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Abstract

For non-atomic TU games ν satisfying suitable conditions, the core can
be determined by computing appropriate derivatives of ν. Further, such
computations yield one of two stark conclusions: either core(ν) is empty
or it consists of a single measure that can be expressed explicitly in terms
of derivatives of ν. In this sense, core theory for a class of games may be
reduced to calculus.

1. INTRODUCTION

1.1. Outline

We show that for large (non-atomic) TU games satisfying suitable conditions, the
core can be determined by computing appropriate derivatives of the characteristic
function ν. Further, such computations yield one of two stark conclusions: either
the core of ν is empty or it consists of a single measure. In the latter case, the
core measure is expressed explicitly in terms of derivatives of ν. In this sense,
core theory for a class of non-atomic games may be reduced to calculus.
There is simple intuition for a connection between core(ν), assumed for the

moment to be nonempty, and the ‘derivative’ of ν. Denote by Σ the σ-algebra of
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feasible coalitions; thus ν : Σ −→ R1. Let m be a measure in the core, so that

m(E) ≥ ν(E) for all coalitions E,

and suppose that there exists a coalition A such that

m(A) = ν(A). (1.1)

Then
min
E∈Σ

(m(E) − ν(E) ) = 0 = m(A) − ν(A). (1.2)

In particular, A is a minimizer for m(·) − ν(·) over Σ. Analogy with calculus
suggests that, if A is suitably ‘interior’, then the ‘derivative’ of the noted function
should vanish at A. We propose a definition of derivative (or more accurately,
differential) for characteristic functions ν. It satisfies the following natural prop-
erty that might be expected of any notion of differentiation: There is a parallel
between standard calculus (for real-valued functions defined on a Euclidean space)
and the calculus proposed here (for real-valued functions defined on a σ-algebra
of coalitions), in which additive set functions (measures) play the role of linear
functions on a Euclidean space. Given such an analogy, then, because m is addi-
tive, it equals its differential. Consequently, if we denote the differential of ν at A
by δν(·;A), then the first-order condition corresponding to (1.2) takes the form

m(·) = δν(·;A). (1.3)

Finally, suppose that A satisfies (1.1) not only for a particular m in the core, but
for all measures in the core. Conclude that the core of ν is {δν(·;A)} and we have
a singleton core with an explicit representation in terms of ν.
There are two obvious questions regarding this informal argument. First, how

restrictive is the assumption that there exists an ‘interior’ A that satisfies (1.1)
for all m in the core? It turns out that this assumption is satisfied by many games
of interest, for example in homogeneous measure games, including, in particular,
market games.
The second and more difficult question is whether the first-order condition

(1.3) can be justified. After all, the fact that the usual first-order condition takes
the form of an equality relies heavily on the linear structure of Euclidean space.
For example, using the obvious notation, if ∇f(x∗) · y > 0, then one can move
from x∗ in the reverse direction −y and reduce thereby the value of f . By this
reasoning, the stated inequality is ruled out if f has a minimum at x∗. However,
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in the present context where the domain is a σ-algebra, there is no counterpart of
a ‘reverse direction’ and first-order conditions take the form of inequalities. Much
of the work we do below is to identify added assumptions on games that lead
to (1.3). Primarily, we define a class of so-called coherent games, for which the
informal outline above can be made rigorous.
As a result, the core of any differentiable coherent game can be determined

simply by computing the derivative of its characteristic function. Moreover, the
latter task is arguably as routine as differentiating functions defined on a Euclidean
space. That is because our derivative notion satisfies counterparts of the rules
familar from calculus (the product and chain rules, for example). This is the
sense in which core theory for differentiable coherent games is reduced to ‘just
calculus’.
The introduction of a new calculus into co-operative game theory is our main

contribution; we hope that it will prove to be a fruitful tool in the study of
non-atomic TU games. We demonstrate its usefulness here by means of the core
theorem for abstract (coherent) games that was outlined above and also by means
of applications of this general theorem to the more concrete class of measure
games. In addition, we provide a new derivation of known results on market games
and exchange economies (uniqueness of the core allocation in suitable exchange
economies). This new derivation seems to us to be of value because of the radically
different and simplifying perspective that it offers relative to the derivations in [2]
and also [3].

1.2. Related Literature

We are not the first to adopt calculus techniques in order to study non-atomic TU
games. Aumann and Shapley [2] develop a notion of derivative for non-additive
set functions and apply it to study both the Shapley value and the core of non-
atomic games. The primary intuition underlying their use of differentiability is
that the Shapley value of each infinitesimal player is her marginal contribution
to the worth of a representative coalition averaged over all such coalitions (see
[2, (20.1)]). Because ‘marginal contribution’ is most naturally expressed in terms
of derivatives, a calculus approach is intuitive. Note that this intuition differs
substantially from that underlying our analysis; in particular, it focuses on the
Shapley value rather than the core.
One consequence of this difference in motivation is that Aumann and Shapley

take a class of games as the primary object of study, while we focus on individual
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games. The first approach is natural for study of the Shapley value which is
defined by its properties over a class; but not so for study of the core, where it is
desirable to have an approach that is applicable to any given single game. Our
notion of derivative is such a game-by-game tool.
There are other (related) differences. Roughly, the Aumann-Shapley definition

begins with the subspace pNA of games (the closed subspace of BV spanned by
all powers of positive nonatomic measures measures). The authors show (Theo-
rem G) that each game or non-additive set function ν in pNA admits a suitable
extension to an ‘integral’ ν∗. Because an integral can be viewed as a functional
on the linear space of integrands (real-valued random variables), a Gateaux-like
derivative notion can be defined in the usual way and this is adequate for charac-
terization of the Shapley value (Theorem H). However, in order to check whether
a given game ν is differentiable and then to compute its derivative, one must de-
termine whether ν lies in pNA and if so, determine the corresponding integral ν∗.
Neither of these steps is routine in general. The above analysis admits generaliza-
tions - for example, domains larger than pNA can be accommodated (Section 22
and [7], for example) and the Gâteaux derivative can be related to a Fréchet-type
notion (Section 24) - but the above noted difficulties persist.
Even more important than tractability is that at the level of abstract games,

the Aumann-Shapley approach leads to the formulation of assumptions about
games through restrictions on their extensions. However, it is often difficult to
understand the meaning of such restrictions in terms of the assumptions they
embody about the underlying game.1 In contrast, we define derivative explicitly
in terms of the given ν. Then we formulate coherence and other assumptions about
games in terms of these derivatives. This approach permits interpretation much
as restrictions on derivatives in ordinary calculus are often readily interpreted.
Other related literature includes work by Rosenmuller [11], who defines differ-

entiability for large games. Our derivative notion is inspired by his, particularly
by his use of partitions, but the two notions differ. Though Rosenmuller is also
concerned with the core of TU games (albeit only convex games), neither our
results nor the underlying intuition are apparent in [11].
The notion of derivative that we use here originates in [4] in a decision theory

context, where instead of being a game, the set function ν is a ‘non-additive
probability’ as in [13]. A related notion is developed and applied to decision
theory in [6].

1Examples of such assumptions include homogeneity (ν∗(α1E) = αν∗(1E)) [2, p. 167] and
concavity of ν∗(·) [3].
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2. PRELIMINARIES

The set of players is Ω and the σ-algebra Σ denotes the set of admissible coalitions.
Subsets of Ω are understood to be in Σ even where not stated explicitly and they
are referred to both as sets and as coalitions.
A set function ν : Σ→ R is a game if ν (∅) = 0. A game ν is

positive if ν (A) ≥ 0 for all A,
monotone if ν (A) ≥ ν (B) whenever B ⊂ A,
superadditive if ν (A ∪B) ≥ ν (A) + ν (B) for all pairwise disjoint sets A and B,

continuous at A if limn→∞ ν (An) = ν (A) whenever An ↑ A,
continuous if it is continuous at every A,

additive (or a charge) if ν (A ∪B) = ν (A) + ν (B) for all pairwise disjoint sets
A and B,

countably additive if ν (
S∞
i=1Ai) =

P∞
i=1 ν (Ai) for all countable collections of

pairwise disjoint sets {Ai}∞i=1.

The set of all additive (countably additive) games that are bounded with
respect to the variation norm is denoted FA (CA). An additive gamem is convex-
ranged if for all α ∈ (0, 1) and all A ∈ Σ with |m| (A) > 0, there exists B ⊂ A
such that |m| (B) = α |m| (A). Denote by NA the set of all additive convex-
ranged games. If m = (m1, ...,mN ), where each mi is an additive convex-ranged
game, then by a version of the Lyapunov Theorem [9, Theorem 11.4.9], the range
R (m) = {m (A) : A ∈ Σ} is a convex subset of RN . Throughout the paper when
we refer to ‘the Lyapunov Theorem’, the intention is to this version.
The core of ν ∈ V is
core(ν) = {m ∈ FA : m (Ω) = ν (Ω) and m(A) ≥ ν(A) for all A ∈ Σ}.

We fix also some terminology and notation for functions defined on a Euclidean
space. Let U be an open subset of RN . A function g : U → R is differentiable at
x ∈ U if there is a linear map Dg (x) : RN → R such that

lim
h→0

|g (x+ h)− g (x)−Dg (x) (h)|
|h| = 0,
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where |·| : RN → R is any norm on RN . Call Dg (x) the derivative of g at x. If
Dg (x) exists for all x ∈ U , say that g is differentiable on U . Since Dg (x) (·) is
linear, Dg (x) (h) = ∇g (x) · h for all x ∈ U , where ∇g (x) ∈ RN is the gradient
of g at x. If A is an arbitrary subset of RN , not necessarily open, say that the
function g : A→ R is differentiable on A if it can be extended to a differentiable
function on some open set U containing A.

3. DIFFERENTIABLE GAMES

For any A ∈ Σ, let
©
Aj,λ

ªnλ
j=1

be a finite partition of A. Denote by
©
Aj,λ

ª
λ
the net

of all finite partitions of A, where λ0 > λ implies that the partition corresponding
to λ0 refines that corresponding to λ.

Definition 3.1. A game ν : Σ → R is differentiable at E ∈ Σ if there exists a
bounded and convex-ranged measure δν (·;E) on Σ such that

nλX
j=1

¯̄
ν
¡
E ∪ F j,λ −Gj,λ¢− ν (E)− δν

¡
F j,λ;E

¢
+ δν

¡
Gj,λ;E

¢¯̄ −→
λ
0, (3.1)

for all F ⊂ Ec and G ⊂ E.2

For all the results to follow, we could adopt a weaker ‘one-sided’ definition of
derivative. Define an outer derivative at E, denoted δ+ν (·;E), by

nλX
j=1

¯̄
ν
¡
E ∪ F j,λ¢− ν (E)− δ+ν

¡
F j,λ;E

¢¯̄ −→
λ
0 (3.2)

and an inner derivative at E, denoted δ−ν (·;E), by
nλX
j=1

¯̄
ν
¡
E −Gj,λ¢− ν (E) + δ−ν

¡
Gj,λ;E

¢¯̄ −→
λ
0, (3.3)

2A−B denotes A ∩Bc = {ω ∈ Ω : ω ∈ A, ω /∈ B}.
Because a difference quotient is not apparent in the defining condition, it may be comforting

to make the following observation: For a function ϕ : R1 −→ R1 that is differentiable at some
x in the usual sense, elementary algebraic manipulation of the definition of the derivative ϕ0(x)
yields the following expression paralleling (3.1):
ΣNi=1 | ϕ(x+N−1) − ϕ(x) − N−1ϕ0(x) |−→ 0 as N −→∞.
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where the convergence is required to hold for each F andG as above. Given the ex-
istence of δ+ν (·;E) and δ−ν (·;E), one could define δν (·;E) as the sum δ+ν (·;E)+
δ−ν (·;E), in which case (3.1) is satisfied when E is perturbed by either F or G,
but not necessarily when perturbed by both simultaneously.3

Turn to interpretation. Roughly, δν (·;E) approximates the marginal value of
coalitions relative to the base coalition E, in such a way that the approximation
is additive (across disjoint incremental coalitions) and becomes exact in the limit
for ‘small’ coalitions.4 To elaborate, for F disjoint from E, approximate the
incremental value of F as follows: Partition F into arbitrarily small subcoalitions
F j,λ and compute the marginal value ν(E ∪ F j,λ) − ν(E) of each F j,λ relative
to the base E. Then the sum of these marginal values equals δν (F ;E), which
therefore represents the total marginal value of F relative to the base coalition E.
A similar interpretation applies when G ⊂ E, in which case δν (G;E) is the sum
of the marginal values ν(E) − ν(E −Gj,λ) for an arbitrarily fine partition {Gj,λ}
of G. Finally, any coalition A can be written uniquely in the form A = E∪F−G,
where F ⊂ Ec and G ⊂ E, so that

δν (A;E) = δν (F ;E) + δν (G;E) ,

which provides the sense in which δν (A;E) represents the total marginal value
of A relative to the base coalition E.5

A crucial feature of our notion of differentiability for games is that it satisfies
many of the properties familiar from calculus, including a form of the Chain Rule
as well as ‘sum’ and ‘product’ rules (see Appendix A).6 Bounded and convex-
ranged measures play the role of linear functions in calculus; in particular, if m is
such a measure, then it is differentiable at any E and δm (·;E) = m (·). Modulo
this translation, formulae familiar from calculus are valid also for games. For
example, if ν(·) equals the product p(·) q(·) of two convex-ranged measures, then

δν (·;E) = p(E) q(·) + q(E) p(·),
for all E. More general formulae arise in the context of measure games.7

3In the context of measure games g(P ), this would permit weakening our assumptions on g
to require only that it have one-sided derivatives.

4 ‘Smallness’ is measured via fineness of partitions, which relies on the richness of Σ; indeed,
if Σ is finite, then only additive games are differentiable.

5The counterparts for finite games are Σi∈F (ν(E ∪ {i))− ν(E)) and
Σi∈G (ν(E)− ν(E − {i})) for δν (F ;E) and δν (G;E) respectively.

6The appendix also contains some information about the connection with the Aumann-
Shapley style derivative.

7See Appendix A.3 for an example of a differentiable game that is not a measure game.
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3.1. Measure Games

The game ν : Σ → R is a measure game if there exist a vector charge (that is, a
finitely additive vector measure) P = (P1, ..., PN ) : Σ→ RN+ , with P (Ω) 6= 0 and
with each Pi : Σ→ R+ bounded and convex-ranged, and a function g : R (P )→ R
such that

ν (·) = g (P (·)) on Σ.

When N = 1, ν = g (P (·)) is called a scalar measure game.

Lemma 3.2. Let ν = g (P ) : Σ→ R be a measure game. If g is differentiable at
P (E) ∈ RN+ , then ν is differentiable at E and

δν (·;E) = ∇g (P (E)) · P (·) =
NX
i=1

gi (P (E))Pi (·) .

Though the proof is routine, we provide it here because it may help clarify for
the reader the definition of differentiability and convince her of our claim that the
calculus of games is analogous to the calculus of functions on Euclidean space.

Proof. For x ∈ RN , let |x| = max1≤i≤N |xi|. Given ε > 0, there exists δ > 0 such
that |g (P (E) + h)− g (P (E))−∇g (P (E)) · h|

|h| ≤ ε (3.4)

for all |h| ≤ δ.
Let F ⊂ Ec and G ⊂ E. Since each Pi is convex-ranged on the σ-algebra Σ,

by the Lyapunov Theorem there exist finite partitions
©
F j,λ0

ª
and

©
Gj,λ0

ª
of F

and G such that
¯̄
P
¡
F j,λ0

¢¯̄
+
¯̄
P
¡
Gj,λ0

¢¯̄ ≤ δ. Hence, for all λ > λ0,¯̄
P
¡
F j,λ

¢− P ¡Gj,λ¢¯̄ ≤ ¯̄
P
¡
F j,λ

¢¯̄
+
¯̄
P
¡
Gj,λ

¢¯̄
≤ ¯̄

P
¡
F j,λ0

¢¯̄
+
¯̄
P
¡
Gj,λ0

¢¯̄ ≤ δ.

For convenience, set αj,λ = P
¡
F j,λ

¢− P ¡Gj,λ¢. Then, by (3.4),¯̄
g
¡
P (E) + αj,λ

¢− g (P (E))−∇g (P (E))αj,λ ¯̄
|αj,λ| ≤ ε

8



for all λ > λ0. On the other hand,

nλX
j=1

¯̄
αj,λ

¯̄
=

nλX
j=1

¯̄
P
¡
F j,λ

¢− P ¡Gj,λ¢¯̄ ≤ nλX
j=1

¯̄
P
¡
F j,λ

¢¯̄
+

nλX
j=1

¯̄
P
¡
Gj,λ

¢¯̄
≤

NX
i=1

nλX
j=1

Pi
¡
F j,λ

¢
+

NX
i=1

nλX
j=1

Pi
¡
Gj,λ

¢ ≤ 2 NX
i=1

Pi (Ω) ,

and so, for all λ > λ0,

nλX
j=1

¯̄
g
¡
P (E) + αj,λ

¢− g (P (E))−∇g (P (E))αj,λ¯̄
=

nλX
j=1

¯̄
g
¡
P (E) + αj,λ

¢− g (P (E))−∇g (P (E))αj,λ ¯̄
|αj,λ|

¯̄
αj,λ

¯̄
≤ 2ε

NX
i=1

Pi (Ω) , as desired.

4. LINEAR SETS AND CORE BOUNDS

Our focus in this paper is to relate core(ν) to the derivative of ν. We begin with
an important preliminary relation and some immediate implications. The lemma
describes inequalities that represent first-order conditions for (1.2).

Lemma 4.1. Let A ∈ Σ and m ∈ core(ν) be such that m(A) = ν(A). Then

δν (F ;A) ≤ m (F ) for all F ⊂ Ac and
δν (G;A) ≥ m (G) for all G ⊂ A.

Proof. For any F ⊂ Ac,

δν (F ;A) =

nλX
j=1

δν
¡
F j,λ;A

¢
=

nλX
j=1

£
δν
¡
F j,λ;A

¢− ν
¡
A ∪ F j,λ¢+ ν (A)

¤
+

nλX
j=1

£
ν
¡
A ∪ F j,λ¢− ν (A)

¤
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≤
nλX
j=1

¯̄
δν
¡
F j,λ;A

¢− ν
¡
A ∪ F j,λ¢+ ν (A)

¯̄
+

nλX
j=1

£
ν
¡
A ∪ F j,λ¢− ν (A)

¤
≤

nλX
j=1

¯̄
δν
¡
F j,λ;A

¢− ν
¡
A ∪ F j,λ¢+ ν (A)

¯̄
+

nλX
j=1

£
m
¡
A ∪ F j,λ¢−m (A)¤

=

nλX
j=1

¯̄
δν
¡
F j,λ;A

¢− ν
¡
A ∪ F j,λ¢+ ν (A)

¯̄
+m (F ) .

Thus limλ→0
Pnλ

j=1

¯̄
δν
¡
F j,λ;A

¢− ν
¡
A ∪ F j,λ¢+ ν (A)

¯̄
= 0 implies δν (F ;A) ≤

m (F ).
For G ⊂ A,

δν (G;A) =

nλX
j=1

δν
¡
Gj,λ;A

¢
=

nλX
j=1

£
δν
¡
Gj,λ;A

¢
+ ν

¡
A−Gj,λ¢− ν (A)

¤
+

nλX
j=1

£
ν (A)− ν

¡
A−Gj,λ¢¤

≥ −
nλX
j=1

¯̄
δν
¡
Gj,λ;A

¢
+ ν

¡
A−Gj,λ¢− ν (A)

¯̄
+

nλX
j=1

£
ν (A)− ν

¡
A−Gj,λ¢¤

≥ −
nλX
j=1

¯̄
δν
¡
Gj,λ;A

¢
+ ν

¡
A−Gj,λ¢− ν (A)

¯̄
+

nλX
j=1

£
m (A)−m ¡A−Gj,λ¢¤

= −
nλX
j=1

¯̄
δν
¡
Gj,λ;A

¢
+ ν

¡
A−Gj,λ¢− ν (A)

¯̄
+m (G) .

Thus limλ→0
Pnλ

j=1

¯̄
δν
¡
Gj,λ;A

¢
+ ν

¡
A−Gj,λ¢− ν (A)

¯̄
= 0 implies δν (G;A) ≥

m (G).

We make heavy use of this lemma. Also important is the notion of a linear
coalition (or set).

Definition 4.2. The coalition A ∈ Σ is linear with respect to the game ν if
ν (A) + ν (Ac) = ν (Ω).
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Given the binary partition of Ω into the linear coalitions A and Ac, there is no
gain (or loss) in forming the grand coalition.8 Denote by A the collection of all
linear coalitions; A contains both ∅ and Ω. The importance of linear coalitions for
our purposes is that they deliver (1.1) which is an important part of our approach
to determining the core. This fact and more are established in the next lemma.

Lemma 4.3. If {Ai}i∈I is a countable partition of Ω satisfying
P

i∈I ν (Ai) =
ν(Ω), then m(Ai) = ν (Ai) for all i ∈ I and m ∈ core (ν). If, in addition, ν is
superadditive and either (i) ν is continuous, or (ii) the partition is finite, then
Ai ∈ A for each i in I.

Proof. Evidently,

0 = ν(Ω) − ν(Ω) =
X
i∈I
m (Ai)−

X
i∈I

ν (Ai) =
X
i∈I
[m (Ai)− ν (Ai)] ,

so that m (Ai) = ν (Ai) for all i because m (Ai) ≥ ν (Ai) for all i. Next, suppose
that ν is superadditive and continuous (the finite partition case is trivial). For
convenience, consider A1. We have

ν (Ω) ≥ ν (A1) + ν (Ac1) = ν (A1) + lim
n→∞

ν

Ã
n[
i=2

Ai

!

≥ ν (A1) + lim
n→∞

nX
i=2

ν (Ai) = ν (Ω) ,

and so ν (A1) + ν (Ac1) = ν (Ω).

For linear sets, Lemma 4.1 takes the following stronger form that is a direct
consequence of the two preceding lemmas.

Lemma 4.4. Let A ∈ A. For any suitably differentiable ν and m ∈ core(ν),

δν (F ;A) ≤ m (F ) ≤ δν (F ;Ac) for all F ⊂ Ac and
δν (G;Ac) ≤ m (G) ≤ δν (G;A) for all G ⊂ A.

8A (nonbinary) partition of S with the corresponding property (see the next lemma) is called
an efficient coalition structure by Aumann and Dreze [1].
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For any linear set A, these inequalities define bounds on elements of core(ν), that
is, for any E,

δν (E ∩ Ac;A) + δν (E ∩ A;Ac) ≤ m (E) ≤ δν (E ∩Ac;Ac) + δν (E ∩A;A) .
In particular, because the empty set is linear, one obtains the bound

δν (·; ∅) ≤ m(·) ≤ δν (·;Ω) . (4.1)

An implication is that every measure in core(ν) is absolutely continuous with
respect to δν (·;Ω). Further implications constitute necessary conditions for non-
emptiness of the core; for example, nonemptiness requires that (for all linear A
and for all E)

δν (E ∩Ac;A) + δν (E ∩A;Ac) ≤ δν (E ∩Ac;Ac) + δν (E ∩ A;A) .

5. COHERENT GAMES

Definition 5.1. A game ν : Σ→ R is coherent at A ∈ Σ if

δν (A;A) > ν(A) =⇒ δν (A;Ac) ≥ ν(A) and (5.1)

δν (Ac;Ac) > ν(Ac) =⇒ δν (Ac;A) ≥ ν(Ac). (5.2)

Defer interpretation for a moment and observe that: (i) ν is coherent at A if and
only if it is coherent at Ac; and (ii) ν is coherent at Ω (and at ∅) if and only if

δν (Ω;Ω) ≤ ν(Ω) or δν (Ω; ∅) ≥ ν(Ω). (5.3)

As an example, consider the measure game g (P ), where g is differentiable at
0 and at P (Ω). Then g (P ) is coherent at Ω if

NX
i=1

gi (P (Ω)) Pi(Ω) ≤ g (P (Ω)) or
NX
i=1

gi (0) Pi(Ω) ≥ g (P (Ω)) .

In particular, this is true if g is nonnegative-valued and homogeneous of degree
k ∈ [0, 1] (by Euler’s Theorem) or if g is concave, in which case

δν (Ω;Ω) =

NX
i=1

gi (P (Ω))Pi (Ω) ≤ g (P (Ω)) = ν (Ω) .
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To understand the meaning of coherence, recall the intuition sketched in the
introduction surrounding the optimization problem (1.2) and the need to convert
the (first-order) inequalities in Lemma 4.1 into an equality such as (1.3). Roughly,
the obstacle is the apparent lack of a notion of ‘reversal in direction’. The sense
in which a reversal is possible is that the subtraction of any G ⊂ A from A is
tantamount to the addition of G to Ac. This trivial observation can be exploited if
δν(·;A) and δν(·;Ac) are suitably related - and that is the role of coherence. Thus,
for example, (5.1) requires that if δν(A;A) is large in the sense of being larger
than ν(A), then (ignoring the distinction between strict and weak inequalities)
so is δν(A;Ac). In terms of the interpretation offered earlier for derivatives, if
the value of A is less than the total marginal value of A relative to the base
coalition A, corresponding to the effect of removing the players in A, then the
same must be true when the total marginal value is computed relative to Ac as
the base coalition, corresponding to the effect of adding the players in A to Ac.
(The second condition (5.2) requires the same for Ac.) The consistent relative
evaluation of the total marginal contribution of A suggests the name consistency;
we employ ‘coherence’ because consistency has other meanings in co-operative
game theory.
At a formal level, one might wonder about the variations of (5.1) and (5.2)

obtained by reversing the directions of all inequalities; after all, these also express
a form of consistency in the evaluation of the total marginal contribution of A. In
fact, these conditions are implied (even without coherence) if ν has a nonempty
core, because then, by Lemma 4.4,

δν (A;Ac) ≤ ν(A) and δν (Ac;A) ≤ ν(Ac).

The intuition in the introduction relies also on a coalition A having the prop-
erty (1.1), which is true for linear sets, by Lemma 4.3. Call the game ν coherent if
it is coherent at some linear set A (which presumes differentiability at A and Ac).
For coherent games, we do not obtain (1.3); it is not surprising that the calculus
intuition is imperfect. However, we can prove that the core is either empty or
that it is a singleton having an explicit representation in terms of the derivatives
of ν.

Theorem 5.2. Let the game ν : Σ→ R be differentiable at some linear coalition
A and suppose that core(ν) 6= ∅. Then the following statements are equivalent:
(i) ν is coherent at A.
(ii) core (ν) equals the singleton {m}, where m has the form: There exist scalar
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coefficients a, b, c and d such that

a+ b = 1 = c+ d, ab = cd = 0 and (5.4)

m(E) = a δν (E ∩A;A) + b δν (E ∩A;Ac) + c δν (E ∩Ac;A) + d δν (E ∩ Ac;Ac)
(5.5)

for all E in Σ.
(iii) m ∈ core (ν) for some measure m having the form (5.5).

In particular, coherence at some linear coalition implies that the core is either
empty or equals a singleton. Conversely, coherence at A is also necessary for the
representation (5.5).
In the latter representation, two coefficients equal 1 and two equal 0, which

leads to 4 possibilities in total, corresponding to the fact that there are 4 distinct
ways in which coherence at A can be satisfied. These and their corresponding
representations are:9

1. ν (A) ≥ δν (A;A) and ν (Ac) ≤ δν (Ac;A) ⇐⇒

core(ν) = {δν (·;A)}. (5.6)

2. ν (A) ≥ δν (A;A) and ν (Ac) ≥ δν (Ac;Ac) ⇐⇒

core(ν) = {δν (· ∩A;A) + δν (· ∩Ac;Ac)} . (5.7)

3. ν (A) ≤ δν (A;Ac) and ν (Ac) ≤ δν (Ac;A) ⇐⇒

core(ν) = {δν (· ∩A;Ac) + δν (· ∩Ac;A)} . (5.8)

4. ν (A) ≤ δν (A;Ac) and ν (Ac) ≥ δν (Ac;Ac) ⇐⇒

core(ν) = {δν (·;Ac)}. (5.9)

Note that the first representation corresponds to (1.3), but that the surrounding
intuition described in the introduction is consistent also with the three other
representations.

9These elaborations on the theorem are established in proving the theorem. Naturally, the
stated hypotheses, including nonemptiness of the core, are assumed.
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Proof. (i) =⇒ (ii): We use repeatedly the following elementary
Fact: Given E ∈ Σ, if p and q are two measures satisfying

p(B) ≥ q(B) for all B ⊂ E and p(E) = q(E),

then p(B) = q(B) for all B ⊂ E.
Let m ∈ core (ν). Then ν (A) = m (A) and ν (Ac) = m (Ac) by Lemma 4.3.

Therefore, by Lemma 4.4, we have both

δν (F ;A) ≤ m (F ) ≤ δν (F ;Ac) for all F ⊂ Ac and (5.10)

δν (G;Ac) ≤ m (G) ≤ δν (G;A) for all G ⊂ A.

and, taking F = Ac and G = A,

δν (Ac;A) ≤ ν (Ac) ≤ δν (Ac;Ac) , (5.11)

δν (A;Ac) ≤ ν (A) ≤ δν (A;A) .

Now consider in turn each of the possibilities enumerated above.
For #1, deduce from (5.11) that

δν (A;A) = m(A) and δν (Ac;A) = m(Ac). (5.12)

From (5.10), δν (·;A) ≥ m (·) within A and δν (·;A) ≤ m (·) within Ac. Then
(5.12) and the Fact imply that δν (·;A) = m (·) within A and δν (·;A) = m (·)
within Ac, that is, m (·) = δν (·;A) within Ω (that is, on Σ).
For #2, deduce from (5.11) that

δν (A;A) = m(A) and δν (Ac;Ac) = m(Ac). (5.13)

Argue as above, using (5.10) and the Fact, that δν (·;A) = m (·) within A and
δν (·;Ac) = m (·) within Ac. Possibilities #3 and #4 are similar.
(iii) =⇒ (i): Once again, argue case by case. If δν (·;A) ∈ core(ν), then Lemma
4.3 implies δν (A;A) = ν(A) and δν (Ac;A) = ν(Ac), which in turn implies
coherence at A. Similarly for the other cases.
The implication (ii) =⇒ (iii) is obvious.

Several applications of the theorem are provided below in the context of more
concrete (e.g., measure or market) games. Conclude this section with an applica-
tion at the level of abstract games.
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Corollary 5.3. Let the game ν : Σ → R be differentiable at A and Ac, where
A ∈ A and 0 < ν (A) < ν(Ω). Assume that core (ν) 6= ∅ and that ν is either
(i) monotone or (ii) superadditive and differentiable at ∅. Suppose finally that ν
satisfies

δν (·;Ac) = κ δν (·;A) for some κ 6= 0. (5.14)

Then
core (ν) = {δν(·;A)} = {δν(·;Ac)} . (5.15)

The condition (5.14) is a simple formal condition that relates the derivatives at
A and Ac, thus connecting with our central intuition. As a simple illustration,
consider the scalar measure game ν (·) = g (P (·)), where g is monotone and both
g0 (P (A)) and g0 (P (Ω)− P (A)) exist and are nonzero. Then condition (5.14) is
satisfied because

δν (·;A) = g0 (P (A))P (·) = g0 (P (A))
g0 (P (Ac))

g0 (P (Ac))P (·) = g0 (P (A))
g0 (P (Ac))

δν (·;Ac) .

Suppose that A is a linear set for ν. It follows from the Corollary that if 0 <
g (P (A)) < P (Ω), then core(ν) is empty unless g(x) ≤ x for all x in [0, P (Ω)], in
which case the core is just {P}.

Proof of Corollary 5.3: (i) From 0 < ν (A) < ν(Ω) and Lemmas 4.3 and 4.4,
deduce that each of δν (A;A) , δν (Ac;A) , δν (A;Ac) and δν (Ac;Ac) is positive.
Next prove that κ = 1: By Lemma 4.4,

δν (Ac;A) ≤ m (Ac) = ν (Ac) ≤ δν (Ac;Ac) = κδν (Ac;A) , (5.16)

κδν (A;A) = δν (A;Ac) ≤ m (A) = ν (A) ≤ δν (A;A) . (5.17)

Hence, (5.16) implies κ ≥ 1 and (5.17) implies κ ≤ 1, so that κ = 1 and

δν (·;Ac) = δν (·;A) . (5.18)

Finally, (5.16) and (5.17) imply that δν (Ac;A) = ν (Ac) and ν (A) = δν (A;A).
Hence ν is coherent at A and representation (5.6) applies.

(ii) By Lemma A.5,

ν 0 (E) ≡ |δν| (E;∅) + ν (E) ≥ − δν(E;∅) + ν (E) ≥ 0
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for all E ∈ Σ. Thus the game ν 0 is nonnegative. Furthermore,

ν 0 (A) + ν 0 (Ac) = ν (A) + ν (Ac) + |δν| (A;∅) + |δν| (Ac;∅)
= ν (Ω) + |δν| (Ω;∅) = ν 0 (Ω) ,

ν 0 (A) = ν (A) + |δν| (A;∅) < ν (Ω) + |δν| (Ω;∅),
ν 0 (Ac) = ν (Ac) + |δν| (Ac;∅) < ν (Ω) + |δν| (Ω;∅).

Hence, A is linear for ν 0 and 0 < ν 0 (A) < ν 0(Ω).
Let m (·) ∈ core(ν). Then m (·) + |δν| (·;∅) ∈ core(ν 0), and so, by the preced-

ing argument for monotone games,

m (·) + |δν| (·;∅) = δν 0 (·;A) = δν (·;A) + |δν| (·;∅) ,

which evidently leads to (5.15).

6. APPLICATIONS

Thus far we have been dealing with abstract games. We turn now to applications
to more concrete specializations.

6.1. Market Games and Exchange Economies

Definition 6.1. A market game is a positive superadditive measure game g (P ) :
Σ→ R, where g : R (P )→ R is homogeneous of degree one.10

Market games play a fundamental role in co-operative game theory (see [2,
Ch. 6], for example). As an immediate consequence of Theorem 5.2, we can prove
the following result for such games:

Corollary 6.2. Let ν = g (P ) : Σ → R be a market game such that g is differ-
entiable at P (Ω). Then

core (ν) =

(
NX
i=1

gi (P (Ω))Pi (·)
)
. (6.1)

10Notice that we do not require countable additivity of P .
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Proof. By Euler’s Theorem, δν (Ω;Ω) =
PN

i=1 gi (P (Ω))Pi (Ω) = g (P (Ω)) =
ν (Ω). Hence, ν is coherent at Ω. By Theorem 5.2, see (5.6) in particular,
core (ν) = {δν (·;Ω)} if δν (·;Ω) ∈ core (ν). Therefore, to complete the proof
it suffices to show that δν (·;Ω) ∈ core (ν).
We know that δν (Ω;Ω) = ν (Ω). Let E ∈ Σ with P (E) 6= 0. By the Lyapunov

Theorem, for each t ∈ (0, 1) there exists Bt such that P (Bt) = tP (E). Hence,
by superadditivity,

g (P (Ω)− P (Bt)) = g (P (Bct )) ≤ g (P (Ω))−g (P (Bt)) = g (P (Ω))−g (tP (E)) ,

and by homogeneity,

ν(E) = g (P (E)) = lim
t↓0
g (P (Ω)) + g (tP (E))− g (P (Ω))

t

≤ lim
t↓0
g (P (Ω))− g (P (Ω)− tP (E))

t
= ∇g (P (Ω))P (E) = δν (E;Ω) .

Finally, P (E) = 0 implies ν (E) = 0 = ∇g (P (Ω))P (E) = δν (E;Ω). Conclude
that δν (·;Ω) ∈ core (ν).

An important special case of a market game is provided by an exchange econ-
omy. An exchange economy of finite type consists of:11

1. a measure space (Ω,Σ, µ) of agents, where µ is a non-atomic probability
measure;

2. a partition {Ωi}Ki=1 ⊂ Σ of Ω;

3. a space RN+ of goods;

4. a nondecreasing and concave utility function u (·,ω) : RN+ → R+ for each
ω ∈ Ω such that u (·,ω) = u (·,ω0) for all ω,ω0 belonging to the same
element of the partition;

5. an endowment e : Ω −→ RN+ such that
R
Ω
e dµ ∈ R++.

11See [2, Ch. 6] for further details and terminology.
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Consider the game defined by

ν (E) = max

½Z
E

u (x (ω) ,ω) dµ : x (ω) ∈ RN+ and
Z
E

x (ω) dµ ≤
Z
E

e (ω) dµ

¾
,

(6.2)
where the maximum is taken over all µ-integrable allocations x. By [2, Theorem J],
the game is well defined. In particular, concavity of the utility functions justifies
the restriction to type-symmetric allocations x, that is, x such that x (ω) = x (ω0)
if ω and ω0 belong to the same element of the partition [2, p. 235].
Because of type-symmetry of the relevant allocations, the above game is a

market game. Indeed, ν (E) = g (P (E)) for all E ∈ Σ, where:

ηi (E) = µ (E ∩ Ωi) for 1 ≤ i ≤ K ,
ζj (E) =

Z
E

ej (ω) dµ for 1 ≤ j ≤ N,
P (E) = (ζ (E) , η (E)) , fi(·) = u(·,ω) for ω in Ωi,

g (z, y) = max

(
KX
i=1

yifi (xi) : x ∈ RN+ and
KX
i=1

yixi ≤ z
)
, (z, y) ∈ RN+K+ .

Under suitable conditions, spelled out in [2, pp. 234-41], g is differentiable at
P (Ω). Under those conditions, therefore, the core of a market game ν is the
singleton as in (6.1). This is essentially a result of [2, Ch. 6] and it plays a key
role in their analysis of exchange economies. Our contribution is to show how it
can be derived from an approach based primarily on the elementary and familiar
perspective provided by calculus.

6.2. The Core of Measure Games

As Hart and Neyman observe [5, p. 32] “in many applications, one usually en-
counters games ... that depend on finitely many measures.” Therefore, we provide
some results that apply to a broad class of measure games.

Definition 6.3. The measure game g (P ) : Σ → R is a Dini measure game if
lim inf |x|→0

g(x)
|x| > −∞, where |·| is any norm on RN .12

Special cases include

12We call them Dini games because lim inf |x|→0
g(x)
|x| is the lower Dini derivative of g at 0.
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(i) all positive measure games, since g ≥ 0 implies that lim inf |x|→0 g(x)|x| ≥ 0;

(ii) all measure games g (P ) such that g : RN → R is differentiable at 0.

We make use also of special categories of sets or coalitions, called diagonal and
pivotal respectively, that we now introduce. Let P : Σ→ RN be a finitely additive
vector measure with each measure Pi convex-ranged. Given any two distinct sets
E0, E00 ∈ Σ, with P (E0) ≤ P (E00), the set

hE0,E00i ≡ {E ∈ Σ : P (E) = tP (E0) + (1− t)P (E00) for some t ∈ (0, 1)} ,

is called the segment joining E0 and E00; it is nonempty by the Lyapunov Theo-
rem.13 Call E diagonal if E ∈ h∅,Ωi, that is, if

P (E) = t P (Ω) for some 0 < t < 1,

which expresses a sense in which E is a representative subcoalition of Ω. Say
that E is pivotal if there exist linear sets A0 and A00 such that A0 ∈ h∅,Ei and
A00 ∈ hE,Ωi.

Remarks: There exists a linear and diagonal set if and only if Ω is pivotal.14

Thus, assuming that there exists a (linear and) pivotal set is weaker than assuming
that there exists a (linear and) diagonal set; see Theorems 6.4 and 6.5 below. It is
easy to see that Ω is pivotal if and only if ∅ is pivotal. For scalar measure games,
Ω is pivotal iff there exists a linear set A such that 0 < P (A) < P (Ω).

Our first result exploits the fact that the coherence required by Theorem 5.2
is implied by the existence of a linear and diagonal set.

Theorem 6.4. Let ν = g (P ) : Σ→ R be a Dini measure game with P countably
additive and g bounded below. Let A be a linear and diagonal set and suppose
that ν is differentiable at A and at Ac. Then

core (ν) = ∅ or core (ν) = {δν (·;A)} .
13Adopt the convention that hE,Ei = {∅} for all E ∈ Σ.
14 In fact, E ∈ h∅,Ωi and ∅ ∈ hΩ,Ωi = h∅, ∅i, so that we can take A0 = E and A00 = ∅.
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The Theorem applies in particular to games g(P ) where g : R (P ) → R is
homogeneous of degree one and g (0, ..., 0) = 0, because such games admit many
sets that are linear and diagonal. In fact, by the Lyapunov Theorem, for each
α ∈ (0, 1) there exists Bα ∈ Σ such that Pi (Bα) = αPi (Ω) for 1 ≤ i ≤ N .
Therefore,

ν (Bα) = g (P1 (Bα) , ..., PN (Bα)) = g (αP1 (Ω) , ...,αPN (Ω))

= αg (P1 (Ω) , ..., PN (Ω)) = αν (Ω) ;

ν (Bcα) = g (P1 (B
c
α) , ..., PN (B

c
α)) = g ((1− α)P1 (Ω) , ..., (1− α)PN (Ω))

= (1− α) g (P1 (Ω) , ..., PN (Ω)) = (1− α) ν (Ω) .

Hence, each Bα is linear and diagonal. Conclude from the Theorem that if the
core is nonempty (and given differentiability of g at P (Ω)), then

core(ν) = {Σi gi(P (Ω))Pi(·) }.

As noted above, there exists a linear and diagonal set if and only if Ω is pivotal.
We can weaken this requirement and assume only that there exists some pivotal
set, not necessarily Ω, if we restrict attention to games g (P ) such that either g is
convex or g(P ) is totally balanced.15

Theorem 6.5. Let ν = g (P ) : Σ→ R be a Dini measure game with P countably
additive. Let A be a linear and pivotal set and suppose that ν is differentiable at
A and at Ac.

(i) If g is convex and bounded below, then

core (ν) = ∅ or core (ν) = {δν (·;A)} .

(ii) If ν is totally balanced, then

core (ν) = {m}, where m(E) = δν (E ∩A;A) + δν (E ∩Ac;Ac) , E ∈ Σ.

15Recall that a game is totally balanced iff all its subgames have nonempty cores.
For a scalar measure game, g (P ) is convex if and only if g : [0, P (Ω)] → R is convex.

This is not true for N > 1. For example, if g (x1, x2) =
p
x21 + x

2
2, then by Theorem 5.2,

core (g (P )) ⊆
n

1√
2
(P1 (·) + P2 (·))

o
. Hence, g (P ) has at most a singleton core and so it is not

convex as, otherwise, it would be additive. In fact, core (g (P )) = ∅.
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We describe one more result for Dini measure games. Say that the measure
game g (P ) is super-homogeneous of degree k > 0 at the set E if g (αP (E)) ≥
αkg (P (E)) for all α ∈ (0, 1). For example, if g : R(P ) → R+ is concave with
g (0) = 0, then g (P ) is homogeneous of degree k ≥ 1 at every E. This property
implies (given auxiliary assumptions) that g(P ) is coherent at Ω and hence permits
application of Theorem 5.2. More precisely, we can prove:

Theorem 6.6. Let ν = g (P ) : Σ→ R be a Dini measure game with g differen-
tiable at P (Ω).
(a) Suppose that ν is super-homogeneous of degree k ∈ [0, 1] at P (Ω) and that

either g is bounded below or that ν is superadditive.

(i) If k < 1, then core (ν) = ∅.
(ii) If k = 1, then core (ν) ⊂ {δν (·;Ω)}.

(b) Suppose that g is bounded below and that ν is super-homogeneous of
degree 1 at every E ∈ Σ. Then the following statements are equivalent:

(i) core (ν) 6= ∅.
(ii) core (ν) = {δν (·;Ω)}.
(iii) ν (Ω) = δν (Ω;Ω) and ν (E) + ν (Ec) ≤ ν (Ω) for all E ∈ Σ.

It is noteworthy that this theorem requires differentiability of g only at the sin-
gle point P (Ω). This feature makes possible the following generalization: By the
Rademacher Theorem, locally Lipschitzian functions (a large class that includes
convex functions) are differentiable everywhere outside a Lebesgue measure zero
subset D ⊆ RN ; for convex functions, the set D is first category in RN (see [8,
Theorem 1.18] and [10, Theorem 25.4]). Consequently, even without any differ-
entiabilty requirement on g, Theorem 6.6 holds if g is locally Lipschitzian and if
P (Ω) lies outside the corresponding ‘small’ set D. (A similar remark applies to
Corollary 6.2.)

A. APPENDIX: DERIVATIVES

A.1. Basic Properties

Proposition A.1. For any E ∈ Σ, when it exists, the derivative δν (·;E) of a
game ν is unique.
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Proof. Let δ1ν (·;E) and δ2ν (·;E) be derivatives. For any G ⊂ E, we have:

|δ1ν (G;E)− δ2ν (G;E)| =
¯̄̄̄
¯
nλX
j=1

δ1ν
¡
Gj,λ;E

¢− δ2ν
¡
Gj,λ;E

¢¯̄̄̄¯
≤

nλX
j=1

¯̄
δ1ν

¡
Gj,λ;E

¢− δ2ν
¡
Gj,λ;E

¢¯̄
=

nλX
j=1

¯̄
δ1ν

¡
Gj,λ;E

¢− ν
¡
E −Gj,λ¢+ ν (E)

+ν
¡
E −Gj,λ¢− ν (E)− δ2ν

¡
Gj,λ;E

¢¯̄
≤

nλX
j=1

¯̄
δ1ν

¡
Gj,λ;E

¢− ν
¡
E −Gj,λ¢+ ν (E)

¯̄
+

nλX
j=1

¯̄
ν
¡
E −Gj,λ¢− ν (E)− δ2ν

¡
Gj,λ;E

¢¯̄ −→
λ
0

and so δ1ν (G;E) = δ2ν (G;E). A similar argument holds for all F ⊂ Ec. By
additivity, it then follows that δ1ν (·;E) = δ2ν (·;E).

Proposition A.2. Suppose ν1, ν2 ∈ V are two games differentiable at E ∈ Σ.
Then both ν1 + ν2 and ν1ν2 are differentiable at E, and

(i) δ (ν1 + ν2) (·;E) = δν1 (·;E) + δν2 (·;E) ,
(ii) δ (ν1ν2) (·;E) = ν2 (E) δν1 (·;E) + ν1 (E) δν2 (·;E) .

Moreover, if ν2 (E) 6= 0, then ν1/ν2 is differentiable at E and

(iii) δ

µ
ν1
ν2

¶
(·;E) = ν2 (E) δν1 (·;E) − ν1 (E) δν2 (·;E)

[ν2 (E)]
2 .

Proof. We provide the proof of (ii): By adding and subtracting ν1 (E) ν2
¡
E ∪ F j,λ −Gj,λ¢

we obtain:

nλX
j=1

¯̄
ν1
¡
E ∪ F j,λ −Gj,λ¢ ν2 ¡E ∪ F j,λ −Gj,λ¢− ν1 (E) ν2 (E)
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−ν2 (E) δν1
¡
F j,λ −Gj,λ;E¢− ν1 (E) δν2

¡
F j,λ −Gj,λ;E¢¯̄

≤ |ν1 (E)|
nλX
j=1

¯̄
ν2
¡
E ∪ F j,λ −Gj,λ¢− ν2 (E)− δν2

¡
F j,λ −Gj,λ;E¢¯̄

+

¯̄̄̄
¯
nλX
j=1

ν2
¡
E ∪ F j,λ −Gj,λ¢ £ν1 ¡E ∪ F j,λ −Gj,λ¢− ν1 (E)

¤
−ν2 (E) δν1

¡
F j,λ −Gj,λ;E¢¯̄

= |ν1 (E)|
nλX
j=1

¯̄
ν2
¡
E ∪ F j,λ −Gj,λ¢− ν2 (E)− δν2

¡
F j,λ −Gj,λ;E¢¯̄

+

nλX
j=1

¯̄£
ν2
¡
E ∪ F j,λ −Gj,λ¢− ν2 (E) + ν2 (E)

¤ £
ν1
¡
E ∪ F j,λ −Gj,λ¢− ν1 (E)

¤
−ν2 (E) δν1

¡
F j,λ −Gj,λ;E¢¯̄

= |ν1 (E)|
nλX
j=1

¯̄
ν2
¡
E ∪ F j,λ −Gj,λ¢− ν2 (E)− δν2

¡
F j,λ −Gj,λ;E¢¯̄

+

nλX
j=1

¯̄
ν2
¡
E ∪ F j,λ −Gj,λ¢− ν2 (E)

¯̄ ¯̄
ν1
¡
E ∪ F j,λ −Gj,λ¢− ν1 (E)

¯̄
+ |ν2 (E)|

nλX
j=1

¯̄
ν1
¡
E ∪ F j,λ −Gj,λ¢− ν1 (E)− δν1

¡
F j,λ −Gj,λ;E¢¯̄ .

By definition,
nλX
j=1

¯̄
ν2
¡
E ∪ F j,λ −Gj,λ¢− ν2 (E)− δν2

¡
F j,λ −Gj,λ;E¢¯̄ −→

λ
0,

nλX
j=1

¯̄
ν1
¡
E ∪ F j,λ −Gj,λ¢− ν1 (E)− δν1

¡
F j,λ −Gj,λ;E¢¯̄ −→

λ
0.

On the other hand,
nλX
j=1

¯̄
ν2
¡
E ∪ F j,λ −Gj,λ¢− ν2 (E)

¯̄ ¯̄
ν1
¡
E ∪ F j,λ −Gj,λ¢− ν1 (E)

¯̄
≤

nλX
j=1

¯̄
ν2
¡
E ∪ F j,λ −Gj,λ¢− ν2 (E)− δν2

¡
F j,λ −Gj,λ;E¢¯̄ ¯̄ν1 ¡E ∪ F j,λ −Gj,λ¢
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−ν1 (E)− δν1
¡
F j,λ −Gj,λ;E¢¯̄

+

nλX
j=1

¯̄
δν2

¡
F j,λ −Gj,λ;E¢¯̄ ¯̄ν1 ¡E ∪ F j,λ −Gj,λ¢− ν1 (E)− δν1

¡
F j,λ −Gj,λ;E¢¯̄

+

nλX
j=1

¯̄
δν1

¡
F j,λ −Gj,λ;E¢¯̄ ¯̄ν2 ¡E ∪ F j,λ −Gj,λ¢− ν2 (E)− δν2

¡
F j,λ −Gj,λ;E¢¯̄

+

nλX
j=1

¯̄
δν2

¡
F j,λ −Gj,λ;E¢¯̄ ¯̄δν1 ¡F j,λ −Gj,λ;E¢¯̄ .

Let ε > 0. There exists λ1 such that, for all λ > λ1,

nλX
j=1

¯̄
ν2
¡
E ∪ F j,λ −Gj,λ¢− ν2 (E)

¯̄ ¯̄
ν1
¡
E ∪ F j,λ −Gj,λ¢− ν1 (E)

¯̄
≤ ε2 + ε

nλX
j=1

|δν2|
¡
F j,λ −Gj,λ;E¢+ ε

nλX
j=1

|δν1|
¡
F j,λ −Gj,λ;E¢

+

nλX
j=1

¯̄
δν2

¡
F j,λ −Gj,λ;E¢¯̄ ¯̄δν1 ¡F j,λ −Gj,λ;E¢¯̄ .

Since the derivatives are convex-ranged, there exists λ2 such that |δν2|
¡
F j,λ −Gj,λ;E¢ ≤

ε for all λ > λ2 and all 1 ≤ j ≤ nλ. Hence, for all λ > λ1 ∨ λ2,

nλX
j=1

¯̄
ν2
¡
E ∪ F j,λ −Gj,λ¢− ν2 (E)

¯̄ ¯̄
ν1
¡
E ∪ F j,λ −Gj,λ¢− ν1 (E)

¯̄
≤ ε2 + ε |δν2| (F −G;E) + ε |δν1| (F −G;E) + ε |δν1| (F −G;E) .

Since the derivatives are bounded measures, it follows that

nλX
j=1

¯̄
ν2
¡
E ∪ F j,λ −Gj,λ¢− ν2 (E)

¯̄ ¯̄
ν1
¡
E ∪ F j,λ −Gj,λ¢− ν1 (E)

¯̄ −→
λ
0,

which completes the proof of (ii).

Proposition A.3. Let ν be differentiable at E ∈ Σ. If ν is monotone, then
δν (·;E) is a nonnegative measure.
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Proof. Let F ⊂ Ec. Then, by monotonicity,

−δν (F ;E) =

nλX
j=1

−δν ¡F j,λ;E¢ ≤ nλX
j=1

£−δν ¡F j,λ;E¢+ ν
¡
E ∪ F j,λ¢− ν (E)

¤
≤

nλX
j=1

¯̄−δν ¡F j,λ;E¢+ ν
¡
E ∪ F j,λ¢− ν (E)

¯̄ −→
λ
0,

and so −δν (F ;E) ≤ 0, i.e., δν (F ;E) ≥ 0. Now, let G ⊂ E. Again by monotonic-
ity,

−δν (G;E) =

nλX
j=1

−δν ¡Gj,λ;E¢ ≤ nλX
j=1

£−δν ¡Gj,λ;E¢+ ν (E)− ν
¡
E −Gj,λ¢¤

nλX
j=1

¯̄−δν ¡Gj,λ;E¢+ ν (E)− ν
¡
E −Gj,λ¢¯̄ −→

λ
0,

and so −δν (G;E) ≤ 0, i.e., δν (G;E) ≥ 0. By the additivity of δν (·;E), it follows
that δν (·;E) ≥ 0.

A.2. Chain Rule

Proposition A.4. Let ν : Σ → R be differentiable at E ∈ Σ, and g : R → R a
function differentiable at ν (E). Then g (ν) : Σ→ R is differentiable at E and

δg (ν (·;E)) = g0 (ν (E)) δν (·;E) .
Proof. We have

nλX
j=1

¯̄
g
¡
ν
¡
E ∪ F j,λ −Gj,λ¢¢− g (ν (E))− g0 (ν (E)) δν ¡F j,λ −Gj,λ;E¢¯̄

=

nλX
j=1

¯̄
g
¡
ν
¡
E ∪ F j,λ −Gj,λ¢¢− g (ν (E))− g0 (ν (E)) £ν ¡E ∪ F j,λ −Gj,λ¢− ν (E)

¤
+g0 (ν (E))

£
ν
¡
E ∪ F j,λ −Gj,λ¢− ν (E)

¤− g0 (ν (E)) δν ¡F j,λ −Gj,λ;E¢¯̄
≤

nλX
j=1

¯̄
g
¡
ν
¡
E ∪ F j,λ −Gj,λ¢¢− g (ν (E))− g0 (ν (E)) £ν ¡E ∪ F j,λ −Gj,λ¢− ν (E)

¤¯̄
+ |g0 (ν (E))|

nλX
j=1

¯̄
ν
¡
E ∪ F j,λ −Gj,λ¢− ν (E)− δν

¡
F j,λ −Gj,λ;E¢¯̄
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By definition of δν (·;E),
nλX
j=1

¯̄
ν
¡
E ∪ F j,λ −Gj,λ¢− ν (E)− δν

¡
F j,λ −Gj,λ;E¢¯̄ −→

λ
0. (A.1)

Set αj,λ = ν
¡
E ∪ F j,λ −Gj,λ¢− ν (E). Then¯̄

g
¡
ν
¡
E ∪ F j,λ −Gj,λ¢¢− g (ν (E))− g0 (ν (E)) £ν ¡E ∪ F j,λ −Gj,λ¢− ν (E)

¤¯̄
=

¯̄̄̄
¯g
¡
αj,λ + ν (E)

¢− g (ν (E))
αj,λ

− g0 (ν (E))
¯̄̄̄
¯ ¯̄αj,λ¯̄ .

In particular,¯̄
αj,λ

¯̄
=

¯̄
ν
¡
E ∪ F j,λ −Gj,λ¢− ν (E)

¯̄
=

¯̄
ν
¡
E ∪ F j,λ −Gj,λ¢− ν (E)− δν

¡
F j,λ −Gj,λ;E¢+ δν

¡
F j,λ −Gj,λ;E¢¯̄

≤ ¯̄
ν
¡
E ∪ F j,λ −Gj,λ¢− ν (E)− δν

¡
F j,λ −Gj,λ;E¢¯̄+ ¯̄δν ¡F j,λ −Gj,λ;E¢¯̄ .

Let η > 0. By (A.1), there exists λ1 such that, for all λ > λ1 and all 1 ≤ j ≤ nλ,¯̄
ν
¡
E ∪ F j,λ −Gj,λ¢− ν (E)− δν

¡
F j,λ −Gj,λ;E¢¯̄ ≤ η/2.

Moreover, since δν (·;E) is convex-ranged, there exists a finite partition of F ∪G,
indexed by λ2, such that, for all 1 ≤ j ≤ nλ2 ,

|δν| ¡F j,λ2;E¢ ≤ η/2 and |δν| ¡Gj,λ2;E¢ ≤ η/2,

and so ¯̄
δν
¡
F j,λ −Gj,λ;E¢¯̄ ≤ ¯̄

δν
¡
F j,λ2;E

¢¯̄
+
¯̄
δν
¡
Gj,λ2 ;E

¢¯̄
≤ |δν| ¡F j,λ2 ;E¢+ |δν| ¡Gj,λ2;E¢ ≤ η.

Hence, by setting λδ∗ = λ1 ∨ λ2, we have that for all λ > λδ∗ ,¯̄
αj,λ

¯̄ ≤ ¯̄ν ¡E ∪ F j,λ −Gj,λ¢− ν (E)− δν
¡
F j,λ −Gj,λ;E¢¯̄+¯̄δν ¡F j,λ −Gj,λ;E¢¯̄ ≤ η

for all 1 ≤ j ≤ nλ. On the other hand, since the derivative g0 (ν (E)) exists, given
any ε > 0 there exists ηε > 0 such that¯̄̄̄

¯g
¡
αj,λ + ν (E)

¢− g (ν (E))
αj,λ

− g0 (ν (E))
¯̄̄̄
¯ ≤ ε
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for all
¯̄
αj,λ

¯̄ ≤ ηε. Therefore, taking η = ηε, we have

nλX
j=1

¯̄̄̄
¯g
¡
αj,λ + ν (E)

¢− g (ν (E))
αj,λ

− g0 (ν (E))
¯̄̄̄
¯ ¯̄αj,λ ¯̄

≤ ε

nλX
j=1

¯̄
αj,λ

¯̄
, for all λ ≥ ληε.

But, by the definition of δν (·;E), given any ε > 0, there exists λ0 such that
λ > λ0 implies

Σnλj=1
¯̄
αj,λ

¯̄ ≤ ε+ Σnλj=1
¯̄
δν
¡
F j,λ;E

¢− δν
¡
Gj,λ;E

¢¯̄
≤ ε+ Σnλj=1

£¯̄
δν
¡
F j,λ;E

¢¯̄
+
¯̄
δν
¡
Gj,λ;E

¢¯̄¤ ≤ K,
for some K < ∞ that is independent of λ, F and G, as provided by the bound-
edness of the measure δν(·;E). Conclude that, given any ε > 0,

nλX
j=1

¯̄̄̄
¯g
¡
αj,λ + ν (E)

¢− g (ν (E))
αj,λ

− g0 (ν (E))
¯̄̄̄
¯ ¯̄αj,λ ¯̄ ≤ Kε,

and so
nλX
j=1

¯̄
g
¡
ν
¡
E ∪ F j,λ −Gj,λ¢¢− g (ν (E))− g0 (ν (E)) δν ¡F j,λ −Gj,λ;E¢¯̄ −→

λ
0,

as desired.

A.3. Miscellaneous Facts

Lemma A.5. Let ν : Σ→ R be a superadditive game differentiable at ∅. Then

δν(E;∅) ≤ ν (E)

for all E ∈ Σ.

Remark. This lemma generalizes the fact that for superadditive real-valued
functions g : [0, 1]→ R, we have

g0 (0) x ≤ g (x)
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for all x ∈ [0, 1], whenever g0 (0) = limx↓0 g (x) /x exists. In fact, let ν = g (P ) :
Σ → R be the scalar measure game defined through g. The Chain Rule (Propo-
sition A.4), and Lemma A.5 imply that

g0 (0)P (E) = δν(E;∅) ≤ ν (E) = g (P (E)) .

Proof. For any E ∈ Σ,

δν(Ej,λ;∅) ≤ ν
¡
Ej,λ

¢
+
¯̄
δν(Ej,λ;∅)− ν

¡
Ej,λ

¢¯̄
,

and so

δν(E;∅) =

nλX
j=1

δν(Ej,λ;∅) ≤
nλX
j=1

ν
¡
Ej,λ

¢
+

nλX
j=1

¯̄
δν(Ej,λ;∅) − ν

¡
Ej,λ

¢¯̄
≤ ν (E) +

nλX
j=1

¯̄
δν(Ej,λ;∅)− ν

¡
Ej,λ

¢¯̄
.

Since ν is differentiable at ∅, limλ

Pnλ
j=1

¯̄
δν(Ej,λ;∅)− ν

¡
Ej,λ

¢¯̄
= 0, and so

δν(E;∅) ≤ ν (E).

Next we describe an example of a differentiable game that is not a measure
game: Fix any ordered sequence (p1, p2, ..., pn, ...) of countably additive probability
measures and define the game ν by

ν(A) = Σ∞k=1
¡
Πki=1pi(A)

¢
/ k!.

Then each summand
¡
Πki=1pi(·)

¢
/ k! is differentiable by the product rule and the

sum of these derivatives yields δν(·;E). The game ν is not a measure game if
there is no finite linear basis for {pn(·)}.
Suppose that all the measures pn assign the same probability p(A) to some

specific A. Then A is a linear set for the transformed game ν∗ = log (1 + ν)
(ν∗(A) = p(A)); and ν∗ is differentiable by the Chain Rule.

A.4. Automorphisms

Derivatives are invariant to a ‘renaming’ of agents in the following sense: Call the
function θ : Ω → Ω an automorphism of Ω if it is Σ-measurable and bijective,
that is, if it is a permutation over Ω. Let Θ be the group of all Σ-measurable
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automorphisms of Ω. Given ν ∈ V , each θ ∈ Θ induces a game θ∗ν ∈ V defined
by

θ∗ν (E) = ν (θ (E))

for all E ∈ Σ [2, p. 15]. Evidently, for any F and partition {F j,λ}, {θ(F j,λ)} is
a partition of θ(F ). Furthermore,

©
θ
¡
F λ,j

¢ª
λ
is a subnet of the net of all finite

partitions of θ (F ): Let {Aj} be any finite partition of θ (F ). We want to show
that there is some partition of θ (F ) of the form

©
θ
¡
F λ,j

¢ª
which refines {Aj}.

The collection
©
θ−1 (Aj)

ª
is a finite partition of F , and since

©
F λ,j

ª
λ
is the set of

all finite partitions of F , there is some λ0 such that F j,λ
0
= θ−1 (Aj) for all j. For

all λ > λ0,
©
F λ,j

ª
refines

©
F λ0,j

ª
, and so the finite partition

©
θ
¡
F λ,j

¢ª
of θ (F )

refines
©
θ
¡
F λ0,j

¢ª
= {Aj}.

Lemma A.6. If θ is an automorphism and if ν is differentiable at θ(E), then
θ∗(ν) is differentiable at E and

δ (θ∗ν) (·;E) = θ∗ (δν(·; θ(E)) = δν( θ(·); θ(E) ).

Proof.
nλX
j=1

¯̄
(θ∗ν)

¡
E ∪ F j,λ −Gj,λ¢− (θ∗ν) (E) − δν

¡
θ(F j,λ); θ(E)

¢
+ δν

¡
θ(Gj,λ); θ(E)

¢¯̄
=

nλX
j=1

¯̄
ν
¡
θ(E ∪ F j,λ −Gj,λ)¢− ν (θ(E))− δν

¡
θ(F j,λ); θ(E)

¢
+ δν

¡
θ(Gj,λ); θ(E)

¢¯̄
=

nλX
j=1

¯̄
ν
¡
θ(E) ∪ θ(F j,λ)− θ(Gj,λ)

¢− ν (θ(E))− δν
¡
θ(F j,λ); θ(E)

¢
+ δν

¡
θ(Gj,λ); θ(E)

¢¯̄
.

The latter converges to 0 if ν is differentiable at θ (E) because
©
θ
¡
F λ,j

¢ª
and©

θ
¡
Gλ,j

¢ª
are subnets of the nets of all finite partitions of θ (F ) and θ (G) respec-

tively.

A.5. Connection with Aumann-Shapley

Let B1 denote the set {f ∈ B(Ω,Σ) : 0 ≤ f ≤ 1}. Aumann and Shapley
show (Theorem G, p. 144) that each ν in pNA has an extension to a unique
‘integral’ ν∗ : B1 −→ R1 satisfying specified properties. In particular, for any
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measure game ν = g(P ) where g is a polynomial function and P = (P1, ..., PN )
is nonatomic, then

ν∗(f) = g (P ∗(f)) ,

where P ∗(f ) = (P ∗1 (f), ..., P
∗
N (f)) and P

∗
i (f) =

R
Ω
f dPi for f ∈ B1. It follows

from the sum and product rules for differentiation that for all such polynomial
measure games, G ⊂ E and F ⊂ Ec,

δν (F ;E) =
d

dτ
ν∗(1E + τ 1F ) |τ=0 and

δν (G;E) = − d

dτ
ν∗(1E − τ 1G) |τ=0 .

and both derivatives exist. More generally, for any 0 < t ≤ 1 and set Et satisfying
P (Et) = tP (E),

δν (F ;Et) =
d

dτ
ν∗(t1E + τ 1F ) |τ=0 ,

provided that the range of P (·) is full-dimensional. Gateaux derivatives like those
on the right are the calculus tool used by Aumann and Shapley.
We do not know how our derivative δνn(·; ·) behaves along a suitably conver-

gent sequence of games {νn}. Thus it is not clear how the above connection made
for polynomial games might extend to games in pNA.

B. APPENDIX

This appendix proves Theorems 6.4 and 6.5, beginning with some common lem-
mas.

B.1. Common Lemmas

Lemma B.1. Let ν = g (P ) : Σ→ R be a Dini measure game with core (ν) 6= ∅.
Suppose that either ν is superadditive or that g is bounded below. Then there
exists a positive integer k such that the game ν∗ : Σ → R defined by ν∗ =
ν + k

PN
i=1 Pi is positive and ν∗(Ω) > 0.

Proof. Let |·|p be the norm defined by |x|p =
PN

i=1 |xi| for all x ∈ RN . Since
all norms in RN are equivalent, it is easy to see that, for any norm |·|,

lim inf
|x|→0

g (x)

|x| > −∞⇐⇒ lim inf
|x|p→0

g (x)

|x|p
> −∞.

31



Therefore, lim inf |x|p→0
g(x)
|x|p > −∞ for any Dini game g (P ). Assume first that g

is bounded below, i.e., infx∈R(P ) g (x) > −∞. Given M > 0, there exists ε > 0
such that

g (x)

|x|p
> −M if x ∈ R (P ) and 0 < |x|p < ε. (B.1)

Let x ∈ R (P ), |x|p ≥ ε and g (x) < 0. Then g(x)
|x|p ≥

g(x)
ε
≥ infx∈R(P) g(x)

ε
. Let

k0 be a positive integer such that k0 ≥ |infx∈R(P ) g(x)|
ε

+M . Then g(x)
|x|p > −k

0 for

all x ∈ R (P ) \ {0} such that either 0 < |x|p < ε or g (x) < 0, implying that
g (x)+k0 |x|p > 0 for all such x. But g (x)+k0 |x|p > 0 also for all x ∈ R (P ) \ {0}
such that g (x) > 0. Conclude that ν (E) + k0

PN
i=1 Pi (E) ≥ 0 for all E ∈ Σ.

Next consider the case where ν is superadditive. Given M , choose ε as above
satisfying (B.1). For x ∈ R (P ) \ {0}, let E ∈ Σ be such that P (E) = x. By
the Lyapunov Theorem there exists a partition {El}Ll=1 ⊆ Σ of E such that 0 <
|P (El)|p < ε for each 1 ≤ l ≤ L. Hence,

ν (E) + k0
NX
i=1

Pi (E) ≥
LX
l=1

Ã
ν (El) + k

0
NX
i=1

Pi (El)

!
> 0

since ν (El) + k0
PN

i=1 Pi (El) > 0 for each 1 ≤ l ≤ L. Conclude that also in this
case ν (E) + k0

PN
i=1 Pi (E) ≥ 0 for all E ∈ Σ.

Finally, assume that P (Ω) 6= 0, so that |P (Ω)|p > 0. Let k > max
n
k0, −ν(Ω)|P (Ω)|p

o
and set ν∗ = ν + k

PN
i=1 Pi. If ν (Ω) > 0, then ν∗ (Ω) > 0 and we are done. If

ν (Ω) ≤ 0, then ν∗ (E) ≥ ν (E) + k0
PN

i=1 Pi (E) ≥ 0 for all E ∈ Σ and
ν∗ (Ω) = ν (Ω) + k

PN
i=1 Pi (Ω) > ν (Ω) + −ν(Ω)

|P (Ω)|p
PN

i=1 Pi (Ω) = 0.

Lemma B.2. Let ν and ν∗ be as in Lemma B.1. Then:

1. core (ν∗) =
n
m+ k

PN
i=1 Pi (E) : m ∈ core (ν)

o
,

2. A is linear with respect to ν∗ if and only if it is linear with respect to ν.

3. ν is coherent at A ∈ A if and only if ν∗ is coherent at A.
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Proof. The first two assertions are easily proven. For coherence, it suffices to see
that

δν∗ (A;A) ≤ ν∗ (A)⇐⇒ δν (A;A) ≤ ν (A) ,

δν∗ (Ac;A) ≥ ν∗ (Ac)⇐⇒ δν (Ac;A) ≤ ν (Ac) ,

δν∗ (A;Ac) ≥ ν∗ (A)⇐⇒ δν (A;Ac) ≥ ν (A) ,

δν∗ (Ac;Ac) ≤ ν∗ (Ac)⇐⇒ δν (Ac;Ac) ≤ ν (Ac) .

The subset of core(ν) consisting of countably additive measures is the σ-core
and is denoted by

coreσ(ν) = {m ∈ CA : m (Ω) = ν (Ω) , and m(A) ≥ ν(A) for all A ∈ Σ}.

Lemma B.3. Given a positive game ν : Σ → R+, every measure m ∈ coreσ (ν)
is non-atomic if at least one of the following two conditions is satisfied:

(i) there is some A ∈ A, with ν (A) = ν (Ω), such that ν is differentiable at A;

(ii) there is some A ∈ A, with 0 < ν (A) < ν (Ω), such that ν is differentiable
at both A and Ac.

Proof. For case (ii), suppose that 0 < ν (A) < ν (Ω). Then m (A) > 0 and
m (Ac) > 0. By definition, both δν (·;A) and δν (·;Ac) are convex-ranged. Since
ν is positive, each m ∈ core (ν) is positive. Hence, by Lemma 4.4, δν (·;A) and
δν (·;Ac) are positive measures on A and Ac, respectively. Again by Lemma 4.4,
for all G ⊆ A, δν (G;A) = 0 ⇒ m (G) = 0, i.e., m is absolutely continuous with
respect to the finitely additive measure δν(·;A) on A. This implies that that m
has no atoms in A as we proceed to show.
Let m (E) > 0 with Σ 3 E ⊆ A. By above, δν(E;A) > 0. Since δν(·;A)

is convex-ranged, there exists a partition E1, B1 of E such that δν (E1;A) =
δν (B1;A) = 1

2
δν (E;A). If 0 < m (E1) < m(E) or 0 < m (B1) < m(E), we

are done. Suppose, in contrast, that either m (E1) = m(E) or m (B1) = m(E).
Wlog, let m (E1) = m(E). Again, there exists a partition E2 and B2 of E1 such
that δν (E2;A) = δν (B2;A) = 1

2
δν (E1;A). If 0 < m (E2) < m(E1) or 0 <

m (B2) < m(E1), we are done. Suppose, in contrast, that either m (E2) = m(E1)
or m (B2) = m(E1). Wlog, let m (E2) = m(E1). Proceeding in this way, either
we find a set B ⊆ E such that 0 < m(B) < m(E) or we can construct a chain
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{En}n≥1 such that δν (En;A) = 1
2n
δν (E;A) and m (En) = m(E) for all n ≥ 1.

Hence, because
T
n≥1E

n ∈ Σ and
T
n≥1E

n ⊆ E, we have δν
¡T

n≥1E
n;A

¢
= 0

and m
¡T

n≥1E
n
¢
= m(E) > 0, a contradiction. Conclude that there exists some

set B ⊆ E such that 0 < m(B) < m(E), and that m has no atoms in A.
Next replace A by Ac and use the convex range of δν(·;Ac) to deduce in a

similar fashion that m has no atoms in Ac. Now, suppose that E is an atom
for m in Σ. By definition, either m (E ∩A) = 0 or m (E ∩A) = m (E). If
m (E ∩A) = m (E), then E ∩ A is an atom in A, which was ruled out above.
Hence, m (E ∩A) = 0. A similar argument shows that m (E ∩Ac) = 0 and so
m (E) = 0, a contradiction. Hence, there are no atoms in Σ. Because m is
countably additive and non-atomic, it is also convex-ranged.
Finally, for case (i), suppose that ν (A) = ν (Ω). Then m (Ac) = 0. Then if E

is an atom in Σ, it must be the case that m (E ∩ A) = m (E) > 0, and so E ∩A
is an atom on A. This can be ruled out as above.

Lemma B.4. Let ν = g (P ) : Σ → R+ be a positive measure game with P
countably additive. Then core (ν) = coreσ (ν) given at least one of conditions (i)
and (ii) of Lemma B.3.

Proof. Let m ∈ core (ν). Suppose (i) is true. Since ν is differentiable at A, it
is continuous at A. Suppose that En ↑ Ω. Then En ∩ A ↑ A and so m (En) =
m (En ∩A) ↑ m (A) = m (Ω), that is, m ∈ coreσ (ν).
Next suppose (ii) is true. Since ν is differentiable at A and Ac, ν is continuous

at both A and Ac. Because both are linear sets, this implies that, for all m ∈
core (ν), m (E0n) ↑ m (A) and m (E00n) ↑ m (Ac) if E0n ↑ A and E00n ↑ Ac. Therefore,
if En ↑ A, then

m (En) = m (En ∩A) +m (En ∩Ac) ↑ m (A) +m (Ac) = m (Ω) ,

as desired.

B.2. Proof of Theorem 6.4

Prove the result first for ν ≥ 0. Since the game is differentiable at A and Ac, by
Lemmas B.3 and B.4 every m ∈ core (ν) is non-atomic and countably additive.
Suppose that core (ν) 6= ∅. By Lemma B.3, every all measure in core (ν) is

convex-ranged. For convenience, assume that P (Ω) = 1 ∈ RN . Set x = P (A) ∈
[0, 1]N and let m ∈ core (ν).
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Since A ∈ h∅,Ωi, P (A) /∈ {0, P (Ω)}. Hence, by reversing the roles of A and
Ac if necessary, we can assume that αP (A) = P (Ac) for some α ∈ (0, 1). By
the Lyapunov Theorem applied to the N + 1 dimensional vector measure (P,m),
there exists Σ 3 E ⊂ A such that P (E) = αP (A) and m (E) = αm (A). Hence,

g (αx) = g (P (E)) ≤ m (E) = αm (A) = αg (P (A)) = αg (x) . (B.2)

By Lemma 4.1, δν (Ac;A) ≤ m (Ac) = ν (Ac). Since g is differentiable at x, this
implies that ∇g (x) · (1− x) ≤ g (1− x). But αx = (1− x). Hence, using (B.2),

∇g (x) · (αx) ≤ g (αx) ≤ αg (x) ,

which implies ∇g (x) ·x ≤ g (x), that is, δν (A;A) ≤ ν (A). On the other hand, by
Lemma 4.1, δν (A;A) ≥ ν (A), and so δν (A;A) = ν (A). Then ∇g (x) · x = g (x),
so that

∇g (x) · (1− x) = ∇g (x) · (αx) = αg (x) ≥ g (αx) = g (1− x) ,
that is, ∇g (x) · (1− x) ≥ g (1− x) and hence δν (Ac;A) ≥ ν (Ac). Conclude
that ν is efficient at A.
This completes the proof for ν ≥ 0. Let ν∗ be the positive game provided by

Lemma B.1. By Lemma B.2, core (ν) 6= ∅ implies core (ν∗) 6= ∅. Moreover, it is
easy to check that A ∈ h∅,Ωi with respect to ν∗ and that ν∗ is differentiable at A
and Ac. Hence ν∗ is coherent at A when core (ν) 6= ∅; and ν is coherent at A by
Lemma B.2. In particular, it is now easy to see that core (ν) ⊂ {δν (·;A)}.

B.3. Proof of Theorem 6.5

Prove statement (i) for ν ≥ 0. By Lemmas B.3 and B.4, every m ∈ core (ν) is
countably additive and non-atomic.
There exists α ∈ (0, 1) such that P (A0) = αP (A). Apply the Lyapunov

Theorem to (P,m), where m ∈ core (ν). There exists Σ 3 Aα ⊂ A be such
that P (Aα) = αP (A) and m (Aα) = αm (A). Because P (A0) = P (Aα) and
consequently, P ((A0)c) = P (Acα), we have Aα ∈ A. Hence, m (Aα) = ν (Aα) for
all m ∈ core (ν). In particular,

g (αx) = g (P (Aα)) = m (Aα) = αm (A) = αg (x) .

We want to show that g (βx) = βg (x) for all 1 ≥ β ≥ α. Suppose, per contra,
that g (βx) < βg (x) for some 1 ≥ β > α. Since g is convex, g (βx) ≤ βg (x) and

g (αx) = g

µ
α

β
βx

¶
≤ α

β
g (βx) <

α

β
βg (x) = αg (x) ,
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a contradiction. Set P (A) = x. For t small enough, (1− t) ≥ α, so that

lim
t↓0
g (x) − g (x− tx)

t
= lim

t↓0
tg (x)

t
= g (x) ,

and so ∇g (x) x = g (x). Hence δν (A;A) = ν (A).
There exists α ∈ (0, 1) such that P (A00) = αP (Ω) + (1− α)P (A). By the

Lyapunov Theorem applied to (P,m), where m ∈ core (ν), there exists Σ 3
Aα ⊂ A such that P (Aα) = αP (Ω) + (1− α)P (A) and m (Aα) = αm (Ω) +
(1− α)m (A). Because P (A00) = P (Aα) and P ((A00)

c) = P (Acα), conclude that
Aα ∈ A. Hence, m (Aα) = ν (Aα) for all m ∈ core (ν). In particular,
g (αP (Ω) + (1− α)x) = g (P (Aα)) = m (Aα)

= αm (Ω) + (1− α)m (A) = αg (P (Ω)) + (1− α) g (x) .

We want to show that g (βP (Ω) + (1− β)x) = βg (P (Ω)) + (1− β) g (x) for all
0 ≤ β ≤ α. If not, there exists some 0 ≤ β < α such that g (βP (Ω) + (1− β)x) <
βg (P (Ω)) + (1− β) g (x). Then

g (αP (Ω) + (1− α)x) = g

µ
1− α

1− β
(βP (Ω) + (1− β) x) +

µ
α − β

1− β

¶
P (Ω)

¶
≤ 1− α

1− β
g (βP (Ω) + (1− β) x) +

µ
α − β

1− β

¶
g (P (Ω))

<
1− α

1− β
(βg (P (Ω)) + (1− β) g (x)) +

µ
α− β

1− β

¶
g (P (Ω))

= αg (P (Ω)) + (1− α) g (x) ,

a contradiction. Therefore,

g (x+ t (P (Ω)− x))− g (x)
t

=
g ((1− t) x+ tP (Ω))− g (x)

t

=
(1− t) g (x) + tg (P (Ω))− g (x)

t

=
tg (P (Ω))− tg (x)

t
= g (P (Ω))− g (x) = g (P (Ac)) .

Since g is differentiable at x, this implies that ∇g (x)P (Ac) = g (P (Ac)), that is,
δν (Ac;A) = ν (Ac). Conclude that ν is coherent at A.
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This completes the proof for the case ν ≥ 0. Let ν∗ be the positive game
provided by Lemma B.1 (such a ν∗ exists because g is bounded below). By Lemma
B.2, core (ν) 6= ∅ implies core (ν∗) 6= ∅. Hence, by what has been proven above,
ν∗ is coherent at A if core (ν) 6= ∅. Again by Lemma B.2, this implies that ν is
coherent at A if core (ν) 6= ∅. Consequently, core (ν) = {δν (·;A)}.

Next prove statement (ii). We first prove the following claim:

Claim. Let ν = g (P ) : Σ → R be a totally balanced Dini measure game. Then
g (βx) ≤ βg (x) for all β ∈ [0, 1].
Proof of the Claim. Suppose that ν ≥ 0. Let E ∈ Σ be such that P (E) = x.
It is easy to see that the subgame ν|E is superadditive. In addition, its dual ν|E
is subadditive. In fact, for any pair E1, E2 of disjoint sets in ΣE , there exists a
measure m such that m (E1 ∪ E2) = ν|E (E1 ∪E2) and m (E) ≤ ν|E (E) for all
Σ 3 E ⊆ E1 ∪ E2. Hence, ν|E (E1 ∪E2) = m (E1 ∪E2) = m (E1) + m (E2) ≤
ν|E (E1) + ν|E (E2). Therefore, for all {xi}ni=1 ⊂ R (P ) such that

Pn
i=1 xi ≤ x, we

have

g

Ã
nX
i=1

xi

!
≥

nX
i=1

g (xi) and

g

Ã
x−

nX
i=1

xi

!
≥

nX
i=1

g (x− xi) + (1− n) g (x) .

Moreover, for all α, β ∈ [0, 1], g (αx) ≤ g (βx) if α ≤ β: Let E ∈ Σ and
P (E) = βx. By the Lyapunov Theorem there exists Σ 3 E0 ⊂ E such that
P (E0) = α

β
P (E) = αx. Since ν is positive and superadditive, it is monotone.

Thus g (αx) = ν (E0) ≤ ν (E) = g (βx).
We can now use a simple variation of an induction argument of Wasserman and

Kadane [14, p. 1729] that we repeat here for the sake of completeness. Let y = 1
k
x,

for some positive integer k. Then g (y) ≤ 1
k
g (x), as otherwise, g (x) = g (ky) ≥

kg (y) > k 1
k
g (x) = g (x), a contradiction. Similarly, g (x− y) ≤ ¡

1− 1
k

¢
g (x),

since otherwise, we have the following contradiction:

g (y) = g

µ
x− k − 1

k
x

¶
≥ (k − 1) g

µ
x− 1

k
x

¶
+ (2− k) g (x)

> (k − 1)

µ
1− 1

k

¶
g (x) + (2− k) g (x) = 1

k
g (x) ≥ g (y) .
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Suppose now that for some positive integer h < k, g
¡
r
k
x
¢ ≥ r

k
g (x) and g

¡¡
1− r

k

¢
x
¢ ≥¡

1− r
k

¢
g (x) for all r ∈ {1, ..., h}. Consider r = h + 1. Then g

¡
r
k
x
¢ ≤ r

k
g (x): If

not, by setting s = k−h
r
, we reach the contradiction

g

µµ
1− h

k

¶
x

¶
= g

³
s
r

k
x
´
≥ sg

³r
k
x
´
> s

h+ 1

k
g (x) =

µ
1− h

k

¶
g (x) .

Conclude by induction that g (βx) ≤ βg (x) for all rational numbers β ∈ (0, 1).
Next, let β be any real number in (0, 1). Given ε > 0 and a rational number
q ∈ (0, 1) such that q− ε < β ≤ q, then g (βx) ≤ g (qx) ≤ qg (x) ≤ (β + ε) g (x)
for all ε > 0. Hence g (βx) ≤ βg (x).
If ν is not positive, let ν∗ be the positive game provided by Lemma B.2. This

game is totally balanced if ν is totally balanced. Thus

g (βx) = g∗ (βx)− k
NX
i=1

βxi ≤ βg∗ (βx)− βk
NX
i=1

xi = βg (x) ,

which completes the proof of the Claim.

Assume that ν ≥ 0. By Lemmas B.3 and B.4, all measures in core (ν) are
non-atomic and countably additive. There exists α ∈ (0, 1) such that P (A0) =
αP (A). By the Lyapunov Theorem applied to (P,m), where m ∈ core (ν), there
exists Σ 3 Aα ⊂ A be such that P (Aα) = αP (A) and m (Aα) = αm (A).
Because P (A0) = P (Aα) and P ((A0)

c) = P (Acα), we have Aα ∈ A. Hence,
m (Aα) = ν (Aα) for all m ∈ core (ν). In particular,

g (αx) = g (P (Aα)) = m (Aα) = αm (A) = αg (x) .

We want to show that g (βx) = βg (x) for all β ≥ α. If not, then g (βx) < βg (x)
for some β > α and

g (αx) = g

µ
α

β
βx

¶
≤ α

β
g (βx) <

α

β
βg (x) = αg (x) ,

a contradiction. Set P (A) = x. For t small enough, (1− t) ≥ α, so that

∇g (x)x = lim
t↓0
g (x)− g (x− tx)

t
= lim

t↓0
tg (x)

t
= g (x) .

Hence δν (A;A) = ν (A).
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There exists α ∈ (0, 1) such that P (A00) = αP (A) + (1− α)P (Ω). Then,
P ((A00)c) = αP (Ac). Proceeding as before we get δν (Ac;Ac) = ν (Ac). Hence,
ν is coherent at A and, for all m ∈ core (ν),

m (E) = δν (E ∩A;A) + δν (E ∩Ac;Ac) .
This completes the proof for ν ≥ 0. Since ν is superadditive, we can use Lemma
B.1, and thus the extension to Dini games is evident.

B.4. Proof of Theorem 6.6

Part (a): We first prove the result for ν ≥ 0. Under (ii), it is easy to see that
∇g (P (Ω))P (Ω) ≤ g (P (Ω)), that is δν (Ω;Ω) ≤ ν (Ω). Hence, by (5.3) ν is
coherent at Ω, so that by Theorem 5.2, core (ν) 6= ∅ if and only if core (ν) =
{δν (·;Ω)}. As to (i), suppose that k < 1. By the Lyapunov Theorem, for each
α ∈ (0, 1) there is Aα ∈ Σ such that P (Aα) = αP (Ω). We have,

lim
t↓0
g (P (Ω))− g (P (Ω)− tP (Aα))

t
≤ lim

t↓0
g (P (Ω))− (1− tα)k g (P (Ω))

t

< lim
t↓0
g (P (Ω))− (1− tα) g (P (Ω))

t
= αg (P (Ω)) ,

and so∇g (P (Ω))P (Aα) < αg (P (Ω)), which implies∇g (P (Ω))P (Ω) < g (P (Ω)).
Hence, ν is coherent at Ω but δν (·;Ω) /∈ core (ν). By Theorem 5.2, core (ν) = ∅.
This completes the proof for positive measure games. Now, let ν be any Dini game
and let ν∗ be the positive game provided by Lemma B.1. It is easy to check that ν∗

is super-homogeneous of degree k ∈ [0, 1] at P (Ω). Hence, core (ν∗) ⊂ {δν∗ (·;Ω)}
if k = 1 and core (ν∗) = ∅ if k < 1. By Lemma B.2, core (ν) ⊂ {δν (·;Ω)} if k = 1
and core (ν) = ∅ if k < 1.

Part (b): The only non-trivial part is that (iii) implies (ii). By Theorem 6.6,
it suffices to show that δν (·;Ω) ∈ core (ν). Since δν (Ω;Ω) = ν (Ω), this can
be shown by proceeding as in the proof of Corollary 6.2, which needs only that
ν (E) + ν (Ec) ≤ ν (Ω) for all E ∈ Σ.
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