickel (1982)), as long as the regressors are exoge-
nous and are martingale differences when unconditionally demeaned. The result
also carries over to multivariate models with innovations that have conditional
densities symmetric about zero, including adaptive estimators of multivariate lo-
cation models, multiple-equation regression models such as SUR and simultaneous
equations, and error correction models (Hodgson (1995b)).

The result can presumably also be extended to apply to adaptive estimators
in multivariate models in which an elliptical symmetry assumption is employed
to reduce the nonparametric kernel density estimation problem to a univariate
one, hence averting the curse of dimensionality. Bickel (1982) has applied such an
approach to the multivariate location problem and Hodgson, Linton, and Gozalo
(1996) have applied it to stationary and cointegrating SUR models. The basic
requirement here would seem to be that the unconditional densities are all ellip-
tically symmetric about zero with identical correlation structures.

In models for which the partial score sequence is not a martingale difference
sequence, such as the location model with asymmetric conditional densities, our
result will not hold. The partial MLE will still be asymptotically normally dis-
tributed, but its asymptotic variance will not have the simple interpretation of
being the information of an unconditional density. Rather, it will have the ”sand-
wich” structure typical of M-estimators in misspecified models (cf. White (1982)
and Levine (1983)). It will have the following asymptotic distribution:

n1/2 (é\n - 00) —ti) N (0, lef—Z) s
where Vy = 352, 721 B[ (e0) ¥ ()] . If we know 1, we can estimate V,, using

one of the standard long-run covariance matrix procedures. If we do not know
¥, we can use the nonparametric score estimates 9, from the adaptive estimation

5Lee and Hansen (1994) analyze ARCH models in which the innovation, scaled by its condi-
tional variance, may still possess temporal dependence.
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procedure in our calculation of a long-run variance estimate. Note that if we
are concerned about the presence of asymmetry, we will not want to use the
- adaptive estimation procedure outlined in Section 3, since it employs a kernel
score estimator that is anti-symmetric by construction. Rather, we will want to
compute an adaptive estimator like that used by Kreiss (1987b) for autoregressions
with asymmetric errors, and which is similar in structure to the estimator of Stone
(1975). Following this latter approach, it is possible in applications to gauge the
importance of asymmetry to one’s results by comparing the estimates of Vy and
I. These estimates could be used in the construction of a formal test analogous to
the information matrix test of White (1982). We shall defer a complete analysis
of the case of non-martingale difference scores and its application to the various
models described above to a later paper.

7. CONCLUSIONS

We have shown analytically and illustrated through simulations that the technique
of adaptive estimation, which delivers fully asymptotically efficient estimates in
the iid location parameter model, and in many other econometric models that can
be reduced to a series of iid innovations, also delivers estimates that are robust to
many forms of conditional heterogeneity. We have shown that in a location pa-
rameter model with mixing innovations whose conditional densities are symmetric
about zero, the adaptive estimator has an asymptotic normal distribution with
variance equal to the inverse of the information of the unconditional distribution
of the data. Our Monte Carlo results indicate that the finite sample efficiency
gains of the adaptive estimator over the sample mean are substantial for many
types of non-iid data. The results can be extended to many models of interest in
time series econometrics, provided that the partial score sequence is a martingale
difference sequence.

8. APPENDIX

PROOF OF LEMMA 2: We shall establish mean square consistency, i.e. that

n"'E L{‘: (Jt (€¢ (60) , ) — ¥ (4 (90)))} — 0.

t=1
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Because 1 (€) = —¢ (—¢) and ¥, (¢, 8) = —, (—¢,6p) for every t, it follows that
{Jt (€1 (60) ,60) — ¥ (&4 (00))} is a martingale difference sequence, so our problem
reduces to showing

n S B [ (e (06), 00) — e (60))] 0,

t=1

which will follow from our proof that
~ 2
E [ (1 (8) , 00) — % (&4 0))] =0 VE=1,..,n, (16)
i.e., that

[{se- L) s (17

where we have simplified notation by writing g; (¢, 6p) = ¢ ().
Our proof of (17) is similar to the proof of Lemma 4.1 in Bickel (1982) and
proceeds in three steps, the first of which is to prove

/{%@w—

where f, =n7' 57 | £(¢). But to prove (18), we must verify that

L

S~~~
3

|

S~
3

(E)} fole)de — 0, (18)

/

/{M@—Jﬂd}ﬁﬁd%ﬁO, (19)

na

)

“

where ?m denotes the convolution of ?’k and the N (0,a?) density, as follows:
7710, = 711, * 7r¢1n = n—l th * 7ran = n—l tha'
t=1 t=1
Denoting by g*) the v** partial derivative of a function g, for v = O, 1, we have

E [’;(V)(m)] =(n-1)"" Zn: E [Wﬁ',? (z ~ 51‘)]

J=1
JF
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(n—1)" Z/ (" (z — y) F;(dy)
J#t

(n—1)" Z )(x)
J#t

We are now interested in deriving a bound for the variance of f} )( ), v =0,1,
which will enable us to apply the argument of Bickel (1982, Lemma 6.1) to prove
(19). We have

Vi (a) = var [f19e)] = B [ (@) - T )]

=B |- (n @ - 5) - 19(x)

=1
L

= (n - 1)—2E sz )
=1
‘ JF
where z; = () (z — ¢;) — f](;') (z). It follows that

V(@) = (n-1)2E |3 2 — 2
i=1

(20)

=(n-1)"%E [an z?} —2(n—-1)"%E i zjzt} +(n—-1)"%E [zf] :

-1

Now we note that because {e;} is mixing, so is {2} . Define v,, = F[z2_.] and
Pt = Ver/ 0. Our mixing assumption implies that |p;,| — 0 as |7| — oo for
every ¢t (White and Domowitz (1984)). From (20), we have

n n

(m n_l 2227ﬂ—y n_1 Z'YH t+(n“1) Yt,0

=1 7=1 i=1
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n_l Z’)’zOszz——] Tl—l Z'Yz()pzz t+(n'—1) fYt,O

i=1

< [n—l Z%o} {n—l) T max le“_]]

€[L,m]

‘ 1 Mo
2(n 1) zer[rllax Piiel (= 1)7 Z?—l%,OJ

<(n-1)7" {n—l Z’Yw]

since there exists some 0 < M < oo such that 1[111&)( i |Pii—j] — 2 r[rllax]
i€ n gy T

|piiet| + 2% 2— < M for every n. It follows that
i=1 i,

V(V)()“ni—l[n_l Z’Yw}

<25 -0 e e - <] .

n-— i=1

Now,

() @) < e (2)

for some constant «, (see Stone (1975)), so

< g (0= ) S Bl o - 2| = e T

yielding
Vil (@) <

me (z),

where 7, = M#,. The proof of (19) now follows the same lines as that of Lemma
6.1 in Bickel (1982). To complete our proof of (18), we can use Lemmas 6.2 and
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6.3 of Bickel (1982) to obtain the following two convergence results:

-

Foo oy To 3\
/m{mu A >}
L ,a@ (Vi - V7)) e 20

This establishes (18) and completes the first step of our proof of (17). The second
step is to show

de — 0,

and

Lo L) ae
/f{ (e ﬁu}d 0

which can be done using Lemma 6.2 of Bickel (1982). The final step is to verify

/f>0 g (e) (\/ﬁ(s) - ﬁ(e))z de 20,

But, recalling that ¢?(g) < c2, the desired result will follow from our restriction
on the rate of divergence of c,. |
|
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