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Abstract

We provide a simple explanation for the observation that the variance of job destruction
is greater than the variance of job creation: job creation is costlier at the margin than
job destruction. As Caballero [2] has argued, asymmetric employment adjustment costs
at the establishment level need not imply asymmetric volatility of aggregate job flows.
We construct an equilibrium model in which (S, s)-type employment policies respond
endogenously to aggregate shocks. The microeconomic asymmetries in the model can
dampen the response of total job creation to an aggregate shock and cause it to be
less volatile than total job destruction. This is so even though aggregate shocks are
symmetrically distributed.
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1. Introduction

In this paper we provide a simple explanation for the observation documented by Davis
and Haltiwanger [7, 8] that the variance of job destruction is greater than the variance of
Job creation: job creation is costlier at the margin than job destruction. As Caballero [2]
has argued, asymmetric employment adjustment costs at the establishment level need not
imply asymmetric volatility of aggregate job flows. We construct an equilibrium model in
which (S, s)-type employment policies respond endogenously to aggregate shocks. Contrary
to Caballero (2], we find that microeconomic asymmetries can dampen the response of job
creation to an aggregate shock and cause it to be less volatile than job destruction.

The employment policies we consider are ones for which an establishment keeps employ-
ment constant if it lies within a range determined by its idiosyncratic level of technology. If
employment is initially above this range it is reduced to the range’s upper boundary, and
if it is below it is increased to the lower boundary. The difference between our results and
Caballero’s [2] lies in how the ‘range of inaction’ responds to aggregate disturbances. If we
assume its boundaries respond equally in percentage terms to aggregate disturbances, then
total job creation and destruction will change by similar amounts.! In this case creation
and destruction will be, roughly, equally variable, as in Caballero [2]. However, if we solve
for the optimal response of the boundaries, job creation costs can cause the lower bound-
ary to be less elastic with respect to an aggregate disturbance than the upper boundary.
Because the level to which job destroyers reduce their employment changes by more than
the level to which job creators increase their employment, total job destruction can respond
proportionately by more than creation, leading to the former being more variable than the
latter.

The asymmetric volatility of aggregate job flows is closely tied to another fact docu-
mented by Davis and Haltiwanger which has received considerable attention in the literature.
Namely, the observation that job reallocation, the sum of job creation and job destruction,

is countercyclical. The algebraic identities linking job growth (job creation less job destruc-

1Here we are implicitly assuming sufficient variability in idiosyncratic technology and symmetric aggregate
disturbances.



tion) and reallocation to job creation and destruction imply that job reallocation co-varies
negatively with job growth if and only if job destruction is more volatile than job creation.
Thus our explanation for asymmetric volatility in aggregate job flows can be added to the
list of potential explanations for countercyclical job reallocation.?

Our analysis builds on Hopenhayn’s [11] industry dynamics model of establishment size.
This is a natural starting point because the job creation and destruction data reflect es-
tablishment growth and contraction. Anderson and Meyer [1] document large differences
between match creation and destruction and job creation and destruction. This suggests
an advantage of our approach to understanding the phenomena documented by Davis and
Haltiwanger relative to other approaches which focus on the job matching process.

"The remainder of the paper proceeds as follows. In the next section we present the indus-
try dynamics model and characterize stationary and dynamic equilibria. In section three we
analyze several parametric examples of the model to illustrate the impact on aggregate vari-
ables of asymmetric employment adjustment costs at the establishment level. We conclude
in the fourth section by relating our findings to other attempts in the literature to account

for the behavior of aggregate job flows.

2. The Industry Dynamics Model

We extend Hopenhayn’s [11] industry dynamics model to incorporate linear job creation costs
and uncertainty about labor supply. A key feature of the model that makes it tractable to
analyze is the assumption of unrestricted entry into the industry. As we describe below, this
assumption removes the probability distribution of establishments as a state variable in the
problems of individual agents, drastically lowering the computational complexity involved
in solving the model. We begin by describing the model environment. This is followed by
a description of the problem of a representative establishment owner in the industry. After
this we define a competitive equilibrium and characterize stationary equilibria and equilibria

with aggregate uncertainty.

2See for example Caballero and Hammour [4] and Mortensen and Pissarides [13] who emphasize the
role of the job matching process in generating this phenomenon. Campbell and Kuttner [6] and Davis and
Haltiwanger [9] interpret counter-cyclical job reallocation as reflecting the influence of ‘reallocation shocks.’
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2.1. The Model Environment

The model’s industry consists of a continuum of establishments which each produce a single,
non-storable good for sale in a competitive market. Aggregate demand for the good in
period ¢, is a given by P, where P, is the market price and v < 0 is the elasticity of demand.
Each establishment produces output using labor as its only variable input. We assume the
industry is a small portion of the economy so that the wage rate, W;, is exogenous. It follows
a Markov chain over the grid {W’, Wh} and is the only source of industry-wide, or aggregate,
uncertainty.

Output of a representative establishment at time ¢ depends on its time ¢ productivity

and labor input, z; and n, respectively, and is given by®
¢=2zn, 0<a<l.

The diminishing returns to labor reflect the presence of a fixed factor which can be thought
of as a plant. We assume that the shift length is fixed so that n; can be interpreted as

employment. For each establishment, productivity evolves as follows,
Inz=p,Inz_;+e, e~N (0,03) , e < 1.

Entry to the industry is unrestricted and potential entrants face a cost of creating a new
establishment, x. When a new establishment is born, it draws its initial value of productivity
from a continuous distribution with p.d.f. X (.). Estéblishment owners face an exit decision
every period. When making this decision they take into account the scrap value of an
establishment, 6 < k. The decision to close an establishment is irreversible. Establishment
owners are identical, risk neutral, and discount future profits with a common rate, (.

The owner of an establishment incurs an adjustment cost if it expands its employment.

Since new establishments begin life with no employees, they must always incur this adjust-

30ur notational convention is to use upper case to denote aggregate variables, lower case to denote
establishment level variables and Greek letters to denote parameters.



ment cost. If n; is an establishment’s previous employment, its job creation costs are
T (ne —neq) I {ne >ne_1},

where 7 > 0 is the per job creation cost. The function I {-} equals one if its argument
is true and zero otherwise. We interpret these job creation costs as reflecting the costs of

reorganizing the tasks performed in a establishment to accommodate a larger work force.

2.2. The Establishment Owner’s Problem

At the beginning of a period, the owner of an establishment observes its productivity, z;, and
the output and input prices, P, and W;. On the basis of this information, employment at
each establishment is chosen. At the end of the period, owners must decide whether or not
to close their establishments. Let S; denote a vector of payoff relevant aggregate variables.
It will include the cuurent output and input prices, P, and W;, as well as any other variables
which aid in forecasting their future values. Then, the value of a typical establishment at

time ¢, v (2¢, ny—1, St), satisfies the following Bellman equation,

v (26, M1, 5) = {g%i Pizing — Wyng — 7 (g — ng—1) I{n;>ny 1}
+,8 max {9, E [U (Zt—l—la 'Iltist.{_l) | Zt, St]} . (1)

In solving its dynamic program, the establishment owner is assumed to know the underlying
law of motion for S;. We now discuss the optimal employment and exit policies which
correspond to the solution to the establishment owner’s problem.

As is well known, it is optimal in the presence of linear adjustment costs to follow an (S, s)-
type policy. To characterize the employment policy for the present case, let f* (2,4, St)
denote the right derivative of 8 max {6, E [v (211,74, St41) | 2, 5]} with respect to ng, and
let £~ (2¢,m¢,s:) denote the left derivative. Then, the necessary conditions for the owner’s

employment decision are

aPtztnf‘”l W=7+ (2,m,S) < 0ifny>ny (2)



aPzny ™ — Wi+ ¥ (2,14, St) > 0if ny < mnys. (3)

If ny > ny;, then equation (2) must hold with equality, and if n, < n;_1, then equation (3)
must hold with equality. Define n, () and 7; (2:) as the values of n; which satisfy equations
(2) and (3), respectively, with equality, for each possible value of z;. The dependence of these
functions on t is our notational shorthand for the fact that they depend on the aggregate

state S;. The optimal employment policy now can be written as

ny (2), ifngy <my(z)
"y (zt7 nt—l) = 1, if n; (Zt) <ng <7 (Zt) . (4)

Tt (2), if 7y (2) < myy

Below we refer to n, (2:) as the date t job creation schedule since it indicates the employment
levels of job creating establishments. Similarly, we refer to 7, (z:) as the job destruction
schedule.

Just as in Hopenhayn [11], a threshold rule characterizes the owner’s exit decision. This
is explained as follows. Notice first that the unique solution to (1) must be increasing in
2;, which implies that E[v (zt+1, N, Se1) | 2, St is increasing in z,. Thus there exists a

threshold value, z; (n;),
i (ne) = sup {2|E [v (2e41, me, Sti1) |2 = 2, 8] < 6}, (5)

such that all establishments with employment equal to n; and 2z, < z; (nt) will exit, and all
others will remain. The exit threshold in general depends on the aggregate state which we

again summarize with the subscript ¢.

2.3. Competitive Equilibrium

In order to define a competitive equilibrium it remains to describe entry, aggregate quan-
tities and the transition rule for the distribution of establishments across productivity and

employment levels. Consider entry first. Because entry is unrestricted, the expected value



of an entering establishment must be less than or equal to its cost, «, for all S;. That is,
/ v(2,0,8) A (z)dz <k VS, (6)

If any entry occurs during period ¢, then (6) must hold with equality. We use B; to denote
the mass of new entrants, or births, at time ¢.

Total industry labor input and output, N; and Q;, respectively, are defined as follows,

N, = //nth (zt,nt) dzdny, (7)
Qr = //Qth (22, ) dzedny. (8)

Here G (-, -) summarizes the measure of establishments across all possible pairs of produc-
tivity and employment levels at time ¢.

The employment policy, (4), endows G; with certain properties. First, it implies that
Gi(zgne) = 0if ny < my(z) or if ny > W, (z:). Second, it implies a positive fraction of
establishments will be on the schedules defined by n, (2¢) and 7i; (2;). Therefore, G, (2, )

can be written in terms of three functions, G; (2), G; (2) and G™™ (2, ),

G (z), if e =n(z),
Gt (zt> nt) = G;n (Zt, nt) ) if o (Zt) <y < Ty (Zt) y (9)
@t (Zt) y if Ng = ﬁt (Zt) .

The owner’s employment, entry, and exit decisions determine the transition rule for G4. The
presentation of this transition rule is straightforward but tedious, and so is left to appendix
A.

In a competitive equilibrium, all potential entrants are either indifferent to entering or
strictly prefer to stay out of the industry, all of the industry’s establishment owners choose
employment and make exit decisions to maximize the present discounted value of their
expected profits, and both the product and labor markets clear. The following definition

summarizes this more formally.

Definition 1 (Competitive Equilibrium). A competitive equilibrium for the industry
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is a set of state contingent sequences {P;}, {Qr}, {N;}, {B:}, {nf (z,n:1)}, {zF (n4)}, and

{G; (2:,m4)} and a value function v* (2, ny_q,S¥) such that for all ¢
1. Q: =P,

2. v* (2,741, S7) is the unique solution to (1) given the stochastic process for S =

(B, Wy, G (2, ).
3. nf (z,n4-1) is defined as in (4).
4. zf (ny) is defined as in (5).
5. N{ is defined as in (7).
6. Qf is defined as in (8).

7. The free entry condition, (6), holds in every possible state. It holds with equality in

any state where Bf > 0.

8. Gf (z,n) Is defined recursively as in appendix A.

Hopenhayn [11] shows that a competitive equilibrium exists and is unique in a similar
industry dynamics model without aggregate uncertainty. Before proceeding to the charac-
terization of the competitive equilibrium with aggregate uncertainty, it is helpful to first
study the model’s steady state, an equilibrium in which all prices and aggregate quantities

are constant.

2.4. The Steady State

Consider a version of the above model in which the wage rate equals some constant, W*. A
stationary equilibrium for this model is a competitive equilibrium in which all other aggregate
prices and quantities are also constant. We can compute the stationary equilibrium as follows.
First consider the solution to (1) given the constant wage and some constant output price, P.
Since v (2, me—1, S¢) is continuous and strictly increasing in P, u (P) = [v (2¢,0,9:) A (2) dz

is also. Because u(0) = 0 and limp_, u (P) = oo, there must exist a unique P* such that



u (P*) = k. This is the unique stationary equilibrium output price. From the associated
solution to (1) the stationary equilibrium employment and exit policies, n* (2, n:-1) and
z* (ng), can be derived.

Given the owner’s stationary equilibrium policies and a value for entry, B, we can find
a fixed point of the transition equation for the measure of establishments over productivity
and employment. Denote this G (2, n;). It is straightforward to show that G (z,n,) is linear
in B, which, via (8), implies output is linear in B also. The equilibrium volume of entry, B*,
is easily found by solving for the value of B which equates industry supply with the quantity
demanded at the previously arrived at output price, P*Y. With B* in hand, G* (z;,n;), Q*,
and N* can be computed.

Notice that because G (2;,n;) is a linear function of entry, B* only determines the in-
dustry’s scale. It does not influence the probability distribution of establishments across
productivity and employment levels. In the stationary equilibrium analysis of Hopenhayn
[11], this distribution is the primary object of interest. Because the establishment owner is a
price taker, the demand elasticity v does not effect the solution of her dynamic programming

problem in a stationary equilibrium. Therefore, v only affects the industry’s scale also.

2.5. Equilibrium with Aggregate Uncertainty

We can construct an equilibrium of the model with a stochastic wage rate in much the
same way as for a stationary equilibrium. The key once again is the free entry condition,
(6). If the volume of entry is always positive, then the free entry condition must always be
satisfied with equality. In this case, the equilibrium price sequence is uniquely determined
by the stochastic process for the wage, the owner’s dynamic programming problem, and the
free entry condition. This simplifies the analysis considerably because it implies it is not
necessary to include G; as an argument in the establishment owner’s policy functions.t We
now describe how to solve the model with aggregate uncertainty in more detail.

Suppose that B is always strictly positive in equilibrium and that the output price is a

function of the current wage only. Because the wage takes on one of two values, so must the

“Caballero and Hammour [3] use a similar argument to solve their model of job creation and destruction.



price. Let P! and P" be the output prices when the wage equals W' and W*, respectively.
When the output price follows this stochastic process, the solution to the owner’s dynamic
programming problem can be written as the pair of functions v! (2;,n;_1) and v" (2, T—1).
These are the solutions to (1) when the wage is W' and W*, respectively. Given these

functions, one can compute the value of entry in the two states as a function of the prices:
u (P!, P") = / o' (21,0) A (2) dz and u” (P!, P*) = / " (2,0) A (2) dz.

Unrestricted entry drives profits to zero so we can use (6) holding with equality to find
candidate equilibrium prices. That is, candidates for equilibrium prices solve the following

system of two non-linear equations in two unknowns,

» (Pl*yph*) = &,
u? (Pl*, Ph*) - k.

Given these prices it is possible to compute quantities sequentially for any given real-
ization of the process {W;} and an initial condition for the industry, Go(z0,n9). To see
this, suppose that in the first period, W; = W', so that the candidate equilibrium price for
the first perod is P, = P!. Since the transition rule for Gy, in the appendix, implies that
Gi (#1,n1) is an increasing function of entry, (8) implies that the total quantity produced
by the industry’s establishments at P, also is an increasing function of entry. Write this
relationship as Q; (B). In the competitive equilibrium, the volume of entry must be exactly
that which clears the market for the industry’s good. So a candidate for equilibrium entry
in the first period, By, solves

@ (B1) = FJ.

With B; in hand, one can compute G (z1,m1) and any aggregate variable of interest. The
analogous procedure applies to future quantities.

The candidate equilibrium for a given sequence of wages will be a genuine equilibrium
as long as entry is strictly positive in every period. So, for example, if Q1 (0) > P{ then

the constructive procedure fails. However, if the model has a stationary equilibrium with
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B* > 0 and the support of W, is narrow enough, the assumption that B; is always strictly
positive should be satisfied. In appendix B we study a version of the model with aggregate
uncertainty but without job creation costs in which strictly positive entry is guaranteed to
hold. Using homotopy ideas we can expect versions of our model with positive job creation
costs to involve strictly positive entry as well. Indeed, in the simulations conducted for the

analysis in the next section entry is always strictly positive.

3. Job Creation Costs and Aggregate Employment Fluctuations

In this section we investigate the implications of job creation costs in our model. When job
creation costs are positive then we find that job destruction may be more volatile than job
creation. To build intuition for this finding, it is useful to consider a version of our model
where 8 = 0. In such a model, establishments’ employment decisions are entirely static
and analytical expressions for the job destruction and creation schedules, 7; (z;) and n, (z),

respectively, can be derived:

Wi+t
C\{PtZt

W, )‘-”
aP,z )

1 (2) = ( )ai—l and 7 (z;) = (

Now consider how these schedules respond to exogenous changes in the wage rate. The

relevant elasticities are,

8ln(ﬂt(zt))_ 1 o W, and Oln(m; (2)) 1
OmW, a-1" W,+r OlnW,  a-1

Clearly, as long as job creation costs are positive, the job destruction schedule is more elastic
with respecf to the wage than the job creation schedule. In response to a wage disturbance
the level to which job destroyers reduce their employment will vary by more than the level
to which job creators increase their employment. Other things equal, the larger the creation
cost, the greater the discrepancy between how much total job creation changes relative to
total job destruction. If dynamic considerations do not overcome these purely static effects,
then the foregoing suggests that we have some hope of accounting for the excess volatility

of job destruction with our model.
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The arguments in Caballero [2] should caution us in drawing conclusions about aggregate
variables from underlying microeconomic behavior. As he has forcefully argued, the evolu-
tion of the underlying distribution of establishments can have significant effects on aggregate
variables and lead them to behave very differently than establishment level variables. This
makes it crucial for us to simulate the model to derive its implications for aggregate employ-
ment fluctuations. In the rest of this section we describe the results of doing this for several
different parameterizations. We begin by describing the main parameter selections which
underlie our simulations. This is followed by a brief discussion of the implied steady state
of the model which is designed to shed light on the empirical plausibility of our parameter

selections. Finally, we discuss the simulation results.?

3.1. Parameter Values

The examples we consider share the same stationary equilibrium. In table 1 we list the
parameters which underlie this equilibrium. For the most part these parameters were chosen
so that statistics derived from the implied stationary equilibrium resemble selected statistics
reported by Davis and Haltiwanger [8] for the US manufacturing sector. Specifically, we
attempt to match the average rate of job destruction as well as the average employment

weighted entry and exit rates.

We use the variance of the innovation to technology, o,
the scrap value, 6, and the support of the distribution for new entrants’ productivity to
accomplish this. We follow Hopenhayn and Rogerson [12] in specifying the distribution of

new entrants’ productivity, A(:). It is assumed to be uniform with support that ranges

SDetails on the solution and simulation procedure are available from the authors if requested. The
broad outlines of our procedure are as follows. We proceed in two steps. In the first step we solve for the
equilibrium prices and in the second step we simulate using an approximation to the transition equation
for G. To arrive at the equilibrium prices we have to solve the owner’s Bellman equation. We do this by
approximating the value function with a polynomial and then finding a fixed point in the parameters of
the approximating polynomial. The solution to the Bellman equation implies employment and exit policies,
which, as is described in appendix A, determine the transition equation for G. We employ the method
described in Campbell (5] to approximate the transition equation. Given an initial G, an approximate rule
for updating G, and a sequence of pseudo-random wages, a sequence of G’s can be generated. Using the
constructive procedure described in section 2.5 an entry sequence can also be generated. Quantities of
interest can then be computed directly from their definitions.

6Because the calculation of the stationary equilibrium is computationally intensive, a more formal pro-
cedure for parameter selection in which stationary equilibrium quantities are precisely matched with their
empirical counterparts is currently infeasible.
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Parameter | Value
K 10
0 0.98x
o 0.64
8 1.051/4
T 0.5
vy —1/4
Pz 0.90
o, 0.16

Table 1: Baseline Parameter Values

from three standard deviations less than the mean of the unconditional distribution to some
upper bound. By varying the upper bound we are able to improve our match with the
stationary equilibrium statistics of interest. The support we use throughout the analysis is
[—302,/ 1—p2,In (14)}

Other parameters in table 1 are chosen on a priori grounds. The cost of entry, &, is just
a normalization so it has no consequence for the analysis. Labor’s share in the production
function, «, is chosen to be consistent with other quantitative studies. We assume that
the period length in the model is a quarter and that establishment owners discount future
profits at an annualized rate of 5 per cent. This determines the discount rate, 8. The
autocorrelation of technology for establishments, p,, is chosen to be consistent with the
observation that there is substantial employment persistence in the manufacturing data. Of
particular interest is the job creation cost, 7. Since we normalize the steady state wage to
unity, our selection of 0.5 for this parameter is equivalent to one half the quarterly wage
in steady state. This does not seem exceptionally large to us. Finally, we use a demand
elasticity of 1/4. The selection of this parameter is governed by the need to ensure that

along a given simulation entry always is strictly positive.

3.2. Properties of the Stationary Equilibrium

In the stationary equilibrium, the establishments’ employment policies can be summarized

by the job creation and destruction schedules, n, (2:) and 71y (2;), and the exit policy zq (ne).
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Steady State Intervention Schedules

1

Destruction

0

Creation

In(n)

-6 -5 -4 -3 -2 -1
\ .
\

-08 ~-04 ~-0.0 0.4 0.8 1.2
In(z)

Figure 1: Establishment Policies — ng (2:), T (2t), and g (n;).

Figure 1 plots these using the parameter values in table 1. As this figure indicates, just
as i the model without job creation costs, establishments’ employment policies are nearly
log-linear in z;. A clear exception to this is a discontinuity where each of the employment
schedules cross the exit schedule. The exit schedule itself is nearly vertical, so establishments
exit decisions vary little with their current employment.

The employment and exit policies determine the stationary equilibrium distribution of
establishments across employment and productivity levels. The components of this dis-
tribution are plotted in figures 2 and 3. The panels of figure 2 graph the distribution of
establishments along the destruction and creation schedules. These are G, (2¢) and Gy (2¢)
normalized by the total mass of establishments, respectively. Figure 3 plots cross-sections of
G™ (2, ) normalized by the total mass of establishments, the distribution in the region of
inaction. Specifically, each curve in this figure indicates, for a given log employment level,
the density in the region of inaction as a function of the log of technology.

The first point to note from the figures is that job creating establishments tend to be
more productive than job destroying ones. The peak of G, (2¢) is at a log technology level of

about 0.35, while the peak of Gy (2;) is at about —0.2. Second, there is considerable mass
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Distribution on Destruction Schedule

yes

-1.2 -0.8 -0.4 -0.0 0.4 0.8
in(z)

0.24

0.12

0.00

Distribution on Creation Schedule

0.24

0.12

0.00

~1.2 -0.8 —-0.4 -0.0 0.4 0.8 1.2
In(z)

Figure 2: Stationary Equilibrium Distribution — G (2:) and Gy (2)

on both the job creation and destruction schedules. Establishments which lie on the job
creation schedule account for 20.4% of total industry employment, and establishments which
lie on the job destruction schedule account for 16.5% of employment. Third, the distribution
within the region of inaction is discontinuous, reflecting the discontinuities in the creation and
destruction schedules. Finally, the establishments that lie between the intervention schedules
do not appear to be bunched up near one schedule or the other consistently throughout the
state space. That is, with the exception of establishments that operate in the left hand tail
of the productivity distribution, the density does not exhibit substantial asymmetry in the
placement of mass near one employment policy relative to the other.

For the same parameter values, table 2 reports job creation and destruction statistics
from the model’s stationary equilibrium. In a stationary equilibrium, the job creation and
destruction rates equal each other. The fact that they differ somewhat in table 2 reflects
slight errors in our method of approximating the transition equation. Notice that the job
creation and destruction rates in the stationary equilibrium are about 1% and 0.6% higher
than their empirical counterparts. Therefore, the Job reallocation rate is about 1.6% higher

than the average job reallocation rate in the US manufacturing sector. The employment
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Distribution Within Region of Inaction

Figure 3: Stationary Equilibrium Distribution — G™ (2, n;)

Statistic Data Model
Job Creation 5.39 6.34
Job Destruction 5.72 6.38
Job Reallocation | 11.11 12.72
Entry 0.61 0.81
Exit 0.82 0.49

Table 2: Employment Statistics from Stationary Equilibrium

Notes: (i) Entries are in per cent; (ii) Entries in the data column are taken from Davis and
Haltiwanger [8].
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weighted entry and exit rates are 0.2% higher and 0.33% lower, respectively, than the values
reported by Davis and Haltiwanger [8]".

Although the model’s implied statistics do not exactly match the statistics from the US
manufacturing sector, they seem reasonably close. This gives us some confidence that the

simulations we present in the next section have empirical relevance.

3.3. Employment Fluctuations

The examples we describe in this subsection are differentiated by assumptions regarding the
forcing process for the wage rate and assumptions regarding the specification of creation
costs. Consider the wage process first. The law of motion for the wage is chosen so that
the log of the wage resembles a first order autoregression with an unconditional standard

deviation of 1%. In particular, the transition matrix, II, is specified as

1+Bw 1“‘210

II= 2 2
1-py  1ltpw

2 2

where |p,| < 1 is the autocorrelation coefficient, and the two wage levels are given by
W" = exp (0.01) and W' = exp (-0.01).

We explore the implications of auto-correlated wages, p,, = 0.9, and 4.7.d. wages, Py, = 0.
Now consider the assumptions regarding job creation costs. In section 2 these costs were
assumed to be invariant to the current wage.® If job creation éctivity is labor intensive,
then this may be a poor assumption since it would suggest that creation costs should be
closely tied to the wage. This invariance plays a crucial role in the development of our
intuition, so it is sensible to explore how it influences our results. To do so, in addition to
the case of constant creation costs we explore versions of our model in which creation costs

are proportional to the current wage. In these cases creation costs are assumed to be equal

"The employment weighted entry and exit rates are the employment gains at entering establishments and
the employment losses at exiting establishments, divided by total manufacturing employment.

81t may be helpful at this point to think of the output price, the wage, and the job creation cost as being
measured relative to the cost of creating an establishment, .
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% Change in Intervention Schedules
Constant Creation Costs

Destruction

1.2 2.0 2.8

~ - - Creation

0.4

1.2

2.0 2.4

2 1.8

1.2

Figure 4: Changes in Job Creation and Destruction Schedules

to 7W; in each period t.

Before studying the simulation results it is helpful to confirm that adding job creation
costs to the establishments’ technology dampens the employment responses of job creating
establishments to changes in W;. Figure 4 plots the differences between the job creation
and destruction schedules in the two states. The solid lines of each panel plot the log of
the destruction schedule in the low wage state minus the log of the destruction schedule in
the high wage state and the dashed lines plot the difference between the creation schedules
in the two states. The top panel pertains to the examples in which job creation costs are
constant, and the bottom panel pertains to the examples where job creation costs are a
constant fraction of the current wage.

Consistent with our intuition, when the job creation cost is constant the Jjob destruction
schedule is considerably more volatile than the job creation schedule. Regardless of the degree

of serial correlation in the wage, the job destruction schedule changes about 2.5% more than
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the job creation schedule when the wage changes. Notice that an establishment’s response
to a change in the wage depends on its current productivity. For those establishments falling
below the exit threshold, their employment decisions are static. That is, their employment
decisions are those from the model with 8 = 0. For those establishments above the exit
threshold, dynamic considerations become important. These considerations appear to raise
and then lower their responses to a change in the wage as their productivity increases.
Finally, serial correlation in the wage appears to amplify the responses for establishments
above the exit threshold but has little effect on those establishment about to exit.?

In the lower panel of figure 4 we see that the job creation and destruction schedules
respond by roughly equal amounts to a wage change, regardless of the degree of serial cor-
relation in the wage. The dynamic effects on the shapes of the schedules evident in the top
panel are evident here also and these dynamic effects appear to be strong relative to the
purely static effect emphasized in the development of our intuition. As in the constant cost
case, adding wage persistence appears to amplify the response of the schedules for higher
productivity establishments.

We conclude from analyzing figure 4 that the model’s behavior depends in important ways
on the specification for job creation costs. In the US economy, job creation probably requires
some labor input. Thus creation costs will likely vary with the wage. On the other hand,
the cost’s elasticity with respect to the wage will be less than one if job creation requires
some other input whose price has little correlation with the wage. If we want to think of
the wage in the current model as governing production workers and job creation costs being
associated with the effort of management employees, then to the extent that management
remuneration is uncorrelated with the wages of production workers it may make sense to
assume that creation costs do not vary one-for-one with wages. An empirically reasonable
specification for job creation costs probably lies somewhere between the two extremes of zero
and unit elasticity we consider here.

We now examine whether the differential volatility in the job creation and destruction

schedules gives rise to differential volatility in job creation and destruction rates. In addition,

9The fact that wage autocorrelation influences the response of establishments below the exit threshold
reflects the difference in the equilibrium response of the price level across the two cases.
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Volatility Statistics

T=1/2 T=W;/2
Volatility Statistic | Data | p=0.9 p=0 p=09 p=0
Creation 0.86 0.10 0.17 0.11 0.30
Destruction 1.71 1.50 1.60 1.00 0.60
Growth 2.24 2.00 241 1.82 1.53
Reallocation 1.67 1.40 1.06 0.60 0.50

Note: The statistic for Creation is standard deviation in per cent. The other statistics are
reported as ratios of standard deviations relative to the standard deviation of Creation.

Co-movement Statistics

T=1/2 T=W/2
Correlation Data | p=0.9 p=0 p=09 p=0
Creation, Destruction -033] —-040 -0.77 -0.79 —-0.90
Growth, Reallocation —-051| —-043 -0.61 -0.02 0.75
Growth, Creation 0.70 0.75 0.91 0.94 0.99
Growth, Destruction -091| —-090 -0.97 -0.95 -0.96
Reallocation, Creation 0.27 0.27 -0.23 0.31 0.85
Reallocation, Destruction | 0.82 0.77  0.79 0.34 —0.55

Table 3: Employment Statistics in the Dynamic Economies

we examine several other employment flow statistics to evaluate the overall performance of
our model. Table 3 reports measures of volatility and co-movement for rates of job creation,
Job destruction, job growth, and job reallocation as defined by Davis and Haltiwanger [§],
for each of the four specifications we consider.’® The first panel of the table indicates
overall employment volatility, as measured by the standard deviation of creation, as well
as the relative volatility of the remaining variables, as measured by the indicated variable’s
standard deviation divided by the standard deviation of creation. The second panel indicates
correlation coeflicients for all possible pairwise combinations of the variables of interest.
Consider the top panel. Notice first that the constant creation cost examples replicate

the empirical observation that job destruction is more variable than job creation. This is

10T he statistics reported in table 3 are based on simulating the model for 1100 periods, beginning from the
steady state distribution of establishments. We discarded the first 100 observations and used the remaining
observations in our calculations.
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in keeping with the intuition developed above. The failure of the variable creation cost
examples along this dimension reflects our previous observation that the job creation and
destruction schedules in these cases respond by proportionally similar amounts when the
wage changes.

The other statistics in this panel suggest that the constant creation cost version of the
model has other desirable properties. In particular, regardless of the degree of serial correla-
tion in the wage, this version of the model is able to account for the relative volatilities of the
employment flow variables. Increasing the degree of serial correlation seems to improve the
empirical performance in terms of the magnitudes of the relative volatility statistics. The
variable cost examples are less successful in terms of accounting for relative volatilities. Fi-
nally, the main drawback of all these examples is that they imply too little overall volatility.
Reducing serial correlation in the wage appears to improve the performance of the model
along this dimension regardless of whether creation costs are variable or not.

Now consider the lower panel of correlations. The performance of the constant creation
costs, p = 0.9 version of the model is seen to be quite strong here as well. The signs of
the six correlations are correct and the magnitudes do not appear to be very far off their
empirical values either. It seems reasonable to conclude that the overall performance of
this version of the model is good — the addition of job creation costs has the potential of
accounting for more than just the fact that job destruction is more volatile than job creation.
Reducing serial correlation in the wage in the constant cost case harms the model’s co-
movement implications. In particular, when p = 0 the model predicts counterfactually that
Job creation is negatively correlated with job reallocation. Finally, the specifications with
variable creation costs perform poorly in terms of co-movement, just as they do with respect
to relative volatilities.

At this point we should caution the reader by noting that the statistics in table 3 do
not reflect entirely independent features of the data. We have already pointed out (in the
introduction) that the relative volatility of destruction versus creation determines the sign
of the correlation between job growth and reallocation. The algebraic identities linking

creation and destruction with growth and reallocation imply other connections between the
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statistics.! However, we do not believe this fact diminishes the overall impression that the
constant creation cost, p = 0.9 version of the model does remarkably well at accounting for

the evidence on employment flows.

4. Discussion

The simulations described in the previous section confirm that the presence of asymimetric
employment adjustment costs at the establishment level can lead to asymmetries in aggregate
gross job flows. Of course, the presence of such costs is not the only available explanation
for this phenomenon. In this section we conclude by describing how our work relates to
other attempts to account for the evidence on job creation and destruction. Recall from
the introduction that the observation of countercyclical job reallocation is equivalent to the
observation that job destruction is more volatile than job creation. The discussion below
considers papers which share our focus on the variability of Job creation and destruction.
To begin with, consider Caballero [2]. He observed that asymmetric employment adjust-
ment costs at the establishment level need not imply aggregate asymmetries. His explanation
for the aggregate asymmetries relies on assuming that aggregate shocks are asymmetrically
distributed. Since we consider only symmetrically distributed aggregate shocks, we estab-
lish that the aggregate asymmetries in employment flows may have nothing to do with the
pattern of aggregate shocks and may be purely reflective of features of the microeconomy.
Another explanation of aggregate employment asymmetries is provided by Caballero and
Hammour [3]. They construct a partial equilibrium model where jobs embody technological
progress. The key assumptions in their model are that the costs of creating a job are
increasing in the aggregate volume of job creation, while the costs of destroying a job are
invariant to the aggregate volume of job destruction. Not surprisingly these assumptions
lead to a decrease in the relative volatility of aggregate job creation. Our analysis differs in
that we assume asymimetric employment adjustment costs at the establishment level rather

than at the aggregate level.

11Simple calculations reveal the following connections. If creation and destruction are negatively correlated
then (i) growth and creation are positively correlated, (ii) growth and destruction are negatively correlated,
(iii) reallocation is less variable than growth, and (iv) growth is more variable than destruction.
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Finally, Foote [10] studies an (5, s) model in which the trend growth rate in industry
employment determines the volatility of job creation relative to that of job destruction. In
his model, industry decline leads to the bunching of establishments near their Jjob destruction
points so that aggregate disturbances have a disproportionate impact on job destruction. An
essential assumption in his analysis is that the decline in industry employment is carried out
by lowering average establishment size while leaving the number of establishments constant.
Our analysis clarifies when this is, and is not, a reasonable assumption. In our framework,
if the source of industry decline is a reduction in demand, it will be accommodated by a fall
in entry, not a decrease in average establishment size. However, average establishment size

will decline if the source of the trend is an increase in the wage rate.
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A. The Transition Rule

In this appendix we present the transition rule for G;. To do so we make use of several
definitions. First, define two critical productivity levels, 2; and Z},

z; = = (e (7)) and 7} = 2 (W (27)) -
Second, define n} and 7} as
nf = m, (2) and 7 = (7).

The functions n, (2;) and 7; (2) intersect the exit threshold z, (n;) at the points (2, ny) and
(2f,7¢), respectively. Third, define h, (n;) and h; (n;) to be the inverse functions of 1 ()
and 7 (2¢), respectively. Finally, we use ¢(z.41 | 2) to denote the conditional density of 7,4
given z.

To present the transition rule for G;(z;,n;), it is easiest to consider each of the three
functions, G; (%), G, (%), and G™ (2t,m1), separately. We begin by describing the third
of these functions. Any establishment with employment between the schedules defined by
Nyq1 (ze41)and Tyqq (2411) employs the same number of workers as it did in the previous
period. Therefore, to find the ‘number’ of establishments with productivity z;.; which
employ n;; workers, we need to add the ‘probabilities’ of all establishments with previous
employment n;y; having productivity equal to 2zt+1- Consider three separate cases. First, if
Nty1 > ﬁ:; then

by (net1)

Giyq (2041, Meg1) = / GY* (2, n441) ¢ (2e41]2) d2e (10)

he{neya)

+6 (z41|he (n641)) Gy (hy (n441))
+¢ (Zt+1 |Et (nt—i-l)) G, (—Ht (nt+1)) .

The first term is the contribution of those between the employment rules in period ¢ with em-
ployment n;y; who remain there, the second term is the contribution of those who Increased
their employment during the previous period to N¢t1, and the final term is the contribution
of those who decreased their employment during the previous period to ;.

Second, if @} > n.y; > nf, then

by (ney1)

Gity (241, eg1) = / (e GV (2, n611) @ (2e41)2t) dae (11)
TNty

+¢ (2t411hs (1241)) Gy (B (ne41)) -

The the differences between equations 10 and 11 reflect the exit of low productivity estab-
lishments.
Finally, if nf > n,, then
Git1 (241, m041) = 0. (12)
This is because all establishments with employment less than n; exit.
To determine G;1; (2¢41), it is useful to consider the same three cases. First, if 11 (2¢41) >
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7y then

—_ oo ’_Lt(nt)
Gt+1 (Zt—{-l) = / / Gzn, (Zt, nt) ¢ (Zt+1 th) dztdnt (13)

g1 (241) Jhe(ne)

+ /jo Gi(2) ¢ (z41|2) dz,

bt (A1 (2e41))

+ /°° G (2:) ¢ (ze41]2e) dze.

hy(ea(ze41))

Next, if i > Tigq1 (2041) > 0}, then

he(ng)

— 0o rhy(ns)
Gy (2e41) = /_ . / GY" (2, ne) ¢ (ze112) dzidny (14)
i by (ne) m
+/ / Gt (zt,nt)qﬁ(ztﬂlzt) dthnt

Tt+1(2e41) Jze(ne)

+ [ G () 6 () dze

+ /oo G, (=) ¢ (ze412:) dze.

By (g (ze41)
Finally, if nf > 7411 (2441), then

oo rh,(n:)
/ GT" (2, 1) ¢ (241|2t) dzpdny (15)

Et (nt)

iy rhy(ne)
—I—/* / (t ) G (2,1¢) @ (2e41]2:) dzedmy
Y Jze(ne

+ /_* Gy (%) ¢ (ze412) dz

+ /* G, (zt) ¢ (Zt+1lzt) dz;.

Z;'_H—l (Zt+1) = /

o
g

Once again, consider the same three cases to determine G, 1 (ze11): I gy (264a) > 78,
then :

Ty 1(2041)  phy(ne) m
Qt+1 (Zt+1) = / /_ G} (Zt, nt) ¢ (Zt+1!zt) dzidny (16)

ﬁ: hy (nt)

7y rhy(ne)
+ / / ‘ G;n (Zt, ’I’Lt) ¢ (Zt+1|Zt) dth'th

ny (1)

Zi+1
+ /—* G (zt) ¢ (zt+1|Zt) dz
2441
+ /* G () ¢ (21412:) d2e
+BrpiA (Zt+1) .

The last term of this expression reflects the contribution of new entrants, who always increase
their employment above its previous level, zero.
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IE 7} > 1440 (241) > 0, then

Ty 1 (2e41)  phy(nt)
i / G;n (Zt, nt) ¢ (Zt+1 IZt) dztdnt (17)

G (Zt+1) = /

ny ze(ne)

Zt4-1
+ /* G (%) ¢ (2t41]2) dz
+Biy1A (Zt+1) .

Finally, if nf > n,,; (2:41), then

Gi1 (2t41) = By (z41) - (18)

B. The Case of Costless Job Creation

In this appendix we characterize analytically a version of the model with costless job creation.
This example is helpful since it illustrates a case where the assumption of strictly positive
entry, which underlies our strategy for computing equilibria in the more general version of
the model, is guaranteed to hold.

Here we simplify the model of the main text in two ways: (1) we set 7 = 0; and (2) we
assume unit elastic demand, v = —1. To begin with, note that if job creation is costless
current employment will be chosen to maximize static establishment returns,

e ()
"7 \azP, '

This implies a one-to-one mapping between productivity levels and employment so keeping
track of the joint distribution of employment and productivity is pointless. Thus, we write
the industry’s state variable as Gy (z;), which describes the measure of productivity over all
establishments.

Theorems 2, 3, and 4 of Hopenhayn [11] guarantee that the model with zero adjustment
costs has a unique stationary equilibrium and that stationary equilibrium entry and exit
are strictly positive.’? Suppose the industry’s initial measure over productivity levels is the
stationary equilibrium measure, G* (2;), and that the wage in the current period is W, instead
of the value used to compute the stationary equilibrium, W*. In this case static profits of
an establishment with productivity z; are

mi (%) = (B 7= Wi (o155 — a7s).

Now, choose a price P, so that m; () equals its stationary equilibrium counterpart,

Pt=P*<Wt)a. (19)

W*

At this price profits of establishments as a function of productivity are the same as in the

'2Our model satisfies conditions U1 and U2 of Hopenhayn [11].
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stationary equilibrium. Suppose the competitive equilibrium output price is given by (19) in
each period ¢. In this case, since one period returns are the same as in the stationary equi-
librium, the establishment owner’s value function and exit decision rule will be unchanged
by the addition of aggregate uncertainty. If the value function is unchanged from the sta-
tionary equilibrium, the free entry condition must still be satisfied. Therefore, if B* new
establishments begin production during date ¢, the measure over productivity in that date
will equal G* (z).

We now examine whether P, as given by (19) is a market clearing price. Our task is
to verify that aggregate demand equals aggregate supply at each date ¢ with this price.
Consider first aggregate supply. If P is the prevailing price and the current wage equals Wi,
the output of a single establishment with productivity z; is

_ ——(9_5)*
@(z) = z W

- ) )
- t W* W*

- @) () (20

where ¢* () is the output of an establishment with productivity level z; in the stationary
equilibrium. Therefore, aggregate output is given by

Q = / gt (z) G* (z) dz

= [¢) (#) G* (2) dz
(" .

where we have assumed that B* new establishments begin production at every date t. Also,
Q" is the stationary equilibrium aggregate supply. Now consider aggregate demand. The
aggregate quantity demanded at the price B, is

W\ @
Fo= P (5E)
t W*

o)

Thus, the price given in (19) is indeed a market clearing price for every date t. Note
that the equilibrium we have constructed is for an initial measure of establishments across
productivity levels equal to the stationary equilibrium measure. In this special case, it is clear
that the assumption of positive entry in every possible state is valid since B* is guaranteed
to be positive.
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