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Abstract

In modelling competition among mechanism designers, it is necessary
to specify the set of feasible mechanisms. These specifications are often
borrowed from the optimal mechanism design literature and exclude mech-
anisms that are natural in a competitive environment; for example, mech-
anisms that depend on the mechanisms chosen by competitors. This paper
constructs a set of mechanisms that is universal in that any specific model
of the feasible set can be embedded in it. An equilibrium for a specific
model is robust if and only if it is an equilibrium also for the universal
set of mechanisms. A key to the construction is a language for describing
mechanisms that is not tied to any preconceived notions of the nature of
competition.

1. INTRODUCTION

Mechanism design problems are solved by restricting mechanism designers to di-
rect mechanisms that assign outcomes to agents’ reports about their private infor-
mation. This approach is based on the revelation principle which states that for
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every indirect mechanism, there exists a direct mechanism that (induces truthful
reporting and) produces the same outcomes. In other words, the class of direct
mechanisms forms a universal class. Despite the important insights that the rev-
elation principle generates into problems with asymmetric information, questions
have been raised about its usefulness in environments where there are multiple
principals (sometimes referred to as sellers in what follows) competing for one or
more agents (sometimes called buyers). A series of examples presented in Peck
[20] and in Martimort and Stole [13] illustrate apparent failures of the standard
revelation principle. In their examples, allocations that are supported as equi-
libria with indirect mechanisms are not supported when sellers are restricted to
using direct mechanisms where buyers report only their private valuations and
do so truthfully. In addition, [13] provides an instance of an equilibrium relative
to such direct mechanisms that is not robust to the possibility that sellers might
deviate to more complicated mechanisms, illustrating another limitation of direct
mechanisms that is specific to the competitive setting.

The reason for such failures stems from the fact, pointed out in [14] and [11],
that in a multi-principal environment agents possess private information not only
about their own preferences or valuations, but also about what different principals
are doing, that is, about what is happening in the market. Moreover, it is im-
portant that such market information be included in the agent’s type. When the
principal attempts to make use of this market information, he is essentially de-
signing his mechanism in a way that makes it responsive to what other mechanism
designers are doing.

An analogous problem arises in the discussion of ‘meet the competition clauses’
[23] in the industrial organization literature. In a typical Bertrand price compe-
tition between two firms, they bid down the price until it equals marginal cost.
This changes if firms are allowed to offer prices along with promises to match a
competitor’s price if the latter is lower. In that case, the monopoly price for both
firms is an equilibrium because a firm considering deviating by lowering price re-
alizes that this will simply force the other firm to cut price as well, resulting in
no new customers. This ‘meet the competition’ argument illustrates the essential
problem. The monopoly outcome cannot be supported when firms are restricted
to direct mechanisms where buyers report only private valuations, because these
rule out the possibility that firms might write contracts that make their price
offers respond to what other firms are doing.

In principle it is clear how to deal with this - simply incorporate market infor-
mation into an agent’s type. However, there are some serious obstacles to doing



so that we now outline.
An obvious way for a seller to learn his competitor’s price is to ask buyers to

report it at the same time that they report their preference information. However,
limiting the seller to this specific form of price matching is restrictive. For example,
the seller might wish to make his price depend also on whether or not his opponent
has made his price depend on . .. and so on. Market information seems to involve
an infinite regress that must be resolved.

The problem of infinite regress associated with a type is now familiar from the
work of [15] or [4]. The hierarchy of dependencies that arises here is outwardly
similar to the hierarchies of beliefs that they study. The infinite regress is basic,
but it is only part of the problem in our setting. Logically prior is the question
of how to describe the competitor’s mechanism. A description based on the fact
that price depends on whether price depends on whether. . . is inadequate because
restricting the language to prices is itself an ad hoc restriction. We are seeking
a universal language, one that is sufficiently rich to permit descriptions of mech-
anisms in a large class that is not limited by preconceived notions of the nature
of competition. In contrast, probability measures provide the obvious tool for
describing beliefs, which form the essence of a type in the setting of [15] and [4].

In the absence of any obvious way to deal with these problems, the literature
has responded by imposing ad hoc restrictions on the set of indirect mechanisms
from which sellers can chcose. The literature on competing mechanisms [14, 21, 22]
restricts sellers to direct mechanisms in which buyers report only private infor-
mation about their preferences. Competition in price schedules is the common
assumption in the financial literature 7, 2, 12] and in the industrial organization
literature [24, 3]. At first glance this does not seem unreasonable. It is natural to
model sellers as competing in price when it is prices that are actually observed.
However a complete positive theory needs to explain why sellers compete the way
that they do despite the fact that more imaginative mechanisms are available to
them. In some cases, it might be argued that institutional constraints justify the
a priori restrictions on feasible mechanisms. However, even when there is a law
that explicitly restricts the set of mechanisms that sellers can use, it is impossible
to evaluate the impact of such a law without knowing what would happen without
it.

This leads finally to the contribution of this paper. We construct a language
for describing mechanisms that provides a way to incorporate private market in-
formation into an agent’s type. This language is the key to the specification of
a class of mechanisms having the property that any well behaved set of indirect



mechanisms can be embedded within it. In this sense any ad hoc model of compe-
tition among mechanism designers can be viewed as a model that restricts sellers
to offering mechanisms that lie in a subset of this universal class. This provides
a natural way of thinking about the apparent restrictiveness of the usual sort of
direct mechanisms, since they constitute a relatively small subset of the universal
class. The nonrobustness of equilibria in direct mechanisms and the failures of
the standard revelation principle illustrated by the examples in [20] and [13] (as
well as the examples that we give below) then become transparent.

Furthermore, the existence of this universal class of mechanisms makes it pos-
sible to show the sense in which the revelation principle does hold. We show
that equilibria relative to the universal class are robust in the sense that there
are no profitable deviations to more complicated mechanisms, and that all robust
equilibria can be represented as equilibria relative to the universal class. Thus
equilibria relative to the set of universal mechanisms can never give rise to the
problems identified by Martimort and Stole [13] or Peck [20]. Mechanisms in the
universal class ask buyers to report their type (including market information),
and in this sense they are ‘direct’ mechanisms. We show that there is no loss of
generality in restricting sellers to this universal class of direct mechanisms.

At a less formal level, we can describe our result as follows. The set of robust
equilibrium allocations constitute all feasible allocations when sellers compete
with one another and are free to communicate and contract with the buyers who
visit them. One way to interpret this is to think of sellers’ activities as uncon-
tractable moral hazard variables as in Myerson [16]. A central planner might try
to make incentive compatible recommendations to sellers after collecting buyer
private (preference) information. Incentive compatibility means that no seller has
any incentive to deviate from the recommendations provided that he expects the
other seller to conform. If the planner recommends only ‘actions’ to the sellers,
then the revelation principle can fail in two ways - there will be allocations that
appear incentive compatible to the planner that will not be, and there will be
equilibrium allocations that do not look incentive compatible from the planner’s
point of view. These difficulties are resolved and the revelation principle holds in
its usual form if the planner recommends mechanisms from the universal set of
mechanisms to the sellers instead of simple actions.

To illustrate some of the above, fix ideas and clarify later notation, we begin
by presenting two finite examples. (An economically more meaningful example,
involving competition in price matching mechanisms, is provided in Appendix A.)
Our formulation of the competing mechanisms problem is contained in Section 3.



Section 4 provides the statement of our main result (Theorem 4.1), which verifies
the existence of a universal set of mechanisms. A discussion of robustness and
the revelation principle follows in Section 5. Section 6 provides some intuition
for the nature of types, that is, the language for describing mechanisms; this is
accompanied by an intuitive sketch of the proof of Theorem 4.1. The complete
proof may be found in a series of appendices. Section 7 concludes with an outline

of some extensions.

2. FINITE EXAMPLES

As mentioned, the difficulties that arise in a multi-principal environment are il-
lustrated by examples in [13] and [20]. But the former deals with a problem of
competing agency, which differs from the problem of competing mechanisms as
explained later; and Peck’s example, while it is closer to our framework, is quite
complicated. Therefore, we present a pair of examples that illustrate the special
difficulties for the setting of competing mechanisms. They serve also to clarify
later notation and terminology.

We begin with a description of the canonical ’competing mechanism’ prob-
lem. This description applies to the examples given in this section as well as the
formal model described later on. There are two sellers and two buyers. Sellers
simultaneously offer mechanisms to buyers in the first stage of the game. Each
mechanism consists of a message space and a mapping that converts messages
sent by buyers into actions (later called ‘simple actions’). In the second stage,
buyers send messages to sellers, and these determine the action that each seller
takes. In the third stage, which occurs before buyers observe the actions that
result from their communications or the messages sent by the other buyer, each
buyer chooses one of the sellers.!

Sellers are restricted to two actions named A and B. Preferences are common
knowledge. Therefore, a ‘direct mechanism’ of the usual sort is simply an action.

1Tt may seem more natural to have buyers communicate with sellers after committing them-
selves and to allow sellers to vary the simple action taken with the number of participating
buyers. The examples could be modified to include these features, but at the cost of additional
complexity. Our formal analysis permits the latter feature; for the former see Section 7.2.



2.1. Example 1: Simple Price Competition and Nonrobustness

The first example illustrates the notion of 'robustness’ that is central later in the
paper. The idea is that equilibria in direct mechanisms may have the property
that sellers can profitably deviate to more complicated mechanisms. The example
illustrates the way that sellers can exploit buyers 'market’ information.

In this example, sellers compete in price. The seller can offer a high price
(A) or a low price (B). If more than one buyer selects the same seller, the seller
chooses one of the buyers at random as his trading partner. Payofls depend on
both the action taken and on the number of participating buyers, as summarized

in the following table:
[ Joft[ 2 |

TAJoJ21]21/2]

[BJofi2] 11 |

The columns differ according to the number of buyers who offer to trade with the
seller. From the first column, sellers receive 0 payoff if there are no buyers. For
other columns, the two entries in any cell give the seller’s payoff (first entry) and
the payoff to each participating buyer. For example, if the seller uses the high
price (A), he gets the payoff 2 if at least one buyer offers to trade. Buyers who
offer to trade with the seller get payoff 1 if they are alone and payoff 1/2 if the
other buyer also participates, because there is only probability 1/2 to be chosen
as the seller’s trading partner.

Suppose that sellers compete in direct mechanisms (as in [14]), which here
means that each seller offers either the high or the low price. To proceed, we need
to specify the ‘continuation equilibrium’ associated with these mechanisms, that
is, we need to specify how buyers select between sellers for each pair of options
(A or B) on offer. Focussing on a symmetric equilibrium where each buyers uses
the same selection strategy, it is easy to show that there is a unique continuation
equilibrium and that it involves buyers randomizing equally between sellers when
they offer the same price and choosing the low priced seller with probability 1

when the prices offered are different.
This buyer behavior generates the following table of payoffs:

A B
A [372,3]2,3]4 0,1,1
B 1,0,1 3/4,3/4,3/2

The first entry in each cell is the payoff to the seller who chooses the row, the
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second entry is the payoff to the seller who chooses the column and the final
payoff is the common payoff to each of the buyers. Ignoring the third entry for a
moment, this box represents the normal form game that is played by sellers when
they choose direct mechanisms in the first stage of the game. They understand
the way that changes in their mechanisms affect buyers’ behavior and incorporate
this into their calculations.

There are two pure strategy equilibria for this game in which sellers offer the
same price and buyers randomize between them. When sellers use the high price,
a deviating seller realizes that he will capture the whole market by cutting price,
but he does not find this profitable. When they use the low price, a deviating
seller realizes that he will lose all his customers by raising price, which makes this
unprofitable.

At this point, we are more interested in the mixed strategy equilibrium where
each seller offers the high price with probability 3/5 and receives the equilibrium
payoff 9/10. We can show that this equilibrium is nonrobust in the sense that seller
1 can improve his payoff strictly by a unilateral deviation to a more complicated
mechanism that works as follows: Each buyer must send one of two messages,
labelled s and £. If both buyers send s, then the seller charges the low price B.
In response to any other combination of messages, the high price A is charged.
The expected payoff from use of this mechanism depends on buyer behavior,
or the ‘continuation equilibrium’. The latter must specify both a participation
strategy that describes the likelihoods with which buyers select each seller, and a
communication strategy, describing the messages that buyers send.

Consider the following continuation equilibrium: If seiler 2 offers the mecha-
nism A, both buyers report ¢ to seller 1 and randomize equally between the two
sellers. If seller 2 offers B, buyers both report s to seller 1 and randomize equally
between sellers. These strategies are best responses for either buyer given that
they are used by the other buyer.? Given this buyer behavior, seller 1 charges
the high (low) price when seller 2 does and this produces the payoff 6/5 > 9/10.
Thus the deviation is strictly profitable for seller 1 and the mixed strategy equi-
librium allocation is supported only because of an ad hoc restriction on the set
of contracts feasible for sellers. It is evident that the added profit is attained by
making the choice of action depend on the action of seller 2. Seller 1 learns about

27f seller 2 takes action A, then neither buyer can unilaterally induce seller 1 to switch to B.
If seller 2 offers B, both buyers report s to seller 1 who will offer B. Either buyer can induce
seller 1 to switch to A by altering his message to t. But this deviation for a buyer only raises

the price charged by seller 1.



the action of seller 2 by asking buyers about it.

2.2. Example 2: More complex mechanisms may generate new equilib-
rium allocations

The example in this section is simply a counterexample to the naive revelation
principle, and is closely related to the examples in Peck [20] and Martimort and
Stole [13]. We provide it to show that these counterexamples themselves are not
the result of ad hoc restrictions on the set of feasible mechanisms. As we show
later, the equilibrium in indirect mechanisms that cannot be reproduced when
firms are only allowed to use direct mechanisms o - o s
a 'robust’ equilibrium.
Payoffs are given in the following table (read as in the previous example):

[ Tofl t ] 2 |
[A]-L]2-1]13+2]
[B]—=2T02] 20 |

Here ¢ is a small positive number. This problem is slightly richer than simple
price competition. Mechanism A is good (bad) for the seller (buyer) when only
one buyer chooses to participate, but bad (good) when both buyers participate.
Mechanism B has the opposite property - the seller prefers both buyers to partic-
ipate, while each buyer prefers to be the sole participant.

Suppose first that sellers are restricted to employing direct mechanisms, that
is, to choosing an action A or B. The following table describes one possible
continuation equilibrium (consisting exclusively of participation probabilities).

A B
A | mix equally | both to 2
B both to 1 | mix equally

This buyer behavior implies the following (expected) payoffs for each pair of ac-

tions:
A B

A 1,1,14+¢ | -1,2,0
B 2,—-1,0 | 0,0,1

Focussing once again on the first two payoffs in each cell, there is a unique
equilibrium in direct mechanisms where each firm offers the direct mechanism
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B.3 However, the outcome corresponding to each seller using A can be supported
through the use of more complex mechanisms. To see this, suppose that sellers
are free to use indirect mechanisms in which buyers communicate messages from
{s,t}. We will show that there is an equilibrium for this game in which each seller
uses the mechanism m, where m specifies action A if both buyers report ¢ and
action B otherwise.

The continuation equilibrium (buyer behavior) that supports AA as an equi-
librium play is given as follows: If both sellers offer m, then buyers report ¢ to
both sellers and randomize equally between them. (There is no incentive for ei-
ther buyer to deviate from this by sending the message s to either seller. Such a
message would change the action taken by the seller from A to B but would have
no effect on the participation strategy used by the other buyer. Thus the new
message would generate a payoff 1 < 1+ € from any seller who changes to action
B.)

Suppose next that seller 2 offers m and seller 1 deviates to m’. If there exists
a message pair (¢, ) in {s,t}? for which m’ prescribes the action A, then let the
buyers communicate ¢ and ¢’ respectively to the deviator and each send t to the
nondeviating seller 1. This leads to the action A by each seller. Consequently,
buyers randomize equally between them. (As in the earlier continuation equi-
librium, neither buyer has an incentive to induce the action B by either seller.)
Finally, if m’ delivers only the action B, let buyers send the message s to the
nondeviator and randomize equally between sellers. This generates the payoff 0
for each seller and 1 for each buyer.

This description of buyer behavior is sufficient to permit examination of the
profitability of a unilateral deviation from m. Any deviation generates either
1 or 0 as the deviator’s payoff, neither of which exceeds the payoff received in
the putative equilibrium outcome. We conclude that AA is supported as an
equilibrium outcome by this continuation equilibrium. Whenever the deviator
tries to induce the action B using some indirect mechanism in the feasible set,
buyers send messages to the nondeviator that induce him to change actions as
well, making a profitable deviation impossible. In this way, AA is supported
along an equilibrium path even though it is not supported with competition in
direct mechanisms. Thus, restricting mechanism designers to direct mechanisms

30ne caution is in order here. From the table it appears that offering the direct mechanism
A is a dominated strategy. This interpretation is not appropriate since the table represents a
reduced version of a two-stage game that presumes a particular continuation equilibrium. There
exist alternative choice strategies leading to A dominating B for the seller.



not only generates invalid predictions (in the sense that equilibria may not be
robust, as in the previous example), it also makes it impossible to understand
the equilibrium behavior that does occur. Our goal is to provide a space of
mechanisms broad enough to ensure that these problems cannot occur.

3. INDIRECT MECHANISMS

3.1. Primitives

Throughout the paper, where we refer to a set X as a ‘space’, the intention is
that X is a compact metric space. Where only a weaker structure is needed, that
will be made explicit. Where a measurable structure is needed, the corresponding
Borel o-algebra, denoted B(X), is used.

For notational simplicity, we deal with the case of two buyers and two sell-
ers or firms. The trading process begins when sellers simultaneously announce
the mechanisms they plan to use. As is common in the search literature, we as-
sume that buyers search out the market beforehand and consequently have better
information than sellers. More particularly, neither seller observes directly the
mechanism chosen by the other seller but buyers can observe both mechanisms.*
After seeing them, each buyer selects one of the firms. Once buyers have made
their choices and these have been revealed to the sellers, then sellers’ mechanisms
are played out with any participating buyers.

To accommodate the participation choice of buyers, let P = {0,1}, where
the intention is that p; = 1 if and only if buyer ¢ participates at the firm under

consideration.
The primitives for our model are:

Ay: space of ‘simple’ actions
Q: valuations space (including the ‘usual type’ of a buyer)

F: cdf according to which buyers’ valuations are drawn (independently)

A simple action is a complete description of the allocation, including possibly
randomization. In our example of price matching (Appendix A), a simple action

4Our model applies without change to the situation where the sellers can see each others’
offers but cannot write binding contracts on offers made by others. See Section 7.3 for the case

where such binding contracts are feasible.
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is a lottery over buyers and the option to buy at a specified price to be offered to
the buyer that is ultimately selected. In an auction environment, a simple action
might be a set of (randomized) transfers paid to and received from each bidder
along with a specification of the probability with which each bidder is allocated
the commodity. The independence assumption is made to simplify notation; cor-
related types can be accommodated as long as the distribution of types conditional
on a realized own type w varies continuously with w.

Sellers may condition their choice of simple actions on the participation de-
cisions of buyers. Thus we are led to consider the space (.AO)P2 of participation
contingent simple actions. The value to the seller of any participation contingent
plan a. depends on the participation probabilities of each buyer. In other words,
the seller is concerned with the ‘full’ action (a.,,n’), consisting of the contin-
gent action and the probabilities with which each buyer participates in the seller’s
mechanism. Thus we are led to the actions space A = (AO)P2 x [0, 1]2.

Sellers’ payoffs are represented by v : Ax Q? — [0, 1], where the dependence
of v(a,w,w’) on the valuations of the two buyers allows us to interpret each con-
tingent action as an option to trade at a specified price. The value of such an
option depends on whether or not the buyer decides to exercise the option and
this depends on his valuation.

For buyers, payoffs are represented by the function v : A X @ — [0,1].
Interpret u(a,w) as the expected payoff to a buyer (say buyer 1) with valuation w
who is participating at a given firm where action a is taken. It is computed prior
to his learning if the other buyer is also participating there. By the definition
of actions, each a in A has the form a = (a.,m,7'), where m and 7' represent
the respective probabilities with which buyers 1 and 2 choose the seller. Because
u represents 1’s utility conditional on his already having chosen the seller, we
assume that u(e,w) is independent of the m-component of the action a. But it
will in general depend on 7', because 1’s payoft ex post may depend not only on the
simple action chosen but also on whether or not the other buyer is participating.
Thus the likelihood of such participation is important ex ante.

We assume that buyers who do not participate in either mechanism get 0
utility and that there is an action a € A such that u(a,-) = 0. The action a
may correspond to ‘no trade’, implying the default utility level 0 regardless of
valuation. For example, a seller might choose a price that he knows no one could
afford to pay. Because we assume that u(-) > 0, the utility obtained in the absence
of participation, it follows that buyers always do at least as well by participating
in one of the mechanisms as they would by staying out of the process. Assume

11



also that v(a,") = 0.

At this stage it is useful to point out the difference between our formulation and
the better known problem of common agency [3], involving two (or more) sellers
dealing with a single buyer whose payoffs depend on the actions of both sellers.
In particular, the buyer’s ranking of alternatives offered by one seller depend
on the action selected by the other seller. This externality makes it possible to
improve upon simple direct mechanisms in the common agency environment. In
our formulation, the payoff that a buyer gets from one seller is independent of the
other seller’s action, but it depends on whether or not the other buyer chooses to
participate with the same seller. The probability with which this occurs depends
on the action taken by the other seller. This indirect dependence gives rise to the
same sort of contractual externality that appears in common agency - the buyer’s
ranking of a menu of alternatives depends on the action taken by the other seller.
The added complexity that arises in the competing mechanism problem is that
this ranking of alternatives and the nature of the externality are not unique (as
in common agency), because they may vary with the continuation equilibrium

describing buyer behavior.

3.2. Standard Model of Competition

The usual way to model behavior in the above setting proceeds by specifying a
set T of feasible indirect mechanisms from which sellers may choose. We outline
this modelling approach here.

To define indirect mechanisms, fix a space of messages C' that is used by both
firms. The message space is perfectly general in the sense of the degree and
nature of the communication about competing mechanisms that it permits. An
indirect mechanism ~ assigns an action to each of the messages that might be
communicated by buyers, that is, v is a measurable map from C? into A. Write

Y = (Yer Yy» Yrp)» WhETE
v, CF —s (A and (v4,,7m;) : C* — [0,1]. (3.1)

Thus, «v,(-) describes the contingent simple action and (v, (*), Yr, (")) describes the
‘rest’ of the action prescribed by the mechanism (-). The components Y, () can
be interpreted as the seller’s recommended participation probabilities for buyer 1.

This formulation admits two possible interpretations with respect to the tim-
ing of commun‘cation. The set of feasible mechanisms I' may or may not allow
the outcome that the seller specifies when only buyer 1 chooses his mechanism

12



to depend on the message sent by buyer 2. Such dependence occurs in models
where buyers communicate with sellers before committing therselves to one of the
mechanisms. The alternative and common assumption ([14], for example) is that
buyers communicate after committing themselves. This assumption can be ac-
commodated within our formalism by restricting mechanisms so that the action
prescribed when only buyer 7 participates is independent of buyer j’s message.
(See Section 7.2 for further discussion.)

Denote by I the set of feasible indirect mechanisms, endowed with some topol-
ogy. Unless specified otherwise, we assume below that I' is compact metric.

Turn to behavior. A communication strategy € is a measurable mapping from
0 x I'? into C, with the interpretation that &(w,~,7’) is the message sent to the
firm using « by a buyer of valuation w when the other firm is using ~'. Similarly,
a participation strategy is a measurable function 7 : § X I'? — [0,1], where
#(w,7,7') is the probability of participating only at the firm using 7 by a buyer
of valuation w when the other firm is using v'.

Say that the strategy pair (¢,7) is a continuation equilibrium if no buyer
has any incentive to deviate from either the reporting strategy ¢ or the selection
strategy 7, for any of his valuations and for any pair of mechanisms offered by
the two sellers. We assume the existence of continuation equilibria. We view this
assumption as completely innocuous. Of course 1t is not difficult to construct
models of indirect competition where continuation equilibrium do not exist (one
mechanism might be - I will trade with the buyer who names the largest mteger).
It is also easy to think of models of indirect competition where sellers can offer
mechanisms that do not make sense (each seller offers a price equal to the price
offered by the other seller). There is no need to worry about whether such models
are good descriptions of competition between sellers - it is immediately apparent
that they are not. Thus in the discussion that follows we restrict attention to
indirect models that possess all the usual desiderata of predictive models.

Of course this assumption does impose a restriction on the models I of indi-
rect competition to which the analysis in this paper applies. The restriction is
analogous to the restriction associated with the usual revelation principle in single
mechanism designer problems, since indirect mechanisms in which do not possess
equilibria cannot be replaced by direct mechanisms.

It should also be noticed that when we assign a particular continuation equi-
librium &(-,v,7'),7 (-,7,7’) to a pair of mechanisms, we are not assuming that it
is unique. We view the value of a particular mechanism to be partly determined
by the continuation equilibrium that it delivers. Thus the continuation equilib-

13



rium is part of the model of competition that we wish to understand. If there
are multiple continuation equilibria, these will generate new models for which the
set of indirect mechanisms can once again be embedded in our universal set of
mechanisms.

When we want to emphasize the underlying set of indirect mechanisms r,
we refer to (,7) as a continuation equilibrium relative to I' or we refer to the
triple (I, ¢, 7) as a continuation equilibrium. When we wish to emphasize a par-
ticular pair of mechanisms, we refer to (¢(-,7,”’ ), 7 (-,77,7’)) as a continuation
equilibrium relative to (v,7')-

The key to the standard (one principal) revelation principle, is that composing
a mechanism with buyers’ strategies yields a mapping from pairs of valuations into
actions, or in other words, a ‘direct mechanism’. A corresponding composition
plays an important role in the present setting. To be precise, given v, each
communication and participation strategy (¢,7) induces the mapping

My 02 xT? — A, where

My (w, ', 7, 7" = (Ye(@w,7,7"), 8w, 7,7, T (w7, Y, 7 W, vY") . (3.2)

The expression m.,(w,w’,7',7") describes the action forthcoming at the firm em-
ploying 7, in the given continuation equilibrium, if the w-valuation buyer acts as
though the other firm is employing ' and the w'-valuation buyer acts as though
the other firm is employing v/. In equilibrium, 7' = v and both equal the
mechanism actually chosen by the other firm, but allowing v # ~"” in princi-
ple will permit us later to express appropriate incentive compatibility restrictions
on direct mechanisms. The dependence of the action chosen on the other firm’s
mechanism differentiates our setting from the more familiar single seller setting,
where valuations alone matter.

The preceding definition also simplifies the description of seller behavior. Sup-
pose that the competing firm chooses the randomization 8" € A(T') and that buyer
behavior is described by the strategy pair (¢, 7).° Then the seller who chooses the

randomization 8 receives the payoff

V(5;6,67) = / o (mo(w, 6,7, 7) w,w') dF (W) dF (@) d8'(v) db(7).  (33)

5 A (') denotes the space of Borel probability measures on T, endowed with the standard

topology of weak convergence.
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Say that (¢, %,6%) is a (symmetric) equilibrium relative to T', or simply that
(T, &, 7,6%) is an equilibrium, if: (¢, ) is a continuation equilibrium and

5 e argarenAaé)lg) V(6;6*,¢,7).

We impose symmetry on the strategies that buyers and sellers use in equilibrium
purely for the sake of the notational simplification that symmetry permits.

Clearly equilibria of this kind depend on the specification of I including the
message space C. Typically I" and C are selected for reasons of tractability, both
mathematical and economic. If one has data on prices, it is natural to want to
formulate a model in which firms compete in prices. We are interested in analyzing
the exact sense in which this might be restrictive.

4. A UNIVERSAL CLASS OF MECHANISMS

4.1. Additional Assumptions

Our objective is to show that any set I" of indirect mechanisms (with a given con-
tinuation equilibrium) can be embedded in the class of universal mechanisms. We
do this by showing that the actions produced by any pair of mechanisms in I" can
be replicated by an appropriate combination of mechanisms in the universal class.
The continuation equilibrium for the latter features agents reporting their private
information truthfully and obeying all participation recommendations made to
them by sellers.

We impose two additional assumptions on continuation equilibria. Focus on a
continuation equilibrium (I, &, %) and the corresponding function m.,, defined by
(3.2), that summarizes the actions produced by v € I'. To express the assumptions
on (T, & ), introduce the payoff functions induced by mechanisms. To be precise,
denote the expected utility of a buyer facing v by

U, 7'57) = [ ulms(w,o,7,7),w) dF (&), (4.1)

where the buyer has valuation w and the other firm is using the mechanism ~'.
We require first that the continuation equilibrium satisfy a two-faceted conti-

nuity property. For any space S, U(S) denotes the set of upper semi-continuous

(usc) functions from S into [0, 1], endowed with the topology described in Appen-

dix B.
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Definition: Say that the continuation equilibrium (I',€,7) is payoff upper semi-
continuous if: (i) U(+;~y) is usc on Q x I for each v in I'; and (ii) the mapping
v+ U(:;v) € U(2 x T') is continuous.

Upper semi-continuity (in fact continuity) of U(-;) in valuation alone is im-
plied by a continuation equilibrium (this is well known - [25] for example). It
follows that the condition (i) of payoff usc is innocuous if I is finite. More gener-
ally, it can be shown that a sufficient condition for payoff usc, including part (ii),
is that U(-) be continuous on § x I'%.

The second restriction on continuation equilibria (called non-redundancy) is
more difficult to explain. We provide a formal (and possibly impenetrable) defi-
nition of the property here and defer interpretation until Section 6, after we have
shown what the assumption of non-redundancy delivers.

The formal definition follows: Given a continuation equilibrium (T', €, 7), define
a sequence {X,} of o-algebrason T', each contained in the Borel o-algebra. Let
Yo = {0,T'}, 31 = o-algebra generated by the mappings v +— sup{U(w, ;) :
(w,7') € E}, where E varies over B(Q2) x X, and X411 = o-algebra generated by
the mappings v — sup{U(w,v;7v) : (w,7') € E}, where E varies over B(Q)xZ,.
Observe that ¥, . and that if &, = 3, for some n, then 3, = X for all
k > n. Say that (T, &, 7) is non-redundant if any pair of distinct points in I' can
be separated by some 3,,.6

The statement and interpretation of non-redundancy are simpler when §2 is
finite (or countable). In that case, the o-algebras defined above are unchanged if,
for all n, E is restricted to vary only over {{w} x X, : w € Q}. The complicating
need to rely on nonsingleton subsets of 2 in the infinite case appears to be a

simply “technical matter”.

4.2. The Main Result

Our main result is presented here. First, we explain some notation and terminol-
ogy used in the theorem.

Mechanisms in the universal class resemble the usual sorts of direct mecha-
nisms in that buyers are asked to report their private information directly. To do
this, buyers must be able to describe the mechanism that is being used by the

6Qur definition of non-redundancy is adapted from that in [15] and [9]. In the price matching
example (Appendix A), the separation required by non-redundancy is achieved by the first-order

o-algebra ¥;.
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other seller. This description must be adequate to describe every order in the
hierarchy of dependencies built into the mechanism. It must also be free of ad
hoc terminology, like price, since the mechanisms being described may not involve
simple price offers. A major contribution of the theorem is to provide a suitable
language, in the form of the set T'. Buyers report their preference information by
using an element of the set §2 and they describe their market information by using
an element from 7.

To clarify the sense in which 7' constitutes a language, denote by APXT? the
set of all measurable maps m : Q% x T? — A. Each such m can be viewed as
a direct-mechanism employing message space §2 x T for each buyer, that assigns
action m(w,w’,t,t") directly to reports (w,t’) and («',t") by the two buyers.
Since T' is a language that can be used to describe such mechanisms, there is
a one toone map ¢ : T — AY*T*  Interpret 1(t) as the direct mechanism
that is described by t € T. Thus T constitutes a language for describing direct
mechanisms that have as inputs reports from this same language.

We have defined actions to include recommended probabilities. Thus the ac-
tion 1(t) (w,w’,t,t') includes a recommended participation probability to the
buyer with valuation w, given that the other buyer has valuation w' and that
both buyers report the type t’' for the other seller. Denote that recommended
probability by ¥(t)x (w,w’,t,t'), paralleling the notation in (3.1).

The set 1(T) can be viewed also as a set of indirect mechanisms, that is, a
particular specification of I and one for which the message space C is QxT. This
interpretation for 1(T) gives meaning to the theorem’s reference to (Y(T), c*, ™),

a continuation equilibrium relative to ¥(T’).
We can now state our main result.®

Theorem 4.1. There exist a separable metric space T, a one-to-one map v :
T — APXT* and a payoff usc and non-redundant continuation equilibrium
(1(T), c*,m™) such that for any payoff usc and non-redundant continuation equi-
librium (T',¢,7), with I’ compact metric, there exist an embedding e : I' — T

satisfying:
(a) For all (w,o,7,7") € Q* x %, m = 4(e(v)) and m’ = (e(v)),

v (@ w, 1, 7), & 7,7)) = m(c*(w, e(7),e(7)), ¢ (W', e(7), e(7))) and

TWe make the obvious modification in previous formalism whereby strategies, including c*

and 7*, are defined and measurable on T, rather than on I' = Y(T).
8Gay that e : I' — T is an embedding if it is continuous and one-to-one. ‘When I' is compact

Hausdorff, this is equivalent to e being a homeomorphism into T.
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o (@Fw, ), 8wy, 7)) = m (¢ (wse(r), e(7)), ¢ (W, e(7), e(7)))
(b) For all (w,w',t,t') € 02 x T2,
¢ (w,t,t') = (w,t') and
™ (w,t,t) = Pp(E)r (W, 1, 1).

We have explained the sense in which the space T constitutes a language. The
theorem establishes the universality of that language, in that, under the conditions
stated, indirect mechanisms in any given feasible set I' can be described in terms
of T by means of the translation represented by e. In particular, the same T
applies for any continuation equilibrium (T, ¢, 7) satisfying payoff usc and non-
redundancy.’

The theorem also provides a continuation equilibrium (c*,7*) relative to the
set (T of indirect mechanisms. By part (a), the actions forthcoming in this
equilibrium replicate those in the given equilibrium (T, ¢, 7). (Because actions
have been defined to include participation probabilities, the latter are also repli-
cated.) This establishes that Y(T) is a sufficiently rich set of mechanisms. Part
(b) states that the continuation equilibrium (c*, 7*) has two natural properties
_ ¢ involves truthful reporting of the other seller’s type t' and the probability
7* (w, t,t') with which the w-buyer chooses the seller of type ¢ when the other
seller has type ¢, coincides with the recommendation of the type ¢ seller.l® A
consequence is that any pair of mechanisms in (T, here viewed as a pair of
direct mechanisms, one for each firm, can be implemented by the continuation
equilibrium (c*, 7*). The parallel with the standard single-firm setting is appar-
ent - (T is the counterpart for our competitive setting of the familiar class of
incentive compatible direct mechanisms based on reports about valuations alone
that is the key to the standard revelation principle. (See Appendix C for more on
the nature of the mechanisms in (7').)

We elaborate on the significance of the theorem in Section 5 and provide an
intuitive outline of its proof in Section 6. Here we offer a brief comparison with

9For a given indirect mechanism 7, its translation e(v) is not unique in the following sense.
If v lies in both 'y and Ty and if the conditions of the theorem are satisfied so that there is an
embedding e; of T'; into T for each ¢, then e; (7) # ea(7), in general. This is natural because
the ‘nature’ of the mechanism ~ depends on the context. Similarly, it is natural that, for given
T, e depend on the continuation equilibrium (¢, 7) that is being considered.

1014, follows from this equality that ¥(t)x (w,w’,t',) must be independent of w'. See Appendix

C for details.
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the case of a single mechanism designer where the revelation principle appears
tautological - ‘direct mechanisms’ can be constructed in a straightforward way by
composing equilibrium reporting strategies with the rule that assigns actions to
reports. Theorem 4.1 differs substantially from the single agent result because we
cannot assume that the types describing buyers’ private information lie in some
known and well behaved set. Instead this set of types must be constructed from
‘scratch’. Moreover, this construction is complicated by the special nature of
the multi-principal setting. In the single mechanism designer problem, the belief
hierarchy is a natural candidate for a ‘universal’ description of buyers’ private
information only because it is independent of the modeler’ss notion of what in-
direct mechanisms are available to the mechanism designer. Such independence
is not given in our setting, because private information includes market informa-
tion and this is expressed in terms of the modeler’ss conception of the nature
of competition. Independence from the modeler’ss conception is restored by use
of the universal language T, making its construction novel and a central contri-
bution. This perspective may also help to explain why we need to adopt the
non-redundancy restriction, though it has no counterpart in the construction of

types based on beliefs.

4.3. Finitely Many Types

A possible concern with Theorem 4.1 is tractability. In problems with a single
mechanism designer, the set of types is theoretically very complex, an infinite
series of beliefs about beliefs to higher and higher orders, paralleling the complex-
ity of the types space T' upon which our universal class of mechanisms is based.
Normative applications of the revelation principle usually come from making as-
sumptions that make the types space simple. For example, buyers might have
high or low marginal utility, or valuation information may be expressed as an
interval on the real line.

In order to bolster confidence that our approach may prove useful in sim-
ple applied models of competing mechanism designers, we describe conditions on
primitives that are sufficient to deliver the finiteness of T. Given the length of
this paper, we content ourselves with illustrating the potential for simplification
in plausibly interesting environments, rather than attempting to provide a general
result. Thus we proceed under the assumption that there is no private informa-
tion, that is,  is a singleton which can be suppressed in the notation. We also

continue to assume that buyers behave symmetrically.
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Consider the following natural specialization of buyers’ payoff functions u. Let
ug : Ag x P — [0,1], where uo(ag,p’) gives the payoft to a buyer participating
at a mechanism that has produced simple action ap and where the other buyer’s
participation status is given by p’. Given any action a = (e, m,7') in A =
(Ag)®* x [0, 1]2, write

a, = (agLO)’ a£0,1)7 aﬁl’l));

agl’l) denotes the simple action prescribed by the plan a. if both buyers participate
(that is, (p,p’) = (1,1))and so on. Suppose finally that u(a) is given by

u(a) = Tuo(al™, 1) + (1 —7) uo(al"?,0), (4.2)

the expected payoff to the participating buyer when 7’ is the probability of the
other buyer also participating.

Finiteness of T is implied if ug(Ag X P) is finite (a fortiori if Ao is finite) and
if we assume that for all simple actions ay and by,

Uo(CLo, 1) 7£ ’U,()(bo, O) (43)

Theorem 4.2. Suppose that there is no private information, that buyers’ payoff
functions satisfy (4.2) and (4.3) and that uo(Ag x P) is finite. Then the set of
types T provided by Theorem 4.1 is finite.

The proof is given at the end of Section 6. One drawback to finite action spaces
is that they do not permit sellers to use randomized actions (though randomized
strategies are permitted). This assumption may appear innocuous, but random-
ized actions have strong incentive effects when buyers are risk averse, making

them desirable to sellers.

5. ROBUSTNESS AND THE REVELATION PRINCIPLE

If the restrictions imposed on the seller’s ability to offer mechanisms are unrea-
sonable, then the predictions forthcoming from a model of indirect competition
will be unreliable. For this reason, we are interested in knowing when equilibria in
particular models of indirect competition will survive the possibility that sellers
might invent mechanisms that are not considered possible by the modeler. We
have suggested that the universal class of mechanisms ¥ (T') provides an appro-
priate framework for examining such robustness of equilibria. Here we provide a
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formal result confirming this suggestion. In the single principal setting, the reve-
lation principle shows that a mechanism that is optimal in the class of incentive
compatible direct mechanisms is also optimal in an unrestricted sense. The theo-
rem to follow may be thought of as a counterpart result for the present setting of
competing mechanism designers.

Given a continuation equilibrium (T, ¢, 7) and v € I, denote by m, the func-
tion defined in (3.2). Similarly, denote by m}_ the function corresponding to the
continuation equilibrium (T'1, ¢1,71), where v, is an arbitrary mechanism in I'y.

Say that the payoff usc and non-redundant continuation equilibrium (I'y, ¢1, 1)
extends (T, c, ) if there exists an embedding o : I' — I'; such that, for all 7, '
inl',
m'y('7 7/7 '}’,) = mclr(y)(W a(7l)7 a(7l)) on Qz' (51)
In words, the actions implied by any pair of mechanisms vy and v’ in I' are repli-
cated by their translations c(y) and a(y'), mechanisms in I';.1' As an example,
if T is compact metric, then the continuation equilibrium (¥(T), ¢*,m*) provided
by Theorem 4.1 extends (T, c, ), with embedding o = P oe.

Say that an equilibrium (I, c,, 8) is robust if for any extension (T'y,c1,71)
of (I',c,m), where I'y is compact metric, then (I'y, c1, 71, ¢[6]) is an equilibrium,
where a[6] is the randomization on I'y induced by 6 and a.

Theorem 5.1. (a) If the equilibrium (T, ¢, ,6) is robust, where T' is compact
metric, then (W(T),c*, 7, ¢ o e[é]) is an equilibrium, where c*,7*,e and 1) are
defined in Theorem 4.1.

(b) If (4(T),c,m,6) is an equilibrium, then the equilibrium is robust.

Proof. (a) If not, then there exists m &€ (T that is a profitable unilateral devi-
ation by a seller. Define I'y = 1 (e(I')) U {m}. (Because 1 is a homeomorphism,
¥(e(T)) is compact meftric. Addition of the discrete point m leaves I'y compact
metric, as required by our definitions of ‘extension’ and ‘robustness’.) Further,
(T'y, c*, ) extends (T, ¢, ), (take the restriction of Yoe as the required embedding
o), and (T, c*, 7,9 o e[f]) is not an equilibrium, contradicting robustness.

(b) Observe that the continuation equilibrium (¢(7"), ¢, ) need not feature
truthful reporting. Let (['y,c1, ) extend (¢(T),c,n), with embedding «. The

11Both here and in the definition of robustness, we do not require that I' be compact. That
permits us to apply the term ‘extension’ also to the case where the set of indirect mechanisms

T is ¢(T).
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appropriate form of (5.1) is
mw(t)('a w(t/)v ¢(t/) ) = mé(w(t)('u Oé(iﬂ(t’)), CY(’(/)(t/>) ) on Q°

By Theorem 4.1, I'; may be embedded into ¥(T) by ¢ oey, with associated truth-
telling continuation equilibrium (¥(T),c*,7*), such that

mf}/l(ﬁfyllafyll) =9 (61(71)) ('761(711)761(7/1)) on Q2.

Consequently, ¥ o e; o o embeds ¢(T) into itself and

My (W), 0(E)) = ¥ (ea(®(1)) (- era($(t)), era($(t)) ) on O

This identity states that the two continuation equilibria (¥(T'), ¢, 7) and (¢(T), ¢*, ™)
imply the same valuation and report contingent actions, after suitable translation
by the embedding 1 o e; o a of (7T) into itself. We are given that (¥(T),c,m,6)

is an equilibrium. It follows that so is (¢(T),c*, 7%, ¥ o e1 o a[6]).

Suppose that (T'y,c;, 71, [6]) is not an equilibrium. Then there exists a prof-
itable unilateral deviation to some v € I'; not in the support of a[6]. But then the
deviation to 1(ey(v)) is profitable, contradicting the fact that (¥(T),c*, 7", ¢ o
e; o a[6]) is an equilibrium. B

Robust equilibrium allocations (allocations supported by equilibria relative to
¥ (T')) constitute the primary normative contribution of our analysis. However, in
general, neither T' nor v (T) is compact, raising questions about the existence of
robust equilibria. Comparison with the single principal context provides a useful
perspective. In the standard setting, existence of an optimal mechanism is proven
after imposing additional structure corresponding to specific applied problems.
We suspect that such a procedure could succeed here as well. It is beyond the
scope of this already lengthy paper to pursue this much further, but we offer some
supporting comments.

First note that if the set of simple actions is finite, there is no private infor-
mation, and preferences satisfy 4.2 and 4.3, then T' is finite by Theorem 4.2. This
implies that the universal set of mechanisms is finite. Then by Nash’s theorem
there exists an equilibrium (possibly in mixed strategies) relative to (¢ (T'), c*, 7).
By Theorem 5.1, this equilibrium is robust, which guarantees that there are robust
equilibrium allocations for such problems. There is as yet no proof of existence of
robust equilibria when there is asymmetric information about buyers’ preferences.
However, it is the asymmetric information about the market, not asymmetric
information about preferences, that creates all the conceptual problems in this
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paper. Theorem 4.2 allows this asymmetric information about market outcomes.
Thus it already provides the key existence result.

Each of the examples discussed in Section 2 satisfies 4.2 and 4.3 (this is readily
checked by looking at the payoff matrices given in section 2) and therefore has
a robust equilibrium allocation. By Theorem 4.2 it is sufficient to think of each
seller offering buyers a mechanism consisting of a finite set of messages T. As
there is no private preference information, a naive ’direct’ mechanism is one that
assigns the same action to each of these signals.

In the price competition game described in section 2.1, a seller who deviates
from the set of naive direct mechanisms can choose a mechanism from the universal
set in which the price that he charges depends on the messages from T that the
buyers send him. Buyers will correctly anticipate this price and respond with a
selection strategy that is a best reply to the anticipated price and the fixed price
of the other seller. Since the symmetric equilibrium selection strategy associated
with any pair of simple actions is unique, it will be the same strategy that buyers
would have used in response to a direct deviation to this action in the original
game. It follows that the deviation in the complicated message space generates
the same profits as the corresponding deviation in the original game. Because
we are starting from an equilibrium allocation for the original game, the devation
cannot be profitable.

The price matching example is not very interesting because the rebust equilib-
rium allocations are simply the pure strategy equilibrium allocations with direct
mechanisms. Example 2.2 includes a robust equilibrium allocation that is not
an equilibrium in direct mechanisms. The proof of this, which appears in Ap-
pendix A, is more complicated because equilibrium path mechanisms have the
property that by sending appropriate messages, buyers could induce sellers to use
different actions from the ones used on the equilibrium path. Deviations by one
seller in a more complicated message space could then be used to induce the other
seller to switch actions, or to induce buyers to change their selections strategies.
The payoff functions in that problem also support multiple symmetric continua-
tion equilibria for any pair of simple actions offered by sellers. Deviations in a
more complicated space of mechanisms might simply trigger continuation equi-
libria that the deviating seller prefers even when the actions that sellers take do
not change. To verify robustness, it is necessary to show that the deviating seller

cannot profitably exploit any of these opportunities.
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6. The Nature of T" and Non-Redundancy

This section is devoted to providing some intuition for the proof of Theorem 4.1,
focussing primarily on the nature of 7' and the meaning of non-redundancy. At
the end, we provide a proof of Theorem 4.2 (finiteness of T°). For the technical
details supporting this section the reader is referred to Appendices B-D.

Fix a continuation equilibrium (T",¢,7) and consider the problem of trying
to describe mechanisms in I' in a way that is not tied to the specific view of
competition embodied in I'. This is the heart of our problem. An initial intuition
is to use the payoff function generated by any mechanism as a way to describe
that mechanism. This approach, which is the one we adopt, seems promising as
a route to universality because mechanisms of all sorts deliver payoff functions.

To be more precise, consider using the buyers’ payoff function U(-; ), defined
by (4.1), to describe the mechanism ~y used by firm 1. A difficulty with doing
so is that one of its arguments is the mechanism + in I" used by the other firm.
Thus the above payoff function is tied by its very definition to the given class I',
(that is, its domain is Q x I'), contrary to the desired universality. The latter
can be achieved, however, if we confine our description of 7, to the way in which
its payoffs vary with valuations, a primitive of the model. The task, therefore,
is to associate each U(:,-;v), a function on Q2 x I', with a ‘marginal’ function
that is defined on . This is somewhat analogous to associating with each joint
probability measure a suitable marginal measure, though there is no compelling
and uncontentious notion of marginal for our setting. Our choice is to define the
Q-marginal to be sup_,cr U(,7;7)."?

We arrive at an initial description of v by means of ®o(y), the function on 2
defined by
@o(7)() = sup U(,757)- (6.1)

yel’
In words, our O-level description of « is given by the best valuation-contingent
payoff that « delivers, where ‘best’ is over all feasible mechanisms ~" for the other
firm. The latter supremum evidently makes this a coarse description of v and
thus we proceed to refine it. This is possible because the 0O-level description can
be applied also to describe mechanisms used by the other firm. Thus we can
refine (6.1) by computing the best valuation-contingent payoft that « delivers,
where ‘best’ is now over all feasible mechanisms « for the other firm that have

12Though other definitions seem as plausible, (using the inf is one example), it remains to be
seen whether any of them leads to successful completion of analyses paralleling ours.
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a given 0-level description. In other words, we arrive at a level 1 description in
terms of the function ®;(7y)(-) defined by

B:(7)(, ) = 3B U ,757): Boly) =g}, (62

where h/, varies over all possible 0-level descriptions. Proceeding inductively in the
obvious way, one obtains a sequence of progressively finer descriptions ®,(7)(:)
of v, n > 0. The complete description of  is provided by the infinite sequence of
all nt® order descriptions.’? :
Thus we describe y by means of its ‘type’

e(7) = (2n(M)())nZo- (6.3)

The space T consists of all sequences of descriptions that can be constructed in
this way, varying over all possible continuation equilibria (T, & 7). 1

Turn to the meaning of non-redundancy of (I, 7). It is very ‘close’ to the
assumption that distinct mechanisms v, and v, in I' have distinct descriptions of
the sort just outlined, that is, e defined in (6.3) is one-to-one.'> Some violations
of this assumption are not troubling. For example, non-redundancy is violated
if there exist two distinct mechanisms in I' that are effectively identical, but one
employs communication in English while the other employs French. Our approach
is to think of these mechanisms as being equivalent.

However, there exist violations that are serious. For example, suppose that
() is a singleton representing a single risk averse buyer type who is trying to
buy an insurance policy from a risk neutral seller. The set of simple actions is
then the set of outcome contingent transfers, and there are clearly many distinct
transfer functions that will yield the buyer the same ezpected utility. In our formal
statement of non-redundancy, and in our description of mechanisms, only buyers’

131 some cases, only finitely many orders of description are ‘nontrivial’. For instance, in the
price matching example (Appendix A) distinct mechanisms have distinct level 1 descriptions.
Thus higher level descriptions are redundant (think of the level 2 counterpart to (6.2)).

14Qur formal proof of the existence of T is constructive but is less intuitive than the argument
sketched here. See [8] for a discussion of the relative merits of these two approaches to proving
the existence of a types space in the context of types as beliefs.

15T emnma D.5 shows how non-redundancy yields that e is one-to-one. Note that if we used this
invertibility as the (alternative) definition of non-redundancy, then Theorem 4.1 remains valid.
In fact, we could then also drop the assumption of metrizability for ‘spaces’ if we simultaneously
dropped the claim that T is separable metric. (This reveals the limited purpose of the assumption
of metrizability, namely to permit a simpler statement of non-redundancy.)
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payoffs are used. It seems natural to include sellers’ payoffs also when describing
and distinguishing between mechanisms.

This can be done by formally viewing sellers as buyers that have an artificial
valuation @ lying in the expanded space QU{w}. Details are provided in Section 7.
The resulting form of non-redundancy is weaker because it is easier to distinguish
between mechanisms. For example, it can be violated only if there exist distinct

v, and -y, satisfying both

sup U(-,7;71) =sup U(,7572) and
y'el’ ~'el’

sup V(v;11) = sup V(75 72),

vy'el’ ~y'er
where V(7';y) denotes the expected payoff to a seller using when the other firm
is using 7'. We have been unable to find any interesting examples violating this
notion of non-redundancy and our revelation principle is readily generalized to
accommodate it. The ‘cost’ of this generalization is added notational complexity
because of the need to differentiate throughout between the payoff functions of
buyers and sellers. For this reason, we have chosen to focus on the notationally
simpler version and to provide an outline of the generalization in Section 7.

Turn to other aspects of Theorem 4.1 and its proof.1® Their explication re-
quires that we provide some additional formal detail regarding 7. Level 0 descrip-
tions are functions of valuation and thus are elements of 1/(£2). Level 1 descriptions
are functions of valuation and level 0 descriptions and thus lie in U(Q2 x U(S2)).
Thus if one defines the sequence {C,} inductively by

Co=Q,C; =QxUQ), Cp=Choy xU(Cr1), n 21, (6.4)
then level n descriptions are elements of ¢/(C,) and

T C T2 U(C).

n=0

Consequently, if e(y) = t = (hn)2%, is the type of the indirect mechanism v,
then its level n description h, € U(C,) gives a buyer’s expected payoff from v as a
function of (w, hf, ..., h,_;), the buyer’s valuation and all lower level descriptions
of the other seller’s mechanism. The problem of infinite regress mentioned in the
introduction takes the following form: Given that we are describing a mechanism

16 We emphasize that what follows is intended to provide intuition rather than a literal outline

of the proof.
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by the sequence t of all its finite level descriptions, does such a description uniquely
determine a buyer’s expected payoff from v as a function of valuation and the
sequence t' of all finite level descriptions of the other firm? The answer is ‘yes’
and the unique function that does the job is

¥(t)(w,t') = inf hn(w, Ry ooy Br_1)s

where t = (k)2 and ¢ = (h,)3,. This positive result relies heavily on upper
semi-continuity (see’ Appendix B). ‘

The theorem asserts also that each type t may be associated with 1(t), a direct
mechanism using message space 2% x T2. To see how this mapping is constructed,
suppose that t is the type of some v € T" for the continuation equilibrium (T, ¢, 7).
Then application of the translation of I' into 7" provided by e yields ( recalling
the notation m., defined in (3.2))

oo | my(w,o e (E), et (")) it t" € e(T)
v ottty = { 7 e, e 65)
By way of interpretation, only types in e(I") are feasible given the continuation
equilibrium (T, & %). Consequently, reports of types outside e(I") lead to the ‘no
trade’ action a. There remains the question “what if the same type ¢ is associated
with an indirect mechanism v, coming from a different continuation equilibrium
(T'1,&,7)7” In that case, because v, has the same type ¢, using v, in place of
~ as above would yield a direct mechanism with the identical buyer’s expected
payoff function ¥(t)(-). Thus ¢(t) is well-defined up to ‘payoft equivalence’ and
that suffices for our purposes.

The basis for the remaining claims in the theorem is now clear. Because the
direct mechanisms )(t) are constructed as above from some continuation equi-
librium in indirect mechanisms, they embody incentives for truthful reporting of
valuation and the other firm’s type, as well as agreement with the ‘recommended’
choice probabilities. This ensures implementation (part (b)). Replication (part
(a)) follows from the construction (6.5).

Turn finally to the proof of Theorem 4.2. Consider the continuation equilib-
rium (¢(T), ¢*,7*) provided by Theorem 4.1 and fix the types ¢ and t' for sellers 1
" and 2. In the absence of private information, both buyers communicate the iden-
tical message c*(t,t') = ¢’ to the seller of type t and visit him with the common
probability 7*(t,t'); similarly for behavior vis a vis the seller of type t'. Buyers
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know the types ¢t and ¢’ and the communication strategy c¢* and therefore can
foresee the simple actions that will be taken at each seller, contingent on how
many buyers participate. Thus in choosing where to participate, buyers play a
game G(ay, by, af, bp) of the form

K | 2 |
1 || uo(ao, 1), uo(ao, 1) || uo(bo,0), uo(8h,0)
2 I UO( 6?0)’ UO(bOaO) ” ’U,O(CLG, 1)7 'U'O(a’é)) 1)

The interpretation is that the row buyer and column buyer choose whether to
participate at firm 1, where simple action ag is taken if both buyers appear and b,
is taken if only one appears, or at firm 2, where simple actions aj, and b, are taken
in corresponding circumstances. These simple actions are those prescribed by the
mechanisms 1)(t) at seller 1 and 1(t’) at seller 2 for each possible participation
status of the two buyers. Because in the continuation equilibrium, 7* is a best
response to the other buyer’s use of 7*, it follows that (7*(¢,t'), 7*(¢,t')) is a Nash
equilibrium for the above game. It is also important to observe that, in terms of
the notation introduced earlier in this section, U(t'; 9 (¢)) is the expected payoff
to a buyer from choosing seller 1 given that the other buyer chooses that seller
with probability 7*(t,t'); similarly for U(¢; ¥ (t')).

As outlined earlier, mechanisms are described by the payoffs that they deliver.
Moreover, non-redundancy of (4(T'), ¢*, 7™*) means that payoffs must be sufficiently
diverse to permit any two distinct mechanisms in (7'}, or equivalently any two
distinct types in T, to be distinguished. On the other hand, our assumptions,
including the finiteness of ug(Ag x P), imply that only finitely many types can be
distinguished. Thus T" must be finite.

A more detailed argument is as follows: If 7#*(¢,t')= 0 or 1, then U(#';%(t))
is equal to one of the payoffs to the row buyer in the first row of G(ao, by, ay, bp).
Hence it lies in ug(Ao x P). Similarly for U(t;9(t')). In the other case, where
0 < 7*(t,¢') < 1, then one can compute directly, using (4.3), that 7*(¢,t') is
unique.'” This implies finiteness of the set of all Nash equilibrium payoffs for any .
game G(ao, bo, ag, bp), of which there are only finitely many. Because U(t';4(t))
is a Nash equilibrium payoff, it must lie in a finite set that is independent of the
particular £ and ¢'.

This proves that {U(t';9(t)) : (¢,t) € T?} is a finite set, with cardinality
- #U. For any n, the number of distinct descriptions of level n cannot exceed

1t g_quals (uﬂ(a'()’ 1) - uo(bo,O)) ['U’O(GO: 1) + uo(af), 1) - uO(bB:O) - uo(bo,())]—l.

28



#U. Non-redundancy of (¢(T'), c*, 7*) requires that any two distinct mechanisms
can be distinguished by descriptions of some level. Finally, descriptions become
progressively finer the higher the level - mechanisms that have distinct descriptions
of level n also have distinct descriptions of all higher levels. The conclusion is that
there can be at most #U types.

7. EXTENSIONS

7.1. Sellers’ Payoffs

We mentioned in Section 6 that it was both feasible and desirable to extend our
analysis so that sellers’ payoffs, in addition to buyers’ payoffs, are used to describe
mechanisms. Here we outline how such an extension can be accomplished.

The first step is to reformulate the assumptions for a continuation equilibrium
(T2, 7). A seller using 7y and whose competitor is using 4’ receives expected
payoff

V57 = [ v(my(w,w',v,v),w,w') dF dF. (7.1)
Y

In order to unify the notation for dealing with buyers and sellers, add a discrete
point {@w} to 2 and define § = QU {w}. Then proceed roughly as before with
Q replacing © as the primitive valuations space In order to do so, define U :
QxTI? — [0,1] so that forw € Q, U (w,7';7) retains the interpretation as
the buyer’s payoff function, while U@, v';v) = V(v';7), representing the seller’s
payoff function. Expand the domain of the direct mechanism (3.2) m., so that

my(w,of,) = @ if (w,0) ¢ 97, (7.2)

reflecting the fact that only valuations in Q are conceivable for buyers. Then the
assumptions payoff usc and non-redundancy, expressed relative to the expanded
valuations space §, are both meaningful and appropriate. Theorem 4.1, with
replacing (2, is valid; the existing proof requires only trivial notational modifi-
cations. In the universal class of mechanisms, buyers report a valuation in Q,
(because it doesn’t pay to report @), and the other seller’s type, now expanded to
include payoffs to sellers. This reformulation of non-redundancy delivers a weaker
assumption than that used previously because the use of sellers’ payoffs makes it
easier to distinguish between distinct mechanisms. In that sense, the reformulated
- revelation principle generalizes the one stated in the text.
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7.2. More Specialized Models of Competition

It has been our intention to assume as little as possible a priori about the nature
of competition. However, there may be situations where additional restrictions
would be acceptable to some readers. Here we indicate briefly how these may be
handled in our formal framework.

Our indirect mechanisms assume that the reporting strategy ¢ is a function of
the buyer’s type and the mechanism that the buyer has seen offered at the other
firm. One alternative that was mentioned in Section 3.2 is to allow communica-
tion only after the buyer has chosen where to participate. Such a restriction on
communication can be imposed using our formalism. Let C = C¥, in which case a
message in C is a pair ¢ = (cg, ¢1) in CZ, representing communication in the event
of nonparticipation (p = 0) and participation (p = 1). Then restrict mechanisms
so that only the messages of participants affect the action that is taken. To ex-
press this formally, use the notation in (3.1) and denote by YP*)(c, ¢) the simple
action prescribed by the indirect mechanism v when p and p’ describe the partic-
ipation status of buyers 1 and 2. Then assume that v{"% (cg, c;, ¢}, c}) depends
only on ¢, Y& (co, ¢1, ¢),¢}) depends only on (c;,c;) and so on. The resulting
formal model specializes ours both by restricting message spaces C to the special
form indicated and by restricting indirect mechanisms as just described.

Theorem 4.1 is valid also for this specialization of our model. The proof is
similar, though the types space T is smaller, because there are fewer mechanisms
that require descriptions. Similarly, other specializations of our model lead to
suitable subspaces of T as the relevant types space for describing mechanisms,
with the revelation principle intact.!® We view this generality and flexibility as

attractive features of our analysis.

7.3. More Information for Sellers

We have assumed that sellers are unable to observe the mechanisms offered by
their competitors, or, if they can observe these mechanisms, that they are unable
to write contracts that are explicitly contingent on them. It is well known that
explicit contracts of this kind are powerful collusive devices. Our framework is
easily modified to allow for such explicit contracts. A mechanism from our uni-
versal class asks the buyer to report his valuation along with a report about the

18 Another specialization that might be of interest and that can be accommodated is to allow
a buyer to communicate with a seller only after observing whether or not the other buyer has

selected the same seller.
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mechanism being used by the other seller. If this latter mechanism is observable
(and verifiable) then the report about the other seller’s mechanism can simply be
reinterpreted as the observation of that mechanism. Because the incentive com-
patibility condition associated with reporting the competing mechanism can be
dropped, this leads to straightforward changes in the construction of the universal
language T and the corresponding class of mechanisms.

This environment is not very interesting because collusive outcomes can be
supported in the usual way, that is, each seller writes a contract promising to
punish deviations from the most collusive contract with counter deviations as
in the original argument in [23]. The only difficulty is the precise form of this
contract. A contract that responds only to deviations in price is not complete
because it does not specify how sellers respond to deviations to more complicated
contracts. Our formulation suggests that complete contracts of this kind should
come from our universal class of mechanisms.

A. APPENDIX: Price Matching and Added Details

A.1. Proof of Robustness for Example 2.2

The outcome AA in example 2.2 can be supported by a robust equilibrium. From
Theorem 4.2, the universal set of mechanisms consists of all mechanisms mapping
from some finite set T into the two actions available to the seller. Thus every devi-
ation in the universal set of mechanisms simply involves an alternative assignment
of the elements of T' to the two actions A and B. Since T is finite, the set of all
such assignments is finite. Such deviations by seller 1, say, induce two potentially
profitable outcomes. They might induce buyers in the continuation equilibrium
to change the messages they send to seller 2 in a way that changes the action
that seller 2 chooses, and they may alter the selection strategies that buyers use
in the continuation equilibrium. In the example, the set of alternative pairs of
actions for the sellers and the set of continuation equilibrium selection strategies
associated with these is small, so we can check for robustness by exhaustively
checking the potential outcomes associated with a deviation.

The various possibilities are described in the following table. The first two
columns list the possible actions that the sellers might choose along the continu-
ation equilibrium path associated with the deviation. The third column gives the
payoff to seller 1 (the deviator) if the continuation equilibrium specifies that both
buyers choose seller 1 along the continuation equilibrium path (“*’ indicates that
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there is no continuation equilibrium of this kind). The fourth column gives the
payoff to seller 1 when both buyers select seller 2 on the continuation equilibrium
path, while the final column gives seller 1’s payoff in the case where buyers use a
mixed selection strategy on the continuation equilibrium path.

[ seller I's action [| seller 2’s action [ seller 1 [ seller 2 | mixed |
LA | A [t [ -1 | 1 |
L B | B [ * 1 = | 0 |
A B 1 -1 [ -=52F <1
B | A 2 | -2 2z |
In the final two rows of the mlatriﬁ), 2tohe probability with which the seller whose

action is A is chosen equals pTgesg

As is apparent from the ta<ble, the only way for the deviating seller to increase
his profits (they are equal to 1 in the equilibrium constructed in example 2.2) is if
the new mechanism induces seller 2 to play A while he plays B. This is profitable
for seller 1 only if both buyers choose him. This result, however, cannot be part
of any continuation equilibrium path. The reason is that seller 2 takes action A
only when both buyers report ¢ to him. The mechanism that seller 2 is offering
is such that either buyer can unilaterally induce him to switch to B by sending
the message s. Either buyer can improve upon the 0 payoff received along the
equilibrium path by sending the message s to seller 2 and then choosing him with
probability 1. Since the payoff a buyer gets from B when he is alone is 2, this
deviation is profitable.

This rules out the possibility that seller 1 can achieve this payoff by deviating.
Now from the table, each of the other possible outcomes that seller 1 could achieve
by deviating yield him profits that are no higher than the profit (equal to 1)
achieved in the original equilibrium. Thus there is no deviation in the set of

iversal mechanisms that will improve upon the original mechanism, making
AA a robust equilibrium allocation. By the definition of robustness there will be
no extension of the set of mechanisms described in example 2.2 within which seller
1 can raise his payoff if seller 2 sticks to his original mechanism.

19T, understand inequalities relating to the last column, recall that € is small.

20Gome outcomes listed in the table may be inconsistent with equilibrium. For example, 1t
may not be an equilibrium for buyers to send messages that lead them to expect the deviator
to use A and the non-deviator to use B when the buyers expect each other to mix.
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A.2. Price Matching

In order to clarify notation and other aspects of our formalism, consider a simple
competitive environment in which each of the two sellers has a single indivisible
unit of output to sell and each buyer wishes to acquire exactly one unit if the price
is low enough. We suppose that the feasible set I' of indirect mechanisms consists
of price matching mechanisms and then describe a continuation equilibrium that
satisfies the assumptions required by Theorem 4.1. (We have conducted a similar
exercise and verified the assumptions of Theorem 4.1 also for an alternative spec-
ification of I in which sellers compete in auctions. Details are available from the
authors upon request. )

The environment is more completely described as follows: Buyers’ valuations
are independently drawn from the interval = [0, 1] using the continuous prob-
ability distribution function F. The set of simple actions A = [0, 1] x A% where
A? = {,u eRZ : py+py < 1}. The generic simple action ag = (g, ) indicates
that the seller chooses buyer 7 with probability p; and offers him the option to
trade at price g. Examples of ‘full’ actions, elements a of A, include tuples of the
form

a = ((q7 1’0)7(q’07 1)’(q’ '57 '5)77r7 7IJ)' (A'l)
To clarify, (g, .5, .5) indicates that if both buyers participate ((p, p') = (1,1)), then
each buyer receives, with probability 1/2, the option to buy the good at price q.
The other two triples describe the simple action undertaken if (p,p’) = (1,0) or
(0,1).
The class of feasible indirect mechanisms is described as follows. Sellers ini-
tially announce a price. Buyers are asked to tell the seller what price the other
seller has offered by naming a price from the message space C = [0,1]. There
are then two possibilities. If only one of the buyers selects the seller, his report
about the other firm is ignored and that buyer is offered the option to trade at
the price that the seller announced. If two buyers select the seller, the seller takes
the maximum of the two reported prices. If this maximum exceeds the price that
the seller has offered, the seller ignores the reports. He chooses one of the buy-
ers randomly and offers him the opportunity to trade at the price that the seller
originally announced. If the maximum of the prices reported by the two buyers is
below the price that the seller has announced, the seller picks one of the buyers
at random and offers him the option to trade at this maximum price.

The only rea! option that the seller has in this class of mechanisms is the price
that he sets. By using buyers’ messages, it is possible to vary the price charged
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according to the price offered by the other firm.2! However, the price cannot vary
in response to the number of participants. Thus the actions described in (A.1)
are the only ones in A = (.AO)P2 x [0,1]* that are relevant.

Turn to payoffs. A buyer with valuation w who trades at a price ¢ receives
utility w — g, while the seller in the same situation receives payoff ¢. This leads
to the following specification of payoff functions (a is given by (A.1)):

u(a,w) = 7 max[w —q,0] /2 + (1 — ') max [w — ¢,0] and (A.2)

1-(1-m(1-7))gq fwuw>q
v(a,w,w) =4 mq ifw>gq W <gq
7'q fw<guw >gq.
The action that the seller chooses is allowed to depend on the messages received
from buyers. Formally I' = {7, : ¢ € [0, 1]}, where 7, : C? — A is defined by

v, (e, ) =((g,1, 0),(¢,0,1), (min g, max[c,c]], .5, .5) , 7, 7).

Because firms make no attempt to influence buyers’ participation choices, we
assign a recommendation 7 arbitrarily and refer to v, simply as q.

Turn to continuation equilibria. There will evidently be many continuation
equilibria. We focus on the one in which buyers report the other firm’s price
truthfully, that 1s,

é(w,q,q4)=4d-
It is straightforward to show that this is an equilibrium: When he is the only one
to visit a seller, the buyer’s report does not affect the price. Thus the best report
that the buyer can make is the one that is best when the other buyer selects the
same seller and reports truthfully. In that case, he cannot affect the price paid if
he reports a lower price for the other firm than the true one. If he reports a price
above the true price, he will either have no effect on the price or raise it.

The continuation equilibrium participation strategy 1s characterized by a cut-
off valuation w* (¢,¢') with the property that buyers whose valuations are below
w* (g,q') choose the lower priced seller, while buyers with valuations in the other

21This example differs from the model of Salop [23] in two ways. First, Salop assumes that
firms observe the prices set by other firms. Here sellers can learn about the other seller’s price
only by asking buyers about it. Secondly, the sellers in this example face a capacity constraint

that Salop’s firms do not.
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interval choose the higher priced seller. That is,

1 ifw<w(qq) andqg<¢
7w, q,d)=4 1 fw>w*(g,q)andg>¢ (A.3)
0 otherwise.

The cutoff valuation w* (g, q’) is given by the solution w to

!
1 _ (w—max[g,q]) (A.4)
| 2F (w)  (w—min[g,¢])
when this equation has a solution. Otherwise the cutoff is equal to 1 and all
buyers select the lower priced seller. As a result, w*(+) is a continuous function.
The direct mechanism m, corresponding to this equilibrium as in (3.2), (and
imposing ¢ = ¢"), is given by my(w,w’,¢',q') =

((g,1,0),(g,0,1), (min g, ¢], .5, .5) , 7 (w,¢,¢) , 7 (v',4,7)) - (A.5)

The seller’s payoff for any pair of mechanisms g < ¢ is given by

{p—u~pwwq

@)+ F(2)] ¢ ifg<¢
2(1- F (v (g,9))

F(w (q,¢) g+ (1~ F(w (3,¢))*¢ otherwise.

From (A.4), this payoff function is continuous.?? Because I' is compact, there

exists an equilibrium in mixed strategies.
Next we verify some properties of the continuation equilibrium (T,e,m). It

follows from (A.2) and (A.5) that U (w,q'5q) =

{F@ﬁ@¢»ﬁ%ﬂﬁ+u-qu%w»mup—%m ifg<q
F (w*(g,¢")) max[w — ¢,0] + (1 — F (w* (¢,4))) Tﬂ[‘iﬁ;—ql’—ol otherwise.
(A.6)
By the continuity of w* (g,¢'), this is evidently jointly continuous in (w,q,¢') and
this implies payoff upper-semicontinuity for (T',Z, 7).

22{Jnlike in the usual Bertrand pricing problem, here sellers face capacity constraints that
ensure that the low priced seller cannot serve the whole market. Buyers are thus reluctant to
switch to the low priced seller for fear of being rationed. Thus when a seller cuts price he raises
continuously the probability with which each buyer comes to him.
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We prove non-redundancy as follows: Evidently, sup, U (w,q’;q) is achieved
at ¢ = 0. Therefore, it suffices to show that ¢; £ gy => U (-,0;q1) # U(-0;q)

If go > ¢, then
U(,0,q1) =U(,0;g2) on (q1,q) =
. w
F(w* (q1,0) (w— @) + (1= Fw (91,0)) 5 =
. w
(1 F @' (@,0) 5
on the same interval, implying

(1-F(*(q,0)) _(1—=F(w (g0)

2 2

and hence that F' (w*(q1,0)) = F (w*(g2,0)) = 0. This contradicts the definition
of the cutoff values, whereby either (A.4) or w*(q1,0) = w*(g2,0) = L.

F(w" (q01,0)) +

’

B. APPENDIX: USC Functions and Hierarchies

For any topological space S, denote by U/ (S ) the set of upper semi-continuous (usc)
functions from S into [0,1]. Adopt the topology 7 for ¢ (S) that is generated by
the following subbasis:

{g:3s€G,g(s) >k}, {g: Vs €K, g(s) < K}, (B.1)

where G and K vary over the open and compact subsets of S and where & varices
over [0,1]. This is the weakest topology such that the mapping g —— Sup,c4 9(8)
is lower semi-continuous (lsc) for each open A and usc for each compact A.

The topology 7 is consistent with topologies that have been widely employed.
Denote by F(S) the set of all closed subsets of S endowed with the closed con-
vergence topology [10, pp. 18-21]. Each closed set I can be identified with its
indicator function, an usc function. Secondly, let Cap(S) denote the collection of
all (regular Borel) capacities on S, endowed with the vague topology. Each usc g
can be associated uniquely with the capacity vy,

ve(A) = sup g9(s), (B.2)

for Borel measurable set A. Therefore, we have

F(S) ¢ U(S) C Cap(S). (B.3)
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More to the point, the three topologies are consistent with one another in the
sense that these set inclusions are topological embeddings.?

The association in (B.2) of any usc function with a set function may be helpful
for clarifying the intuition underlying some of the analysis to follow. This is
particularly true if the non-additive nature of v, is overlooked and if the reader
thinks in terms of additive measures. Such an association should help to interpret
what follows in more familiar terms such as marginals of measures, the weak
convergence topology, and so on. For example, the meaning of Theorems B.1 and
B.2 is clearer if one thinks of their well known counterparts for measures.

Theorem B.1. If S is compact Hausdorff, then so is U (S). If S is also metric,
then so is U(S).

Proof. See [19, Theorems 2.2-3, Cor. 2.5]. For the second claim, use also [5,
Theorem XI.4.1]. &

Theorem B.2. Let S be compact Hausdorff. Then:
(a) Ife : S — S is continuous for some space S' and if € is defined by

(ég9)(s) = sup{g(s') e(s') = s}, (B.4)

and the sup is understood to equal zero where the constraint set is empty, then
& : U(S) — U(S) is continuous. In the special case where S' = A C S, then
¢ takes g into g, where ég(s) = g(s) if s € A and 0 otherwise, and € is a
homeomorphism of U(A) ontoU(S | A) = {h € U(S) : h =0 on S\A}.

b) Let S = S; x Sy x S and let § : S3 ~ S, be a compact-valued correspon-
dence such that £(As) is open (closed) for every open (closed) set Az C S3. Then
g — g1, g1(81,83) = MAXsyee(sa) g(sy1,82), is a continuous map from U(S1 x S)
into U(Sl X S3)

(c) The mapping (s,g) — g(s) is usc on S X U(S).

These properties are exploited heavily. For (b), two special cases are exploited.
In the special case where {(-) = Sa, (b) can be rewritten to say that the mapping
from U(S; X S2) into U(S1) taking g into g1, g1 (s1) = maxs,es, 9(s1,52), 1s contin-
uous. Tt is useful to think of g as the S;-marginal of g. With this terminology, the

23The capacity vg is called a sup measure; see [19] for details regarding these non-additive
measures and the assertions in (B.3). See also [17, p. 285] for more on the connection between

U(S) and other topological spaces.
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operation of taking a marginal is continuous, as it is in the more familiar setting
of measures with the weak convergence topology. For the second special case, let
f : Sy — S3 be a continuous function and ¢ = f~1. The hypothesized properties
for £ are implied by the continuity of f. These hypotheses cannot be deleted in
(b). For example, if £(s3) = {32} for all s3, then g1(s1,83) = g(s1,32), but the
mapping from g into the restriction g(-,32) is generally not continuous (see [19,
Theorem 4.5] for related results).

Proof of Theorem B.2: (a) Routine.
(b) Denote the indicated mapping by ®. The Maximum Theorem [1, Lemma

14.29] implies that ®(g) is usc. For the continuity of ®, suppose that

®(g) e Ny = {h1 €U(Sy x S3): sup hi > &},
Gle3

for open sets G; C S; and G3 C S3. Then
ge N ={helU(S xS;): suph > &},
G

where G = Gy x £(G3), an open set. Moreover, ®(N) C M.
If the neighborhood of ®(g) is of the form
®{(g) e Ny = {h: €U(S; x S3): sup hy <k},

KixKs
for compact sets K; and K3, then ®(N) C N where

geN={hecl(S:x8): sup h<s},
KIXK2

and K, = £(K3), a compact set.
(c) Let g — g, s* — 5, g*(s®) = & all & and show that g(s) > «. For any

open neighborhood G of S, 3ag, s* € G for a > ag. Let G denote the closure.
Then Vo > ag, supgg® > g*(s*) > k. By the nature of convergence in U (),
it, follows that supzg > . Any compact Hausdorff space is normal. Therefore,
the relatively compact neighborhoods G of s define a directed set D such that
s¢ — s and g(s®) = supgzg > . Conclude that g(s) >  because g is usc. ®

Turn to hierarchies of usc functions, which provide the first step in the con-
struction of T from Theorem 4.1. The following analysis parallels the analysis of
hierarchies of probability measures (see [15] and [4], for example) and is a special

case of the analysis in [6].
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Theorem B.3. There exists a non-empty compact metric space T satisfying
T ~hmeo UQ X T). (B.5)

Proof. We observed above that 2/(S) is homeomorphic to a subspace of capacities.
Hierarchies of capacities are a special case of the class of hierarchies studied in
[6]. To be precise, the proof follows from Theorem B.1 above and from Theorems

4.2, 4.3 and 6.1 of [6]. H
Some details from the proof, which is constructive, will be useful and so are

outlined here. Define by (6.4) the spaces {C,}, thought of as successively richer
message spaces. Let 7o = I$U(C,) with generic element ¢t = (go, g1, - gn, ---)-

Refer to the type t as coherent if

max gn{Cn-1,') = Gn-1\Cn—1/,
u(Cn_l)g( 1,7) = gn-1(Ca-1)

for all n > 1 and ¢,_; € C,_;. The subspace of 7y consisting of coherent types is

denoted 7;.
An important first step in the construction of 7 is to note that 7; is homeo-

morphic to U (2 x Tg), with homeomorphism ¥ : T3 — U(S2 X 7o) constructed
as follows: Let t = (go, .- Gn, ---) € 112 U(C,) be a coherent type. For any z €
OxTo = Q<12 U(C,), let 2V be the projection of z onto §2x oY 'u(c,) = Cy

and define "
V()(=) = inf gw(2"). (B6)

Next consider the decreasing sequence of types spaces {7}, where
T.={tcT : ¥(t)=00nQx (To\Tx-1)}, k=2
Finally, define 7 = N7;. To prove (B.5), observe first that
T=NTe={teT: ¥(t)=00nQx (LH\T)}

The latter set is homeomorphic to U(£2 x T); see Theorem B.2. &

C. APPENDIX: Construction of T' and

The construction of 7 dealt with arbitrary usc functions without any formal
reference to mechanisms. Thus the relevance of 7 to mechanisms may not be
evident. However, we will identify a subset 7' C 7 that satisfies the claims made
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in Theorem 4.1. In this appendix, we define T and . Remaining assertions in

the Theorem are proven in the next appendix.

There are some obvious restrictions on the pair (T,). Recall the interpre-
tation whereby t describes a direct mechanism, denoted ¥(t), that assigns an
action to reports by buyers of valuations and the type of the other firm’s mech-
anism. Formally, (t) € A% *T", the set of measurable maps from 02 x T? into
A. Direct mechanisms are of interest only if they possess all the properties (in-
centive compatibility, for example) possessed by indirect mechanisms. Therefore,
(T, 1) should deliver all such properties. To express these, note that by the na-
ture of the space AE” x [0,1]? of actions, we can describe any direct mechanism

m € ¥(T) ¢ A%*T" in the form
m(-) = (me(-), M, (), Mors ()

where m(-) describes the participation contingent simple action and m,,(-) de-
scribes the probability with which the firm recommends that buyer ¢ choose to

participate.
The recommended choice probabilities must satisfy three constraints. First,

in order that they represent symmetric continuation equilibria, require that
My (+) = My (-) = 0 (-) - (C.1)
Buyer 1 does not learn the valuation of buyer 2 before he makes his choice.
Therefore, require that
My (w,, T, ") = mg (w,@,t',i") Vw, ' @ttt (C.2)

and we can write simply m.(w,t').
Finally, since we assume that with probability 1 each buyer selects a seller, m

should satisfy: If m = 1(t), then for each m’ = ¢(t') in »(T),
My (W, 1) =1—m (w,t). (C.3)

We refer to the preceding restrictions, (C.1) through (C.3) as strong measurability

constraints.?
Secondly, any direct mechanism should satisfy the following incentive compat-

ibility constraints:

24The adjective ‘strong’ is used to avoid confusion with the measurability of eack m as a
function, which is built into the definition of A% *7".
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(i) For each w,w’ and w” in  and for each triple ¢,¢,¢" € T,

/u(m (w, o, ", ") ,w)dF (W) > / u(m (W, "), w) dF(W'). (C.4)

If m = 4(t), then for each w,w’ € 2 and m' = P(t'),

m,r(w,t’)/u(m(w,w’,t’,t’),w)dF(w')
+[1—m,,(w,t’)]/u(m'(w,w’,t,t),w)dF(w')2

max [/ u(m(w,’,t',t'),w) dF(w’),/ u(m' (w,w,t,t) ,w)dF(w')} (C.5)

Constraint (C.4) says that buyers will not have an incentive to lie to either seller
about their own type, or the mechanism that has been offered by the other seller,
provided that they expect the other buyer not to lie. This constraint is stan-
dard. Constraint (C.5) imposes that buyers have no incentive to deviate from the
recommended choice probability announced by the seller.

Two self explanatory ‘technical’ conditions follow.

USC m € AY*T? is USC if U(-;m) is usc on Q x T', where

U(w, t';m) = / w(mlw, o ¢, t),w) dF(W).

Compact Support m € AP XT? has compact support if there exists compact
Y C T such that U(-,#';m)=0for t' € T\Y.

Assuming for the moment that (T', 1)) has been constructed, denote by M(Q2 x
T?) the set of all direct mechanisms m € APXT? gatisfying strong measurability,
incentive compatibility, USC and having compact support. To this point we have
argued that it is natural to require that

Y(T) € M(Q* x T?). (C.6)

We turn to an iterative construction of a suitable pair (T, %).*

25 As in Appendix B, if B C S is compact, then U(S | B) = {g € U(S) : g = 0 on S\B}. For
arbitrary (possibly nonmeasurable) A, define U(S | A) = U{U(S | B) : B C A compact}. If g
is in U(S | A), say that g knows A.
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Let
YO =0 ({U(sm) € UQXT) s me€ ATXTY).

Let M%(Q? x T?) consist of those mechanisms m in AY*T? guch that m satis-
fies the strong measurability constraints (C.1)-(C.2), incentive compatible (in the
sense of (C.4)), USC, has compact support and satisfies the variations of (C.3)
and (C.5) for which the qualifiers ‘m = () and m' = ¥(t') are replaced by
um! € APXT? ¢ € VO W(t) = U(-;m) and U(¢) = U(:;m')".

Then for each k£ > 0, let
YA = 0 U@ x T | Q2 x YF) N cep (M@ x T))] .

Finally, define
T =NX Y™ (C.7)
Informally, the above recursive construction ‘suggests’ the limiting property

that
T=0"'UQxT|QxT) N cep (MO x 7%)]. (C.8)
(This can be verified as follows: That T contains the set on the right is immediate.
For the converse, let ¢ € N2,Y*. Then ¥(t) knows each Y*. It follows that W (%)
knows their intersection, which is 7. In addition, ¥(t) = U(-;m°) for some
m® € M°(Q2 x 7?).) Because T C T and the latter is compact metric, conclude

that T is separable metric [5, pp. 176, 233].
Having thus defined 7', turn to the definition of ¢. From (C.8), it follows that

for any t € T, there exists m € M°(Q? x T2) such that ¥{t) = U(;m) and ¥(t)
knows Y C T for some compact subset Y. Define t(t) as the restriction of m to
Q2 x T?. Then (C.6) follows. Because ¥ is one-to-one, so is ¢.

The following additional property is worth noting:

(U(5m): me (@)} ={U(sm): m e M(Q* x ™)},

indicating that if we identify mechanisms that deliver the same expected payoft
functions, then (T ‘equals’ M(Q2? x T*).

D. APPENDIX: Proof of Embedding

Let (I', & 7) be a continuation equilibrium as in Theorem 4.1. Here we construct
the embedding e and the continuation equilibrium (¢(7T'), ¢*,7*). Notation intro-
duced in the preceding appendices, including the message spaces Cy, defined in

(6.4), is used freely.
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Denote by 6 the map taking each v € I' into m,, € AP (see (3.2)). Endow
6(I") with the weak topology induced by the map into i/ (Q x I') that takes -y into
U(-;0(v)). Thus two mechanisms m, and my are ‘close’ if their payoff functions
U(-;my) and U(-;ms) are ‘close’ as elements of Z/(§2 x I'). This topology is not
Hausdorff - two mechanisms that imply the same payoff functions cannot be sep-
arated. This reflects the view that there is no reason to distinguish between such
mechanisms. Observe that this topology makes 6 a continuous map, because of
the assumption that (T, ¢, ) is payoff usc.

The following commutative diagram may provide a useful guide. Use cep
(conditional expected payoff) to denote the map taking m € »(T) into U(;m).
The maps 6, ¥ and ¥ have already been defined, while ® and e will be defined

here.
r —e T CT —y U XT)
lo e Ly /cep
0(1‘\) CAQ2><I‘2 w(T) - AP xT?

Lemma D.1. ForeachV e U(QXT), ¥HV) = (0,(V))y € I5U(C,), where
(V) (w) = sup{V(w,t') : t' € T},
On(V)(W, by - Glar) = supy {V(w, ') : Ox(V(t)) = gi, k < n}.

Proof. In light of (B.3), this is a special case of [6, Theorem D.1]. An interpre-
tation is that ©, (V) is a projection of V onto II§U(C;). &

Lemma D.2. (a) {U(;m) : m € (I} € U(Q x T) is compact; (b) 6(T') is
compact; (c) {sup., U(-,7;m): m & 6(I')} is compact in U).

Proof. By payoff usc, v — U(:;0(7)) € U(Q x T') is continuous. Thus (a)

follows from the compactness of I'. Part (c) follows from Theorem B.2. Part (b)

is a consequence of the weak topology used for the space of mechanisms. &
Define @ : 6(T') — OFU(C,,), where & = (2,,)§°, by

®o(m)(w) = sup {U(w,~;m) : v € '},
B, (m)(w, gy -y gho_y) = sup {U(w,';m) : I, 8(y) = m', &(m) = gi., k < n}.

Lemma D.3. ®: (I') — 7 and ® is continuous.
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Proof. Recall that T C 7 ¢ IFU(C,). Prove by induction that
&, : (') — U(Cy) continuously.

Theorem B.2 is used repeatedly.
n = 0: The only complication is in the proof that ®, is continuous: Let {m®}aer

be a net in 6(T') converging to m. Given the weak topology on 6(T'), this yields
U(;m®) — U(;m) in U x T).
This implies (by Theorem B.2(b)) that
Sup U(-,y;m*) — Sup U(-,y';m) in U(Q),

proving continuity of ®o.
n > 0: Assuming that ® is continuous for each k < n, Theorem B.2(a) and (b)

deliver the desired conclusion for ®,.
Claim: t = (®,(m))® € 7 for any m = 6(v): Recall the outline of the proof of

Theorem B.3. It suffices to show that
U(t) =0o0n Q2 X% (To\T), (D.1)

because then U (¢) € U(Q x T) and thus t € 7.

From (B.6), ¥(t)(z) = infy @y (m)(zN), where z € X I U(C,) and 2V =
7V (z) equals the projection of z onto Q x INJU(C,,). Tt follows, therefore, from
the recursive definition of the functions ®,, that

W(t)(2) = 0 if 2 ¢ N3 (2 x 7 (Tw) X 1%, ,U(Ch)) -

But
N30 (2 x 7 (Tw) % %, U(CA)) € X M Ty = < T, (D.2)
proving (D.1). (The routine proof of (D.2) exploits the fact that 7Ty is compact

and declines with N. The weak set inclusion is actually an equality.)
The following lemma is a special case (by (B.3)) of [19, p. 55]:

Lemma D.4. Let ¢ : (X,B(X)) — (U(S), BU(S))), where X is an arbitrary
topological space and S is locally compact and separable (e.g., compact metric).
Then ¢ is measurable if and only if the map from X into [0,1] defined by

z — sup o(z)(s),

s€A

is measurable for each A € B(S).
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Lemma D.5. Define e as the composition ®of. Then e is continuous, one-to-one
and e(I') C T.

Proof. ® is continuous on e(T') by a previous lemma and ¢ is continuous.

Let {2,} be the o-algebras on I' appearing in the definition of non-redundancy.
Recall again that 7 C IIPU(C,), where Cy = Q and C, = Cpq X U(Ch—1).
Denote by B, the Borel o-algebra on U(C,). By Lemma D.4, ¥, is the weakest
o-algebra such that ®,_; 00 : I' — (U(Cn_1), Ba—1)is measurable. Therefore,
non-redundancy implies that e = ® 0 6 : I' — IIg°U(C},) is one-to-one.

Define £ : APXT* — AP*XT* by

v o mw, o e (), e (" ift/,¢" € e(I
(§m)(w,w,t,t):{g( ) “ otherwise.( )
Claim: ¥ (®08(vy)) = U(;606(y)), v €I By Lemma D.1, it suffices to
show that ® o 8(y) = © (U(-;£6(v)). But this is readily verified by applying the
equality U(-,7;67) = U(-,ev;¢67), v € I.

Show that e(I') C T Recall the definition (C.7), whereby T" = NY*. Lety el
Then, by the claim, ¥(ey) = ¥ (®o08(y)) = U(;;€ 0 6(7)), implying that

e(l") C Yo

Show next that e(y) € Y!: First, £8(y) € M%(§2 x T), because incentive com-
patibility and the other constraints that define the latter set of mechanisms are
inherited from the corresponding properties of 87, a direct mechanism over {2 x T,
(The fact that e(I") C Y? is also relevant here.) Second, ¥(ey) € U(Q2xT | OxY70)
if U(ey)(-) =0 on Q x (T\Y) for some compact ¥ C Y°. Let ¥ = e(I'). Then
Y is compact and, by above, Y C Y°. Moreover, t' € T\Y = £(07)(-,t) =
a = ¥(ev)(-,t') = 0. Conclude that e(y) € Y'. The proof may be completed
by induction. B

Turn to the continuation equilibrium described in Theorem 4.1. View %(T)
as a feasible set of indirect mechanisms using message space C = Q x T'. We
constructed T and ¢ to satisfy (C.6). Thus every mechanism in 9 (T') is payoff
usc, strongly measurable and incentive compatible. Adopt the notation in (3.1)

and express any indirect mechanism y = ¢ (t) in the form

YY) = (Yol Yy (s s ()
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By strong measurability, the recommended probabilities satisfy 7,,(-) = Va, (1) =
~.(-) and the latter can be viewed as a function of (w,t'). The candidate contin-

uation equilibrium strategies are defined by:
¢*(w, t,t') = (w,t') and 7" (w, ') =7, (w,t),
where v = ¥(1).
We show that this defines a suitable continuation equilibrium. For any devia-

tion ¢" = (w",t"),

[u (@6 @ 1) 7 (w1, 8), 10w ) w) dF () =
(because u (-, 1, ;) is independent of 1)

/u(f}/C (c",c* (W, t,t) (W ), T 8 ), w) dF (W) =
(by definition of 7* )

[ (e (€, €7@ ) 7y (1), 1y (), 0) AF () =
(because the message space is 2 x T )

/u('y (W7, ¢) w) dF (W) < /u(fy (w, 8,0, ), w) dF ().

The last inequality follows from the incentive compatibility of the mechanism 7.
To see that the choice strategy constitutes a continuation equilibrium relative

to (v,7'), where v = 1 (t) and 7' = ¢ (t'), observe that
7w, [ (e (€@, 8, €W 1 1)), 77,8, (W 1)} ) OF (@)
(L (.6, 00] [ (8,0, 0,8, 8) 77 (0,80, 7 (£, D)) ) F ()
=y (@,) [y (0,0, 8,8) ) dF (W) +
(1= 7m, @0)) [0 @, 1,),0) dF (&) 2
s | [ (100, ,8), )4 ), [y (0, 1,8) @) AF @)
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by incentive compatibility for 4. The optimality of the choice strategy can be
seen by expanding the expression involving the maximum of the two functions.
Finally, prove that ((T),c*, 7*) is non-redundant: Let {Z.} be the sequence
of o-algebras on (T as in the definition of non-redundancy. We have to show
that they separate any distinct ¥(t1) and ¥(t2). But 9(t1) # Y(tz) = t =
(g}) # (g2) = to = (by Lemma D.1) 3N such that ON(U(;9(t))() #
On(U(59(t2))(-). If N = 0, then 9(t;) and t(t2) are separated by ¥ C ¥
defined as the weakest o-algebra such that ¥(f) — ©o(U(-;9(t))(:) is mea-
surable. (In other words, modify the measurability constraint in the definition of
non-redundancy to consider singleton sets £ C (2 rather than all Borel measurable

subsets.) Proceed by induction on NV.
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