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Abstract

This essay is an introduction to the recent literature on the “con-
sistency principle” and its “converse”. An allocation rule is consistent
if for any problem in its domain of definition and any alternative that
it selects for it, then for the associated “reduced problem” obtained
by imagining the departure of any subgroup of the agents with their
“components of the alternative” and reassessing the options open to
the remaining agents, it chooses the restriction of the alternative to
that subgroup. Converse consistency pertains to the opposite opera-
tion. It allows us to deduce that the rule chooses an alternative for
some problem from the knowledge that for all two-person subgroups,
it chooses its restriction to the subgroup for the associated reduced
problem this subgroup faces.

We present two lemmas, the Elevator Lemma and the Bracing
Lemma, involving these properties. These lemmas have been found
useful in the analysis of a great variety of models. We also describe
some of their applications. Finally, we illustrate the versatility of con-
sistency and of its converse by means of a sample of characterizations
based on these principles.
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1 Introduction

This essay is an introduction to the recent literature on the “consistency
principle” and its “converse”. The principles pertain to the behavior of so-
lutions whose domains of definition contain problems involving variable sets
of agents and in particular sets of different sizes, and for which it is therefore
meaningful to compare the choices they make for different populations. By
contrast, most of the axiomatic literature has been written for a fixed set of
agents. A solution is consistent if whenever it chooses a certain alternative
for some problem, then for the “reduced problem” obtained by imagining
the departure of some of the agents with their components of the alternative
and reassessing the opportunities open to the remaining agents, it chooses
the restriction of the alternative to this subgroup. Converse consistency has
to do with the opposite operation. It allows us to deduce that the solution
chooses a certain alternative for some problem from the knowledge that for
all two-person subgroups, it chooses its restriction to the subgroup for the
associated reduced problem this subgroup faces.

The principles, which were first investigated for abstract models of coop-
erative game theory, have recently been examined in the context of a great
variety of concrete problems of resource allocation, and for many models,
their implications are now quite well understood. We will survey some of
these developments.

The paper is organized as follows. We first introduce the basic concepts
of a problem and of a solution, and our two principles. Then, we state two
lemmas that have been critical in proofs for a wide range of models. Finally,
we describe several characterizations based on consistency and its converse.

In order to illustrate various points we make, we introduce a number of
models in succession. Our objective is not a comprehensive account of what
is known of consistency and of its converse for these models, but rather to
give the flavor of the usefulness of the conditions in evaluating allocation
rules, and in exposing the mechanics of proofs based on these principles.
For a detailed survey of the vast literature devoted to the study of the two
principles, see Thomson (1997).



2 Basic concepts: domains and solutions

A problem is given by a set of alternatives and a set of agents whose
preferences are defined over this set or over “personal” components of it. The
objective is to identify one or several feasible alternatives for each problem
satisfying some regularity conditions. Depending upon the context, these
alternatives are interpreted as the recommendations that an arbitrator, (al-
ternatively a planner, a high level manager, a judge ...) could make, or as
predictions of what the agents would choose if left to their own devices. In-
stead of handling each problem separately however, we will look for general
methods of selecting alternatives for each admissible problem. A solution
is a correspondence defined on some domain of problems that associates
with each problem in the domain a non-empty subset of its feasible set.

A number of tests can be devised to evaluate how satisfactory a solution
is. The test of consistency involves comparing the choices it makes for some
problem involving some “initial” group of agents to the choices it makes for
associated “reduced” problems involving subgroups.

We use the following notation throughout. There is an infinite set of
“potential” agents indexed by the natural numbers, N. For each group of
agents N drawn from the family A" of non-empty finite subsets of N, there is
a class of problems that N could face. Solutions are defined over the union
of these classes as IV varies in M. Our generic notation is DN for the class
of problems that N could face and D for the union UyeyDV. When an
alternative is chosen by a solution ¢ for some problem D, we say that it is
wp-optimal for D. If a solution ¢’ only selects alternatives that are also
selected by some solution ¢, we say that ¢’ is a subsolution of ¢. We
then write ¢’ C .

To see the need for testing how solutions behave when the population of
agents varies, we introduce our first domain, which pertains to fair division.

Domain 1 A classical problem of fair division (see Thomson, 1996,
Jor a survey) is a pair (R,) where R = (R;)icn is a list of preference rela-
tions defined on the non-negative quadrant of the ¢-dimensional commodity
space, Ri, and Q) € Rﬁ_+ is a social endowment. Preferences are continuous,
increasing, and convez. The asymmetric part of R; is denoted P; and indif-
ference is denoted I;. A feasible allocation for (R,Q) is a list z € REY such



that >z = Q.1

Several of the solutions defined next will also play a role, when appro-
priately adapted, in the analysis of models introduced later, and we will not
repeat the formal definitions then.

Examples of solutions for Domain 1 The Pareto solution, P, selects
the feasible allocations z for which there is no other feasible allocation 2'
such that for all i € N, z! R; z;, strict preference holding for at least one
¢ € N. The no-envy solution, F, selects the feasible allocations z such
that for all 1,7 € N, z; R; z;. The equal division lower bound solution
selects the feasible allocations z such that for alli € N, z R; QJ|N|. The
Walrasian solution operated from equal division, W.y, selects the
feasible allocations z for which there exists a price vector p € A® such that
for alli € N, z mazimizes R; in the budget set {z] € R:pzl < pQ/|N|}.2
The egalitarian-equivalence solution selects the feasible allocations z
such that for some reference bundle z € Ri, and for all 1 € N, z; I; .

Figure la represents the solution that chooses the Walrasian allocations
from equal division for all economies and Figure 1b the solution that chooses
the envy-free allocations for all economies. When a solution is defined over a
domain of problems of arbitrary cardinalities, there is no reason in principle
why it could not choose allocations in completely different ways as the number
of agents varies. Giving free rein to our imagination, let us consider for
instance the solution that selects the efficient allocations for all two-person
economies, the envy-free allocations for all three-person economies, and the
Walrasian allocations from equal division for all economies involving more
than three agents (Figure 1c)! Figures 1d-e represent two other solutions,
both of which also seem quite hard to justify. These examples make it clear
that some test is needed to relate the choices made by solutions for different
sets of agents. Consistency is such a test.

1By R" and RN we mean the cross-products of |N| copies of R and R respectively,
indexed by the members of N.
?The notation A¢ designates the unit simplex in the ¢-dimensional Euclidean space R%.
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Figure 1: Solutions defined on a domain of problems of arbitrary car-
dinalities. Which one(s) of the following solutions is (are) consistent? (a) This
solution selects the Walrasian allocations from equal division for all cardinalities.
(b) This solution selects the envy-free allocations for all cardinalities. (c) This
hybrid solution is more and more restrictive as the number of agents increases:
it selects the efficient allocations for cardinality two, the envy-free allocations for
cardinality three, and the Walrasian allocations from equal division for greater
cardinalities. (d) By contrast, this solution is less and less restrictive as the num-
ber of agents increases. (e) This solution makes choices that do not seem to follow
any particular pattern as the number of agents changes.



3 Consistency and its converse

In this section, we introduce the notion of a consistent solution and illustrate
it by means of several examples. We also define the notion of a conversely
consistent solution. We only give a few sample proofs that certain solutions
are consistent or conversely consistent, or violate the properties. In most
cases, these are simple exercises, which we suggest to the reader as a way
of progressively strengthening his or her understanding of the conditions, as
well as gaining familiarity with the models, not all of which are standard,
that we will discuss. The figures should be seen as an integral part of our
exposition, as their legends sometimes contain sketches of proofs.

3.1 Consistent allocation rules: the general definition

Very informally, a solution is consistent if there is never a need to revise
an alternative it has chosen after some of the agents “have received their
components of it” and left. At this point, the clause “have received their
components of the alternative” is only meant to be suggestive and we will
devote the next few pages to clarifying it.

Somewhat more precisely, let N € N and D be a problem that N could
face. Let ¢ be a solution and z one of the ¢-optimal alternatives for D. Now,
we imagine some of the agents leaving with their components of z and we
reevaluate the situation from the perspective of the remaining agents. If N
is the subgroup of remaining agents, we denote r%,(D) the set of alternatives
at which the agents who leave receive their components of z, and refer to it
as the reduced problem of D with respect to N’ and .

Consistency: For all groups N € N, all problems D € DV, all subgroups
N’ C N, and all p-optimal alternatives of D, z, if the reduced problem of
D with respect to N’ and z, obtained from D by assigning to all agents in
N\N' their components of z, belongs to D', then the restriction of z to N
is p-optimal for it: zn/ € (r%.(D)).

The following variants of the basic idea have been explored in the litera-
ture. (i) First is the slightly weaker condition obtained by limiting attention
to subgroups of two remaining agents, a variant called bilateral consis-
tency. (ii) Apart from size, it is sometimes natural to impose other restric-
tions on the subgroups. The class they constitute may be endowed with some



particular structure so as to reflect relevant aspects of social organization,
such as communication networks, trade groups, family relations ... . (iii) A
third variant is obtained, for single-valued solutions and in models equipped
with a convex structure, by instead of asking that the restriction of z to each
subgroup be chosen for the reduced problem associated with z this subgroup
faces, requiring that for each agent, his component of z coincides with the
average of what he would receive in the reduced problems associated with z
and all the proper subgroups of N to which he belongs.

We will now illustrate the various choices that we have in defining reduced
problems by considering several applications.

3.1.1 The reduction operation for models formulated in commod-
ity space

We start with the allocation of privately appropriable goods. There, the
natural “separability” of the allocation space suggests a very simple way
of defining a reduced economy. When some agents leave, they take along
the bundles intended for them, so that the set of options available to the
remaining agents is simply the set of lists of bundles obtained by distributing
among them the resources that are left; this is of course the sum of the
bundles that were intended for them in the first place. Specifically, given
e=(R,0), N'C N, and z € ¢(e), the reduced economy of e with respect to
N’ and z is the pair (Ry/, ) — EN\N’ z;), or equivalently (Ry, > v 2).

It is easy to see that the Pareto solution is consistent since, if no Pareto-
improving reallocation of goods can be achieved by the group N, then of
course no subgroup N’ C N can achieve any Pareto-improving reallocation
of the resources it has received. The no-envy solution is consistent too: if
an agent does not want to exchange bundles with anyone in the initial group
N, then a fortiori, he does not want to exchange bundles with anyone in any
subgroup N’ C N.

On the other hand, the equal division lower bound solution is not con-
sistent (Figure 2a). It is tempting to say that this is because in a reduced
economy, the point of equal division is typically not the same as what it is in
the original economy, so that if an agent finds his component of some alloca-
tion at least as desirable as equal division, there is no reason why this should
still be the case in an associated reduced economy. But that is not the whole
story, because the Walrasian solution operated from equal division also de-
pends on what equal division is, and it is consistent (Figure 2b). The reason

6
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Figure 2: Examples of consistent solutions for the problem of fair di-
vision. (a) The equal division lower bound and Pareto solution is not consis-
tent: z meets the bound in the three-person economy represented here, but since
51—'21:51 P 23, its restriction (21, z3) to the group {1,2} does not meet the bound in

(R1, Rg, 21+ 23). (b) The Walrasian solution operated from equal division is con-

sistent: here, z is Walrasian from equal division in the three-person economy; after
agent 3 leaves with his bundle z3, the resources that remain available to agents 1
and 2 are 2; + 29, and if each of them is endowed with 51—'%-’1, equilibrium is indeed
achieved by quoting the same prices, the corresponding allocation being (21, z2).

is that for that solution the points of equal division of the reduced economies
associated with a chosen allocation are related in a very special way: they all
have the same value at the initial equilibrium prices. Consequently, in any of
these reduced economies, if the same prices are quoted, the resulting budget
sets are the same as in the initial economy; this preserves the maximizing
bundles of the members of the subgroup of remaining agents, which in turn
guarantees equality of demand and supply in the reduced economy.

3.1.2 The reduction operation for models formulated in utility
space ‘

For the model of bargaining presented next, feasible sets are given in utility
space.

Domain 2 A bargaining problem is a convez, compact, and comprehen-
sive® subset of Ri’ , T, containing at least one strictly positive point.

Examples of solutions for Domain 2 The Nash solution (Nash,
1950) selects the point of T that mazimizes the product of utilities. The
egalitarian solution (Kalai, 1977) selects the mazimal point of T of equal

3By comprehensiveness we mean that if z € IRQ_’ is feasible, then so is any other vector
y such that 0 < y < =.
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Figure 3: Bargaining problem. (a) The Nash solution is consistent: if z
achieves maximal product of utilities in T, then (z;, z3) achieves maximal product
of utilities in the section of 7' by the plane parallel to the {1, 2}-coordinate sub-
space passing through z. (b) The Kalai-Smorodinsky solution is not consistent:
it selects z for T" but it does not select (z,z;) for the section of T' by the plane
parallel to the {1, 2}-coordinate subspace passing through z.

utilities. The Kalai-Smorodinsky solution (Kalai and Smorodinsky, 1975 )
selects the mazimal point of T proportional to the ideal point of T, the point
whose i-th coordinate is the mazimal feasible utility agent i can achieve in

T.

Here, agents “leave” with utility levels, and it is most natural to define
the set of options open to the remaining agents as the subset of the initial
problem consisting of all the vectors at which the departing agents receive
their promised payoffs. Given a problem T involving the initial group N, the
reduced problem of T' with respect to N’ C N and z is therefore defined as
{z' € RN": for some y € T, YN\N* = Zan\nv, and ynr = z'}. Geometrically,
this is the section of T' by a plane parallel to the N'-coordinate subspace
through z. :

The Nash solution is consistent but the Kalai-Smorodinsky solution is
not (Figure 3). The egalitarian solution is consistent on the subdomain of
problems on which it selects Pareto-optimal outcomes.

Note that when a feasible set is obtained as the image in utility space
of the set of allocations.obtainable by distributing a fixed bundle of goods,
if the departing agents were to leave with physical amounts of goods giving
them their agreed-upon utilities, the set of options available to the remaining
agents would typically be a subset of the feasible set of the reduced game as
we have just defined it (except in the one-good case).



3.1.3 The reduction operation when the departing agents remain
“available”

In other models, it is important to think of the agents who leave as remaining
“available”. This is illustrated by the next model.

Domain 3 A (transferable utility) coalitional game is a vector v €
R2|NH, with coordinates indezed by the non-empty subgroups of N, called
coalitions, each coordinate being interpreted as what the corresponding coali-
tion can achieve; this amount is called the worth of the coalition.

Examples of solutions for Domain 3 The core (Gillies, 1959) selects
the payoff vectors z such that )y x; = v(N) and for all S C N, Y oz; >
v(S5). The Shapley value (Shapley, 1953) selects the payoff vector whose
i-th coordinate is equal to y ¢ - ks(v(S)—v(S\7)) for certain combinatorial
cocfficients ks. Now, define the dissatisfaction of coalition S at the payoff
vector z to be the difference v(S) — > s zi; then, the prenucleolus (Schmei-
dler, 1969) selects the feasible payoff vector at which the dissatisfactions of
coalitions are minimized in a lezicographic way, starting with the most dis-
satisfied coalition.*

Here, we have several ways of defining the set of options available to
the remaining agents. Given a coalition S C N', a first possibility is to
calculate, as for bargaining problems, what S can achieve by getting together
with the departing agents and giving them their agreed-upon payoffs. This
yields the difference v(SU N\N') — n\w+ Ti as the worth of S. Since the
complement of N’ is involved in the reduced game, we name the resulting
condition “complement consistency” (Moulin, 1988).

Alternatively, we can let S choose which ones of the departing agents to
“cooperate with”. By getting together with S C N\N’, the worth v(SUS’) is
generated, but since the members of S’ have to be paid 34, z;, what remains
for S is the difference v(SUS") — 3" 4 z;. Here, the worth of S in the reduced
game is defined to be the mazimal such difference when .5’ ranges over the
subsets of N\N'. This definition being based on a maximization exercise, we
name it “max-consistency” (Davis and Maschler, 1965).

“This means that it selects the payoff vector at which the dissatisfaction of the most
dissatisfied coalition is minimal if there is a unique such vector. Otherwise, among these
minimizers, it picks the vector at which the dissatisfaction of the second most dissatisfied
coalition is minimal if there is a unique such vector; otherwise . ..
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Figure 4: Reducing a consumption space and a preference relation. (a)
We start from a three-person economy in which each of the three agents has pref-
erences defined over the preduct of R with the set consisting of the three objects
available, {a,b,c}. The chosen allocation is z. (b) Agent 3 leaves with his bundle
23, which contains object c. In the reduced economy associated with the group
{1,2} and z, the preferences of agents 1 and 2 are restricted to the product of R
with the set consisting of the remaining objects, {a, b}.

It turns out that the core satisfies both definitions and that the Shapley
value satisfies neither. The prenucleolus only satisfies the second one.

3.1.4 When the reduction operation suggests a reduction of con-
sumption spaces

In any model it is possible and sometimes appealing to require that solutions
only depend on the restrictions of preferences to the set of bundles that are
actually feasible.®> When some of the agents leave with certain resources, the
set of bundles achievable by any one of the remaining agents will of course get
smaller. For some models, consumption spaces are “decomposable” in a way
that makes requiring this kind of independence even more tempting. Then,
we will say that we “reduce” consumption spaces and preference relations.
An illustration is provided by the next domain. Another example is matching
(Domain 6 defined below).

Domain 4 An allocation problem with indivisible goods when mon-
etary compensations are possible (Svensson, 1983) is a list (M, A, R)
where M € R is some amount of an infinitely divisible good called “money”,
A is a finite set of “objects” drawn from some infinite list A, and R = (R.);en
is a list of preference relations defined over the product R X A. Preferences
are continuous and strictly monotonic with respect to money. We assume
IN| = |A]. A feasible allocation is a pair (m,o) where m € RN is a list of

A number of interesting solutions do not satisfy this requirement however, the Wal-
rasian solution being an example.

10



monetary amounts satisfying )y mi; = M, and o is a bijection from N to A
indicating which object each agent receives.

This model is illustrated in Figure 4a for a three-person example. With
each of the objects is associated an axis along which the amount of money
that will go with it is measured, thereby defining a bundle that will be
assigned to one of the agents. The broken lines connect bundles that are
indifferent to each other. Note that given that no sign constraint is imposed
on the consumption of money, any bundle containing an existing object is
feasible for any of the agents.

Examples of solutions for Domain 4 The Pareto, no-envy, and
_egalitarian-equivalence solutions are all still meaningful here.®

Whether or not we reduce consumption spaces and preference relations
affects which solutions are consistent. For instance, if we do, the egalitarian-
equivalence solution violates the property; indeed, an agent could leave with
the object appearing in the reference bundle associated with an egalitarian-
equivalent allocation. But if we do not, the solution is consistent, just as it
is on the classical domain (Domain 1). For the no-envy solution however, it
does not matter which specification is adopted; it is consistent either way.

3.1.5 Closedness of domains under the reduction operation

According to our definition of consistency, nothing is required of the solution
if the reduced problem does not belong to the domain. Alternatively, we may
require the reduced problem to be in the domain.

How strong this additional requirement is depends on the domain of prob-
lems under investigation. There are domains such that, for any feasible out-
come, the natural way to define the reduction produces a problem that is
admissible. We then say that the “domain is closed under the reduction
operation”. An example here is the classical domain (Domain 1): if (R, )
is admissible and z is a feasible allocation, then (Rn+, . 2) is admissible
too. On the other hand, suppose that instead of thinking of the departing
agents leaving with their components of z, we had imagined them leaving
with the understanding that whatever allocation is eventually chosen should
give them the welfare levels they experience at z. Then the reduced problem

8For this model, the no-envy solution is a subsolution of the Pareto solution (Svensson,
1983).
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of (R,) with respect to N’ and z would be the set of lists (2})iens € R4
such that for some list (2});en\nv € RiN\NI, we have (i) 3y 27 = @ and (ii)
for all ¢ € N\N', 2] I; z; (as discussed in Subsection 3.1.2). Such a reduced
economy could not be described as a pair (Ry+, Q') for some Q' € R%, and
closedness would fail.

In some cases, the reduction operation yields a problem that may not
satisfy all of the assumptions imposed on the elements of the domain. For
example, consider standard production economies. There, what first comes
to mind in defining the production set of a reduced economy is to translate
the production set of the initial economy by the vector of goods taken with
them by the departing agents. (Some of the coordinates of this vector, the
ones corresponding to labor inputs, have negative coordinates.) But it is
unlikely that this resulting production set will satisfy the same regularity
conditions, such as “no free lunch”, “increasing returns to scale”, ..., that
may have been imposed on the initial set.

In other cases, the reduced problem is admissible only if the outcome
is chosen in certain ways. If this happens for the outcomes chosen by a
particular solution, we say that “the domain is closed under the reduction
operation for the solution”. This is illustrated by our next domain.

Domain 5 A bankuptcy problem (O’Neill, 1982; Aumann and Maschler,
1985) is a list (¢, E) € RY x Ry such that 3 ¢; > E. The number ¢; is the
claim of agent i on the net worth E of a bankrupt firm. A feasible allocation
for (¢,E) is a list z € RY such that Y z; = E.

Examples of solutions for Domain 5 The proportional solution se-
lects awards proportional to claims. The constrained equal awards so-
lution selects the feasible award vector such that, for some \ € Ry, each
claimant 1 € N receives min{c;, A\}. The constrained equal losses solu-
tion selects the feasible award vector such that, for some \, each claimant
1 € N receives max{c; — A,0}. The random arrival rule selects the av-
erage of the vectors of awards obtained as follows: for each possible order in
which agents could arrive, give to each of them the minimum of his claim
and whatever remains. The average is calculated under the assumption that
all orders of arrival are equally likely.

Here, the most natural way of defining the reduced problem of (¢, E)
with respect to N C N and a feasible allocation = is (cyi, E — 2N\ i)

?

12



or equivalently, (cyr, ) zi). It is easy to see that the proportional solution
1s consistent, and that so are the constrained equal awards and constrained
equal losses solutions. On the other hand, almost any example reveals that
the random arrival solution is not.

Now, note that in general in a reduced problem we may not have Do G >
>_n+ xi. However it makes sense to require of a solution ¢ that if z = o(c, E),
then for all : € N, z; < ¢;. If this property of claims boundedness is
satisfied, then for all N’ C N, we have } y,¢; > Y., z;. Therefore, we can
say that the domain of bankruptcy problems is closed under the reduction
operation for any solution satisfying claims boundedness. :

A surplus sharing problem (Moulin, 1987) is defined like a bankruptcy
problem except that the inequality > ¢; < E is imposed instead. The number
¢; is interpreted as the investment made by agent ¢ € N in a successful venture
whose worth is E. A feasible allocation for (¢, E) is a vector z € R¥ such
that ) 2; = E. Again, for a solution that only chooses award vectors z
satisfying the natural requirement that for all 1 € N, z; > ¢;, closedness of
the domain holds.

Finally, consider the domain consisting of all bankruptcy and surplus-
sharing problems; for a problem in this enlarged domain, no relation is im-
posed between ) ¢; and E. Here, any reduced problem is admissible. Start-
ing from a surplus-sharing problem, and given a feasible allocation for it, an
associated reduced problem may be a bankruptcy problem, and conversely,
but this does not create any difficulty since the solution is applicable in any
case.

3.2 Constructing consistent solutions. Minimal consis-
tent extensions. Maximal consistent subsolutions

Here, we identify several operations preserving consistency. These operations
will permit us to construct new consistent solutions from solutions known to
have the property.

We start with an informal observation: given an allocation chosen by a
solution for some problem, if the solution is not very restrictive for subgroups
of agents, there is a better chance that it will choose the restrictions of
the allocation for the associated reduced economies. Therefore, a consistent
solution is more and more “tapered” for problems involving more and more
agents (Figure 5a). This observation should provide some intuition for the
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Figure 5: The “shape” of consistent solutions. (a) A consistent solution is
more and more restrictive for groups of agents of greater and greater cardinalities.
This results in a “tapered” shape. (b) If two solutions are consistent, then so is
their intersection: the “inner lining” of the two tapered-shape solutions, which rep-
resents this intersection, is also tapered-shape. (c) If two solutions are consistent,
so is their union: the “outer envelope” of the two solutions is tapered-shape.

claims made in Subsections 3.2.1-4 below.

3.2.1 Constructing new consistent solutions by intersecting con-
sistent solutions

Consistency is preserved under intersections: given two consistent solutions,
if their intersection (the “inner lining” of Figure 5b) is well-defined, that i is, if
it is non-empty for all admissible problems, then it is consistent. To 1llustra,te
for the problem of fair division (Domain 1), both the Pareto solution and the
no-envy solution are consistent. Therefore, their intersection, which under
standard assumptions is well-defined, is consistent too.

In fact, consistency is preserved under arbitrary intersections, and this
permits us to define a consistent approximation (from above) to a solution
that may not be consistent, as follows. Let ¢ be a solution. Note that the
solution that associates with each economy its whole feasible set is consistent.
Therefore, the family of consistent solutions containing ¢ is non-empty. Let
@ be the intersection of all of its members. Since they all contain ®, So
does @. As we just argued, @ is also consistent. Obviously then, it is the
smallest consistent solution to contain ¢ (Figure 6a). Formally, the minimal
consistent extension” of a solution ¢ is defined as Nyey ¥, where ¥ =

"This notion, and the notion of the mazimal consistent subsolution of a given solution,
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Figure 6: Constructing consistent solutions. In each of the three panels, the
new solution is indicated by the thicker lines. (a) Minimal consistent extension
of ¢, mee(p). (b) Mazimal consistent subsolution of ¢, Mecs(p). (c) If several
solutions related by inclusion are consistent, any solution obtained by successively
switching to the less and less permissive ones as the cardinality of problems in-
creases is also consistent.

{#:9 D ¢,v is consistent}.

3.2.2 Constructing new consistent solutions by taking the union
of consistent solutions

Similarly, consistency is preserved under arbitrary unions (the outer enve-
lope of Figure 5c), so that if a solution is not consistent but has at least one
consistent subsolution, it has a mazimal consistent subsolution, simply
the union of all of its consistent subsolutions. Formally, the mazimal consis-
tent subsolution of a solution ¢ that contains at least one consistent solution

is defined as | Jyy: ¥, where W' = {tp:4) C ¢, 9 is consistent}.
3.2.3 Constructing new consistent solutions from consistent solu-
tions ordered by inclusion

Let ((Pe)ge{l’_"'k} be a list of consistent solutions related by inclusion, ! C
... C ¢*, and (ne)ee{1,...,k—1} a list of integers such that n! < ... < n*-1

presented next, are proposed and studied in Thomson (1994b). To say that the minimal
consistent eztension of a solution “approximates” it, as we did above, is not always justified
however since a solution may differ considerably from its minimal consistent eztension:
Nevertheless, it represents the closest we can get to the solution so as to recover conststency.

15




Now, consider the solution that coincides with ¢! for all problems of cardi-
nalities no greater than n', with ¢? for all problems of cardinalities between
n! + 1 and n? ..., and with ©* for all problems of cardinalities greater
than nf~!. This solution is clearly consistent. The examples represented in
Figures 1c and 6c illustrate the operation.

3.2.4 Constructing new consistent solutions by partitioning the
domain into subdomains each of which is closed under the
reduction operation for a particular consistent solution

Let o' and ¢? be two consistent solutions whose common domain of definition
D can be partitioned into two subdomains D! and D? such that (i) D! is
closed under the reduction operation for the solution ¢!, and (ii) D? is closed
under the reduction operation for the solution p?. Then, the solution that
coincides with ¢! on D! and with ? on D? is consistent.

3.3 Conversely consistent allocation rules

Our second central property of a solution permits us to deduce that an al-
ternative z is chosen for some problem by the solution if its restriction to
each two-person group is chosen for the reduced problem associated with the
subgroup and z.

Converse consistency: For all groups N € N, all problems D € DV, and
all feasible alternatives x of D, if for all subgroups N’ of cardinality two,
the restriction zn+ of = to N’ is p-optimal for the reduced problem r%,(D)
obtained from D by assigning to all agents in N\N' their components of z,
then z is p-optimal for D.

This property is certainly not as conceptually compelling as consistency
but it is of great computational interest, as it permits us to determine whether
an alternative would be chosen for a problem possibly involving a large num-
ber of agents from the knowledge that its restrictions to subgroups of two
agents, for which calculations are generally much less involved, are chosen
for the associated reduced problems. Of course, if there are many agents
initially, there are many reduced problems for which this simpler calculation
has to be carried out. Also, converse consistency does not help us in dis-
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Figure 7: Converse consistency. (a) For the classical problem of fair division,
the Walrasian solution operated from equal division is not conversely consistent:
here, the restriction of z to each two-person group {%,j} is Walrasian from equal
division for the reduced economy (R;, R;, z;+z;), but z is not Walrasian from equal
division for (Ry, Ry, R3, ). Under smoothness of preferences, the property would
hold however. (b) The equal division lower bound solution is not conversely con-
sistent either, but here, no natural restriction on preferences can help recover the
property. (c) For the problem of allocating indivisible goods when monetary com-
pensations are possible, the Pareto solution is not conversely consistent. Suppose
that (2,a) I; (4,b) I1 (1,¢), and that the preferences of agents 2 and 3 are obtained
by “rotation”: (2,b) Iy (4,¢) Iy (1,a) and (2,¢) Iz (4,a) I3 (1,b). It is easy to
see that no Pareto improving trade can take place in any of the three two-person
reduced economies associated with the allocation z represented here, which we
make feasible by choosing the amount of the divisible available to be 6. However,
the allocation (z3, 21, 22) Pareto-dominates z in the three-person economy.
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covering p-optimal alternatives, but simply in checking whether a proposed
alternative is p-optimal.®

A different formulation consists in writing the hypothesis for all reduced
problems of cardinalities up to [N|—1, but it turns out that for many models,
this amounts to the same thing.

For some models, the hypothesis for the two-agent case is actually no
restriction on the solution. The condition should then be rewritten with
the hypothesis stated for the smallest number of agents for which it does
constitute a meaningful restriction. An example of such a model is matching
(Domain 6 below).

It is useful to note that converse consistency too is preserved under in-
tersections and unions, so that the minimal conversely consistent extension
and mazimal conversely consistent subsolution of a given solution can be de-
fined analogously to the way we defined its minimal consistent extension and
mazimal consistent subsolution.

Here are a few examples of conversely consistent solutions: for the bar-
gaining problem, the Nash solution provided preferences are smooth, and
the egalitarian solution when it selects Pareto-optimal points; for the classi-
cal problem of fair division (Domain 1), provided preferences are smooth, the
Pareto solution and the Walrasian solution operated from equal division are
conversely consistent. Otherwise they are not (Figure 7a). The equal division
lower bound solution is not (Figure 7b), and here, no natural restriction on
preferences exist under which the property holds. In any context where it is
meaningful, such as for various problems of fair allocation, including classical
economies (Domain 1), or economies with indivisible goods when monetary
compensations are possible (Domain 4), or economies with single-peaked
preferences (Domain 8 defined below), the no-envy solution is conversely
consistent, precisely because it is based on two-person tests. Whenever the
notion of proportionality is well-defined, such as for bankruptcy (Domain 5)
or fair allocation in economies with single-peaked preferences (Domain 8
defined below), the proportional solution is conversely consistent. For the
allocation of indivisible goods when monetary compensations are possible
(Domain 4), the Pareto solution is not conversely consistent (Figure 7c).

8Yet, the property suggests algorithms that sometimes converge to a ¢-optimal alter-
native.
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3.4 Logical relations between properties

Consistency and its converse are not in general logically related. Indeed,
for bargaining problems, the Nash solution is consistent (Figure 3a) but not
conversely consistent. The opposite holds for the egalitarian solution. Both
are single-valued, so this example settles in the negative a conjecture that
is often made, that this property helps relate consistency and its converse.
However, for some models, interesting logical relations do hold or hold under
minor additional conditions (Chun, 1997).

A property that has been discussed in connection with conststency and
its converse is the following: a solution ¢ is flezible if, starting from a ¢-
optimal allocation, subgroups can redistribute between their members what
they have jointly received, and provided they do that according to ¢, the
conjunction of these redistributions produces an allocation that is also (-
optimal for the initial economy (Balinsky and Young; 1982).

It is easy to see that a single-valued solution is consistent if and only if
it 1s flexible.

3.5 Extensions of properties across cardinalities

It is often the case that if a certain property is imposed on a consistent solu-
tion for the two-person case, then the property is automatically “transferred”
to the other cardinalities.

For instance, consider the requirement of equal treatment of equals,
which says that two agents with identical characteristics should be treated
identically; for resource allocation problems, this means that they should
receive bundles that are indifferent according to their common preferences.
Let ¢ be a consistent solution. Let e be an economy in which two agents ¢
and j have the same characteristics. Then, we claim that if z is (p-optimal for
e, the two agents should receive indifferent bundles. Indeed, by consistency
of ¢, in the reduced economy of e with respect to {3, 7} and z, the two
agents should still receive their components of z; since they have the same
characteristics and ¢ satisfies equal treatment of equals in the two-person
case, they should receive indifferent bundles. A

Other properties can be extended in this way. Examples are continuity
and certain invariance properties.
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4 The Elevator Lemma

Consistency and its converse are versatile principles and they have been
studied in models exhibiting a great diversity in their mathematical struc-
tures. An unfortunate consequence of this diversity is that few theorems are
available that apply across all models. However, we can offer two extremely
useful lemmas that are “model-free”. We illustrate them in the context of
several models. In Section 6, where we present a number of characterizations,
we will see that much of their proofs consist in showing that the hypotheses
of the Lemmas are satisfied.

4.1 Statement of the Elevator Lemma

The first lemma identifies conditions on two solutions guaranteeing that if an
inclusion relation between them holds for the two-person case, then it also
holds for the n-person case: if ¢ C ¢’ for the two-person case, ¢ is consistent,
and ¢’ is conversely consistent, then ¢ C ¢’ for all cardinalities. Its proof
consists in moving down from an arbitrary number of agents to two agents
by means of the consistency of ¢, and moving back up again by means of the
converse consistency of ¢'. Using the image of a building whose floors are
indexed by the cardinalities of problems (Figure 8), we refer to this lemma
as the “Elevator Lemma”: consistency is the “Down” button and converse
consistency the “Up” button. The building of Figure 8 has no first floor
because for most models nothing is learned from how a solution behaves on
the class of one-person problems. Therefore no generality is lost in excluding
these degenerate problems from the domain.®

Lemma 1 (The “Elevator Lemma”) Let ¢ and ¢' be two solutions defined
on a domain D that is closed under the reduction operation for the solution
@. If (i) on the subdomain of two-person problems, ¢ is a subsolution of
@', (i1) ¢ is consistent, and (i) ¢' is conversely consistent, then, ¢ is a
subsolution of ¢’ on the entire domain D.

® An important exception is the domain of strategic games (Peleg and Tijs, 1996) where
the objective is precisely to relate the way multi-person interactions are resolved from the
knowledge of how one-person decision problems are solved. We will not discuss strategic
games here, but only note that consistency has played an important role in linking their
study to the study of cooperative games, as most clearly exemplified in Serrano’s work.
See for example, Serrano (1995).
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Figure 8: The Elevator Lemma. Classes of problems involving increasing num-
ber of agents are stacked up like the floors of a building. The Elevator lemma
states that if a consistent solution ¢ is a subsolution of some conversely consistent .
solution ¢’ in the two-person case, then this inclusion holds in general.

Proof: Let N € N, D € DV, and z be p-optimal for D. We need to show
that z is ¢'-optimal for D. Since ¢ is consistent, then for all subgroups N’
of N, the restriction zn/ of = to N’ is p-optimal for the associated reduced
problem 7%, (D). This is true in particular for all N’ C N such that [N'| = 2.
Since in the two-person case, ¢ is a subsolution of ¢', then for all subgroups
N’ of N such that [N'| = 2, the restriction zn« of z to N’ is ¢'-optimal
for r3,(D). This is exactly the statement that = satisfies the hypothesis of
converse consistency for ¢'. Since ¢’ is conversely consistent, z is ¢'-optimal

for D. O

Note that bilateral consistency would suffice in the Elevator Lemma., Also,
converse consistency is not imposed on . We stated earlier that this prop-
erty may not be as compelling as consistency, but many solutions do satisfy
it and the Elevator Lemma shows how this fact can be profitably exploited.?

4.2 Applications

The Elevator Lemma is widely applicable because there are many models for
which an inclusion relation holds between certain solutions for the two-person
case. We give three examples:

10In Section 3.5, we explained how consistency helps extend properties from the two-
person casé to the general case. At the risk of seeing the cable of that elevator snapping
under the increasing weight of our metaphor, we can say that consistency “lifts” the
property from the second floor to the other floors.

7
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1. For the problem of fair division (Domain 1 or Domain 8 defined below),
in the two-person case, any allocation that meets the equal division lower
bound is envy-free.

2. For coalitional games (Domain 3), requiring that a solution be a sub-
solution of the core is a very mild requirement in the two-person case; it
reduces to the requirement that the chosen payoff vectors be “imputations”,
namely that they meet the individual rationality conditions and be efficient.
(There are no coalitions of intermediate size then.)

3. For bankruptcy problems (Domain 5), a number of different ways of
thinking about the problem give us the random arrival solution in the two-
claimant case.

5 The Bracing Lemma

We now turn to the second lemma, which identifies conditions on two solu-
tions only assumed to be related by inclusion, guaranteeing that in fact they
coincide.

5.1 Statement of the Bracing Lemma

Let ¢ be a consistent solution and suppose that it is a subsolution of some
solution @. Given a problem D and an alternative z that is @g-optimal for
D, note that in general there will be some freedom to move away from z
without leaving the @-optimal set. However, suppose that additional agents
can be introduced and D extended to the enlarged set of agents in such a
way that (i) only one alternative is @-optimal for the augmented problem,
(ii) the restriction of that alternative to the initial group is precisely z—
we will say that this alternative is an augmentation of z—, and (iii)
the reduction of the augmented problem with respect to the initial group
of agents and that augmented alternative is D. Now, since ¢ C @ and (i)
holds, the augmented alternative is the only -optimal alternative for the
augmented problem. Then, since ¢ is consistent, and since (11) and (iii) hold,
we conclude that z is - optlmal for D.

We will illustrate the Bracing Lemma with another physical metaphor,
that of a building. Consider the “house” of Figure 9a, put together by nailing
boards together. This structure will not be very stable because the nails
will serve as axes of rotation for the boards. Two of their infinitely many

22



Figure 9: The Bracing Lemma. (a) The house on the left is not stable because
the boards have several degrees of freedom. One of the possible configurations is
indicated by the solid lines and another one by the dotted lines. (b) To stabilize
it, we add two boards connecting two pairs of corners. Note that if only one of the
two boards were added, the structure would not be stabilized. In fact, one board
would not be sufficient no matter where it would be placed. On the other hand,
there are other ways to position two new boards so as to obtain a stable structure.
A third board would be redundant.

possible configurations are indicated. However, it is possible to eliminate the
unwanted degrees of freedom by adding “braces”, as shown in Figure 9b. (In
the example, we have several choices of where to place braces but note that
two of them are needed. If the structure to be stabilized were more complex,
we could need more.) These braces are the additional agents of the lemma.

Lemma 2 (The “Bracing Lemma”) Let ¢ be a consistent subsolution of
some solution @. Suppose that ¢ is such that for all N € N, all D € DV,
and all z € @(D), there are N' D N, D' € DV', and z' in the feasible
set of D', such that (i) z' is the only @-optimal alternative for D', (ii) the
restriction of ' to N’ is z, and (ii1) the reduced problem of D' with respect
to N' and =’ is D. Then, p = @.

The proof follows directly from the statement of the lemma, and in fact
we have essentially given it in the paragraph preceding it. Perhaps, it is not
so much a bracing “lemma” as a bracing “construction”.

Sometimes the bracing requires only one additional agent—an example is
the allocation of indivisible goods when monetary compensations are possible
(Domain 4)—, sometimes two are required, as for the allocation of identi-
cal indivisible goods, (a special case of Domain 4), and sometimes almost
as many agents as are present initially are needed; an example here is the
allocation of an infinitely divisible good when preferences are single-peaked
(Domain 8 defined below). In some situations, instead of assuming the set of
potential agents to be infinite, it is more natural to impose an upper bound
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on the number of agents; then, the Bracing Lemma will only apply to a
restricted class of situations.

5.2 Applications and variants of the Bracing Lemma

In applications, the question is when the “extension to uniqueness” of the
Bracing Lemma is possible, and this depends on the richness of the domain
of problems over which the solution is defined. To return to our architectural
metaphor, the bracing there is possible only if we have available a board that
is long enough to be nailed diagonally.

5.2.1 When the bracing is not possible

The following example will make it obvious that an augmentation to unique-
ness is not always possible. On the domain of exchange economies with
continuous, strictly monotonic, and strictly convex preferences, consider the
solution that associates with each economy its set of Pareto-optimal alloca-
tions. Starting from some economy and an arbitrary Pareto-optimal alloca-
tion for it, there is in general no way to introduce new agents and additional
resources for them so that in the augmented economy, this augmented allo-
cation is the unique Pareto-optimal allocation.!! If this augmentation were
possible, then by the Bracing Lemma, there would be no consistent subsolu-
tion of the Pareto solution, but we know this not to be true: the Walrasian
solution operated from equal division is one (of course, we have other in-
formation about the structure of the set of Pareto-optimal allocations that
confirms this).

Here is an example in the context of the problem of fair allocation for
which the answer may not be so clear. It involves the no-envy solution
(Figure 10). Let us say that the “envy constraints are met at an allocation
for an individual” if he finds his assigned bundle at least as desirable as each
of the bundles assigned to the other agents. If these constraints are all met
strictly for all individuals, then reallocations will be possible within the envy-
free set in every direction (except when the boundary would get in the way;
Figure 10a). If some of them are met as indifferences, then such reallocations
may still be feasible, but we will have to be much more careful (Figure 10b).

171t is of course easy to perform the extension in such a way that there is a Pareto-
optimal allocation whose restriction to the initial set of agents is z. For instance, add an
arbitrary agent and no new resources; give nothing to the new agent.
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Figure 10c illustrates a natural way to go about augmenting a two-person
economy with agent set {1,2} in an attempt to obtain a unique envy-free
allocation in the augmented economy. Starting from z, imagine a new agent
coming in, agent 3, and let z3 designate a bundle intended for him. As we just
noted, the augmented allocation (z, z3) will have a chance to be the unique
envy-free allocation in the augmented economy only if sufficiently many of
the envy constraints are met as indifferences. Since we can choose z3 as well
as agent 3’s preferences, we should probably make these choices so that he
be indifferent between z; and as many as possible of the bundles received by
the agents initially present. Also, the option of introducing more than one -
agent gives us a chance of increasing the proportion of the envy constraints
that are met as indifferences, thereby getting us closer to our objective of
creating a structure where all degrees of freedom are eliminated.

However, once again this construction will not work because here too, the
Walrasian solution operated from equal division is a consistent subsolution
of the no-envy solution. Nevertheless, this is essentially the right way to
proceed so as to brace an allocation, and this approach will work for other
models: for the allocation of indivisible goods when monetary compensations
are possible for example (Domain 4), it does produce the desired bracing. We
explain why in Subsection 5.2.4. (Figures 11 and 12).

5.2.2 A model in which the Bracing Lemma is directly applicable

An important example illustrating the usefulness of the Bracing Lemma, is
the domain of coalitional games, but we will not go into the details as it is
unfortunately among the most difficult domains to work with.

5.2.3 Bracing requiring an augmentation of the consumption
spaces

We saw earlier that for some models, the reduction operation is most nat-
urally accompanied by a reduction of consumption spaces and a restriction
to that reduced space of the preferences of the agents that stay. This means
that conversely, an augmentation of a problem will have to involve an aug-
mentation of the consumption spaces of the agents initially present, and an
extension of their preferences to the augmented space. We have two examples
to offer as illustrations of this operation, one pertaining to the allocation of
indivisible goods (Domain 4) and the other pertaining to a certain class of
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Figure 10: Illustration of the Bracing Lemma for the problem of fair
division. (a) If all envy constraints are met strictly (as they are at 2), reallocations
are possible in any direction without envy being violated provided they are small
enough (2’ is just one example of an allocation that can be reached). (b) Here,
one of the envy constraints is met at indifference and redistributions in certain
directions would lead to a violation of envy (a move to 2’ would create envy). (c)
This figure illustrates a natural attempt at augmenting an economy that admits
many envy-free allocations so as to obtain a unique such allocation. This attempt
will be unsucessful however. Indeed the Walrasian solution operated from equal
division is a consistent subsolution of the no-envy solution. However, for the
problem of allocating indivisible goods, we will see that the same idea will work.

matching problems known as marriage problems (Domain 6). For a discus-
sion of the former model, we refer the reader to Subsection 5.2.4, where the
example is used again to illustrate another issue.

Domain 6 A marriage problem (Shapley and Shubik, 1972; Roth and
Sotomayor, 1990) is defined by first partitioning the set of agents N into two
groups, denoted M and W, and called “men” and “women”; then, specifying
a list R of strict preference relations such that Jor each i € M, R; is defined
over W, and for each i € W, R; is defined over M. A feasible allocation is

a bijection, or “match”, from the set of men to the set of women.

Examples of solutions for Domain 6 The Pareto solution is defined
in the usual way. The stable solution selects the set of matches such that
there is no pair of a man and a woman that prefer each other to their assigned
mates.'? The man-optimal solution selects the stable match that is best in

12This is saying that the bijection is not “blocked” by a pair of a man and a woman;
requiring that the no-blocking conditions be met for all groups, as in the usual definition
of the core, is actually not more restrictive: the stable solution coincides with the core.

26




23 ‘.7

€ =
/ ,/’l——‘—v—\ Extensions of Ry and R,
2B b P -
S o R, R
Ny o TR
0“1z 0 =

(a) (b)

Figure 11: The Bracing Lemma for the allocation of indivisible goods.
(a) A two-person economy and an envy-free allocation for it in which the no-
envy constraints are not met strictly: by redistributing money according to the
arrows, we do not violate the no-envy constraints. (b) This freedom to move in the
envy-free set is eliminated up to a neutral exchange by adding one object and some
arbitrary amount of money, introducing a new agent (here, agent 3) and specifying
his preferences so that he is indifferent between this bundle of additional resources
(73 in the figure) and the components of z; finally, extending the preferences of
the old agents so that they are indifferent between their old bundles and the new
bundle.

the set of all stable matches for all the men. The woman-optimal solution
is defined in a symmetric way.

It is easy to see that as usual, the Pareto solution is consistent. So is the
stable solution. The man-optimal solution is not, and of course neither is the
woman-optimal solution.

5.2.4 Bracing “up to neutral exchanges” or “up to indifferent ex-
changes”

For a number of economic domains and for certain solutions @ of interest,
the @-optimal set is often not a singleton but the allocations it contains
are Pareto-indifferent. A useful variant of the Bracing Lemma in such situ-
ations involves the requirement that the solution ¢ also satisfies Pareto-
indifference: if ¢ and z' are feasible alternatives of D such that z is
p-optimal for D and z’is Pareto-indifferent to z, then 2’ should also be
w-optimal for D. This requirement, which seems innocuous enough, is not
always met however.”® Nevertheless, if imposed on ¢ and satisfied by ¢,
the equality ¢ = @ is obtained by a slight modification of the proof of the
Bracing Lemma.

13For instance, for the problem of fair division, the so-called no-envy solution violates
it. )
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For the allocation of indivisible goods when monetary compensations are
possible (Domain 4), the bracing is achievable only up to a “neutral ex-
change”: the allocation 2’ is related to the allocation z by such an exchange
if its components are obtained by reshuffling the components of z but all
agents are indifferent between their old and new bundles (Figure 11).1¢

5.2.5 When the bracing is only possible for distinguished alterna-
tives

In some cases, the bracing is not possible for all @-optimal alternatives but
only for some distinguished ones. If these distinguished alternatives exist
for all problems, they constitute a well-defined solution ¢*, and we will be
able to conclude that any solution satisfying the required conditions has to
contain ¢*:

Lemma 3 (Variant of the Bracing Lemma). Let ¢ be a consistent subsolu-
tion of some solution @. Let ¢* be a subsolution of . If the “extension to
uniqueness” described in the Bracing Lemma is possible for all z € ©v*(D),
then @ D ¢*. Therefore, if ©* is consistent, it is the minimal consistent
subsolution of .

An illustration of Lemma 3 is provided by the allocation of a single indi-
visible object (a prize, say) when monetary compensations are possible, the
equality between the numbers of objects and agents being reestablished by
introducing “null objects”. They correspond to not getting the “real” object
(Figure 12). We use the notation v for the null object. :

Domain 7 A problem of allocating a single indivisible good when
monetary compensations are possible is the simple version of the prob-
lem of allocating indivisible goods (Domain {) in which there is only one in-
divisible real object. The domain also includes economies where only money
s to be allocated.

Examples of solutions for Domain 7 The winner’s curse solution
(Tadenuma and Thomson, 1993) selects the envy-free allocation(s) at which
the winner, the agent that is assigned the real object, is indifferent between
his bundle and the common bundle of the losers.

4Note that this is a special case of a Pareto-indifferent exchange.
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Figure 12: Lemma 3 applied to the allocation of a prize. Initially, there
are three agents, agents 1, 2, and 3. Agent 1 is the “winner” of the object. The
point z; denotes his bundle. Agents 2 and 3 are “losers”. By no-envy, agent 1’s
indifference curve through z; passes above z;, agents 2 and 3’s bundles are the
same (they consist of the same amount of money and the “null ob ject”, denoted
v), and their indifference curves through this common bundle passes above 2.
(a) The allocation 2’ represents another envy-free allocation, obtained from z by
transfering money from the losers to the winner. The allocation z cannot be
braced. (b) The allocation at which the winner is indifferent between his bundle
and the common bundle of the losers can be braced. By introducing a new agent,
agent 4, and specifying his preferences so that he is indifferent between z; and Z9,
adding my units of money, and giving him the bundle z4 = (my, v), the augmented
allocation (z, z4) is the only envy-free allocation up to a neutral exchange (between
agent 1 and agent 4).
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See the legend of Figure 12 for an explanation of how Lemma 3 applies,
with ¢* being the winner’s curse solution.

5.2.6 When the bracing is achieved approximately

In some situations, the bracing is achievable only approximately, but with a
“tolerance” that can be made arbitrarily small. Then, another useful variant
of the Bracing Lemma is obtained by imposing a continuity property on
the solution. An example illustrating this possibility is the problem of fair
rationing in the two-good case. Such a problem can be modelled as an
economy with single-peaked preferences, defined as follows:

Domain 8 An allocation problem with single-peaked preferences
(Sprumont, 1991) is a pair (R,Q) where R = (R:)ien is a list of single-
peaked preference relations defined on Ry, and € Ry is some amount of a
social endowment of an infinitely divisible commodity. Single-peakedness of
R; means that R; has a satiation amount, denoted p(R;), and for all z;, z!
such that z} < z; < p(R;) or p(R;) < x; < z}, we have z; P; z!. A feasible
allocation is a list x € Rf such that > z; = Q.

Examples of solutions for Domain 8 The Pareto solution is defined
in the usual way. The uniform rule selects the allocation x such that if
Y p(R;) > Q, then for all i € N, z; = min{p(R;), )}, and if 3. p(R)) < Q,
then for all i € N, z; = max{p(R;), A}, in each case A being chosen so as to
make z feasible (Figure 13a illustrates this definition).

We refer to Figure 13 for a sketch of the analysis of the example. It
pertains to a solution assumed to be a consistent subsolution of the no-envy
and Pareto solution and it shows that for such a solution, if an allocation is
chosen, it has to be sufficiently close to the uniform allocation. It represents a
two-person economy for which ) p(R;) > Q, and whose uniform allocation is
denoted z (there A = z5). The proof uses the obvious fact that at an efficient
allocation, all agents receive at most their satiation amounts if }_ p(R;) > 9,
and all agents receive at least their satiation amounts if Yop(R:) <.

6 Characterizations: a sampler

In this subsection, we state a few results involving consistency and its con-
verse. They constitute but a small fraction of the literature, but we have
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Figure 13: Approximate bracing. (a) We start with an economy e involving
the group {1,2}, for which Y p(R;) > (, say, and identify its uniform allocation,
z = (z1,22). (b) We introduce two new agents, agents 3 and 4. Given v, an
integer that will go to infinity, we specify their preferences R3 and Rj so that

p(R5) = p(R1), p(RY) = =2, (z1 — 1/v) I¥ 29, and (z2 — 1/v) I} 2Q. We
double the social endowment. Let y” be an alloca.tlon chosen by a selection from
the no-envy and Pareto solution for the augmented economy (R, Ry, RY, Ry, 2Q).
By efliciency, for each i € {1,...,4}, y¥ < p(R;). Then by no-envy, Yy = y§
and y5 = y4. This implies that a.t least one of agents 2 and 4 consumes more
than p(Rj), and for agent 3 not to envy that agent, he should consume at least
p(R3) — 1/v = p(RY) — 1/v. So, agent 1 should consume at least that amount.
Similarly, agent 4 should consume at least p(Ry) — 1/v = 29 — 1/v, and therefore
agent 2 should consume at least that amount. We then deduce that agent 2
should not consume more than p(R;) +3/v. Altogether, y¥ belongs to the interval
[p(R1) — 1/v,p(R1)] and y§ to the interval [z — 1/v,z5 + 3/v], so that (v¥, v%)
converges to (z1,z2) as v goes to infinity.
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selected them so as to give a flavor of the range of existing applications of
the principles, and whet the reader’s appetite. Several of them make use of
one or the other of the two Lemmas and variants. In some cases, very little
work is required beyond showing that the hypotheses of the Lemmas are met.

6.1 Bargaining

For our first result, which pertains to bargaining (Domain 1), we will need
the two basic properties of Pareto-optimality, whose definition we will not
repeat, and anonymity, which says that the solution should be invariant
under renamings of agents. We will also impose scale inwvariance, which
says that a rescaling, independent agent by agent, of their utilities, is accom-
panied by a similar rescaling of the outcome.

Theorem 1 (Lensberg, 1988) The Nash solution is the only solution satis-
fying single-valuedness, Pareto-optimality, anonymity, scale invariance, and
consistency.

The proof, which is illustrated in Figure 14, involves an operation that can
be described as an “augmentation to anonymity”. Starting from an arbitrary
problem S that may not have any particular symmetry, we augment it so as
to obtain a problem T that is sufficiently symmetric so that we can deduce by
Pareto-optimality and anonymity the point z that it should choose; moreover,
the reduced problem of T' with respect to the initial group of agents and z
is S.

The proof works for any S whose boundary contains a “sufficiently long”
(in relation to the common value of the coordinates of its Nash outcome)
segment centered at its Nash outcome. Otherwise, the section of T' through =
contain 5’ = § as a strict subset, and we cannot derive what we want about
S. However, the desired conclusion can then be obtained by introducing
more than one new agent and extending the replication, the number of new
agents that are needed being all the greater the shorter this segment. A
continuity argument is required for a problem that is strictly convex at its
Nash outcome.

A very general result that does not involve the invariance or symmetry
conditions is given by Lensberg (1987). He essentially obtains a character-
ization of the class of solutions obtained by maximizing a sum of concave
functions of the agents’ utilities.
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Figure 14: Characterization of the Nash solution. (a) We start with a two-
person problem S involving agents 1 and 2. By scale invariance, we can assume
that its Nash outcome has equal coordinates, (a,a). (b) We introduce a third
agent, agent 3, and translate S along the third axis by the amount a. Let S’
denote the result. (c) We replicate S’ twice by having the roles played by agents
1 and 2 in S’ be played by agents 2 and 3 respectively, and then by agents 3 and
1 respectively. (d) We construct the smallest convex and comprehensive problem,
T', containing S’ and its two replicas. By Pareto-optimality and anonymity, the
point chosen for T is (a, a, @). The reduced problem of T with respect to {1,2} and
(a,a,a) is S'. By consistency, the solution outcome of S’ is (a,a). Since S = &,
we are done.

6.2 Coalitional games with transferable utility

The literature on consistency for coalitional games (Domain 3) is extensive,
partly because, as we have already seen, reduced games can be defined in
more than one way. We list three basic results involving the two notions
of consistency introduced in Subsection 3.1.3. Theorems 2 and 3 involve
individual rationality, the requirement that each agent’s payoff be at least
as large as the agent’s worth. Both of them rely on the Bracing Lemma.

Theorem 2 (Tadenuma, 1992) On the domain of TU coalitional games
whose core is non-empty, the core is the only solution satisfying individual
rationality and complement consistency.

The next result involves the condition of super-additivity, which says
that if = is chosen for some game v, and y is chosen for some game w, then
z + y is chosen for the sum game v + w.

Theorem 3 (Peleg, 1986) On the domain of TU coalitional games whose
core 1s non-empty, the core is the only solution satisfying individual ratio-
nality, super-additivity, and max-consistency.
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The next theorem involves homogeneity, the requirement that if all
utilities are multiplied by the same number, the chosen payoff vector should
also be scaled by that number. Its proof is by means of an augmentation to
anonymity analogous to that carried out in the proof of Theorem 1.

Theorem 4 (Sobolev, 1975) The prenucleolus is the only solution satisfy-
ing single-valuedness, individual rationality, Pareto-optimality, anonymity,
homogeneity, and max consistency.

A third notion of consistency, in which the solution itself appears, was
proposed by Hart and Mas-Colell (1989), and it essentially leads to a char-
acterization of the Shapley value.

Counterparts of Theorems 2 and 3 for the non-transferable utility case
are available (Tadenuma, 1992; Peleg, 1985). Numerous contributions have
been made to the study of this class of problems. We note Dutta (1990) and
Maschler and Owen (1989).

6.3 Fair division

To present the results of this section, which pertain to fair division in classical
economies (Domain 1), we need two additional properties. Replication-
invariance says that if an allocation is chosen for some economy, then for
any integer k, the k-replica of the allocation is chosen for the k-replica of the
economy. In this replica, each of the preference relations appearing in the
list R is cloned k times and the social endowment is multiplied by .

Theorem 5 (Thomson, 1988) Suppose that preferences are smooth. If a
subsolution of the equal division lower bound and Pareto solution satisfies
replication invariance and consistency, then it is a subsolution of the Wal-
rasian solution operated from equal division.

The proof is sketched in the legend of Figure 15a where the replication
operation is denoted with a star (k * z is the k replica of z and (k * R, kQ) is
the k-replica of (R,)), and ¢ is a solution assumed to satisfy the properties
listed in the theorem. It involves a variant of the Elevator Lemma, in which
the role of converse consistency is played by replication invariance, which is
a (very) weak form of it.

We also have the following result, which involves anonymity, the require-
ment that the chosen allocations be independent of the names of agents:
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Figure 15: Characterization of the Walrasian solution operated from
equal division. An economy and an efficient allocation for it, 2, at which the
implicit incomes of iwo agents, agents ¢ and j, are not equal. By smoothness
of preferences, there exist k;,k; € N such that yo P; z;, where Yo = &E:—}%ﬁ
We replicate the economy k = max{k;, k;} times. Now, if z is chosen for the
initial economy, then, by replication-invariance, k % z is chosen for (k* R, kQ). Let
N’ be a subgroup consisting of k; agents of type i and k; agents of type j. By
consistency, (ki * zi, kj * z;) is chosen for ((Rg)eent, kiz; + k;2;). Since the solution
is a subsolution of the equal division lower bound solution, we have z K; yo, in
contradiction with the specification of y,.

Theorem 6 (Thomson, 1994a) Suppose that preferences are smooth. If a
subsolution of the equal division lower bound and Pareto solution satisfies
anonymity and converse consistency, then in the two-person case, it is a
subsolution of the Walrasian solution operated from equal division. If for
the two-person case, equality holds, then it is a subsolution of the Walrasian
solution operated from equal division for all cardinalities.

Other results have been obtained by Maniquet (1996) and Fleurbaey and
Maniquet (1994). Roemer (1988) formulates and studies a notion of consis-
tency where it is the number of goods that varies.

6.4 Bankruptcy

To state our next result, which pertains to bankruptcy (Domain 5), we need
the concept of a parametric solution. Consider a family of real-valued
continuous, and nowhere decreasing functions f(,.) defined on some interval
[a, 8] and such that for all ¢ € Ry, f(,a) = 0 and f(g,b) = ¢. Now, given
any (c, ) with agent set N, choose the vector z € RY such that dnZi=E
and for some A and all 1 € N, f(c;,A) = z;: this is the choice made by
the parametric solution associated with the family f. It is easy to see that
the proportional, constrained equal awards, constrained equal losses, and
Talmudic solutions (defined next), are parametric solutions. Figure 16 gives
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Figure 16: Parametric representations of three solutions. (a) The pro-
portional solution. (b) The constrained equal awards solution. (c) The Talmudic
solution when there is upper bound on claims, cyqz.

parametric representations for three of them.

To define the Talmudic solution, we distinguish two cases: if 3" ¢;/2 >
E, each claimant z € N receives what he would receive under an application of
the constrained equal awards solution to the problem (¢/2, E); if " ¢;/2 < E,
each claimant ¢+ € N receives ¢;/2 plus what he would receive under an
application of the constrained equal losses solution to the problem (¢/2, E —

2.¢if2).

Theorem 7 (Young, 1987) A solution satisfies continuity, symmetry, and
consistency if and only if it is a parametric solution.

By imposing additional conditions on rules, interesting subfamilies of the
parametric family can be identified (Young, 1988), including several solutions
that have played a prominent role in the public finance literature. Another
relevant contribution developing the notion of average consistency is Dagan

and Volij (1997).

6.5 Allocation of indivisible goods when monetary
compensations are possible
The two theorems below, which pertain to the allocation of indivisible goods

when monetary compensations are possible (Domains 4 and 7), involve brac-
ings up to neutral exchanges, as illustrated in Figure 12.

Theorem 8 (Tadenuma and Thomson, 1993) In the one-object case, there

is a smallest subsolution of the no-envy solution satisfying neutrality and
consistency. It is the winner’s curse solution.
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The bracing used in proving the next theorem is illustrated in Figure 11.

Theorem 9 (Tadenuma and Thomson, 1991) In the multiple-object case,
if a subsolution of the no-envy solution satisfies neutrality and consistency,
then in fact, it is the no-envy solution.

If several identical objects have to be allocated, any envy-free allocation
can be braced by introducing two agents, specifying their preferences in such
a way that they are indifferent betwen the two bundles initially received by
the losers and the winners, and adding resources so that one of them can be
given the winners’ bundle and the other can be given the losers’ bundle.

Bevia (1996) studied consistency in situations where each agent may re-
ceive more than one object.

6.6 Allocation with single-peaked preferences

For problems of fair division with single-peaked preferences (Domain 8), we
have the following characterization:

Theorem 10 (Thomson, 1994a) There is a smallest subsolution of the no-
envy and Pareto solution (alternatively, of the equal division lower bound and
Pareto solution) satisfying upper semi-continuity with respect to the social
endowment and consistency. It is the uniform rule.

The proof for a solution ¢ required to be a subsolution of the no-envy
solution relies on the approximate bracing illustrated in Figure 13. It con-
cludes as follows. Let Q¥ = 2{1,2} y; and ¢ = (Ry, R;,9%). By con-
sistency, y{; 4 € ¢(e”). Since Yy — T as v — oo, it follows that
Q" — 2{1‘2} z; = (. By upper semi-continuity with respect to the social
endowment, = € (e).

When the search is for a subsolution of the equal division lower bound
solution the conclusion is a direct consequence of the Elevator Lemma and
the fact that for the two-person case, the no-envy solution is less restrictive.

A counterpart of Theorem 6 holds for this model, and its form is even a.
little simpler since the uniform rule is single-valued. A result related to The-
orem 10 is due to Dagan (1996). Results on the dual case when preferences
are single-troughed is given by Klaus (1997).

37



Figure 17: A logo for consistency. The two-person case, symbolized by a
two-pronged piece of a jigsaw puzzle, “fits” just right with the three-person case,
symbolized by the three-pronged piece.

6.7 Matching

For matching problems (Domain 6), we will impose converse consistency, but
note that here, for this condition to make sense, we need to demand that its
hypotheses holds for all problems involving two men and two women. The
following theorem involves the Bracing Lemma.

Theorem 11 (Sasaki and Toda, 1992) If a subsolution of the Pareto solution
satisfies anonymity, consistency, and converse consistency, then it is the
stable solution.

A number of additional results have been obtained by Toda (1993), for a
model in which remaining single is an option, and also for a different notion
of a reduced problem.

7 Conclusion

Figure 17 is a logo illustrating the idea of consistency. It consists of two
interlocking pieces of a jigsaw puzzle, one with two prongs and the other
three prongs, symbolizing the two-person case and the three-person case
respectively. The interlocking of the two pieces indicates the way the recom-
mendations made by a consistent solution for one cardinality “fits” perfectly
the recommendations it makes for other cardinalities.

A jigsaw puzzle can also help illustrate the notion of converse consis-
tency. Say that two pieces of a puzzle are “correctly positioned” if when
they are meant to interlock, you have indeed placed them in their inter-
locking position, and otherwise, you have kept them apart. Suppose now
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that you have correctly positionned any two pieces of the puzzle. Then, you
have completely solved the puzzle. Correct positioning of pieces two-by-two
guarantees correct positioning altogether. An implication of this property of
puzzles is that several people can work independently on the same puzzle,
one person doing the frame, the other the trees, a third the mountain range
in the background ...

Of course, this depends on the puzzle having been well designed, that is,
on the way in which the pieces have been cut. To see this, consider the case
when the pieces are squares. Then, any two pieces, when placed adjacently
to each other, would appear to be correctly positioned, but this positioning
would not solve the puzzle. This shows that one could take it to be the
definition of a good puzzle that it be conversely consistent.
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