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1. Introduction

The two-step method proposed by Heckman (1976, 1979) has extensively been employed to
estimate a wide variety of sample selection models in economics and other related disciplines. In spite
of, and perhaps because of, its impressive popularity, there is a steady stream of criticisms, coming from
various economists and statisticians, against the two-step method (see, e.g., Little 1985, Little and Rubin
1987, Manning, Duan, and Rogers 1987). Issues such as identification and non-normality have been
raised and discussed, some of which have stimulated subsequent developments in the semiparametric
estimation of sample selection models.

A recent criticism which has attracted some attention is the problem of multicollinearity. Nelson
(1984), Nawata (1993, 1994), and Leung and Yu (1996) utilize Monte Carlo experimenté to analyze the
sources as well as the seriousness of collinearity problems encountered in the two-step method. They
demonstrate that the two-step estimation procedure contains a special feature that is prone to collinearity
problems. In some of their simulations, the problems are so serious that the estimates become very
unstable and unreliable because of large standard errors. The collinearity problems are not merely a
theoretical possibility. There is some evidence that they have also infected empirical work (e.g., Bockstael
et al. 1990, Leung and Yu 1996). Despite the emergence of these simulation and empirical evidence,
several aspects concerning collinearity problems and the two-step method are not yet well understood.
The objectives of this paper are to further examine the sources of the collinearity problems and evaluate
the effectivéness of some proposed remedies or solutions to the problems.

~ Before elaborating the objectives of this paper, it is necessary to discuss the value of the two-step

approach to the estimation of sample selection models. Given the limitations of the two-step method, it
seems puzzling that practitioners continue to utilize it despite the fact that there is a better alternative,
maximum likelihood, that is more efficient and not as vulnerable. In fact,v many have recommended

maximum likelihood over the two-step method, For example, Maddala (1983, pp. 222-223) states that



“In the case of the tobit model, because the likelihood function is well-behaved and the
computation of the ML [maximum likelihood] estimates is easy, there is no need for the
two-stage method. In more complicated models in which ML methods are
computationally burdensome the two-stage methods are worthwhile."

Similarly, Davidson and MacKinnon (1993, p.545) suggest that

" Although the two-step method for dealing with sample selectivity is widely used, our

recommendation would be to use regression ... only as a procedure for testing the null

hypothesis that selectivity bias is not present. When that hypothesis is rejected, ML

estimation ... should probably be used in preference to the two-step method, unless it is

computationally prohibitive."

The popular view holds that ease of computation is the only advantage of the two-step method
over maximum likelihood. As a result of the recent explosive advance in computer technology and the |
availability of accessible econometric program packages like LIMDEP, some allege that the edge of the
two-step method has rapidly disappeared because there is little difference in computational burden
between maximum likelihood and the two-step method for sample selection models. Furthermore, many
believe that maximum likelihood is not susceptible to the kind of collinearity problems encountered in
the two-step procedure (Nelson 1984, Nawata 1994).

We believe that the prevailing views are questionable. Maximum likelihood is not immune to
collinearity problems. The simulation results in Nelson (1984) and Leung and Yu (1996) indicate that
maximum likelihood also experiences some degree of collinearity problems (e.g. bigger standard errors
of the parameter estimates) that are noticeable though not as serious as those of the two-step method.
Furthermore, the two-step method is still valuable and important for at least three reasons.

First, maximum likelihood is still computationally costlier than the two-step method especially
when the sample size is big and the number of parameters is large. Even if the two estimation methods
have the same costs of computation, the loglikelihood of a typical sample selection model is not
necessarily concave except in some simple models. Hence, there is no guarantee that the root of the

likelihood equation is unique (Nawata 1994). In addition, the maximum likelihood estimates can be very

sensitive to the choice of the starting values for the parameters. The two-step estimates have been shown
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to be dependable and effective starting values for maximum likelihood.

Second, the dominance in efficiency of maximum likelihood over the two-step method is an
asymptotic result. There is some evidence that the two-step method can be more efficient than maximum
likelihood in small samples especially for certain parameter values of the models (Nelson 1984, Nawata
1994, Leung and Yu 1996). In addition, the two-step estimates also tend to have a smaller parameter bias
than the maximum likelihood estimates in small samples (Leung and Yu 1996).

Third, the two-step method is more robust than maximum likelihood. Stapleton and Young (1984)
show that, if there are measurement errors in the dependent variable of the outcome equation, the
maximum likelihood estimators will no longer be consistent because the likelihood function is
misspecified. In contrast, the two-step estimators remain consistent'because the measurement errors are
absorbed into the disturbance term of the outcome equation. Besides consistency, Stapleton and Young
(1984) discover from their numerical experiment another superiority of the two-step method. They find
that the two-step estimators are in general substantially more efficient than the maximum likelihood
estimators when the dependent variable is measured with error. Since measurement errors are not
uncommon in economic and socio-demographic data, the merits of the two-step method go far beyond
mere computational considerations.

Because of these favorable comparisons with maximum likelihood, the two-step method is still
irreplaceable in the parametric estimation of sample selection models. It is therefore Worthwhile to further
improve the two-step method by studying whether and how the collinearity problems can be reduced or
removed. Section 2 examines the origins of the collinearity problems and points out some inadequacies
and misleading claims in the literature. Without correcting the deficiencies, the collinearity problems will
never be fully understood and effective remedies or solutions cannot be constructed. Section 3 assesses
the efficacy of a number of traditional remedies to alleviate the collinearity problems. Some new remedies

are proposed and evaluated. Section 4 concludes the paper.
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2. Origins of the Collinearity Problems in the Two-step Method

There are many different types of sample selection models in the literature. We first consider the

model:
Vi = Wi + uy i=12,...,N €8]
d = Ily; > 0) )
Yai = Xif8 + uy ifd, =1 3)

where wi = (LW, Wigd, Xi = (1,XppeesXg )y @ = (0, @5ee0,040)", B = (Bg,By,...,8k.)", and I(A)
denotes an indicator function which equals 1 if the event A is true, O otherwise. For each i, w;, x;, and
d; are observed. If d; = 1, y,; is also observed. The error terms u;; and {12i are assumed to be indepeﬁdent
and identically distributed bivariate normal random variables, with E(u;) = E(u,) = 0, var(u,) = 1,

var(uy) = o2, cov(uy,Uy) = op,. It is well known that

E(yx|d; = 1) = xif + E(uy|d; = 1)
= xIB + oNWic), 4)
where AN(z) = ¢(z)/®(z) is the inverse Mills’ ratio, ¢(.) and <IJ(.)‘ are the probability density function and
the cumulative distribution function of the standard normal distribution, respectively. Equations (1) and
(3) are typically known as the selection equation and the outcome equation, respectively.
Given these parametric and distributional assumptions, the most efficient estimation method is a
full scale (full information) maximum likelihood. As an alternative, Heckman (1976, 1979) proposes a
simpler two-step method to estimate the model. The first step estimates « from the probit model (1) and
(2) by means of maximum likelihood. Under very mild conditions, the maximum likelihood estimate &
is unique by virtue of the strict concavity of the probit likelihood function (Amemiya 1985, pp. 270-274).
The second step estimates 8 and o}, by ordinary least squares on the regression
Ya = XiB + opAwi&) + v, ford =1, (5)

where N(wi&) is treated as a regressor and v, is an error term.



The curve N(z) has the properties that A'(z) < 0, N"(z) > 0, lim,.,, Mz) = 0, lim,__, Mz) =
oo, lim,.,, N'(z) = 0, and lim,_ , A\'(z) = -1. In particular, A(z) is almost linear in z over a long range
of z. Figure 1 graphs A(z) for z € [-10,10]. Treating B as a kink, \(z) can be divided into two main
parts, AB and BC. The part AB can be approximated very well by a linear function of z. For example,
if we take 111 points of z evenly spaced on [-10,1], then the regression ANz) = 0.6634 - 0.9252z will
fit N(z) on [-10,1] with R?* = 0.9975. Such an excellent fit indicates that AB is essentially a linear line.

Although the part BC looks flat in Figure 1, it is actually hardly linear at all. If one fits a straight
line to A(z) on [1,10] using 91 evenly spaced points of z, the R? of the regression will only be 0.3182.
The illusiv.e flatness of BC is due to a scale problem. Most of the values of \(z) on [1,10] are so small
that the graph cannot accurately reflect the highly nonlinear shape of BC.! However, if one makes the
transformation \'(z) = log\(z) and takes 91 evenly spaced points of z on [1,10], then the straight line
X'(z) = 10.8011 - 5.5063z will fit A\"(z) very well (R? = 0.9569). As depicted in Figure 2, log.\(z)
declines approximately linearly with z on [1,10]. The near linearity of log\(z) signifies how nonlinear
A\(z) is on [1,10].2

The shape of A\(z) and the presence of x;8 and o,A(W!&) in (5) are responsible for the collinearity
problems that are peculiar to the two-step method.? Referring to A(.) and the kink B in Figure 1, if

(C1) all (or almost all) the data points (wi&,A\(wi&)) for d; = 1 fall on the left side of the kink, and

(C2) x; and wi& are highly collinear,

! For example, A\(2) = 5.52x107%, A(4) = 1.34x10*, \(6) = 6.08x10°, \(8) = 5.05x10°"%, and N\(10)
= 7.69x10%. In contrast, A\(-2) = 2.37, N(4) = 4.23, \(-6) = 6.16, N\(-8) = 8.12, and N\(-10) =
10.0981.

> We mistakenly treated A(z) as "essentially flat for z > 3" in our earlier work and failed to
recognize the nonlinearity of A(z) on BC (Leung and Yu 1996, p.211). As will be shown below, the
nonlinearity of A(z) on BC plays an important role in the analysis of the collinearity problems.

* We assume that the regressors in x; are not collinear so that we can focus on the collinearity
problems that arise from the special structure of the two-step method.
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then x; and N(w|&) will be highly collinear, and collinearity problems will likely appear in (5).* When
condition (C1) is satisfied, A(w!&) will almost be linear in w{&, hence x; and NM(w;&) will be highly
collinear if condition (C2) is satisfied. Neither (C1) nor (C2) is a sufficient condition for collinearity
problems. For example, even if x; and w{& are highly collinear, there may not be any collinearity
problems in (5) because it depends upon where the values of AM(wi&) are scattered. If the data points
(wid,Nwid)) for d; = 1 are scattered on the right side of the kink or on both sides of the kink, then
Mwié) will not be linear in wié for all d, = 1, hence collinearity problems will not appear. This point
has often been ignored in the literature. For instance, Nawata (1993, p.24) asserts that

"Heckman’s two-step estimator is a reasonably good estimator when the degree of

multicollinearity of x; and wi& is low, but performs poorly when the degree of

multicollinearity is high."

The problem with this assertion is that a high degree of collinearity between x; and w!é&-is not
a sufficient cause of collinearity problems. The two-step estimator can perform very well even when there
is a high degree of multicollinearity between x; and wi&. The flaw arises because Nawata (1993)
examines A(z) only for z € [-3,3] and ignores the shape of A(z) for z > 3. Hence, he recognizes only
the linearity of N\(z) to the left of the kink, and misses the highly nonlinear part of \(z) to the right of the
kink. As a consequence, a high degree of collinearity between x; and w{& will give rise to the collinearity
problems that Nawata (1993) observes in his simulations.” Thus, his analysis is incomplete and

misleading because there are no a priori reasons for confining the range of z to [-3,3]. As y,; is a latent

unobserved variable, it is possible that wia lies outside [-3,3] for a significant number of observations.

* As is well known, there is not yet a commonly recognized and adopted measure of collinearity.
Even if there is a consensus on the measure of collinearity, there is still the question of what is the
threshold value of the measure for serious collinearity problems. Based on our experience, we prefer to
use the condition number and we believe that the threshold condition number for moderate collinearity

problems is somewhere between 20 and 30, depending on the type of models (Belsley, Kuh, and Welsch
1980, Leung and Yu 1996).

> We made a similar criticism in our earlier work, but we did not prove our claim (Leung and Yu
1996). A convincing proof will be given below.



Similar deficiencies are very common in the literature. In those studies that mention the
collinearity problems in the two-step method, it is typically expressed either explicitly or implicitly that
x; and A(w{&) will tend to be highly collinear if x; and w{é& are highly collinear.® While this statement
is not necessarily false (as.it does not claim that x;, and A\(w{&) will be highly collinear if x; and wi& are
highly collinear), it has never been substantiated. In particular, none of the studies prbceed further to
investigate: (i) why there is a tendency for x; and A(w!é&) to be highly collinear if x; and w]& are highly
collinear, and (ii) what extra conditions are needed for x; and A(w{&) to be highly collinear. Without
addressing these two questions, the existing studies in the literature have misled many to believe that a
high collinearity between x; and wi& is a sufficient condition for x; and A(w!&) to be highly collinear. Our
theory shows that conditions (C1) and (C2) are sufficient for x; and N(w;&) to be highly collinear. Neither
(C1) nor (C2) alone is sufficient.”

To prove the validity of our theory, we employ Nawata’s (1993) own Monte Carlo experiments
to show that, even when x; and wié& are perfectly collinear, the two-step method does not necessarily
suffer any collinearity problems. Instead, the two-step estimators can perform very well. The Monte
Carlo results clearly substantiate our theory on the sufficiency of conditions (C1) and (C2).

Since Nawata’s (1993, 1994) experimental design is adapted from Paarsch (1984), we will label

it the Paarsch-Nawata design. The Paarsch-Nawata design of the experiments is as follows. Let

yli = o + 0‘1Wi -+ uli i = 1,2,...,N (8)
d; = Iy; > 0) )
Y?.i = BO + lei + UZi lf di = l (10)

8 See, e.g., Heckman (1976, p.483), Maddala (1983, p.252), Nelson (1984, p.195), Bockstael et al.
(1990, p.43), and Schmertmann (1994, p.115).

7 Are (C1) and (C2) also necessary conditions for the collinearity problems? The answer is no because
it is possible to give counterexamples in which w{& has so little variations that N(w!&) becomes like a
constant, causing a high collinearity between AN(w&) and the intercept term in x;.
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where x; and w; are scalars. The error terms u,; and u, are drawn randomly from a bivariate normal
distribution with E(u;) = E(uy) = 0, var(u,) = 1, var(uy) = 100, and p = 0, 0.2, 0.4, 0.6, 0.8, 1.0,
where p denotes the correlation coefficient of u,; and u,. To make the clearest and strongest contrast
between the prevailing theory and our theory, we assume that x; and w; are identical, i.e., x; = w,.
According to the prevailing theory, the two-step method is expected to perform poorly in this case since
x; and w; are perfectly correlated.

Following Paarsch (1984) and Nawata (1993), we set 3, = -10 and 3, = 1. The regressor x; is
drawn randomly from U(0,20), where U(a,b) denotes a uniform distribution with range [a,b]. There are
three designs in our experiments, which differ only in the values of o and «:

Designl : oy = -1 and ¢, = 0.1

DesignIl : oy = -1 and o) = 1

Design III: ¢y = -10 and o; = 1

For each experiment, N = 200 and the number of replications is 500. Design I is exactly
identical to the one in Nawata (1993, p.17) in which the correlation between x; and w; is 1. We employ
the same design so that we can replicate Nawata’s (1993) findings and use them as a basis of comparison.
Since 3, and 3, are the parameters of interest in this type of models, we will just report these estimates
along with the two-step estimate of ¢;,. As in Nawata (1993), we compare the two-step estimates with
the ordinary least squares (OLS) estimates of equation (10) which are obtained from a simple OLS
regression of y, on an intercept and x; for the uncensored sample of observations (d; = 1). Tables 1, 2,
and 3 present the simulation results for Designs I, II, and III, respectively.

Table 1 essentially replicates Nawata’s (1993) findings. All the numbers are very close to those
in Nawata’s (1993) Table 7; the minor discrepancies are due to differences in the random number

generators and the seeds. Compared with the OLS estimates, the two-step estimates do perform poorly

when x; and w; are perfectly correlated. The standard deviations, as well as the first and third quartiles,



of the two-step estimates are all considerably larger than those of the OLS estimates. In some cases, the
two-step estimate of 3, is even negative (as can be seen from the negative first quartiles). These results
indicate that the two-step method is less stable and less reliable than ordinary least squares. Despite this
poor performance, the means of the two-step estimates of 3, and 3, are all close to the true values (-10
and 1) especially for 8,. Such small mean biases (mean bias == mean of the estimates - true value) are
expected because the two-step estimates remain consistent even when there are severe collinearity
problems. On the other hand, the mean biases of the OLS estimates are very large except in the case
where p = 0. In many cases, the OLS estimate of 3, even takes a positive value. The mean biases of the
OLS estimates increase with p because the omitted term in the OLS regression, o, (o +a,Ww;), increases
with p (as o, = 10p).

Table 2 gives a remarkably different picture. Design II differs from Design I only in the value
of o, yet the two-step method performs very well. The standard errors of the two-step estimates of 3,
and @, are small and are very close to those of the OLS estimates. The first quartile, the median, and the
third quartiles show that the two-step estimates are well behaved and there are no signs of collinearity
prdblems. The means of the two-step estimates of 3, and 3, are very close to the true values and the mean
biases are smaller than those in Table 1. The OLS estimates also improve too. Although there are
persistent mean biases in the OLS estimates of 8, and 3;, the magnitude of the biases is much smaller
than that in Table 1.

Table 3 presents another different picture. Design III differs from Design Il only in the value of
. The two-step method continues to produce excellent estimates for 8, and 8, with small mean biases
and low standard errors. However, the OLS estimates deteriorate substantially. The mean biases of the
OLS estimates of (8, and 3, are much larger than those in Table 2, and some of the mean biases are
comparable to those in Table 1 especially for 8,. The only problem with the two-step method is that the

mean estimate of oy, is abnormal in two cases (o = 0.2 and 0.8) due to the presence of two hugh outliers.



Nevertheless, the medians of the estimates of oy, in these two cases, 2.39 and 9.51, are still reasonably
close to the true values of 2 and 8. Consistent with the findings in the literature, Tables 1 - 3 show that
the two-step method provides better estimates for 3, and 3, than oy,.

Our theory can offer a complete account for the simulation results in Tables 1 - 3. In all three
designs, condition (C2) is satisfied. Since w; ~ U(0,20), o + a;w; ~ U(ctp,00+200;;). Thus, the ranges
of oy + oyw; are [-1, 1], [-1,19], and [-10,10] in Designs I, II, and III, respectively. The narrow range
of oy + oyw; in Design I implies that most of the values of &, + &w, for d, = 1 Will likely appear to
the left side of the kink of A(.) (Figure 1). Therefore, both conditions (C1) and (C2) are satisfied in
Design I. On the other hand, the wider ranges of oy + oyw; in Designs II and III suggest that the values
of & + &w; for d; = 1 will likely scatter on both sides of the kink, hence condition (C1) will not be
satisfied. One can get an idea of the severity of the collinearity problems by calculating for each design
the correlation coefficient between oy + o,w; and Neyy + o,w;) for those observations in which o, +
ayw; + uy; > 0. The correlation coefficients are -0.9977, -0.5032, and -0.5699 for Designs I, II, and
III, respectively. Therefore, our theory predicts that, despite the perfect correlation between x; and w,,
the two-step method will suffer collinearity problems in Design I but not in Designs II and III.

Tables 4 and 5 verify our theory. Table 4 reports the summary statistics of &, + &w; for d; =
1 (the first-step estimates of the two-step method). The maximum and the minimum values in Table 4
show that the ranges of &, + &w, for d; = 1 in Designs I, II, and III are approximately [-0.95,1], [-
0.7,22], and [-1,12], respectively. These ranges confirm that the values of &, + é&w; for d; = 1 fall on

only the left side of the kink in Design I, but scatter on both sides of the kink in Designs II and III.3

® The range of &, + é&w; for d, = 1 is different from that of o, + o, w; because, apart from the
obvious reason that & # o; (j = 0,1), the range of oy + oW, is calculated from the entire sample (i =
1,2,...,N) whereas the range of &, + &w; is computed from the uncensored sample (d, = 1). Since an
observation will be censored if oty + oW, < u,;, the uncensored sample will tend to contain observations
with larger and positive values of o, + o,w;. Thus, the lower end points of the ranges of &, + &,w, are
greater than the corresponding ones of o, + «,w;, whereas the upper end points are roughly the same.
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Table 5 contains the summary statistics of the condition number. The large condition numbers in all the
cases in Design I confirm that there are serious collinearity problems in the two-step method. Even the
minimum condition numbers in Design I are substantially higher than 30 (the threshold for collinearity
problems suggested by Belsley, Kuh, and Welsch 1980). On the other hand, the condition numbers in
Designs II and I are all lower than 20, which are in accord with the lack of collinearity problems in the
experiments for these two designs. The wider range of &, + &w; for d; = 1 in Design II implies that
a largef number of observations will fall on the highly nonlinear region of A(.) on the right side of the
kink, which explains why the condition numbers in Design IT are not only much smaller than those in
Design I but also considerably smaller than those in Design IIl. In sum, Tables 1 - 5 ciearly support our
claim that a high collinearity between x; and wié& does not necessarily impair the two-step method.

Our theory can also account for the variations in the mean biases of the OLS estimates in Tables
1 - 3. The key lies in the degree (probability) of censoring, which is given by P(d; = 0) = Py, + oyW;
+ u; < 0). Since w; ~ U(0,20) and uj; ~ N(0,1), P(oy + o,w; + u; < 0) = -/(20«;). Hence, the
- degree of censoring is 50 percent in Design I and 5 percent in Design II. Since only 5 percent of the
observations are censored in Design II, there is little information loss in the sample. In contrast, there
is much more information loss in Design I because 50 percent of the data are unobserved due to the
censoring. Thus, the mean biases of the OLS estimates in Table 2 are smaller than those in Table 1. To
see this in a slightiy more rigorous way, notice that E(uy) = P(d;=1)E(uy|d;=1) + P(d;=0)E(uy|d;=0)
= 0. If P(d=0) = 0, then E(uy) = E(uy|d;=1) = 0, so the bias of the OLS estimates, which depends
on the size of E(u,|d;=1), will likely be small. In othér words, the bias of the OLS estimates will tend
to increase with the degree of censoring. As for Design 111, the degree of censoring is 50 percent. Hence,
the mean biases of the OLS estimates in Table 3 are larger than thdse in Table 2. The same degree of

censoring in Designs I and III explains why the mean biases of the OLS estimates in Tables 1 and 3 are

comparable.
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3. Remedies to Collinearity Problems

Given the potentiality and the severity of the collinearity problems in the two-step method, it is
surprising to find that there have been very few systematic investigations into the remedies of the
problems. Most studies simply recommend giving up thé' tWo—step method and using ordinary least
squares regression or maximum likelihood as the alternative (Nelson 1984, Nawata 1994). Because of
the merits of the two-step method (as outlined in the Introduction), it would be useful to study whether
it is possible to cure the collinearity problems without renouncing the two-step method.

We first examine two remedies frequently mentioned in econometrics textbooks. The first one
i‘s rldge regression, which is a mechanical way to reduce the variations of OLS estimates (e.g. Greene
1993). In Monte Carlo results not reported here, we do find that a ridge regression in the second step
of the two-step method can considerably stabilize the two-step estimates in the experiments in Design 1.
The stabilizing effect is expected as the ridge estimators are designed for this purpose. However, as is
well known, the ridge estimators are biased and standard statistical inference on the estimators is invalid.
Given the emphasis on unbiasedness, consistgncy, and hypothesis testing in applied economic work, the
limitations of ridge regression have severely diminished its appeal.

The second remedy often mentioned is to get more data (e.g. Davidson and MacKinnon 1993).
One way to get more data is to increase the sample size. As the number of observations in our
simulations is quite small (N equals 200 only), we examine whether the collinearity problems will be less
serious when the sample size increases. Table 6 presents how the condition number varies with the sample
size in the experiments. For brevity, we only report the results fo; Design I with p = 1. There are two
rows, "uncensored” (i.e. d; = 1) and "all" (i.e. i = 1,2,...,N), for each sample size N. Here we will just
focus on the "uncensored" row, the "all" row will be explained and discussed later. Several results are
prominent. First, the mean of the condition numbers drops very little, from 97.23 to 95.77, when the

sample size increases from 500 to 10,000. The fall in the standard deviation (from 18.36 to 3.74), the
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skewness (from 0.92 to 0.24), as well as the kurtosis (from 4.61 to 3.09) is much more significant.
Second, the narrowing difference between the maximum and the minimum values suggests that the
condition number is converging to some value around 95 as N gets indefinitely large. Third, relative to
the threshold 30 suggested by Belsley, Kuh, and Welsch (1980), the condition numbers are still very large
even when the sample size is 10,000. Hence, getting more data in this case does not help much in
alleviating the collinearity problems.

Next we evaluate several possible remedies which are specific to the two-step estimation method.
Two remedies follow immediately from our theory. In order to alleviate the collinearity problems,
conditions (C1) or (C2), or both, must be weakened. To neutralize (C1), the regressors w; have to be
chosen such that there is a significant number of observations for which the values of w!a for d; = 1 fall
on the right side of the kink. Because of the high nonlinearity of A(.) on the right side of the kink, these
observations will appreciably lower the collinearity between x; and A(wjc). The problem with this remedy
is that, given the nature of the non-experimental data in economics, there may be very little choice in the
regressors w; and the range of w,. | |

To weaken (C2), the compositions of w; and x; have to be altered so as to reduce the overlap, and
hence the degree of collinearity, between w; and x,. This remedy has often been mentioned in the
literature, partly because it also eases the identification problems between x; and A(w}«) (e.g. Little and
Rubin 1987, p. 230). While this strategy is widely adopted by practitioners, the main problem is that
economic theory seldom predicts which variables should be included in w; but not in x;. Consequently,
the exclusion restrictions on the regressors in w; and x; may be arbitrary.

A third remedy which we propose is to incorporate additional information. For instance, one can
include the sample of censored observations in the two-step method if the data are available. Suppose,
in addition to (1), (2), (3), we have

Y =0 ifd; =0, 11
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and we observe w;, x;, d;, ¥ for each i = 1,2,...,N. There are many examples of this type of sample
selection models and it has been known as the Type 2 Tobit model according to Amemiya’s (1985)
classification system. Wales and Woodland (1‘980) show that the additional information in (11) can be
incorporated into the two-step method. Since E(y,) = Pr(d; = D)E(yx|d; = 1) + Pr(d; = 0)E(y,|d; =
0), therefore

E(yn) = ®(Win)[xi8 + opAwie)], 1= 1,2,...,N. (12)
Wales and Woodland (1980) suggest a Heckman-type two-step method based on (12). The first step,
which is the same as before, obtains maximum likelihood estimates & from (1) and (2). The second step
estimates § and ¢, from the linear regression

Vo = ®(WiR)[X{B + o AwWid)] + ¢, 1=12,...,N (13)
where &(w{&)x; and &(wi&)N(wid) are treated as regressors, and ¢ is an error term. Since this two-step
method incorporates more information than the one based on (5) and the sample sizé is also bigger, it
may be a useful remedy for the collinearity problems in (5).°

To evaluate this suggestion we conduct some Monte Carlo experiments using a design similar to

Design I except that the parameter values o; = 0.1, p = 1, and o, = -0.2, -0.5, -1, -1.5 are employed.
We choose several values of «, in order to study whether the results are sensitive to the degree of
censoring.'® Table 7 reports the condition numbers of the regressions (5) and (13). The results are
disappointing because they show that (13) does not help alleviate, but instead aggravate, the collinearity
problems. In every case studied, the mean éondition number of the regression using all the obsg:rvations

is larger than the one using the uncensored observations.

® As this two-step method makes use of more information from the data, intuition suggests that it
should be more efficient than the one based on (5). However, Wales and Woodland (1980) and Amemiya
(1985) show that this is not necessarily the case. '

' The degree of censoring determines the sizes of the censored and the uncensored samples. For o
=-0.2, -0.5, -1, -1.5, the degree of censoring P(x, + a,w; + u; < 0) is 10, 25, 50, and 75 percent,

respectively.
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To check that this poor performance is not caused by a small sample size, we employ Design I
with p = 1 and calculate the condition number of (13) /for larger sample sizes (N ranging from 500 to
10,000). Each "all" (for all observations) row in Tabie 6 presents the summary statistics of the condition
number of (13) for each N. First, the results indicate that the condition number of (13) changes very little
(from 110.17 to 108.53) as the sample size increases from 500 to 10,000. Second, for each N, the mean
condition number of (13) is always greater than that of (5). Hence, the poor performance of (13) is not
related to the degree of censoring and the sample size N.

Our theory can offer an explanation for this puzzle. Let us first rewrite (13) as

Ya = PWi{[x{B + o AWid)]Id; + [xIB + opAW&)I(1-d)} + &, i=1,2,.,N. (i4)
Since $(wi&) in (14) can be regarded as a scale factor, it has no bearing on the collinearity problems.
Recall that the collinearity problems in design I arise because all the values of &, + &,w; for d; = 1 fall
on only the left side of the kink of A\(.) in Figure 1. Thus, whether the two-step method based on (14)
can reduce the collinearity problems hinges on the collinearity between x; and A(&, + &w;) for d; = 0.
Since u; ~ U(0,1) and d; = 0 if o + W] < -uy, the values of &, + &w, for d; = 0 will likely be
small and negative. In other words, most of the values of &, + &w; for d, = 0 will also tend to fall on
only the left side of the kink. As a consequence, the values of &, + &;w; for both d, = 0 and d;, = 1 will
scatter mostly on the left side of the kink, hence A&, + &w,) will remain linear in &, + &w;. This
explains why the two-step method based on (13) suffers even more serious collinearity problems than the
one based on (5).

Table 8 confirms that our explanation is correct. For each , the mean of &, + &w, of the
censored observations (d; = 0) is significantly smaller than that of the uncensored observations (d; = 1).
Although the minimum and the maximum values of &, + &w; of the censored sample are similar to those
of the uncensored sample, the number of cases in which &, + &w; > 0 for d; = 0 is notably smaller

than that for d; = 1 especially for smaller values of o. These results verify that the values of &, + &,w;
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of the censored observations tend to fall even further to the left of those of the uncensored observations.

The above discussion shows that, if (5) suffers collinearity problems, then (13) will definitely be
even worse. On the other hand, it is possible for (13) to experience some collinearity problems even if
there are no collinearity problems in (5). For instance, if the number of censored observations is
considerably larger than that of the uncensored observations and if all the values of & + &w; of the
censored observations are scattered on the left side of the kink, then (15) may encounter some collinearity
problems because the censored sample raises the collinearity between x; and N(w|é&). For these reasons
it is not advisable to apply the two—stép method to (13).

Although the previous example shows that combining the censored and the uncensozfédi.
observations is not fruitful in lessening the collinearity problems, 'there are examples in which the remedy
works very well. For example, consider (1), (2), and

Va = Xif + vd; + uy, , i=12,...,N (15)
where w;, x;, d;, and y,; are observed for each i = 1,2,...,N. The differences between (15) and (3) are
that (15) is not restricted to d; = 1 only (as in (3)) and that the dummy variable d; also appears as a
regressor in (15). This type of endogenous dummy variable model, which has been applied to study
education, job training, and program evaluation, is frequently found in the sample selection literature
(Maddala 1983, Greene 1993). Since

E(yxldi = 1) = x{8 + v + E(uy|d, = 1)

= xiB + v + o AN Wia), (16)
the OLS regression in the second step of the two-step method is given by

Vo = XiB + v + 0 AMWid) + ¢ ford, = 1, | an
where ¢; is an error term. The parameter + in (17) will be automatically absorbed into the intercept term
in x;. Similarly,

E(yx|d = 0) = xi + E(uy|d, = 0)
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= XiB - oph(-wia), ' (18)
hence an alternative second step can be based on the regression
Ya = XiB - 0 N-Wi&) + ¢ ford, = 0. (19)
One critical shortcoming in both regressions (17) and (19) is that they do not produce an estimate
for v, which is a key parameter in this type of models. Barnow, Cain, and Goldberger (1981) suggest
a third way to estimate the model. Combining (17) and (19), y, can be expressed as
Ya = XiB + vdi + opldMwid) - 1-dM-wid)] + ¢, i =1.2,. N (20)
which can also be treated as the regression in the second step of the two-step method.!! One obvious
advantage of (20) over (17) and (19) is that the regression produces an estimate for v." Our concern
is whether (20) is less vulnerable to collinearity problems than (17) and (19).
Now suppose the worst scenario iﬁ which there are serious collinearity problems in both (17) and
(19). All the values of wi& for d; = 1 and -w{& for d; = 0 fall on the left side of the kink of A(), so that
X; is highly collinear not ohly with M(w &) for d; = 1 but also with M-w{é&) for d; = 0. Despite this high
collinearity, the combined regressor d\Nwi&) - (1-d)A(-w!{&) in (20) will not bé highly collinear with x;
because AM(wié&) and -A(-wi&) have opposite si‘gns.13 Therefore, combining'the uncensoredv and the
censored observations will help reduce the potentiality as well as the seriousness of collinearity problems

in this type of sample selection models.

' Clearly, the error terms in (13), (17), (19), and (20) are all dissimilar, but we use the same symbol
¢; for notational simplicity. We will continue to adopt this convention for the rest of the paper.

12 This sample selection model can be conveniently estimated by a program in LIMDEP 6.0 (Greene
1992, pp. 605-610). Users can choose (17), (19), or (20) to estimate the parameters.

1 To see this, suppose that, for the purpose of illustration, A(z) is a linear function of z, i.e., \(z)
= a, + a,z, where a, is a positive constant and a, is a negative constant. Suppose there are two columns
of data Z, (dimension N;x1) and Z, (dimension N,x1), then Z, will be perfectly correlated with N(Z)),
and Z, will be perfectly correlated with A(-Z;). However, the column of data (Z{,Z;)’ is not perfectly
collinear with the vector (\(Z,)’,-N(-Z,)")" because the latter is equal to ((age, + 2,Z,)",(-a, + a,Z,)")’,
which cannot be expressed as my(e},e;)’ + m(Z},Z;)’ for some constants m, and m,, where ¢, is an N;x1
unit vector and e, an N,x1 unit vector.
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Finally, we comment on the Type 1 Tobit model (Amemiya 1985):

y; = (xXif + WIEB + u > 0), i=1,2,...,N 21
where x; and y; are observed for all i. The Type 1 Tobit model is a special case of the Type 2 Tobit
model because it can be obtained from (1), (2), and (11) by imposing the restrictions w; = x;, « = ,
and u;; = uy. The Type 1 Tobit is an example of a sample selection model in which there are completely
no exclusion restrictions on w; and x; (hence w; = x;). On the other hand, there is a complete restriction
ona and B (o« = B). Let u; ~ N(0,0%), then

E(y;|d; = 1) = x{B + o\(x|fB/0). (22)
In this case, the first step of the two-step method for (21) is to obtain an estimate of 8/¢ from the probit
model d; = I(x{8 + v; > 0). Denoting the maximum likelihood estimate of B/¢ by &, the second step
estimates 8 and o from the ordinary least squares regression

Vi = xI8 + oA(x!d) + ¢ ford; = 1, (23)
where \(x/0) is treated as a regressor. It is clear that (23) will likely suffer collinearity problems if most
of the values of x/6 fall on the left side of the kink of A(.). We propose to remedy the collinearity
problems in the following way. Since (22) can be written as E(y;|d; = 1) = o[x{B/o + Nx!|B/0)], the
regression

Vi = o[x}6 + NxIO)] + ¢ for d, = 1 (24)
can be used as the second step of the two-step method. This regression treats x!§ + N\(x!6) as a single
regressor and produces an OLS estimate for o, which we denote by &. A consistent and asymptotically
normal estimate of 8 can then be obtained by ﬁmltiplying & by § (since B = o(8/0)). Even if there is
perfect collinearity between x}6 and \(x/8), one can still estimate o from (24) very well. As there is only
one regressor, X6 + Nx}8), in (24), there will never be any collinearity problems m (24). Unfortunately,
this remedy cannot be extended to other types of sample selection models because it hinges crucially on

the restrictions w; = x;, @ = 8, and u; = u,.
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4. Conclusion

This paper examines the origins of, and the remedies to, the collinearity problems encountered
in the two-step estimation method for sample selection models. We show that the linearity of the inverse
Mills* ratio A(z) over a certain range of z and the collinearity between the regressors of the outcome
equation and the selection equation can give rise to serious collinearity problems in the second step of
the two-step method. A major new finding in the paper is that the high nonlinearity of A(z) over another
range of z can substantially reduce the potentiality as well as the severity of the collinearity problems'.

In practice, whether the two-step method is vulnerable to collinearity problems depends largely
on the range of wi{& in empirical work. All those studies that attack the two-step method for the
collinearity problems assume either explicitly or implicitly that wi& lies in a certain range. These studies,
however, have never provided any justifications for the assumption of a specific range for wi&. Thus,
the criticisms are unbalanced and misleading because there are no a priori reasons for restricting wié to
a specific range. As shown in equation (1), wic is the systematic part of the latent unobserved variable
yu which is constructed to explain the selection outcome. The range of wié& depends on, among others,

, (
the distribution of w;, the sign as well as the magnitude of the elements in w; and &. Hence, W§ & can take
any value on the real line. The higher the incidence of large positive values of wi& (by "large" we mean
wi& greater than 3 only), the less likely will there be collinearity problems in the two-step method
because of the powerful nonlinearity of A(z) for larger values of z.

In addition to reviewing the effectiveness of a number of oft suggested cures to collinearity
problems, we also propose some remedies that are specific to thé two-step method. By exploiting the
structures of the sample selection models and the distinctive features of the two-step method, we show
that some of our remedies can help reduce the collinearity problems. Unfortunately, the remedies still
lack generality as they are applicable to certain types of sample selection models only. The limited success

of the remedies indicates that further investigations into the problems are warranted.
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Table 1
Simulation Results for Design [
Bo =-10, 8, = 1, 0, = 10p

p Estimation Parameter Mean Standard First Median Third

Method Deviation Quartile Quartile
0 Heckman B -11.72 52.35 -46.06 -13.94 17.66
B, 1.07 2.11 -0.22 1.18 2.46
o 1.42 38.01 -20.10 1.94 24.38
OLS B, -9.96 2.61 -11.73 -10.19 -8.17
8, 1.00 0.19 0.87 1.00 1.14
0.2 Heckman B, -12.12 52.52 -43.65 -9.34 19.20
B 1.07 2.12 -0.33 0.91 243
o2 4.37 38.01 -17.05 3.02 25.19
OLS Bo -6.61 2.66 -8.43 -6.66 -4.82
B 0.86 0.20 0.73 0.86 1.00
0.4 Heckman Bo -13.44 51.12 -44.12 -13.57 15.06
» B 1.12 2.04 -0.10 1.17 2.39
ayy 8.35 37.28 -12.16 7.46 29.65
: OoLS B -2.10 2.40 -3.79 -2.02 -0.62
‘§§§§ 8, 0.67 0.18 0.55 0.67 0.79
0.6 Heckman B, -12.44 38.58 -34.20 -9.69 14.15
8, 1.08 1.58 -0.05 0.98 2.02
o 10.16 27.59 -7.74 7.83 26.06
OLS By 1.95 2.00 0.61 1.92 3.36
B 0.49 0.15 0.39 0.50 0.59
0.8 Heckman Bs -12.53 36.06 -33.92 -12.67 9.46
B, 1.09 1.48 0.16 1.14 2.01
oy 11.63 25.82 -3.34 10.48 25.93
OLS Bs 3.88 1.48 2.93 3.91 4.77
B, 0.41 0.12 0.33 0.41 0.49
1.0 Heckman B -11.41 33.48 -28.17 -11.38 8.53
B, 1.04 1.36 0.20 1.08 1.80
a1z 11.20 24.02 -2.57 10.89 22.13
OLS B, 434 1.44 3.34 4.35 5.30
B 0.39 0.12 0.32 0.40 0.47
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Table 2
Simulation Results for Design II
Bo =-10, 8y = 1, 0, = 10p

p Estimation Parameter Mean Standard First Median Third
Method Deviation Quartile Quartile
0 Heckman Bo -9.90 1.88 -11.00 -9.89 -8.72
B, 0.99 0.15 0.90 0.99 1.07,
oy -0.06 5.31 -3.69 0.19 3.49
OLS Bo -9.90 1.62 -10.95 -9.95 -8.79
B, 0.99 0.13 0.90 1.00 1.08
0.2 Heckman Bo -10.01 1.86 . -11.22 -9.95 -8.80
B, 1.00 0.15 0.90 1.00 1.09
o 2.53 5.34 -0.84 2.45 6.06
OLS Bo -9.55 1.63 -10.62 -9.52 -8.35
8. 0.97 0.14 0.87 0.97 1.05
0.4 Heckman Bo -9.84 1.83 -11.01 974 -8.59
B 0.99 0.15 0.89 0.98 1.08
oy 5.33 4.83 2.12 4.92 8.61
OLS Bo -8.86 1.56 -5.88 -8.80 -7.84
B, 0.92 0.13 0.82 0.92 1.00
0.6 Heckman Bo -9.98 1.64 -11.03 -9.99 . -8.91
By 1.00 0.13 0.90 1.00 1.08
o 8.61 4.55 5.32 8.36 11.54
OLS Bo -8.36 1.36 -9.20 -8.34 -7.48
B 0.88 0.12 0.80 0.88 0.95
0.8 Heckman Bo -9.91 1.59 -10.91 -5.87 -8.92
Ief 0.99 0.13 0.90 0.99 1.08
gy, 9.85 3.91 7.10 9.53 12.27
OLS Bo -8.08 1.32 & -8.91 -8.12 -7.20
B 0.86 0.12 0.78 0.86 0.93
1.0 Heckman Bo -9.96 1.71 -11.13 -10.02 -8.86
B 1.00 0.14 0.90 1.00 1.09
gy 10.11 3.96 7.24 9.66 12.81
OLS Bo -8.06 1.39 -9.04 -8.05 -7.16
B, 0.86 0.12 0.78 0.86 0.93
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Table 3
Simulation Results for Design III
Bo =-10, B =1, o, = 10p

o Estimation Parameter Mean Standard First Median Third
Method Deviation Quartile Quartile
0 Heckman By 9.97 6.77 -14.66 -10.10 -5.04
B, 1.00 0.42 0.71 1.00 1.28
012 -0.24 436 2.92 -0.38 2.68
OLS B -10.17 5.42 -14.08 -10.16 -6.73
B 1.01 0.35 0.78 1.00 1.26
0.2 Heckman Bo -10.14 6.53 -14.22 -10.05 -6.03
B 1.01 0.42 0.74 0.99 1.27
oy -382.56 8609.55 -0.22 2.39 5.21
OLS Bo -7.81 5.41 -11.61 -1.97 -4.23
B, 0.87 0.35 0.62 0.89 1.11
0.4 Heckman Bo -10.09 7.09 -14.88 -9.81 -5.23
B 1.01 0.45 0.68 0.99 1.30
gy 5.54 4.01 2.89 5.71 8.13
OLS B -4.84 5.71 -9.03 -4.89 -0.89
B, 0.69 0.38 0.43 0.69 0.97
0.6 Heckman B -10.01 6.75 -14.48 -10.05 -5.55
B, 1.00 0.42 0.72 0.99 1.28
oy 8.34 3.80 6.02 8.46 10.62
OLS Bo -2.15 5.18 -5.60 -1.95 1.36
B8, 0.53 0.34 0.30 0.52 0.76
0.8 Heckman Bo -9.95 6.79 -14.14 -9.90 -5.22
8, 1.00 0.43 0.70 0.99 1.28
o -1646.38 37027.74 7.01 9.51 11.94
OLS Bo -0.81 4.96 4.13 -0.62 2.36
B, 0.45 0.33 0.24 0.44 0.67
1.0 Heckman Bo -9.84 6.42 -13.94 -9.95 -5.56
B, 0.99 0.41 0.71 0.97 1.26
o1 9.78 3.60 7.51 9.69 12.09
OLS Bo -0.62 4.91 -3.72 -0.39 2.64
B, 0.44 0.32 0.23 0.44 0.63
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Table 4

Summary Statistics of &, + &w; for d;

Design P Mean Standard Skewness Kurtosis Minimum Maximum
Deviation
I 0 0.2624 0.5273 -0.5060 2.1872 -0.9471 1.0112
0.2 0.2653 0.5289 -0.5062 2.1915 -0.9513 1.0170
0.4 0.2543 0.5260 -0.5053 2.1865 -0.9513 1.0006
0.6 0.2612 0.5307 -0.5131 2.2053 -0.9589 1.0135
0.8 0.2584 0.5296 -0.5087 2.1938 -0.9573 1.0103
1.0 0.2575 0.5322 -0.5146 2.2023 -0.9690 1.0109
I 0 11.5651 6.6512 -0.0440 1.7975 -0.7020 22.8881
0.2 11.2934 6.4926 -0.0445 1.7980 -0.6877 22.3453
0.4 11.7758 6.7729 -0.0437 1.7968 -0.6916 23.3072
0.6 11.0624 6.3558 -0.0448 1.7983 -0.6557 21.8809
0.8 11.4384 6.5801 -0.0442 1.7977 -0.6988 22.6398
1.0 11.2061 6.4422 -0.0448 1.7984 -0.6954 22.1717
m 0 6.1994 3.4584 -0.2153 2.0345 -1.2049 12.0147
0.2 6.8139 3.7753 -0.2136 2.0293 -1.1748 13.1726
0.4 6.2067 3.4613 -0.2130 2.0298 -1.1997 12.0277
0.6 6.2037 3.4637 -0.2131 2.0282 -1.1749 12.0276
0.8 6.4328 3.5816 ' -0.2161 2.0369 -1.1892 12.4609
1.0 6.1974 3.4565 -0.2127 2.0294 -1.1965 12.0108
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Table 5

Summary Statistics of Condition Number

Design p Mean Standard Skewness Kurtosis Minimum Maximum
Deviation

I 0 103.25 30.87 1.74 10.29 48.72 330.06
0.2 101.79 27.94 1.40 8.18 48.72 284.24

0.4 105.58 35.15 1.91 9.76 49.71 330.06

0.6 101.48 28.01 1.42 7.97 48.72 272.80

0.8 102.96 29.97 1.27 6.34 49.75 284.24

1.0 102.39 30.67 1.74 8.46 49.71 284.24

I 0 4.79 0.26 0.68 4.34 4.09 6.08
0.2 4.81 0.28 0.66 3.68 4.18 6.08

0.4 4.79 0.27 0.34 3.07 4.09 5.74

0.6 4.83 0.28 0.70 3.91 4.19 6.08

0.8 4.80 0.26 0.57 4.07 4.18 5.86

1.0 4.82 0.27 0.45 293 4.19 5.74

1l 0 13.69 0.92 0.47 3.09 11.32 16.62
0.2 13.61 0.90 0.37 2.88 11.39 16.58

0.4 13.63 0.91 0.44 2.98 11.51 17.01

0.6 13.64 0.92 0.37 2.88 11.22 16.67

0.8 13.68 0.93 0.30 2.96 11.56 17.01

1.0 13.63 0.90 0.32 2.67 11.56 16.51
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Table 6
Condition Number by Observations and Sample Size

Design], p =1
Sample Observations Mean Standard Skewness Kurtosis Minimum Maximum
Size (N) Deviation ‘

500 uncensored 97.23 18.36 0.92 4.61 57.12 175.44
all 110.17 18.74 0.84 4.62 66.59 190.42
1000 uncensored 97.62 12.64 0.66 4.33 67.12 165.11
all 110.79 12.96 0.53 4.07 79.61 177.26
2000 uncensored 97.52 8.65 0.55 3.94 74.39 135.69
all 109.14 8.80 0.48 3.69 84.87 145.61
3000 uncensored 96.86 7.21 0.36 3.78 78.16 124.83
all 108.92 7.40 0.35 3.72 89.32 137.00
4000 uncensored 97.46 6.03 0.28 2.99 83.22 127.72
all 109.76 6.23 0.24 2.85 95.56 128.57
5000 uncensored 96.37 5.48 0.19 2.74 81.17 115.20
all 109.02 5.65 0.13 2.65 94.98 128.06
10000 uncensored 95.77 3.74 0.24 3.09 86.28 109.02
all 108.53 3.81 0.21 3.12 97.58 121.29
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Table 7
Condition Number by Observations

a,=01,p=1
o Observations Mean Standard Skewness Kurtosis Minimum Maximum
Deviation
-0.2 uncensored 45.04 14.92 1.22 4.96 19.62 107.62 |
all 46.93 15.08 1.1 4.80 20.38 109.38
-0.5 uncensored 59.78 17.96> 1.29 6.01 28.83 163.49
all 63.92 18.37 1.21 5.49 31.98 163.80
-1.0 uncensored 102.39 30.67 1.74 8.46 49.71 284.24
all 115.78 31.01 1.65 8.56 54.96 314.60
-1.5 uncensored 184.99 58.01 2.78 20.28 93.36 725.60
all 223.50 56.93 2.41 17.56 126.38 736.17
Table 8
Summary Statistics of &, + &,w; by Observations
o =01p=1
¢ | Observations & + &w; Proportion of cases in which &, + &w; > 0
Mean | Standard Minimum | Maximum Mean Minimum Maximum
Deviation
-0.2 uncensored 0.94 0.56 -0.19 1.82 0.93 0.85 1.00
censored 0.41 0.47 -0.19 1.62 0.77 0.42 1.00
-0.5 uncensored 0.68 0.55 -0.48 1.52 0.86 0.74 1.00
‘ censored 0.16 0.50 -0.50 1.39 0.57 0.34 1.00
-1.0 | uncensored 0.26 0.53 -0.97 1.01 0.67 0.47 0.81
censored -0.25 0.53 -1.02 0.95 0.30 0.19 0.51
-1.5 uncensored -0.15 0.50 -1.41 0.50 0.45 0.00 0.69
censored -0.67 0.55 -1.52 0.48 0.15 0.00 0.25
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