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Abstract

We obtain semiparametric efficiency bounds for estimation of a loca-
tion parameter in a time series model where the innovations are stationary
and ergodic conditionally symmetric martingale differences but otherwise
possess general dependence and distributions of unknown form. We then
describe an iterative estimator that achieves this bound when the condi-
tional density functions of the sample are known. Finally, we develop a
”semi-adaptive” estimator that achieves the bound when these densities
are unknown by the investigator. This estimator employs nonparametric
kernel estimates of the densities. We show that this estimator has robust-
ness properties in the presence of a certain degree of nonstationarity. We
extend the method to the estimation of time series regression models and
report some Monte Carlo results.
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1. INTRODUCTION

A central concern in the estimation of regression models with time series data
has for decades been the appropriate modeling of the autocorrelation present
in the regression disturbances. Autocorrelation must be accounted for in the
calculation of OLS standard errors and must be correctly modeled in order to
obtain asymptotic efficiency through the application of generalized least squares
(GLS). Heterogeneity in second moments has also received much attention over
the years, with the recent burgeoning of the ARCH literature (stemming from
Engle (1982) and surveyed by Bollerslev, Chou, and Kroner (1992) and Bera and
Higgins (1993)) also bringing dependence in second moments to the fore. In fact,
econometricians are paying increasing recognition to the fact that deviations of
the disturbances in a time series regression from the assumptions of the classical
model can be due to quite general forms of dependence, heterogeneity, and non-
Gaussianity.

The presence of all three of these factors is a typical feature of much economic
time series data, financial asset price series in particular. The presence of any one
of them causes OLS to lose the asymptotic efficiency property that it possesses in
the special case of iid Gaussian disturbances and hence motivates the development
of new estimation procedures better suited to handle the peculiarities of the data.
We have already mentioned GLS, which improves upon OLS in that it accounts for
the autocorrelation and heteroskedasticity that may exist in the data. The variety
of ARCH and GARCH models that have been developed allow for a rich array of
approaches to modeling second moment dependence that may be present in the
residuals, and lead to maximum likelihood regression estimators that outperform
OLS or GLS when such dependence occurs. The presence of non-Gaussianity
in economic data, even after accounting for ARCH effects, has occasioned the
employment of non-Gaussian likelihoods such as the Student’s ¢ or mixtures of
normals (see, for example, Baillie and Bollerslev (1989a) and Lye, Martin, and Teo
(1996)), and has led several investigators (including Linton (1993) and Drost and
Klaassen (1996)) to explore the application of adaptive estimation, in which the
use of nonparametric kernel techniques allows asymptotically efficient estimation
even in the absence of knowledge of the shape of the likelihood function.

Adaptive estimation is unique among the strategies listed in the preceding
paragraph in that, rather than requiring the specification of a parametric model
of the departure of the disturbance process from the canonical model, it treats
this departure as being due to some unknown infinite-dimension nuisance param-



eter. Of course, elements of the disturbance process other than the density of
its innovations can and have been treated nonparametrically. In fact, it is pos-
sible to think of the dependence, heterogeneity, and non-Gaussianity in the data
generating process (DGP) of the regression disturbances as being due to a single
infinite-dimensional nuisance parameter, and to explore the consequences of differ-
ent estimation procedures under such circumstances. These issues have received
a great deal of attention in recent years, constituting the basic subject matter
of the influential monographs of Bickel, Klaassen, Ritov, and Wellner (1993) and
White (1996).

This paper is concerned with the problem of semiparametrically efficiently
estimating the parameters of location models in which the errors may follow a
stationary and ergodic time series process with dependence and distributional
properties that are assumed to be unknown to the investigator. The work of Pa-
gan and Schwert (1990) illustrates the difficulties involved in trying to find an
appropriate model of conditional dependence. An immediate precedent to the
work reported here is Hodgson (1996), in which the properties of an adaptive es-
timator of the parameter of a location model, similar to that developed by Stone
(1975) as modified by Bickel (1982) and Kreiss (1987), are analyzed when the
iid assumption on the error process fails to hold. Hodgson (1996) finds that the
adaptive estimator has a desirable robustness property when the error process is
weakly dependent and is symmetrically distributed conditional on its past tra-
jectory - viz., that it is consistent and asymptotically normally distributed with
an asymptotic variance equal to the inverse of the Fisher information of the un-
conditional density of the process, when the process is stationary, and equal to
the inverse of the Fisher information of the ”average asymptotic” unconditional
density (in the sense of Bierens (1984) and Pétscher and Prucha (1989)), allow-
ing for a certain degree of heterogeneity in the process. This result shows that,
under conditional symmetry, the adaptive estimator is robust in the sense that
its asymptotic distribution depends only on the (average asymptotic) uncondi-
tional distribution of the process, regardless of the nature of the dependence or
heterogeneity that may be generating this unconditional distribution. However,
Hodgson (1996) found that when the distributions and dependence are treated as
unknown nuisance parameters, this robustness property of the Stone (1975) type
estimators does not imply that they are optimal according to the criterion of semi-
parametric efficiency. The present paper derives estimators that are optimal in
this framework, and illustrates their practical applicability through a brief Monte
Carlo simulation exercise. Our semiparametric efficiency results assume station-



arity in the data. Although we are unable to derive similar optimality results
when we relax the stationarity assumption, we show that our estimator has an
important robustness property in the presence of certain forms of nonstationarity.

In Section 2 we introduce the location model under consideration and derive
the semiparametric efficiency bound. The latter is just the limit as the sample
grows to infinity of the expected outer product of the efficient score of the pa-
rameter of interest. The efficient score is that part of the score of the sample with
respect to the parameter of interest that is orthogonal to the score of the sample
with respect to the nuisance parameter. For a location model with dependent,
conditionally symmetric innovations, the efficient score has a simple and intuitive
form. It is the sum over the sample of the scores of the conditional densities. The
implication is that, in order to formulate semiparametrically efficient estimators
of the location parameter, we must nonparametrically estimate the density of the
innovation process conditional on its past. This is in contrast to the basic Stone-
type estimator analyzed by Hodgson (1996), which only utilizes nonparametric
estimates of the unconditional density of the innovations. The semiparametric
efficiency bound is then obtained as the limit of the average over the sample of
the first element along the diagonal of the information matrix of the joint den-
sity of the current and all past innovations. For example, as shown in Hodgson
(1996), if the data are stationary and m*-order Markov, then the semiparametric
efficiency bound is just the first element along the diagonal of the joint density
of an innovation and its first m lagged values. In Section 3, we derive estimators
that achieve the semiparametric efficiency bound. They take the form of one-step
Newton-Raphson iterations in which we begin with some +/n-consistent prelimi-
nary estimator and adjust it by a term involving a nonparametric estimator of the
efficient score of the model premultiplied by the inverse of the outer product of
this score estimator. Section 4 contains an analysis of the robustness properties
of our estimator when the data are nonstationary. In Section 5 we extend the
analysis to consider the estimation of the parameters of a linear regression model
with ARMA errors. In Section 6 we report the results of a Monte Carlo simulation
study and Section 7 contains concluding comments.

2. THE MODEL AND EFFICIENCY BOUND

Suppose we observe the scalar time series {y:} for t = 1,...,n, and that the data
are a realization of a stochastic process on a complete probability space (2, F, P)



and are generated according to the following model:
Ye = 0+ €ty (1)

where the innovation sequence {e;} is a stationary and ergodic martingale differ-
ence sequence that is also p— or a—mixing. We assume that ¢; has unconditional
density f(¢) and symmetric conditional density g; (e |e*") (i.e. g:(ele’™!) =
g (—elet™1) ) for every ¢ =1, ...,n, where e = (g;_1, £1)', and where we define
g1 (ele®) = f(e). We furthermore assume that g; (e ]st 1) is twice differentiable in
e and €' for every t = 1,...,n. We denote the joint density of €* by f* (¢*) . Denote
the true value of 8 by 6, which belongs to the interior of the compact metric space
(©, p). The probability measure of the sample of size n at the parameter value 4 is
denoted by Fy,. Our objective in this paper is to derive semiparametric efficient
estimators of the location 8, where the dependence structure of the data and the
density functions are treated together as a single unknown infinite-dimensional
nuisance parameter.

Our first objective is to obtain an expression for the semiparametric effi-
ciency bound for our estimation problem.! To this end, we introduce the nui-
sance parameter 7, which characterizes the (unknown) dependence and distri-
butional properties present in the data generating process. We can then repre-
sent the conditional density at ¢ as being a function of this parameter, writing
g: (e|et™1) = g, (e|e=Y;n) for every t = 1,...,n. The log-likelihood of the sample
is

log L, (6) = 3_log gz (¢4 (9) [ 6);)
where €, (8) = y; — 6. The first derlvatlve of log £,, (8; 1) with respect to 0 is
1

Olog L, (6;7) =~anagt(€t(9) £ (0)5n) /Oer = Oge (6 (0) |77 (8) 5m) /Oer
el = aE&@)e0)n)  So o (€t )15t L@)in)

which we can rewrite as

t—

n t—1

S (0;7) Zst (Et 9)} =1(0); ”7) Zzsm (5t 1 =1(9); n)

t=1 j=1
og L (6; 8g:(e¢(0) et~ 1(8);m ) /e
where Sn (0;1) = #REG00, s, (c(0) [ (6) ;1) = gtgt(e(t(rl)let—(lga% " and

£t =1(9); E1—j
sty (et (0) ;11 (0);m) = agt(gtgzio)[ef(—el)(z));r/z(? . It follows from our symmetry

IThe concept of semiparametric efficiency bounds is discussed in detail by Bickel, Klaassen,
Ritov, and Wellner (1993) and Newey (1990).




assumption on g; (¢ |e"™1) that s; (e: (0) |e () ;) = —st (—&¢ (6) |e72 (6) 3m) for
every t = 1,...,n and s;; (€ () ;e (0)5m) = s (—e (0);|e51 (6) ;m) for every
j=1,..,t—1and t=1,.,n. The first derivative of log £, (6;n) with respect to

" Blog £ (0:1) _ o 0g. (e0 (6) e (0) ) /01
o A @O0

Sny (037) = Zstn(etwl H(6)5m),

og La(6; - Ogt(ee(8)|e*~1(6);n ) /0
whee S, (0;1) = PEO, (24 (062 0); ) = PG ™, and,
|e*

by symmetry, s;, (et (0);1e571(8) ;1) = s1q(—€:(8);]€"" (0);n) for every ¢ =
1,...,n.

In order to determine the semiparametric efficiency bound for this model,
we must first compute the efficient score, which is that component of S, (6;7),
the score with respect to the parameter of interest 6, that is orthogonal to the
tangent space, i.e. the infinite-dimensional Hilbert space spanned by all functions
of the form /'S, (8; ), where S,, (6;7) is the score with respect to some nuisance
parameterization n and 7 is any vector of real numbers with dimension equal
to that of . In addition to its symmetry in &;, the modified score function
¥'stn (€ (0) ;1€ (0) ;m) is characterized by the mean-zero property of scores.
We can use these two salient features of s;, (:(0) ;e ();7n), and hence of
¥'st.m (€6 (0) ;1€ (6) ;1) , to define our tangent space, 7, as follows:

T, = {mg ()= 3o (o), (o) = (-a]e)

E [dt (st ‘et 1) [ } 0 Vt}
The efficient score is the residual from the orthogonal projection of S,4 (6;7) on
7.- In our model, this orthogonal projection has a particularly convenient form.
We can use our symmetry assumptions to show that the first term in Sp (6;7),
viz. — 30 1 8 (st ( ) |1 (8) ;n), is orthogonal to the tangent set, and the second
term, — Yo7y 257 st (€¢(0) ;e (6);m), actually belongs to the tangent set.
Hence, the orthogonal projection of Spg (8;7) on 7, is just this second term, while
the residual, and hence the efficient score, is just the first term. So, using S, (8)
to denote the efficient score, we obtain the result that

-3 a (=@ 0).

or




where we henceforth drop 7 from our notation, as this explicit inclusion of a
nuisance parameter was essentially a notational device which served solely to
facilitate our derivation of the efficient score S, (6).

Under{Py, »}, the semiparametric efficiency bound is then
-1

B = lm (n7'E|[S,(60)])

= lim (n‘l téE [st (st (6o) 'et_l (9()))2])—1
= Jim (Bfsn (e 00) [ @0)])

n—oo

i.e. the inverse of the information of the conditional density of £ given the infinite
past of the process. A semiparametric efficient estimator is one whose asymptotic
variance equals B. To further analyze B, we recall that the joint density of &
is denoted by f*(e*). We can then write g, (g [e"1) = f*(e) /ft~1 (¢*!) and
Og (e |e871) /Oey = (Bf* (€) /Oe:) / f1~1 (¢471), from which it follows that

t Ogi (¢ |[€"1) /Oey
St (St IE 1) == 7 (Et !Et——l)
oft (e') /Oe;
fie)

We then obtain the result that

E {st (et ’5”‘1)2] = /St (et lEt—1)2ft (Et) det
/ (OF' () /921)” 1o
ft(e)
which is just the first element along the diagonal of the information matrix of the

joint density f*(e*). Denote this quantity by I;(t). Furthermore, let us define
the quantities Z,, = n~ 130 I1;(t) and Z =lim 7,. We can then write our

semiparametric efficiency bound as
B=17,

which is the inverse of the leading diagonal element of the information matrix
of the joint density of £ and its infinite past. The preceding heuristic deriva-
tion of the semiparametric efficiency bound uses a method similar to ”the semi-
parametric approach” of deriving bounds in iid models described in Section 3.4

7



of Bickel, Klaassen, Ritov, and Wellner (1993). A more rigorous derivation of
the bound, similar to the "nonparametric approach” described in section 3.3 of
Bickel, Klaassen, Ritov, and Wellner (1993) and using results of Ibragimov and
Khas’minski (1991), is provided in Appendix A.

The asymptotic efficiency bound assumes a particularly convenient form for
the special case of stationary mt*-order Markov processes. In this case, we can
rewrite the conditional densities as

gt (G‘t [6t~1> =g (Et Igtj—l; . St—m)

and the associated joint pdf of (e, ..., &1-m) 88 f (€, ..., €t—m) . We then have that
7, — I, where

[ (OF (€ty vy Etom) [0e1)
Iw/ f(ety ey Etem)

Our stationarity assumption is more restrictive than desired, but seems to be
necessary to derive the semiparametric efficiency bound. If we were to allow for
general heterogeneity, so that each observation had a possibly unique uncondi-
tional density f; (¢:), then no finite parameterization of the model would exist
(in the absence of very strong restrictions on the nature of the heterogeneity).
In particular, we would have to write the nuisance parameter characterizing the
heterogeneity in the form 7,, which would be time varying and would have di-
mensionality of the same order of magnitude as the sample size. We know of no
results on semiparametric efficient estimation when the nuisance parameters are
of this form.

d (E:t, veey Et—m) .

3. ESTIMATION

We now turn our attention to the construction of estimators that will achieve this
semiparametric efficiency bound B. We begin by conducting a thought experi-
ment in which the investigator is assumed to know the parametric structure of
all the joint density functions {f*(¢*)},_, and is interested in using the sample
€™ to construct an estimator which is asymptotically normally distributed with
an asymptotic variance of B. (Crowder (1976) analyzes fully efficient maximum
likelihood estimation in this case.) This experiment will then provide us with
guidance in the construction of semiparametric efficient estimators in the more
realistic case where these joint densities are unknown to the investigator.

8



A semiparametric efficient estimator is one that sets the efficient score equal
to zero, i.e., is 0, such that

118 () = —n1 3o s (e (Ba) [ (B)) =0

t=1

or :

where Sy, () = n71S, (0) and s,,; (0) = —s; (e (8) |e (§) ). We first show that
such an estimator does indeed achieve the efficiency bound B, then we show how
to compute it if the conditional density functions are known to the researcher,
and finally we derive a semiparametric estimator that achieves the bound even if
these density functions are unknown.

In order to derive the asymptotic distribution of 8, we must first establish its
consistency. We begin by assuming that s, (#) is measurable with respect to the
filtration {F,.} for every 6 € O, where F,,; C Fp141 C F for every t = 1,...,n
and n = 1,2,.... To obtain our consistency results, we must first state some
definitions and make some assumptions (for further discussion of Definitions 1-3
and Assumptions 1-2 below, see White (1996)).

DEFINITION 1 (White (1996, p. 352): The double array {s,:(0)} is said to be
Lipschitz-L; a.s. on © if for each 67 € © there exist a constant §t > 0, functions
LL’t : Q — Rt measurable-F and functions al:’t : Rt — R*, all’t (6) 1 0 as 6 — 0,
n,t = 1,2, ... such that either

(i) @' (8) = sup, sup,al,,(8) < oo for all 0 < § < 61, @t (8) | 0 as
§— 0, and {n“l e, E (LLt)} is O(1); or

p < o for all

p/ (p—l)} .
18

(i3) For some p > 1, @' (§) = sup, [n“l " ah, (6)”]
0<6<68, at(5)10asb— 0, and {n—l o (B (LL)
O(1);

and, for all 6 in ‘ﬁT((ST> = {9 €0:p (9,9*) < ET}, ]sn,t (0) — sny (HTM <
LL’taL,t [p (0,91‘)} as.-Pn,t=12,..



DEFINITIONQ (White (1996, p. 352)): For given 68 € © and § > 0, define
the random variables ELt (6) = sup,t(s) Sn,t () and §L’t (6) = inf t(5) Sn (0), where
nt(6) = {9 €EO:p (0,9*) < 6}. We say that {53” (6)} obeys the weak law of
large numbers locally at 61 if there ezists 61 > 0 (depending on 01) such that for
al 0<§<8,ntyr, [§L,t (6) — E§L,t ((5)] =0,(1) and similarly for {§Lt (6)}

ASSUMPTION 1: The array {sn:: 2 x © — R} is Lipschitz-L; a.s. on ©, and

'511,.‘, (6) and gfl,t (8) obey the weak law of large numbers locally at 61 for all 6t € O©.

We may now state the following weak uniform law of large numbers for our
efficient score function, which follows from Theorem A.2.5 of White (1996, p.353):

LEMMA 1: Under Assumption 1, we have:

(1) S, () =n 1St Espy (1) : © — R is continuous on © uniformly
m n; and

(i) Sn (8) — S, (6) = 0,(1) uniformly on ©.

To ensure that 8, is a consistent estimator of 6y, we must supplement the
result in Lemma 1 with an identification assumption on S, (4), to the effect that
0o is its unique zero. We make use of the following identification criterion, similar
to one given by White (1996, p. 28).

DEFINITION 3:  Suppose that S, () has a zero on © at 6y for every n=1,2,...
Let v, (6) be an open circle in R centered at 0y with fized radius 6 > 0. For each
n=1,2,... define the neighbourhood 1, (6) = v, (6) N © with compact complement
ne (8) in ©. The zero 6y is said to be identifiably unique on © if either for all
§ >0 and all n nE (6) is empty, or for all § >0

n—oo | geng ()

lim inf { min |3, (0)]} > 0.

10



We may now state the following weak consistency result for §n, using a result
analogous to Theorem 3.4 of White (1996, p. 28):

THEOREM 1: Under Assumption 1, and assuming that 0y is the identifiably unique
zero of Sy, (0), we have R '
9,,_ - 90 = Op(l).

We now proceed to prove the asymptotic normality of 8, and to derive an
expression for its asymptotic variance. To this end, we introduce the nota-
tion s} (g (9) |1 (6)) = Os¢ (€4 (6) |e"* (A)) /D¢y, and, for every j = 1,...,t — 1,
st (g4 (0) |1 (6)) = Os¢ (e: (0) |e* () ) /Oes—;. Before we work out the asymp-
totic distribution, let us consider these derivatives more carefully. We first observe
that the derivatives with respect to the lagged €, i.e. s (e; (8) |e! (8)), have zero
expectation under Fj, ,, the probability measure of the sample when evaluated at
fy. To see this, note that

E [si (Et (6o) 'st'l (00))]
= E|[E sl (e:(60) | (80)) | (60) ]
and that E {s{ (¢ (60) |€71 (6p) ) €71 (90)] = 0. We can rewrite this conditional
expectation as
[ el lel),
which is equal to zero for every t = 1,..,n by the facts that s} (e|e™!) =

—s{(—elet™!) and g; (e [e") = g (—e |e*™"). As for the derivative with regard to
aft! et !/&:t

current £, first recall that s; (e; |et1) = oM the first element of the partial
N art(et)/o L.
derivative vector of f*(&*). It follows that s} (g; [¢t"!) = (%) %, which is

the first element on the diagonal of the Hessian of f*(¢'). But the expectation of
the negative of this quantity is equal to the first element on the diagonal of the
information matrix of f* (&), which we have denoted above by I, ().

We can now investigate the asymptotic distribution of the estimator 8,. As
usual, we employ the following mean value expansion of S, (én) about 6g:

Sn (B) = Sn (60) + S, (8) (62 — 6) =0,

11



where 6,, € [QA,I, 00] and S, (0) = Spy Zse (e (0) |71 (6)) . We then have

n'/2 (6, — 6,) =[-8, (8.)] " nV28, (60).

To work out the asymptotic distribution, we consider the limiting behaviour of
the two components of the RHS separately, beginning with n~Y25, (6y) . We can
rewrite this quantity as follows:

V28, (60) = =2 sas (o). @)

t=1

Since {sn ¢ (00) , Fnt} is a martingale difference sequence, we can employ The-
orem A.3.4 of White (1996, p. 357) to apply a central limit theorem to (2). In
order to do so, we make the following assumption:

ASSUMPTION 2: The sequence {snz (6o) , Fns} satisfies the following conditions:

(i) E |sn: (80)"° < A for some § >0, A < 00, t=1,...,n, n=1,2,...;
(1i) I, > &' > 0 for almost all n; and
(i) 1 Sy 500 (00)? — T = 0p(1).

LEMMA 2: Under Assumption 2, we have

n~Y2L-128, (6) 5 N (0,1).

We complete our analysis of the asymptotic distribution of 8, by considering
the limiting behaviour of the conditional Hessian

$2(02) =07 2 g (0 (0) | ()
- z (0 (3.) [ (B)) +nt o 30 (o0 (B) [ (2)).

12



Using the facts that 0 —0 = 0p(1), n 1 320 | E[s} (g4 (60) |€72 (6p))] = —T,, and,
forevery j=1,..,t—1, E [st (e (60) 1€ (69)) ] = 0, it follows from our station-

arity and ergodicity assumption that —S, (5 )- _B= 0,(1), which, combined
with Lemma 2, yields the following convergence result:

THEOREM 2: Under our assumptions, we have
B2 (8, — 6o) 5 N (0,1)

so that 0,, achieves the semiparametric efficiency bound. -

We now describe an iterative estimator, constructed under the assumption
that the innovation densities are known, that achieves the semiparametric effi-
ciency bound B. We assume the existence of some discretized n'/?-consistent pre-
liminary estimator 8} (the discretized sample mean, for example), and construct
the following iterative estimator:

@)] Sl @) ©

It is easily shown, under our differentiability assumptions and using a mean-value
expansion of n™ Y0, sy (e (6%) [€71 (6%)) about 6, that F constructed in this
manner achieves the semiparametric efficiency bound. In particular, we have the
following result, which is proved in Appendix B:

n

gr =0; + [n“l > s (st (@r)

t=1

THEOREM 3: Under our assumptions, the estimator 6 given by (8) achieves the
semiparametric efficiency bound B, so that

B> (0 — 6) < N (0,1).

In practice, of course, the conditional densities g; and their scores s; are un-
known to the investigator. To overcome this difficulty, we now investigate the
possibility of using nonparametric kernel methods to estimate this density and its

13



score, and so formulate an estimator that achieves the semiparametric efficiency
bound in absence of knowledge of the functional form of ¢; and s;. The basic
structure of our semiparametric efficient estimator is the same as that of 8, as
given in (3), except that in place of the unknown scores {s; (g; (6) |e'~* (82))}
we employ nonparametric estimators {3; (e, (6}) |€™* (6%))}. To derive such an
estimator, recall that

5]“( (67)) /et

S O)
so our problem reduces to that of obtaining multivariate kernel estimators of
the scaled sum of the joint t+1-dimensional densities f* (e (8)) and of the first

elements of their partial derivative vectors, viz. df* (¢* (6%)) /Oe;. In practice, we
employ an m+ 1-dimensional Gaussian kernel estimator, where the kernel is given

by ,
o 6) = (0 2e) " ep (22,

where {a,} is a bandwidth sequence that converges to zero as n — oo. Our
density estimator is

Sy (st @) e

t—1 (9*))

f(a:@ (n—1)" Zwan(zv £ (9)),
o

where &; (0) = (g (0) ,€j-1(8) ,...,j—m ()" . The use of such an estimator can, in
principle, be justified either by the assumption that the data follow an m**-order
Markov process, so that g; (e;|e"™') = g: (€; |41, -, €t—m ), OF by thinking of m
as a truncation parameter that increases to infinity with the sample size. In the
context of nonparametric estimation of a conditional variance function, Pagan and
Hong (1991) consider a similar situation, conjecturing that the latter approach
may be possible but not being aware of any results in the nonparametric literature
regarding the estimation of infinite-dimensional functions. Due to a similar lack
of awareness, we proceed under the Markov assumption here, leaving the more
general situation for further investigation.

Define the first element of the vector of partial first derivatives (with respect

14



to z) of f; (z,0) by f!(z,0), and further define

ﬁ (z,0) > d,

}\'(mﬁ) y
_ i ’Lf ’IL" S €n
g (2,0) =< fi(=0) 71 (z, g)‘ < Cnft (z,0)
otherwise,

where ¢, — o0, ¢, — 0, d, — 0, a,c, — 0, ena_(m+3) = o(n), and our score
estimator is

L a0 — a (—2.0)).

§t (x70) = 2

Our information estimator is

We therefore have the semiparametric efficient estimator
O, =6 +n 2T (657" |0~ 1/2 Zs (& (67) (5)

The following theorem is proved in Appendix B: -

THEOREM 4: Under our assumptions, and further assuming that the innovation
process {e:} follows an m*™—order Markov process, the estimator 8, given by (5)
15 semiparametric efficient, so that

B2 (9, — 65) % N (0,1).

Equivalently, 6, is asymptotically equivalent to 6;r, as given in (8), so that the
following convergence result holds:

/2 (6n = 67) = 0,(1). (6)

Theorem 4 is undesirably restrictive due to the assumption that the inno-
vations follow an m'-order Markov process. As mentioned earlier, it would be
desirable to drop this assumption and to show that the estimator as constructed
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above is asymptotically semiparametric efficient in the more general case by using
an argument under which the truncation parameter m goes to infinity with sample
size, although we do not know if this is possible. However, in the following section
we discuss an important and desirable robustness property which 6, possesses
even when the data are not Markov.

4. ROBUSTNESS TO HETEROGENEITY AND NON-MARKOV
DATA :

We have so far assumed that the innovation process {¢;} is stationary and ergodic,
and have indicated in Section 2 that our derivation of semiparametric efficiency
bounds relies heavily on this assumption. Our derivation of a semiparametric
efficient estimator in Section 3 relies on the further assumption that the data are
m*-order Markov. However, these assumptions may well both fail in many em-
pirical applications, so that it is desirable to investigate the robustness properties
of our estimator in the presence of such failure. In Hodgson (1996), it is shown
that a Stone (1975)-type estimator, which only nonparametrically estimates the
unconditional density of the innovation process, has important robustness prop-
erties in the presence of certain types of heterogeneity and dependence. In the
present section, we extend this result to the case of the semiparametric efficient
estimator, which estimates the conditional density of the innovation process.

Allowing for the possible presence of heterogeneity in the data generating
process, we now denote the density function of the m + 1-dimensional vector
& = (e, ..., 5t_m)' by fi, with associated cdf of F;. Note that neither stationarity
nor Markovicity are being assumed here. The cdf F; is the marginal distribution
of the vector &; the existence of such a marginal cdf clearly does not imply that
€; is independent of £;_; when j > m. The t subscript indicates that the marginal
distribution can be changing over time, allowing the possibility of nonstationarity
in the process. However, following Bierens (1984) and Pé6tscher and Prucha (1989),
we shall restrict the degree of heterogeneity in the process by assuming a type
of "average asymptotic stationarity”, in the sense that n~! 3" | F; = F, where
= denotes weak convergence of probability measures (cf. Billingsley (1968)).
Furthermore, we assume that the average asymptotic unconditional distribution
F has a pdf f = F' that is symmetric about zero, twice continuously differentiable,
and has finite, positive definite information. We assume that the data are ¢— or
a—mixing, but need not be Markov.

We first analyze the behaviour of the ”partial” semiparametric efficient esti-
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" mator 6, that we would compute if we knew the unconditional density function
f and proceeded as if the data were stationary and m®*-order Markov. We would
then select 0,, so as to set the "partial” efficient score equal to zero:

nt z (& (2.)) =0, (7)

where s (& (0)) = %%/)—% is the first element of the score vector of the joint

density f (€:(6)). The following Lemma can then be established (the proof is in
Appendix B):

LEMMA 3: Under the assumptions of this section, the estimator 0, as defined in
(7) has the asymptotzc dzstmbutwn

n'/2 (8, —90)->N(0 7,

~ 2
d ~ g
where now Z = [ o1 ;ta/ 2)_dg,. Furthermore, the same asymptotic distribution

s obtained by the following one-step iterative estimator:

b= |03 6 @) B ERIC w:;’»] . ®)

t=1

We can then derive the following robustness result for our semiparametric
estimator 8,, a proof of which can also be found in Appendix B:

THEOREM 5: Under the assumptions of this section, and assuming that c, =
0 (n5/2) (recall the definition of g, (x,0)), where 0 < § < 0o 1s such that n™1 Y1, Fy(2)—

F(z) = O(n®) for every z, the estimator 8,, the construction of which is given in
(5), has the following asymptotic distribution:

n'’2 (6, — 6o) = N (0,27). (9)

Equivalently, we have

n'/? (6, — 6}) = 0,(1),
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where the construction of 6% is given by (8). The following consistency result also
holds: R
1(67) =T = 05(1), (10)

where the construction of I(0%) is given by (4).

Note that the condition on ¢, in Theorem 5 is redundant in the stationary
case since n~! Y} | F;, = F for every n. In:the case where {F;} consists of a
periodically repeating cycle k periods long (such as periodic heteroskedasticity
which might occur, for example, in daily stock market data if certian days of the
week or month have higher variance than others), we have § = 1.

We conclude from (9) that the estimator 6,, although being semiparametric
efficient only under stationarity and Markov assumptions on the data generating
process, still has the important robustness property that in the presence of hetero-
geneity and more general dependence, it is asymptotically normal with variance
equal to the inverse of the first element on the diagonal of the information matrix
of the average asymptotic unconditional joint density f (). We know from (10)
that our estimator of the asymptotic variance, and hence of the standard errors, is
robust to the presence of heterogeneity and non-Markovicity. What this means is
that, as far as usefulness for conducting inference is concerned, it doesn’t matter
whether or not the stationary, Markov assumptions of the preceding section hold:
- the asymptotic distribution of 8, will be unchanged and the standard errors will
still be consistently estimated. This result generalizes that of Hodgson (1996), and
has the desirable implication that inference conducted using the estimator 6,, and
its estimated asymptotic standard errors is robust to heterogeneity and general
dependence in the data. The notion of heterogeneity we have used is of course
somewhat restrictive, since it assumes a certain asymptotic form of stationarity.
It would be nice to allow for more general forms of nonstationarity, but we have
yet to conduct investigations upon these lines.

5. LINEAR REGRESSION WITH ARMA ERRORS

We have so far couched our analysis entirely in terms of the simple location pa-
rameter model given by (1). We have so restricted ourselves primarily to facilitate
the exposition of the main ideas involved in the derivation of semiparametric effi-
cient estimators in the presence of dependence of unknown form, but these ideas
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are applicable to a much broader range of interesting econometric models, includ-
ing linear and non-linear regressions, ARMA models, cointegrating regressions,
error correction models, etc. In this section, we briefly sketch the theory for the
linear regression model whose errors follow a stationary and invertible ARMA
process with symmetric martingale difference sequence innovations and show how
to semiparametrically efficiently estimate the regression parameters.

We consider the following model:

B = OA+.’L‘£,@+’U¢, !

P g
Uy = Zajut_j +5t+zbj€t—j,

Jj=1 J=1

where o is the intercept, z; and § are k-vectors, and we observe the sequence
{ye, 2} for t = 1,...,n. We assume that the ARMA parameters satisfy the usual
conditions of statlonanty, invertibility, and identifability, that {x;};_, is prede-
termined for 8 and that E [z.x;] = M, is finite and positive-definite for every
t and n ' XL (@ — M) = 0,(1). We furthermore define the o-field Q,_; =
a(a:t,act 1,--€t—1,-..) and maintain our assumption that {5t} is a stationary
"_order Markov process with symmetric conditional density.? Since &; is in-
dependent of {mj} —1» We can write the conditional density of ¢, as g (e; [Q%_;) =

g (ec|eta1y s €t m) with the symmetry property that g (e; |e—1, ..., €t-m ) = g (—&t |€t—1, ...

We can then write the log-likelihood of the sequence {y;}, conditional on the
regressors {z;}, and assuming the existence of initial conditions, as follows:

L(0,n) = élogg (60 (6) €11 (6) , - E0m (6) s1)

where 6 = (a, 3,4y, ..., ap; b1, ..., b;)' and we once again use 71 to denote a param-
eterization which includes the true (unknown) model of the conditional density
function g. Following Kreiss (1987), we have

0= ;«y © {um o Z%Utﬂ 5 (0) }+zs_s (Z%+s \ 6) bk)

s==0

where the constants {x (0)},2, are such that 52 v (6) 2 = (1 + byz + - - - 4 b,29) ™

and 7, (6) + 0195-1 (6) + -+ + byys—q (6) = 0 Vs > 1, with ~, (f) =0Vs <0 and

2An adaptive estimator of this model has been derived by Steigerwald (1992) under an iid
assumption on the sequence {e;} .
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Yo (#) = 1. The following notation will facilitate our analysis of the scores for the
model:

Zy—1 ( Z”Yk (0) (ut-1-£ (0) , -y ut—pk (0) ; €4-1-k (8) , -y E1—gk (8))’,

- (z " (9)) (_1‘- z) ,
[y (6) = Z% (mt—j;‘gafjxt—j—k>a

and ,
Hy 1 (0) = (7. (6), Ty (6), Z1-1 (6)) -
We can then write the score with respect to the parameter 6 as follows:

Olog L, (0,m) s 09 (¢ (0) let—1(0) , ..., €t—m () ;6,7m) / Oey
90 | ZlHt— 9 (et (0) le-1(0), .., €6-m (6) ;6,7)
& 9g (et (0) |et-1(0) , -, €e-m (8) ;6,m) /Oer—;
Ef‘%Ht g0 e 8), - et-m (0):8,m)

and the score with respect to the nuisance parameter 7 as

Olog L (0,m) _ Z": g (e (6) les—1 () , .., e-m (6) ;6,7m) /O
677 t=1 g (Et (0) |5t—1 (0) 1oy Et—m (0) ;0, 77) .

We can use our symmetry assumptions and arguments similar to those in Section
2 to show that the efficient score for the regression model is

ZHt 1 ) 5 (&, 0),

where, as earlier, we have s (&;,6) = 69(;(‘5(:9();;2:(f()é)’_’ff;'_"r(no()o;’ 39/)65‘ — Ss(‘g(:’(?)/)ast. The

semiparametric efficency bound is now given by

[ lim B {n_l an H,_1s (&, 0)} 2}

t=1

-1

n—oo

= [ Lim E [Hn—l (0o) Hn1 (60) s (&, 00)2]] - ,
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We can use argumentation similar to that given above to show that the following
semiparametric iterative estimator achieves this bound:

o= 0+ |7t S0 Ho (65) HL, (62) 5 G (0:))2]" [nzH< o).

t=1

The preliminary estimator 87 is assumed to be discretized and n!/?-consistent -
the discretized Gaussian pseudo-MLE is an obvious and convenient choice.

6. MONTE CARLO RESULTS

The simulations reported in this section compare the finite-sample mean-squared
error (MSE) performances of the sample mean, the Stone (1975)-type ”adaptive”
estimator, and our ”semi-adaptive” semiparametric efficient estimator, for the ba-
sic location parameter model given in (1). We consider a variety of models of the
second-moment dependence in the data, and carry out MSE comparisons for sam-
ple sizes of 100, 250, 500, 750, and 1000. In all cases we conduct 1000 iterations
and report the MSE figures for each of the three estimators. To implement the two
semiparametric estimators, we use the sample mean as the preliminary estima-
tor, employ the Silverman (1986) rule-of-thumb bandwidth, and set the trimming
parameter as in Hodgson (1995). In the case of the semiparametric efficient es-
timator, we always set m = 1, so that we are only accounting for dependence
in the data at one lag (although some of the DGP’s we consider are not Markov
processes). In this case, we are nonparametrically estimating a bivariate density
(i.e. that of &; and €;—1), and so use the appropriate rule-of-thumb bandwidth.
The results presented here are of fairly limited scope.. We intend to carry out
more extensive simulation work both of the estimator developed in this paper and
of other related estimators in future research (Hodgson (1997)). We now describe
our particular data-generating processes.

6.1. The ARCH Model

The model we consider here is the basic Gaussian ARCH(1) process introduced
by Engle (1982), in which the conditional variance is a linear function of the
lagged square of the process. Hence, a large absolute value of the realization
of the process in one period increases the probability of large absolute values in
subsequent periods, leading to the long-recognized phenomenon in economic and
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financial time series of volatility clustering. Formally, we have an ARCH(1) model
if the innovations {e;} in (1) are generated as follows:

f = uyh

u ~ dN(0,1)

2
ht = C¥0+O£1€t_1.

We assume that |o;| < 1 and ap > 0. In this formulation, h; denotes the condi-
tional variance of the process. The unconditional variance is 02 = ag/ (1 — o),
which is also the asymptotic variance of the properly scaled and centered sam-
ple mean. Unfortunately, we know neither the unconditional distribution of the
ARCH(1) process nor the joint distribution of ¢; and &;_;, so that we are un-
able to derive the asymptotic efficency gains possible through the employment
of the Stone (1975) or semiparametric efficient estimators. Note that this model
does have the first-order Markov property assumed in our construction of the
semiparametric efficient estimator.

6.2. The Threshold Model

This model is a simplified version of the ARCH model, in which the conditional
variance is an increasing step function of the lagged absolute value (and hence of
the lagged square) of the process. It also implies first-order Markov data. Each
point at which a jump occurs is a threshold value. In our Monte Carlo exercises,
we will consider a simple case where there is one threshold value, so that the
conditional variance can assume one of only two possible values, the smaller one
when the lagged absolute value of the series is below the threshold value and the
larger one otherwise. The conditional distribution is always Gaussian.
Our model is formalized as follows:

Er = ’U,t\/h_t

u ~ #%dN (0,1)

B, — { aé if |€t_1['< o
o otherwise,

where 0% > 0% and « is the threshold value. An appealing feature of this model is
that we know its unconditional distribution and so can calculate its information
and hence the efficiency gain of the adaptive estimator over the sample mean.
This unconditional is a mixture of two normals, with variances of 0% and o7,
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where the probability of a low variance draw equals the unconditional probability
that |e;-1| < @, which we denote by . So the unconditional density of ¢ is

Fe) =N (0,0%) + (1 =) N (0,03),
where

7 = prob(less] < a) = pa/ (1~ pa -+ pa)
psy = prob (|et| < o lht = ai) =0 (afos) — D (—afom)
pa = prob(lee] <alh =0}) =@ (a/os) — ®(-a/os),

and @ (-) is the standard Gaussian cdf. We can therefore compute the asymptotic
efficiency gains possible for the Stone (1975) estimator over the sample mean. It
should be possible to work out the joint distribution of ¢; and &;_; and compute
the asymptotic efficiency gain of the semiparametric efficient estimator. This
point will be pursued in Hodgson (1997).

6.3. The Markov Switching Model

This model shares with the threshold model the property that the conditional
distribution of the process is Gaussian with a variance belonging to a finite set
of possible values, and, like both models described above, it implies volatility
clustering. However, it differs from both these models in that the conditional
variance is not determined by lagged values of the series but rather follows an
"exogenous” Markov process in which the probability of a high variance state is
higher if the previous state was also high variance than if it was not.3 Ironically
(given its name), it also differs from these models in that it implies that {e;} is
not a Markov process.

We again consider the simplest case, in which there are only two states, and
formalize our model as follows:

& = ’U,t\/-}-l‘t

u ~ iidN(0,1),

and h; follows a Markov process characterized by the following transition proba-
bilities: :

prob (ht =% lht_l = gi) = p

3See Hamilton (1989) for more on Markov switching models.
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) = 1
) = 10

) = @

where we assume that 0% > ¢% and p > 1 — q.

As with the threshold model, we know that the unconditional distribution
of the Markov switching model is a mixture of Gaussian random variables with
respective variances of ¢% and o%. We have

PN

prob (ht = ag 'ht_l =0

o

prob (ht = orfl |ht_1 =0

oo

prob (ht = 0129 \ht—-l =0

fle) =N (0,0%) + (1 =) N (0,03),

where y=(1-¢q)/ (2 o q) . Similarly, we should be able to work out the joint
distribution of ; and g;_;.

6.4. Simulation Results

Tables 1-3 report the results of our Monte Carlo simulations for the threshold,
ARCH, and Markov switching models, respectively. For the threshold model, we
employ the parameter settings 0% = 1/3, 0% = 27, and o = 1.32, in the ARCH
model we set oy = 0.15 and oy = 0.95, while in the Markov model we have
0% = 1/3, 04 = 27, p = 0.92 and ¢ = 0.30. As mentioned above, we cannot
compute the asymptotic efficiency gains possible through use of the Stone (1975)
or semiparametric efficient estimators in the ARCH models, but for the other
two models we can compute the efficiency gain of the former estimator over the
sample mean and should be able to do likewise for the latter. The parameters
for the threshold and Markov models are chosen so that v = 0.9, so that the
unconditional distribution of these two models is the same as that of the iid data
used in simulation studies by Hsieh and Manski (1987) and Hodgson (1995). The
ratio of the asymptotic variances of the Stone (1975) estimator and the sample
mean in this case is 0.13. In each of Tables 1 to 3, we report the MSE figures for
the sample mean (SM), Stone estimator (ST), and our semiparametric efficient
estimator (SE), with the ratios of the two latter estimators’ MSE’s with respect
to that of the sample mean being reported in the final two columns of each table.
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TABLES 1-3: MONTE CARLO RESULTS

Table 1: Threshold quel - MSE
(o2=1/300 =2T;a = 132)

n MSE(SM) | MSE(ST) MSE(SE) ST/SM SE/SM
100 292x107 130%x107 198x107? 45 68
250 121x107 452x107 479x107 37 40
500 6.06x 107 195x107 184x107 32 30
750 401x107 131x107 103x 107 33 26
1000 279%107° 9.16x10™ 7.08% 107 33 25

- Table 2: ARCH(1) Model - MSE
(o, = 0.15;01, = 0.95) |

n MSE(SM) | MSE(ST) MSE(SE) ST/SM SE/SM
100 1.74x107? 1.00x107? 134x 1072 57 71
250 725%107 272107 366x107 38 50
500 284x107° 114x107° 117x107° 40 41
750 3.67x107 141x107° 1.99%107 38 54
1000 247x107 625%10™ 1.04x10™ 25 A2

Table 3: Markov Switching Model - MSE
(o3 =1/3;05 =27;p=092;q = 030)

n MSE(SM) | MSE(ST) | MSE(SE) ST/SM SE/SM
100 343x1072 153x 1072 1.74 %1072 45 51
250 130x107* 509%107 465%107 -39 36
500 6.00%x107° 202x107° 1.64x 107 34 27
750 427%107 118x107? 9.94x10™ 28 23
1000 326%x107° 789x 107 717x107* 24 22

Notes on Tables 1-3:
(a) 1000 iterations were used for each model.
(b) SM = sample mean; ST = Stone (1975) pseudo-adaptive estimator; SE = semiparametric efficient

estimator with m=1.
{c) A/B =ratio of MSE’s of estimators A and B, respectively.
(d) The Silverman (1986) rule-of-thumb bandwidths were used in the computation of ST and SE.
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The results show that, in general, the two semiparametric estimators consid-
ered improve substantially upon the sample mean for all sample sizes, with the
degree of improvement increasing in sample size. Although SE is asymptotically
superior to ST, we would expect that in small samples it may not perform as
well because of the problems induced by the nonparametric kernel estimation of
a multivariate density. The primary question we address in these simulations is
therefore that of the sort of sample size that js required for the asymptotic effi-
ciency gains of SE to be realized in practice. The three tables suggest that the
break-even point occurs at a sample size of approximately 500, although for the
Markov switching model SE already beats ST at n=250. For the threshold and
Markov models, we find that for sample sizes of 750 and 1000, SE reduces the
MSE of ST by nearly 25%. The ARCH results are rather odd. For samples of 750
and 1000, SE deteriorates relative to ST, even though at n=500 the estimators
have equal performance. These results must be considered highly suspect. No-
tice from the third and fourth rows of Table 2 that all three estimators’ MSE’s
tncrease when the sample is increased from 500 to 750. This strange result may
be occurring because the ARCH parameter oy = 0.95 is so close to the boundary
of the set within which the process has finite variance, the data are behaving in a
manner similar to data generated by an infinite-variance process. As mentioned
above, more extensive analysis of the practical properties of our estimator will
be reported in Hodgson (1997). Nevertheless, the fundamental message of Tables
1-3 is that SE always improves upon SM, and for sample sizes of 500 and over is
capable of consistently improving upon ST as well.

7. CONCLUSIONS

We have investigated the problem of semiparametric efficient estimation in time
series models and found that, in the presence of dependence of unknown form, the
semiparametric efficiency bound is achieved by an estimator that utilizes nonpara-
metric estimates of the score of the density of the martingale difference innovation
process conditional on its past. The derivation of the efficiency bound and the
semiparametric kernel estimator proposed in the paper rely on the assumption
that the data are stationary and that the conditional densities are symmetric
about zero. The kernel estimator depends on the further assumption that the
data are m!f-order Markov, but its asymptotic distribution is invariant to the
failure of this assumption, as well as to certain departures of the data from the
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stationarity assumption, as are the estimated standard errors. We develop the
estimation theory for the location model of Stone (1975) and the time series re-
gression model with ARMA errors of Steigerwald (1992), with extensions to many
other models of interest in time series econometrics being possible.

The methodology is implemented through a brief simulation study which in-
dicates that the semiparametric efficient estimator improves considerably upon
the Gaussian pseudo-MLE in terms of mean-square error for samples as small
as 100 and has ”caught up” with the pseudo-adaptive estimator, which relies on
kernel estimates of the score of the unconditional density of the data, by the time
the sample size has reached 500, for all models considered. For larger samples,
the semiparametric efficient estimator surpasses the pseudo—adaptlve estimator
for two of the three models considered.

The work reported in this paper undoubtedly has close relationships with
previous work. Pagan and Hong (1990) and Pagan and Schwert (1990) have
considered nonparametric estimation of conditional variance models. If all the
dependence present in a time series occurs through the second moment, then this
approach could presumably be used to compute estimators in location models that
achieve the semiparametric efficiency bound, provided that the parametric family
to which the conditional density belongs is well specified. On the other hand, if we
are willing to put our trust in the model of conditional variance that we use, but are
uncertain about the parametric family to which the conditional density belongs,
then we can estimate the density nonparametrically following Engle and Gonzalez-
Rivera (1991), Linton (1993), or Drost and Klaassen (1996). To date we know of
no other methods that nonparametrically treat both the conditional dependence
and the non-Gaussianity present in the data, although it may be possible to show
that the seminonparametric estimation strategy of Gallant and Tauchen (1989) is
applicable to our problem and, under certain conditions, produces semiparametric
efficient estimators asymptotically equivalent to that proposed here. Similarly,
an estimator recently developed by Kuersteiner (1996) is related to the problem
considered here. We intend to investigate the semiparametric efficiency properties
of these estimators and their practical implications in Hodgson (1997).

APPENDIX A: A DERIVATION OF THE BOUND USING RESULTS OF IBRAGIMOV
AND KHASMINSKI (1991)
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To simplify exposition, we shall only state the proof for the case of first-order
Markov data. A proof for the more general model would follow similar lines. We
begin by defining the following vector of unknown parameters: v = (6, g (z |z2)),
where v is an element of the parameter space & = © xI', where the properties of ©
are stated in the text and I is the space of symmetric conditional density functions
g (%1 |z2) satisfying the properties described in the text. The observed sample of
size n is generated according to the sequence of probability measures P, ,,, where
P, is the same as Py, as described in the text, but with the infinite-dimensional
parameter g (z1 |z2) now included in the parameter vector.

We begin our derivation of the semiparametric efficiency bound by showing
that the family of probability measures {P,,;v € E} is locally asymptotically
normal (LAN) according to the definition of Ibragimov and Khas’minski (1991,
p.1682). We define the Hilbert space H = H, -+ Hj, where H; is the Hilbert space
containing functions of the form

—kgi (z1]|z2) kg (z1 |z2)
\/g (z1]z2) /f (22) \/9 (@1 |z2) / f (w2)

(where f (-) is the unconditional density of the innovations & and k is a constant),
and H, is the set of all bounded, integrable functions hj (21, z2) having the prop-

erties that hy (z1,23) = hg (—21,22) a.s. T2 and [ hs (z1,22) 1/g (21 |zg)dz; =
0 a.s. zo. We define the norm H || on H as follows: for every b € H, ||h|} =
[ (h1 (z1,22) f (z2) + ho (1, %,))* dzydzy (it can be shown that this is indeed a
norm).
We define the sequence of linear operators {A,}, which map H into R x L,
as follows:

hy (z1,22) =

v/ 9(z1|z2 )/ f(z2)
V9 (@1]23) /£ (22)he (21,22)

where ;) = | Mﬂfﬂz—zldmdwg. Note that, for h € H, we have

g(z1|z2)

—1 —gi(z1}x2) ‘
A, (h) — 12 [ Iy f( Z )hl (931,332) dzidzy } ’ (11)

v+ A (h)=1/+n"1/2{ i }
" V9 (@1 |22) /£ (@2)hs (21, 35)

We must check that conditions 1-3 on p.1682 of Ibragimov and Khas’'minski are
satisfied. The first condition, that lim [|A, (h)|| = 0 Vh € H, clearly holds for
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any norm on R X Ly. Condition 2 will follow if we can show that, for every h € H,
there exists n sufficiently large that v + A, (h) € Z. We first note that, for n
sufficiently large, the result 8 + n~'/2k € © holds, since 6 € int®. We also claim
that the function g (z1|z2) + \/ g (z1|ze) /f (x2)hs (z1,2) is a density function
symmetric about zero in x;. This follows from the symmetry of g (z; |z2) and
hy (z1, ) and from the fact that [ \/g (21 |z2)/ f (z2)ho (z1,22) dzy = 0.

To complete our verification of the LAN conditions, we must analyze the asym-
proric behaviour of the likelihood ratio A, (v + A, (h),v) = %ﬂ-’l. Under
standard assumptions, we can ignore the initial conditions asymptbtically and
base our analysis on the following approximation of the likelihood ratio:

n (g (y—0—n"V2% [yt—l =0 —n"V%k)
An(V—FAn(h):V)_H{ g(yt—ﬁlyt_1—9)

t=1

f(yt—rf?—n“l“k)

n"1/2\/g(yt_o_n_l/zk’yt_lweﬁn_l/zk) ha (yt —0—n"2k,y —0— nhl/zk)
+
9y — 0y —0)

(12)
We can expand the numerator of the first component on the RHS of (12) to obtain

g (yt — 0 —n" 2 ‘yt—~1 —-0— n”1/2k> = g (0) — n "%k (g1 (0) + g 9))

+(2n) 71K (g11e (0) + gore (0) + gz (6) + g (0)) + Op (”‘3/2-) ) (13)

where we write g, () = g (y: — 0 |yz—1 — 8), etc., to prevent notational clutter.
Using the notation

0« [T oo,

we can write the numerator of the second component on the RHS of (12) as
n"Y2z (9 + n_l/Qk) =122 (0) — nk (210 (0) + 220 (6)) + Oy (n—s/z) , (14)

where 21, and 2y denote the derivatives of z; with respect to &; and ¢;_,, respec-
tively. Substituting (13) and (14) into (12), we obtain

T _1j2y, (916 (0) | g2:(0)  z(0)
An(u+An(h),u)——t=Hl{1——n /k(gt(e) riol ,_kgt(9)>
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+(2n) " K (gllt (0) + go1¢ (0) + g1t () + goot (6) _2(z11(0) + 2o (9))> (15)

g9: (6) kg: (6)

+0, (n_3/2)} :

We claim that (15) can be used to show that

- g1 (6) 4 O 9)  z(9)
An (v + An (h) V) = exp { ni/2 Z (gt © "0 " ta (9))

_k_z “(916(6) | g2 (0) = (0) .
2n (; (gt 6) + a(0) kg (9))) + p(l)}. (16)

To prove this, we apply to the RHS of (16) the formula

1 1
exp(m)=1+m+§m2+6z3+...

and use the fact that

_1x- (9116 (60) + ga1e (6) + guze (6) + 902 () 2(214 () + 226 (6))\ o
| 5 0) ) =

t=1

Defining the quantity

= [ gt 4 92 ) % )
An (h) = n1/2 E (gt T a0) kg (9)) ’

=1

we can show that J
2
An (h) 5 N (0, [1R]13) ,

_1.9.2_ 2 (91 (0) | g2 (0) _z(9) 2 B o
(;(gt ©) " 0@ (9))) = [1Bll + 0p(1).

and that

n

It follows that
1
A (v 4 A (1) ) = exp { B (8) = 5 18I + 0,(D)},

so that the conditions given by Ibragimov and Khas’minski (1991) for a model to
be in the LAN family are satisfied.
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Ibragimov and Khas’minski (1991) derive the semiparametric efficiency bound
for estimation of some parameter of interest § (v) when a model belongs to the
LAN family. Since our parameter of interest is just 6, § (v) is the function that
identifies the first element of v. The lower bound on the covariance is just the
correlation operator K K*, where the operator K is defined as

K = lim nl/@-‘s(—”)‘Aan,
51/’.

‘where Py is the projection operator onto the space H. For our model, ﬂ‘;}’l =
[1,0], so K will be the first element of the operator K = Jim n'/2A, Py. From
Theorem A.4.5 of Bickel, Klaassen, Ritov, and Wellner (1993, p.444), we can write
Py = P, + P, where Pjis the projection operator onto the one-dimensional space

—gi(z1|z2)

spanned by —4—1———, and P, is the projection operator onto Hy,. We can then
v a(zalz2)/ f(22)

write K = A; (P1+P,), where 4 (w) =I3"f (%) w (21, Z9) f (z2) dz1dzs,
so that

K (w :Il_ll 9 ($1|$2) )le Ty, dﬂ)ld.’Ez,
) /(\/9($1|5’52)/f($2) ( )

: —~g1(z1]z2) _
since [ ( g(®1|$2)/f(m2)) ha (%1, z3) dzidze = 0 for every hy € Hy. It then follows

that the semiparametric efficiency bound is KK* = I}, the result obtained in
the text.

APPENDIX B: PROOFS OF THEOREMS AND LEMMAS

Proor orF THEOREM 3: Subtracting 6, from both sides of (3), multiplying by
n'/?, substituting a mean value expansion of n=* Y7, s, (¢, (6%) |e~* (6%)) about
fo into the right hand side, and writing s; (8) = s; (e; (6) |¢"™1 (8) ), we obtain

n 1 n
nt/? («9: - 90) =nl2 (6% — ) + {n_l > s (9:)2} nl/? PERCH
t=1 t=1

V() |07 () ) w3 S ). (17)

t=1 t=1
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The theorem will then follow from (17) and the facts, established in the text,
that ™20 5, (05)° = B + 0,(1), n X0 &5 (6) = —B~! + 0,(1), and
B2 50 s, (60) 5 N (0,1).

Proor orF THEOREM 4: The proof follows similar lines to those of the proof of
Lemma 2 in Hodgson (1996). To establish (6), it is sufficient to check the following
two conditions:

n 4

n 18 8 87),62) = 5 (6)] = o0p(1) (18)
and n
Y[R 6, 6) — s (6)7] = oD (19)

A consequence of our LAN result in Appendix A is that the sequences of prob-
ability measures {Fp, .} and {Pg;,n} are contiguous, so that to obtain (18) it is
sufficient to prove

nY2 3" (8 (€4 (80) ,00) — 5: (60)] = 0p(1). (20)
t=1
We shall establish (20) by proving the following mean-square consistency result:
n 2
n—lE IZ (gt (gt (00) ,90) — St (90)):l — 0.
t=1

Under our symmetry assumptions, and due to our manner of constructing &;,
it follows that the difference {3; (&; (o) ,80) — s:(fo)} is a martingale difference
sequence, so that we need only show that

n! iE [5¢ (: (60) , 60) — s¢ (80)]* — 0

t=1

which follows if we can show
E [5:(8; (80) ,80) — 5: (60)* — 0 Vt=1,...,n, (21)
i.e., that

/ {qt ® —f7'<a}2f<§>d5~»o, (22)
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where we have written ¢, (8) = g (£(60) ,6o), where f (&) is an m + 1-dimensional
density function, and f’ is the first partial of f with respect to the first element
of .

We can now establish (22) following the argument of Bickel (1982, Lemma
4.1). We first prove that

[eo-£0} n@w-o 29

where f, denotes the convolution of f and the N (0,a21,,,;) density. Denoting
by g the v** partial derivative of a function g, for v = 0,1 (when v = 1, g®)
refers to the first element of the vector of first partial derivatives), we have

E[f¥ @) = B [r) (2 - 8)] = [ 7 (z = y) F (dy) = 1 (a).

In order to apply the argument of Bickel (1982, Lemma 6.1) to prove (23), we
must derive a bound for the variance of ’}") (z), v=0,1,. We have

VP (@) = var [ (@)] = E[[ (@) - 19 @]

2

(7% (@ - &) - £ ()

-

RAgrest

=F|(n— 1)_1

J.
J

(n—1)" Z Zil
j=1
J#t

where z; = () (z — ;) — f) (z). It follows that

VY (2)=(n—-1)"E [z 2 — }

(n—1)" +(n-1TE[F].  (24)

Z Zjzt

j=1

i }——2 n—l_2
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Now we note that because {¢;} is mixing, so is {&;} and also {z;}. Define v, =
E [22;—,] and p, = 7, /7. Our mixing assumption implies that |p,| — 0 as 7 — oo
(White and Domowitz (1984)). From (24), we have

Vi (@) =n(n-1)p-2(n-1)" Z’Yg~t+"—1) Yo

o i=1

=0 n (0= 17 =20 =)D gt (- 1)

M
<
“n—1

Yo,

since there exists some 0 < M < oo such thatn(n — 1) =2(n — 1) 1 Pi—t+
(n—1)"" < M for every ¢t and n. It follows that
M 2
) (¢ —
1E [ﬂ'an (z é)] .

Vil (2) <

Now,

(7 @) < W an ()
for some constant «, (see Stone (1975) and Jeganathan (1995)). We therefore
have

M
n—1

y 2 Mk, Mg,
E [ﬂ—t(ln) ($ - é’)} S (n _ 1)aﬁy+m+1E [ﬂ'a-n (.’.E - é)] = (n _ 1)agly+m+1 fa ("I:) ? )

yielding
Ty

Vi (@) < e e @),

where 7, = Mk,. The proof of (23) now follows the same lines as that of Lemma
6.1 of Bickel (1982), while the proof of (22) and therefore (18) is completed by
applying Lemmas 6.2 and 6.3 of Bickel (1982). We can apply standard methods
(cf. Bickel (1982) or Kreiss (1987)) to show that (19) then follows.

PROOF OF LEMMA 3: Our first step in proving the convergence result is to
establish the consistency of 8,. The proof follows standard lines so we shall not
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go into complete detail. We note that, under appropriate regularity conditions,
we can apply Theorem 2 of Pétscher and Prucha (1989) to prove that

n

S [s(5 (0)) - Bs (& <9>>1| e

sup

00 t=1
sup n_IZs / ((6 dF (& (60))| = 04.5.(1),
8cO t=1 4

and
{n"l éES & (9))}

is equicontinuous on ©. These conditions, along with an assumption of 6, being
the identifiably unique zero of n™1 3°% ; s (&; ()), will yield consistency. To obtain
asymptotic normality, we again use the mean-value expansion

v @mn)=- [ 8 (¢ @ @)+ £ @)
S s@ )]

We can again apply the results of Potscher and Prucha (1989), along with the
appropriate central limit theorem for martingale difference sequences, to prove

that N
n—ltzzlsj (& (8n)) = 0p(1) Vi=1,..,m

nt Z (5 (8.)) = ~Z + op(1),
and |

23 s (& (60)) % N (0,7),
t=1
from which three conditions we obtain the desired result. The proof of (8) follows
the same lines as our proof of Theorem 3, only now making use of Theorem 2 of
Potscher and Prucha (1989) in the manner just described.
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PROOF OF THEOREM 5: By arguments similar to those we made in the proof of
Theorem 4, all results of the Theorem will follow easily once we have established
that

E[5 (8 (60) ,00) — s (8: (60))) = 0 Vi =1,....n, (25)°

i.e., that

/ {qt(a——’—}i(a}zf(adgao. (26)

Qur proof of (26) is similar to the proof of Lemma 4.1 in Bickel (1982) and of
Lemma 2 in Hodgson (1996) and proceeds in three steps, the first of which is to
prove that

/ {qt <é>~§%"<§>} 7.® -0, 1)

where £, (8) =n"1 3, f: (€) . But to prove (27), we must verify that

/ {qt ® - f"“ <é>} Fra @ =0, (28)

where f,,, denotes the convolution of f,, and the N (0,a21,,,1) density, as follows:
—fna = ?’n * T, = 'n’_l th * Ma, = n‘l tha-
t=1 t=1

To prove (28), we can follow Lemma 6.1 of Bickel (1982), using an argument
smilar to that in the proof of Theorem 4 above to show that

Tv —
(n — l)a%u—l-m—f-l f"a (.’E) :

VY (z) <

To complete our proof of (27), we can use Lemmas 6.2 and 6.3 of Bickel (1982)
to obtain the following two convergence results:

de — 0,

bl Frof
[ 2@ (Tu@-V7.@) @20

fa>0

and
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This establishes (27) and completes the first step in our proof of (26). The second
step is to show

/bo{fa ~>} d& — 0,

which can be done using Lemma 6.2 of Bickel (1982). The final step is to verify

/f>0 % () (\/7:(5“7 - \/}(5))2d§f+ 0.

But, recalling that 2 () < c2, the desired result will follow from our restriction
on the rate of divergence of c,.
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