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Abstract

We propose a new rule to solve claims problems (O’Neill, 1982) and
show that this rule is best in achieving certain objectives of equality.
We present three theorems describing it as the most “egalitarian”
among all rules satisfying two minor conditions. We refer to it as the
“constrained egalitarian” rule. We show that it is consistent and give
a parametric representation of it. We also define several other rules
and relate all of them to the rules that have been most commonly.

discussed in the literature.

Key-words: Claims problelné, constrained egalitarian rule, Talmud rule, con-
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1 Introduction

A man dies leaving behind debts adding up to more than the value of his
estate. How should the estate be divided between the agents holding claims
against it? We propose a new rule to solve such “claims problems” (O’Neill,
1982) and show that this rule is best in achieving certain objectives of equal-
ity. We present three theorems describing it as the most “egalitarian” among
all rules satisfying two minor conditions. Therefore, we refer to it as the
“constrained egalitarian” rule.! We also define a rule that can be seen as
its “dual”; there, the focus is on the losses claimants experience instead of
on the awards made to them. Among all rules satisfying the two conditions
alluded to above, this rule is the most “egalitarian” in terms of losses.

The constrained egalitarian rule is inspired in part by a rule that has
played a central role in the study of an important class of rationing problems—
the “uniform rule”—and specifically by recent characterizations of the uni-
form rule on the basis of egalitarian considerations (Schummer and Thomson,
1997).2 Our strategy is to exploit formal analogies between claims problems
and rationing problems, making accommodations for the critical distinctions
that exist between the two classes of problems — in the context of claims
problems, a number of properties have to be required of rules that are not
pertinent to rationing.

We close with a discussion of a certain consistency property that the con-
strained egalitarian rule enjoys. Informally, a rule is “consistent” if the rec-
ommendation it makes is unaffected by the depar’bure of some of the claimants
with their awards. Somewhat more precisely, consider some problem and ap-

ply the rule to it. Then, let some of the claimants collect their awards and

17t should not to be confused with the “constrained equal awards” rule, defined later.
2The uniform rule has also been characterized on the basis of a variety of other consider-

ations, including incentives (Sprumont, 1991), various notions of monotonicities {Thomson,
1994a, 1995), and consistency (Thomson, 1994b).



leave. Finally, consider the “reduced” problem obtained by reevaluating the
situation from the viewpoint of the remaining claimants, and apply the rule
to it. Consistency requires that the restriction to the subgroup of remain-
ing claimants of the original recommendation be the recommendation the
rule makes for the reduced problem. We show that the constrained egalitar-
ian rule is consi:stent, a fact that allows us to describe it in a particularly
convenient way, thanks to a representation theorem due to Young (1987).

In the course of our analysis, we present several rules that have played
a central role in" the literature, and we close by proposing several new ones
that are related to these rules in simple ways.

In addition to introducing new rules to solve claims problems, we hope
that our work will contribute to making the fundamental and very intu-
itively appealing idea of consistency known to a wider public than specialists
in game theory and mechanism design. Although it is only recently that a
systematic investigation of its implications has taken place (see Thomson,
1997, for a comf;rehensive survey), much is already known about the prop-
erty and we feel}:that it is ready to be incorporated in the body of concepts
that economists:' should routinely' appeal to when evaluating resource allo-
cation rules. Presenting the idea in the context of claims problems has an
important advantage: this class of problems is among the simplest that one
could possibly consider and yet it is surprisingly rich. A wealth of rules have
been defined for-it, and it can conveniently serve as a laboratory in which
to introduce ma_ﬁy of the concepts and techniques of the modern theory of
mechanism design.

The paper is organized as follows. In Section 2, we introduce the concept
of a claims prol:}lem and several well-known rules. In Section 3, we define
the constrained-.ggalitarian rule. In Section 4, we discuss its consistency and
provide a parametric representation for it. In Section 5, we define our other

proposals.



2 Claims problems and rationing problems

We first present the family of claims problems and a related family of ra-

tioning problems. In each case, N = {1,...,n} is the set of agents.

A claims problem (O’Neill, 1982)3 is a vector (¢, E) = (cy, ..., cn, E) e
RY x Ry, where for each i € N, ¢; represents the claim of claimant ¢ on an
estate of value £.* The claims cannot be jointly met, that is, Y ¢; > ES
A feasible allocation for (c, E) is a vector z € RY such that Y az; = E
and forall: e N, z; < ¢. A rule is a function defined on the class CV of
all of these problems, which associates with each problem a unique feasible
allocation. Our generic notation for a rule is F. ‘

Numerical examples of claims problems, the so-called “contested gar-
ment” and “marriage contract” problems, appear in the Talmud and we
return to them later to illustrate how our proposals differ from the resolu-
tions discussed in the Talmud for these examples.

This model has other applications. One of them is to bankruptcy: here
the members of N are creditors, and for each : € N , ¢ 1s the claim of
creditor ¢ on the net worth E of a bankrupt firm. Also, consider the problem
of allocating aid by an international agency. There, N is a set of countries
in need of aid, with ¢; representing the financial need of country ¢, and F is

the budget of the agency. For a final example, think of N as the participants

3Using the language of game theory, the problems we consider here can be described
as “transferable utility” claims problems. For a theory of “non-transferable utility” claims

problems, see Chun and Thomson (1992).
“By RY we mean the Cartesian product of |N| copies of R indexed by the members of

N.
SFor convenience, we include the limit case when equality holds.
$These examples have been discussed extensively (O’Neill, 1982; Aumann and Maschler,

1985; Young, 1987; Curiel, Maschler, and Tijs, 1987; Chun, 1988, 1998; Serrano, 1993;
Dagan and Volij, 1993; Dagan, 1996; Herrero, Maschler, and Villar, 1997; Benoit (1997);
Herrero, 1998; Herrero and Villar, 1988; for a survey, see Thomson, 1996).



to a scientific meeting, with ¢; representing the travel expenses incurred by
participant i, and E being the conference budget. In any of these cases, the
inequality » " ¢; > E is quite descriptive of the real world.

A rule to solve claims problems, advocated in particular by Maimonides
(see Aumann and Maschler, 1985), and known as the constrained equal
awards rule, CEA, consists in making awards as equal as possible, subject

to the condition that no claimant receives more than his claim. Foralli € N ,
CEAi(c, E) = min{c;, A}, where ) is chosen so that Zmin{ci,/\} — E.

A dual of this rule, the constrained equal losses rule, CEL, makes
awards such that the losses agents experience are as equal as possible, subject

to the condition that no claimant receives less than zero. For all i € N ,
CELi(c, E) = max{0, ¢;— A}, where )\ is chosen so that Zmax{(),ci—)\} = E.

Another rule, introduced by Aumann and Maschler (1985), and which we
refer to as the Talmud rule, T, is obtained by “combining” the constrained

equal awards and constrained equal losses rules (Figure 1). For all i € N,

Ti(e, E) = CEA(c/2,min{) " cx/2, E}) + CELi(c/2, max{E — D er/2,0}).

This rule can also be conveniently described as a function of the estate,
assuming agents to be ordered by their claims, so that ¢; < --- < ¢,. The
first units of the estate are divided equally until all agents have received an
amount equal to half of the smallest claim. Then, agent 1 does not receive
anything for a while. Additional units are divided equally among the other
agents until they have received an amount equal to half of the second smallest
claim, and so on. This process goes on until each agent has received half of his
claim, which is when the estate is worth Y. ¢i/2. Each agent’s award schedule,
the function that gives his award as a function of the amount to divide, is

then completed by symmetry with respect to the point (> ck/2,¢/2); or
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equivalently, starting from an estate equal to 5~ ¢;, which allows each agent
to receive his claim, we consider shortfalls of increasing sizes: the first units
of such a shortfall are divided equally until each agent’s loss is equal to half
of the smallest claim. Then, agent 1’s loss stops. Any additional shortfall is
divided equally between the other agents until their common loss is equal to
half of the second smallest claim ... This process goes on until each agent’s

loss is equal to half of his claim.

Next, we present the related problem of rationing. Rationing is necessary
in resource allocation problems when prices are not allowed to adjust, or
have not had the time to adjust, so as to achieve equality of demand and
supply. In the two-good case, by restricting attention to the budget lines,
we obtain the following reduced model, in which preferences have the well-
known property of single-peakedness: a preference relation R; defined on
R, with asymmetric part P; is single-peaked if there is a number, which
we denote by p(R;) and call the peak amount for R;, such that for all
zi,o; € Ry, if2; < 2} < p(Ri) or p(R;) <zl < z;, then z! P; z;. A rationing
problem (Sprumont, 1991) is a list (R, M) = (R,..., R., M) where the
R’s are single-peaked preference relations defined on R,,” and M € R,
represents an amount to divide. A feasible allocation for (R, M) is
a vector z € Rf such that > z; = M. A rule is a function defined on
the class EV of these problems that associates with each problem a unique
feasible allocation. The most important rule in the literature devoted to the
analysis of this class of problems is obtained by confronting all agents with
the same “uniform” (upper or lower, as the case may be) bound, and letting
them maximize their preferences subject to not exceeding, or not falling short

of, that bound. It is known as the uniform rule, U (Benassy, 1982): for all
i € N,if M <3 p(Ry), then U;(R, M) = min{p(R;), A}, A being chosen so

7 Alternatively, we could require preferences to be defined over some interval [0, M), or

over the interval [0, M], M being the amount to divide.



that ) J@; = M;if ) p(Re) > M, then U;(R, M) = max{p(R:), A}, ) being
chosen so that ) z; = M.

In order to make clear the connection between the uniform rule and the
Talmud rule introduced earlier, it is convenient also to describe the uniform
rule parametrically as a function of the amount to divide (Thomson, 1994a).
Assume agents to be ordered by their peaks, so that p(R;) < --- < p(R,).
The first units of the commodity are divided equally until all agents have
received an amount equal to agent 1’s peak amount. Then, agent 1.stops
receiving anything for a while. Additional units are divided equally among
the other agents, until they ‘have received an amount equal to agent 2’s
peak amount. Then, agent 2 also stops receiving anything for a while. This
process goes on until each agent has received his peak amount. At that point,
additional units go first to agent 1 until he receives an amount equal to agent
2’s peak amount. Additional units are divided equally between agents 1 and
2 until each receives an amount equal to agent 3’s peak amount. This process
goes on until agents 1 to n — 1 all receive amounts equal to agent n’s peak

amount. Additional units are divided equally among all agents.

The following distinctions betyween problems of fair division and claims
problems should be noted. First, In a claims problem, the value of the
estate is by definition less than the sum of the claims (3¢; > E). In a
rationing problem, no comparable restriction on M in relation to > p(R:)
was imposed. Also, in a rationing problem, no natural upper bound can be
imposed on what agents receive, whereas in claims problems, it makes sense
to require that no agent receives more than his claim. This is the property
of claims boundedness.

Second, it is desirable in claims problems that payments respect the or-
dering of claims. Agents differ only in their claims and this requirement of
fair ranking is quite natural. The corresponding requirement for rationing

problems, that the amounts awarded respect the ordering of peaks, is not



compelling in general unless of course the rule depends only on peaks, (a

property satisfied by the uniform rule.®)

3 The constrained egalitarian rule

Motivated by recent characterizations of the uniform rule as the only rule
to satisfy certain egalitarian objectives subject to efficiency (Schummer and
Thomson, 1997), our objective here is to investigate the existence of rules
for claims problems that would enjoy similar properties. A natural way to
proceed is of course to try to adapt the uniform rule to the present situation.
Given the various ways in which rationing problems and claims problems
differ, some care should be exercised however. A good starting point is the
Talmud rule, as it seems to correspond to the first half of the uniform rule
(up to the point where each agent receives his peak). To obtain a rule for
claims problems that reflects the totality of the uniform rule, we proceed
as in the definition of the constrained equal awards rule but take from the
Talmud rule its switchpoint of £ = 3" ¢;/2. Aumann and Maschler (1985)
note numerous examples in the Talmud where the midpoint is viewed as an
important special case.

The Talmud rule and the rule we obtain exhibit substantial differences.
This is because, under the uniform rule, it is the agent with the smallest
peak amount that receives the first additional units after the switchpoint is
reached, whereas under the Talmud rule, it is the agent with the largest claim
that does.

Also, for payments to respect the ordering of claims, we have to make sure
that when agent 7 starts receiving additional units, he should not receive so

much as to overtake agent 1 + 1.

8This property is also satisfied by the proportional rule, for which payments are pro-

portional to peaks.
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Figilre 1: The Talmud rule and the constrained egalitarian rule illus-
trated for the contested garment problem: ¢ = (50,100) (a) The Talmud

rule. (b) The constrained egalitarian rule.

We are now in a position to propose an explicit description, still assuming
claimants to be ordered by claims: ¢; < --- < ¢,. For values of the estate
up to ) ¢;/2, payments are computed as for the Talmud rule. At that point,
any additional unit goes to agent 1 until he reaches his claim or half of the
second smallest claim, whichever is smallest. If ¢; < ¢y/2, he stops there. If
¢1 > c3/2, any additional unit is divided equally between agents 1 and 2 until
agent 1 reaches his claim, in which case he drops out, or they reach ¢3/2. In
the first case, any additional unit is given entirely to agent 2 until he reaches
his claim or ¢3/2. In the second case, any additional unit is divided between
the three agents until agent 1 reaches his claim or they reach c4/2---. A

compact formula for the rule is given by:

The constrained egalitarian rule, CE: For alli € N,

min{c¢;/2, A} if BE<Y /2,

max{c¢;/2, min{c;, \}} otherwise,

CEf(c,F) = {
where in each case, A is chosen so as to achieve feasibility.

The constrained egalitarian rule is illustrated in Figures 1 to 3. Fig-

ure 1 pertains to the two-person contested garment problem discussed

150




100 Ca 100 [
T
75 L2 5] TS T Cy
62.5 1= Ty
1 50
Ty 1
37.5 37.5
1= T2 1= T2
75 100 175 75 87.5 100 150 175

() (b)

Figure 2: The Talmud rule and the constrained egalitarian rule illus-
trated for another two-person problem: ¢ = (75,100) (a) The Talmud rule.

(b) The constrained egalitarian rule.

in the Talmud (Baba Metzia 2a), where (¢1,¢c2) = (50,100). It represents
the awards as a function of the estate for both the Talmud rule and the
constrained egalitarian rule. The Talmud considers the case £ = 100 and
recommends (25,75). Figure 2 re.presents similar graphs for a two-person
problem with (¢, ¢z) = (75,100), the values of the claims being chosen so as
to help reveal the range of possible shapes for the schedules of awards for the
constrained egalitarian rule. Figure 3 gives the corresponding graphs for the
three-agent marriage contract problem of the Talmud (Kethubot 93a),
where (¢, ¢p,¢3) = (100,200,300); the Talmud considers the case £ = 100
for which it recommends equal division, the case E = 300 for which it recom-
mends proportional division, and the case E = 200 for which it recommends
(50,75,75). Note that the relationship between ¢; and c¢;y1/2 is crucial in
determining the shape of the schedules for the constrained egalitarian rule.

The constrained egalitarian rule differs from Pineles’ rule, P, (Au-

mann and Maschler, 1985). This rule also coincides with the Talmud rule up
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Figure 3: The Talmud rule and the constrained egalitarian rule il-

lustrated for the marriage contract problem in the Talmud: ¢ =
(100,200,300) (a) The Talmud rule. (b) The constrained egalitarian rule.

to B = ) c/2, but for E > 3" ¢;/2, it is obtained by simply “replicating”
the payments given by the Talmud rule up to £ = 3" ¢, /2. Forall i € N,

Pc, E) = CBAic/2,min{)  c/2, E})+CEA:(c/2,max{E~ Y c/2,0}).

For the contested garment problem, it recommends (37.5,62.5), whereas the
constrained egalitarian rule recommends (50, 50).

The constrained egalitarian rule also differs from all of the other rules

discussed by O’Neill (1982).

4 Characterizations

In this section, we show that we have achieved our objective of contrained
egalitarianism by presenting three characterizations of the constrained egal-
itarian rule. The first constraint is that if the estate increases, the amount

received by each claimant should not decrease. This property is satisfied
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by all of the rules that have been discussed in the literature and it is very

difficult to think of any reason why one may accept that it be violated.

Estate-monotonicity: For all (¢, E), (¢, E') € CN,if ¢ = ¢/ and E < E',
then F(c, E) < F(d, E').9

A property that has been considered in a number of studies expresses the
idea that “gains and losses should be put on the same footing”: a given prob-
lem can be seen from two perspectives, either as pertaining to the division of
whatever amount is available as we have done so far, or as pertaining to the
allocation of the losses that claimants have to incur. The requirement that
what is available be distributed symmetrically to what is missing is known as
self-duality. A number of rules are self-dual, including the proportional rule
(according to which awards are proportional to claims) and the Talmud rule.
The idea expressed in self-duality is very ancient. Aumann and Maschler
(1985) cite numerous passages in the Talmud where it appears.

Note that self-duality implies that if the estate is equal to half of the sum
of the claims, then every claimant should receive half of his claim. We will

write this as a separate condition.

Midpoint property: For all (¢, E) € CV, if E = 5 ¢;/2, then F(e,E) =
c/2.

Focusing on this special case gives us a considerably weaker condition
than self-duality; for each claims vector, it applies to only one value of the
estate whereas self-duality relates the choice made for any value of the estate
E to the symmetric value Y ¢; — E.

Second, the property is satisfied by interesting rules that are not self-
dual, an example being Pineles’ rule. Another example is the variant of the
proportional rule obtained as follows (Curiel, Maschler, and Tijs, 1987): first

truncate the claims by the estate and attribute to each claimant the minimum

9Vector inequalities: 2y, z>y, >y
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of the difference between the estate and the sum of the claims of the other
agents and zero; adjust the claims down by these amounts, and in a second
round, apply the proportional rule to the problem so redefined. The award

to each claimant is the sum of the awards made in each of these two rounds.

Our results are that among rules satisfying estate-monotonicity and the
midpoint property, the constrained egalitarian rule behaves in the most egal-
itarian way, as we intended. Their proofs are relegated to an appendix. The
proofs of Theorems 1 and 2 below are obtained by a simple adaptat'ion of
the proofs of the characterizations of Schummer and Thomson (1997). The

proof of Theorem 3 is a variant of the proof of Theorem 1.1°

Theorem 1 The difference between the largest amount received by any claimant
and the smallest such amount is smaller at the award vector selected by the
constrained egalitarian rule than at the award vector selected by any other

rule satisfying estate-monotonicity and the midpoint property.

Theorem 2 The variance of the amounts received by all the claimants is
smaller at the award vector selected by constrained egalitarian rule than at
the award vector selected by any other rule satisfying estate-monotonicity

and the midpoint property.

Theorem 3 The constrained egalitarian rule selects the award vector that
mazimizes the Lorenz ordering among all rules salisfying estate-monotonicity

and the midpoint property.

101t is worth noting that these characterizations of the uniform rule are obtained by
considering one rationing problem at a time, whereas the characterizations we propose
here are defined for rules defined on the whole domain of claims problems. The midpoint
condition pertains to a small subdomain of the domain of claims problem, and it applies
to each element of that subdomain separately, but estate-monotonicity relates the choices

made for any two problems that differ only in the amount to divide.

12



We note that Aadland and Kolpin (1998) have characterized rules to
solve the problem of sharing the cost of an irrigation system (this problem
is mathematically equivalent to the problem of sharing the cost of an air-
port runway, as formulated by Littlechild and Owen, 1973), by means of a
maximizing exercise of the kind defined in Theorem 1. One of the rules they
characterize can be seen as a counterpart of the game-theoretical concept of
Shapley value (Shapley, 1953). In the context of claims problem, the Shapley
value corresponds to a rule that differs from the constrained egalitarian rule.
It is called the random arrival rule. To define it, first order the claimants.
Then, give to each claimant the minimum of his claim and the amount that
is left when he arrives, full satisfaction having been given to the claimants
preceding him in the ordering. Finally, give to each claimant the average

over all possible orderings of the amount just calculated.!!

5 Consistency

In this section, we turn to a property of allocation rules that has played an
important role in recent developrﬁents. “Consistency” links the recommen-
dations made by a rule as the population of claimants varies. So far, the
set of claimants had been kept fixed, but we now think of it as a variable.
Informally, the requirement is that there should never be any need to re-
consider a recommendation once some of the claimants have left with their
assigned amounts. Somewhat more formally, and given a claims problem
(¢, E) € CV, let z be the recommendation made by a given rule for it. Now,

let claimant ¢ € N leave the scene with z; and let us reevaluate the situation

1This process is indeed reminiscent of the way the rule introduced by Shapley for coali-
tional games can be defined, and it is the underlying reason for the formal correspondence

between the random arrival rule and the Shapley value. This correspondence was brought
to light by O’Neill (1982).
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from the viewpoint of the remaining claimants. Their claims are unchanged;
the leftover is E — ;. The rule is consistent if for the “reduced” problem
so defined it recommends the same awards for them as initially.1?

Note that for this operation to be meaningful, the rule has to be defined
for classes of problems of arbitrary cardinalities. Formally then, we have a
universe of “potential agents” which we index by the natural numbers, N.
To define a problem, we first specify a non-empty finite subset of N. Let A
denote the class they constitute. Given N € N, let CV denote the class of
claims problems involving the group N. A rule is a mapping defined on the
union of the C that associates with every N € A and every (¢, EyeCN a
unique feasible allocation of (¢, £). The rules discussed so far are adapted to
deal with variable populations in a straightforward way, by applying them
separately to each set of agents. For instance, what we now mean by the
“Talmud rule” is the rule that selects for each group of agents and for each
claims problem that this group could face, the awards vector recommended
by the formula of Section 3 that we presented under that the Talmud rule.

The general statement of the property is as follows:

Consistency: For all N € N, all (¢, E) € CV, and all N' C N, we have
TNt = Fenr, Y ni i), where z = F(e, E).

Many well-known rules are consistent. (An example of a rule that is not
is the random arrival rule.) The constrained egalitarian rule is t0o.!® It
also satisfies continuity, the requirement that small changes in the data
should not cause large changes in the recommended vector of awards, and

it is symmetric, in that two agents with the same claims receive the same

awards: if ¢; = ¢;, then Fi(c, E) = Fj(c,E). Therefore, by Young’s (1987)

12For a survey of the literature on the “consistency principle”, see Thomson (1997).
131t is easy to see that the uniform rule, as a rule to rationing problems, is consistent

(Thomson, 1994b).

14



theorem, it has a parametric representation: say that the rule F' has such
a representation if there is a family of continuous, nowhere-decreasing, and
onto real-valued functions f(co,-) : R x [a,b] = R, where [a,b] C]— oo, +o00],
indexed by the parameter ¢, € R, each ¢ being interpreted as the possible
value of a claim, such that for all N € A and all (¢, E)y € CN, F(c,E) =
{f(ciy A) Lien, for A € R chosen so that Yonfle,\) = E.

Young gives a parametric representation of the Talmud rule. For the
purposes of exposition, we will restrict our attention to claims problems
where each claim is bounded by some fixed number c¢,,,. Then, a very
simple parametric representation—it is piecewise linear—of the Talmud rule
is possible (Figure 5a). Postulating an upper bound on the claims, a simple
parametric representation for the constrained egalitarian rule can also be
given. The following theorem gives such a representation. We omit the

proof, which is straightforward.

Theorem 4 The constrained egalitarian rule is consistent and it admits the

following parametric representation:

A if A €[0,¢:/2];

Fleo\) = /2 if A€ [cif2,¢i/2 4 cmas/2];
A= Chnaz/2 ifAE [€:/2 4 cmaz/2, ¢ + Cmaz/2];
Ci if A€ [ + Cmaz/2, 3Cmaz/2).

More illuminating than the formula is its graph. We will find it useful
to introduce it in stages, by first giving the corresponding graphs for the
constrained equal awards and constrained equal losses rules. This is because
the Talmud rule as well as the constrained egalitarian rule are built up from
these rules. The Talmud rule is obtained for values of the estate up to half
the sum of the claims, by applying the constrained equal awards rule to the
problem obtained by dividing the claims by two, and for greater values of

the estate by applying the constrained equal losses rule. This switch between

15
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Figure 4: Parametric representations of the constrained equal awards
and constrained equal losses rules. (a) The constrained equal awards rule.

(b) The constrained equal losses rule.

constrained equal awards and constrained equal losses guarantees self-duality,
a property that the constrained egalitarian rule does not have, although by
not insisting on it, we obtain egalitarianism in the various forms expressed
in Theorems 1 to 3.

It should be noted that the midpoint property is satisfied in the two-person
case by rules that are not consistent, but in the light of continuity, symmetry,
and consistency, the midpoint property for two persons is inherited for the
general case, as stated in the following lemma. Its proof, as well as the proofs

of the other lemmas, are relegated to the appendix:

Lemma 1 If a rule is continuous, symmetric, consistent, and satisfies the
midpoint property in the two-person case, then it satisfies the midpoint prop-

erty in general.

A converse of consistency says that if a feasible award vector has the prop-
erty that for any two-person subgroup of the agents, its restriction to that
subgroup would be chosen by the rule for the associated reduced problem

7

then it is chosen by the rule for the problem.

Converse consistency: For all N € V| all (¢, E) € CV, and all z € RN
such that ) z; = E, if for all N' C N with |N'| = 2, we have 2y =

16
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Figure 5: Parametric representations of three rules. (a) The Talmud rule.

(b) Pineles’ rule. (c) The constrained egalitarian rule.

F(ent, Yo a i), then z = F(c, E).

Lemma 2 If a rule is conversely consistent and satisfies the midpoint prop-
erty for the two-person case, then it satisfies the midpoint property in gen-

eral.

The final lemma helps to relate these results:

Lemma 3 If a rule is estate-monotonic and consistent, then it is conversely

consistent.

6 Three more rules

In this concluding section, we propose several additional rules. First is a

rule that is symmetric to the Talmud rule in that the roles played by the
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constrained equal awards and constrained equal losses are reversed. For the

reverse Talmud rule, RT, for all i € N,

RTi(c, B) = CEEL,‘(c/2, min{E, > " cx/2})+CEAi(c/2, max{E—) " e/2,0}).

This rule is self-dual, as is the Talmud rule.
Another rule is the dual of Pineles’ rule, P*  which is obtained by

applying the constrained equal losses twice. For all 1 € N,

Pi(¢c,E) = CEL,-(C/Q,mm{E,Zc,c/z})wEL,-(c/z,max{E—Zck/z, 0}).

Finally, we have the dual of the constrained egalitarian rule, CE*. For
allz € N,

min{c;/2, max{0,¢; — A\}} if E <Y /2,

max{c;/2,¢; — A} otherwise,

CE}(¢,E) = {

where in each case A is chosen so as to achieve feasibility.

The three characterizations of the constrained egalitarian rule given in
Section 5 can bé converted into characterizations of its dual by focusing on
losses agents experience instead of on what they receive. We dispense with
formal statements of these results.

The three rules just defined are consistent too. This can be seen directly
from the definitions. For the latter two, it also follows from the obvious fact
that if a rule is: consistent, so is its dual. Representations of the rules are
given in Figure 6.

Pineles’s rule is also consistent and therefore it too has a parametric
representation. This rule can be obtained by imposing of composition
Jrom midpoint, the requirement that that it should not make any difference
whether an estate is divided in one step, or in two steps as follows: first, divide

whichever amount is smaller, the estate or half the sum of the claims, and in

18
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Figure 6: Parametric representations of three other rules. (a) The Reverse

Talmud rule. (b) The dual of Pineles’ rule. (c) The dual of the constrained

egalitarian rule.
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the latter case, allocate the remainder after dividing the claims by two.!* Now
it is clear that Pineles’ rule is the only one to maximize the Lorenz ordering
among all rules satisfying estate-monotonicity, the midpoint property, fair
ranking, and composition from midpoint. Its dual can be characterized in a
symmetric way, focusing on losses instead.

By way of summary, we plot in the two-person case, the schedule of awards
for each of the main rules that we have discussed in this paper (Figures 7
and 8). ]

We close with a table gathering most of the rules that we have discussed.
The second row lists their duals. Three of the rules coincide with their duals.
All except for the proportional rule are defined by applying ideas of equal
awards or equal losses. The Talmud and reverse Talmud rule, Pinele’s rule
and its dual, are obtained by implementing these ideas in succession, after
dividing the claims by two, the switch occuring for a value of the estate
equal to half of the sum of the claims. They differ in the order in which these
ideas are applied. The constrained egalitarian rule and its dual are based on
similar ideas of equality of awards or losses but they involve an additional
constraint. In that sense, they are’a little less radical in reaching for equality
than the constrained equal awards and constrained equal losses rules, which
take minimal account of differences in claims.

Rule : Pro CEA T RT Pin
Dual of the rule  Pro*(= Pro) CEL T(=T*) RT(= RT*) Pin*
Six rules and their duals. Key: Pro is the proportional rule; CFE A, the con-
strained equal awards rule; T, the Talmud rule; RT', the “reverse Talmud” rule;
Pin, Pineles’ rule; C'E, the constrained egalitarian rule; and CEL, the constrained

equal losses rule.

4Formally, the condition is as follows: for all N € A and all (c,E) € CN, F(c,E) =
Fe,min{E, 15 ¢;}) + F(ie,max{E — £5¢;,0}).
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Figure 7: Schedules of awards for six rules. (a) The constrained equal awards
rule. (b) The constrained equal losses rule. (c) The Talmud rule. (d) The reverse

Talmud rule (e) Pineles’ rule. (f) The dual of Pineles’ rule.
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|
Figure 8: Schedules of awards for the constrained egalitarian rule and
its dual for two choices of the claims vector. (a) The constrained egalitarian

rule. (b) The dual of the constrained egalitarian rule. (c) and (d) The two rules

for a different claims vector.
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-7 Conclusion

Interesting open questions remain. First is whether the constrained egalitar-
ian rule as well as the other proposals made in this paper can be obtained
by first associating with each claims problem a coalitional game, and then
applying to this game one of the well-known solutions to coalitional games.
As shown by Aumann and Maschler (1985), the Talmud rule can be so ob-
tained.’® So can the random arrival rule, which can be derived in a similar
way from the Shapley value (O’Neill, 1982). For another contribution linking
rules to abstract games (bargaining problems and coalitional games respec-
tively) and rules to claims problems or problems of fair division, see Dagan
and Volij (1993) and Otten, Peters, and Volij (1994).

Another open question is whether our new rules can be provided non-
cooperative foundations. For the formulation and the study of non-cooperative
games associated with claims problems, see Chun (1989), Serrano (1993) and
Sonn (1992).

Finally is whether the new rules have axiomatic justifications.

We will leave these questions to future research.

15By applying the nucleolus or the kernel.
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Appendix

Proof: (of Lemma 1) Let F be a rule satisfying the hypotheses of the lemma.
Then by Young (1987), it has a parametric representation f: Ry x [a, b] — R.
For each ¢y € Ry, and since f(cy,.) is continuous and nowhere decreasing,
there is a (unique) closed interval I, C [a,b] where it takes the value ¢ /2.
Since F satisfies the midpoint property in the two-person case, for each pair
co, ¢y € Ry, the illtervals Io and Ij overlap. Now, given N € NV and (¢, E) €
BN with E = 2N Ci, we prove by induction on the number of possible values
of the claims that the intervals (/;);ey have at least one point in common.
For |N| = 2, there is nothing to prove. Suppose the result holds up to
n—1,and let N = {1,...,n}. Let [* = NPZ!I; C [a,b]. By the induction
hypothesis, I* # . Suppose by contradiction that I* N I, = § and without
loss of generality, that I, C [a, A[, where A = min{\: X € I*}. For eachi < n,
let \; € ;N [, and A* = max?7!' \;, and i* be such that M\« = A*. Since
Ai € I; for all i < n, A* € I*. Since A\* is obtained for the coalition {i*,n},
A € I,, a contradiction.

By choosing A in Ny I;, we obtain the vector of awards chosen by the rule,

but then, every agent gets half of his claim. ad

Proof: (of Lemma 2) Let N € N, (¢, E) € BY, and z = ¢/2. By the
midpoint property for the two-person case, for all N' C N with |IN'| = 2,

en' = F(enr, 3o ni i) By converse consistency, z = F(c, E). a

The proofs of Theorems 1 and 2 are obtained by a simple adaptation of
the proofs of characterizations of the uniform rule appearing in Schummer

and Thomson (1997). We include them for completeness.

Proof: (of Theorem 1) Let I be a rule satisfying estate-monotonicity and
the midpoint property. Let (¢, E) € CN be given. By estate-monotonicity
and the midpoint property, either F(c, E) 2 sor Fe,E) S &
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(i) Suppose that E < Y ¢;/2, so that F(c, E) < 7. Let A(c,E) = {z €
RY:0 Sz < 2and 2y = E}. Forall z € RY, let r(z) = max;z; —
min; z;. Since A(c, E) is compact and r is continuous, there exists z € arg
minyea(,B) T(y). Suppose by contradiction that = # CE(c, E).

Let y™*® = max; z;. Since z # CE(c, E), there exists i € N such that
z; <y™** and @; < ¢;/2. Let 6 = min{%,y™**} — ;. Let N'={j € N: z; =
ymes},

Define z € A(c, E) as follows: z; = z; + g, forall je N', z; = z; — —zl—]{ﬁ',
and for all £ ¢ N'U {i}. 2z = z4 It is straightforward to check that
z € A(c, E) and r(z) < r(z), éontradicting our choice of z.

(ii) A similar argument can be developed for the case E > > en/2. a

Proof: (of Theorem 2): The first paragraph is identical to the first paragraph

of the previous proof and we do not repeat it.

(i) Suppose that E < 3" c¢x/2, so that F(c, E) < 7. Let A(¢,E) = {z €
RY:0 <z < fand Y2, = E}, Forall z € RY, let v(z) = LY (2 —
M/n)?. Since A(c, E) is compact and v is continuous, there exists z € arg
Minye 4(,,5) V(y)- Suppose z # CE(c, E). Then, there exist i, j € N such that
z; < CEi(c,E) and z; > CE;(c, E). By the definition of the constrained
egalitarian rule, estate-monotonicity, and the midpoint property imply that
z; <CEi(c, E) < CE;(c, E) < z;.

Let & = min{CE;(c,E) — z;,z; — CE;(c, E)}. Note that § > 0. Let
y € A(c, E) be defined by y; = z; 4+ 6, y; = z; — 6, and yx = =z, for all k ¢
N\{7,j}. Since v e A(e,E), CE(c,E) € A(c,E), y: < CEi(¢, E), y; < z;,
and ) yr = E, y € A(c, E). Letting m = M/n, we have

2 2

no(e) —n-oy) = (zi =m)" + (25 = m)* = (y: = m)* = (y; — m)

28



= {(@i=m)* = (yi = m)*} + {(z; —m)* + (y; — m)?}
= (zi —2m +yi)(2: — yi) + (25 — 2m + y;)(z; — y;)
= (22i 46 — 2m)(—8) + (2z; — & — 2m)(6)

= 0(—2z; + 2z; — 26)

> 20(z; — zi — (z; — 2;))

0.

il

The inequality comes from the fact that z; < CEj(c, E) < CEj(c, E) < ;.

This contradicts our choice of z.

(ii) A similar argument can be developed for the case when E > 5" ¢/2. O

and

Proof: (of Theorem 3): The first paragraph is identical to the first paragraph
of the proof of Theorem 1.

(i) Suppose that £ < 37, ci/2, so that F(c, E) < z. Let A(c,E)={z €
RY:0 £z £ 3 and Y 2; = E}. Since A(c, E) is compact, there exists
z € A(c, E), that maximizes the Lorenz ordering in A(c, E). Suppose by
contradiction that z # CE(c, E).

Let y™** = max; z;. Since ¢ # CE(c, E), there exists : € N such that
z; <y™* and z; < ¢;/2. Let § = min{%,y™**} —z;. Let N' = {j € N:z; =
ymas},

Define z € A(c, E) as follows: z; = z; + &, forall j € N', z; = z; — WJVTI;
and for all k € N' U {i}, zx = z4. It is straightforward to check that z ¢
Ale, E) and that z Lorenz dominates z, contradicting our choice of z.

(ii) A similar argument can be developed for the case when £ > " ¢;/2.

a
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Remark.

In general, maximizing the Lorenz ordering is not the same thing as min-
imizing the difference between the largest and the smallest amounts any
two claimants receive. To see this, compare the following two allocations:
T = (4,9,10) and y = (5,6,12). Note that > z; = Yy = 23. r(z) = 6,
r(y) = 7, but y Lorenz dominates z. However, in the two-person case, the

two exercises coincide.
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