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Abstract

This paper describes a pure-exchange, continuous-time economy with
two heterogeneous agents and complete markets. A novel feature of the
economy is that agents perceive some security returns as ambiguous in the
sense often attributed to Frank Knight. The equilibrium is described com-
pletely in closed-form. In particular, closed-form solutions are obtained for
the equilibrium processes describing individual consumption, the interest
rate, the market price of uncertainty, security prices and trading strategies.
After identifying agents as countries, the model is applied to address the
consumption home-bias and equity home-bias puzzles.

1. INTRODUCTION

This paper describes a pure-exchange, continuous-time economy with two agents
and complete markets. A novel feature of the economy is that agents do not
view all consumption processes or security returns as purely risky (probabilistic).
Rather, they perceive some as ambiguous in the sense often attributed to Frank
Knight.! Agents differ not only in endowments, but also in where they perceive
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mias@troi.cc.rochester.edu. Epstein gratefully acknowledges the financial support of the NSF
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I'We deviate from Knight’s terminology in using ‘uncertainty’ as a comprehensive term. In
our terminology, every process or event is uncertain, and each is either risky or ambiguous (but
not, both).



ambiguity and in their aversion to ambiguity. The equilibrium is described com-
pletely in closed-form. In particular, closed-form solutions are obtained for the
equilibrium processes describing individual consumption, the riskless rate, the
market price of uncertainty, security prices and trading strategies.

1.1. Ambiguity

It is intuitive that in many situations a decision-maker may not have sufficient
information or experience to assign precise probabilities to all future contingen-
cies or states of the world. The Ellsberg Paradox provides an illustration; in
particular, it describes intuitive behavior that is inconsistent with the reliance on
any probability measure as a representation of beliefs. The lesson is that while
a probability measure may adequately represent subjective ‘mean likelihood’, it
cannot at the same time represent also the added dimension of beliefs emphasized
by both Knight (confidence in likelihoods) and Keynes, who spoke of the ‘weight’
of supporting evidence [34]. We refer to this second dimension as ambiguity. The
importance of the Ellsberg Paradox is that it is strongly suggestive of the impor-
tance of ambiguity also in nonexperimental settings and asset markets provide an
obvious instance.

There are obvious questions concerning the incorporation of ambiguity in an
empirically meaningful fashion. Most importantly, “precisely what is ambiguity?”
One answer may be found in [24], which provides foundations for the modeling
described in [10], which in turn is applied below. Chen and Epstein formulate
intertemporal utility in a continuous-time setting that, given the foundations pro-
vided in [24], affords the Knightian distinction between risk and ambiguity. This
is made possible through replacement of the single probability measure of the
standard model with a set of probabilities or priors as proposed by Gilboa and
Schmeidler [26] for an atemporal setting. Because utility is also recursive, we refer
to it as recursive multiple-priors utility.”

Another natural concern is whether ambiguity should be expected to disappear
because of learning. We do not model learning. Rather, we interpret our model
as describing the steady state of an unmodeled learning process during which the
individual has learned all she can about the environment. It is intuitive to us that
even in the long run a decision-maker may not be completely confident that she
knows precisely the probability law describing her environment. Agents in our
economy take such imprecision into account in making consumption /savings and

2See [21] for an axiomatization.



portfolio decisions. (See Section 2.5 for further discussion of learning,)

1.2. Applications

Another motivation for exploring ambiguity is the well-known empirical failures of
the risk-based model. One such failure is the “equity home bias” puzzle whereby
individuals invest ‘too little’ in foreign securities [37]. Naturally, ‘too little’ is from
the perspective of a model where securities are differentiated only via their risk
characteristics. However, if foreign securities are more ambiguous than domestic
ones, then the observed home bias may be optimal. The noted specification
regarding ambiguity is the one we adopt, while interpreting the agents in our
model as representative consumers in each of two countries.

Thus our model can be viewed as a formalization of the suggestion by French
and Poterba that equity home bias may be due to differences in beliefs. They spec-
ulate [25, p. 225] that investors “may impute extra ‘risk’ to foreign investments
because they know less about foreign markets, institutions and firms.” They also
cite evidence in [29] that “households behave as though unfamiliar gambles are
riskier than familiar gambles, even when they assign identical probability distri-
butions to the two gambles.” The widespread tendency to invest in the familiar
has been documented recently in [30], with the home country bias being just one
instance. (See also [27].) We interpret the difference between the familiar and less
familiar as the second dimension referred to by Knight and Keynes and we model
it as a difference in ambiguity.

There exists survey evidence supporting systematic differences in returns ex-
pectations between domestic and foreign investors - investors tend to be more
optimistic about domestic securities (see [42, 35, 43]). While these surveys do not
address ambiguity and they elicit at best a single probability measure from each
subject (rather than a set of priors), their findings are consistent with our model
if we interpret the elicited measures as including an adjustment for ambiguity.
(See the discussion in Section 4.4 for elaboration.) Thus we take these studies as
providing further indirect support for our modeling approach.?

A second (related) application of our model is to cast light on the consump-

3Further supporting arguments may be found in [7, p. 1853] and the references cited therein.
These arguments are offered to support the hypothesis of information asymmetry between do-
mestic and foreign investors and thus ultimately to motivate a noisy rational expectations model
where individuals have common single priors but observe different signals. However, they serve
just as well to motivate a model with heterogeneous sets of priors.



tion behavior that is implied by efficient sharing of uncertainty.* In the standard
model where individuals maximize additive expected utility functions, where util-
ity indices may differ but the probability measure is common, efficiency implies
that every individual’s consumption level is a deterministic function of aggregate
consumption. In an international setting, this implication contradicts evidence
of a high correlation between country-specific consumption growth and country-
specific output growth, leading to what Lewis [37, pp. 574-5] has termed the
“consumption home bias.” However, such correlation is consistent with efficiency
in a world with ambiguity, at least as modeled here.

It may not be surprising to some that the assumption that foreign securities are
more ambiguous than domestic ones leads to a bias towards domestic securities
and to consumption growth that is sensitive to domestic shocks. However, it
merits emphasis that these results are achieved as part of a dynamic general
equilibrium and along with other (overidentifying) predictions that can be used
to evaluate the model. These include: (i) positive correlation between security
returns in the two countries and between returns and consumption growth rates
within either country; and (ii) the country with the larger instantaneous mean
growth rate of consumption has (under a suitable assumption on parameters)
the higher instantaneous variance for consumption growth. A final prediction
concerns an added piece of the equity home-bias puzzle whereby while foreign
equity holdings by domestic residents are small, foreign equity flows are large and

volatile [37, pp. 585-90].

1.3. Related Literature

While there are numerous papers dealing with existence and characterization of
equilibrium in heterogeneous-agent economies (see [14], [16], [13] and [32], for
example), there are fewer that derive qualitative or quantitative predictions (in
a continuous-time setting). We discuss some of these here in order to place our
model in perspective as a tool for understanding the workings of a heterogeneous-
agent economy.

Dumas [17] and Wang [44] consider two-agent economies with complete mar-
kets; the former has linear production while Wang considers a pure exchange
economy. Both authors assume expected additive utility maximization and per-

4The common terminology of efficient risk-sharing is not appropriate here because consump-
tion processes typically involve elements of both risk and ambiguity. Hence, we refer throughout
to the sharing of uncertainty.



mit some differences in utilities. Dumas relies completely on numerical techniques
to analyse his model. Wang provides closed-form solutions for equilibrium con-
sumption, interest rates and the market price of risk and a PDE determining
security prices, but only by assuming a very special relation between the elastic-
ity parameters of the felicities of the two agents [44].

Both cited models admit a representative agent. As a result, implications
for aggregate variables and prices are similar to those delivered by representative
agent models, given a suitable specification of utility for the representative agent.
Further, the standard characterization of efficient consumption allocations (per-
fect correlation across all individuals with the aggregate) is valid for their models.
In contrast, our model does not admit a representative agent and, as noted earlier,
delivers a qualitatively different characterization of efficiency.

Both Dumas and Wang refer to the heterogeneity in utilities as modeling
differences in risk aversion. However, because risk aversion and intertemporal
substitutability are confounded in the standard utility specification, the interpre-
tation of their results is problematic. For example, given the widely used isoelas-
tic within-period felicity function (u(c;) = ¢f/a), a decrease in « increases risk
aversion and simultaneously decreases the willingness to substitute across time.
Therefore, such a model does not permit a clear understanding of which aspect of
preference or which sort of heterogeneity (in risk aversion or in substitutability)
is responsible for various properties of the equilibrium. A degree of disentan-
gling is permitted by the recursive utility (or stochastic differential utility) model
[12]. That model is applied in [18], where analytical solutions are provided for
a specification in which there is heterogeneity in substitutability, but not in risk
aversion.®

Our specification of utility also confounds risk aversion and substitution, but
it disentangles these two aspects of preference from ambiguity aversion. Because
we focus on ambiguity and heterogeneity in attitudes towards ambiguity, this
degree of separation permits the interpretations suggested below. It is noteworthy
that our model with heterogeneity with respect to ambiguity permits analytical
solutions while models with heterogeneity in risk attitudes typically (with the
exception of the special construction in [44]) require numerical analysis.

As discussed in [10] and below (Section 3.3), there is a limited observational
equivalence between our model with ambiguity and a model in which individuals
are expected utility maximizers with heterogeneous priors. Thus our model is

5See [40] for a discrete-time model that admits also differing risk attitudes but where numer-
ical techniques must be adopted.



related to models with heterogeneous priors such as [11], [45] and [3], where closed-
form solutions are also available. One difference is that these models assume
incomplete information and Bayesian-rational inferences from observables, while,
as mentioned earlier, we do not model learning. Rather we focus on a state where
individuals have learned all they can about their environment and yet ambiguity
persists. In Section 2.5, we argue that the persistence of ambiguity is at least
plausible. While the reader may wish to reserve judgement on that aspect of
our model, we emphasize at this point the particular appeal of incorporating
ambiguity once one opens the door to heterogeneous beliefs, or homogeneous but
wrong beliefs as in the discrete-time models [1] and [9]. In an environment in
which there 1s disagreement about the probability of future states, an individual
may question the reliability of her single prior and may wish to make decisions
that are robust to errors in the prior. Such self-awareness and a desire for robust

decisions lead naturally to consideration of sets of priors.®

1.4. Outline

The paper proceeds as follows: Recursive multiple-priors utility is described in
the next section. The economy and equilibrium are described in Section 3. The
nature of equilibrium and the model’s application to the home bias puzzles in
equities and consumption are discussed in Section 4. Proofs are relegated to an
appendix.

2. RECURSIVE MULTIPLE-PRIORS UTILITY

In this section we outline a special case of recursive multiple-priors for a single
individual that will be used later in the equilibrium model. The reader is referred
to [10] for further details and for justification for asserted interpretations.

2.1. Consumption Processes

Time varies over [0,7] and uncertainty is represented by a probability space
(Q,F, P). Here, unlike in standard models, P represents neither the true objec-

®Models of ‘robust decision-making’ are described in [28] and [2] for discrete and continuous
time settings respectively. As explained in [10], these models are similar in spirit but different in
formal details from the recursive multiple-priors model. In particular, and in spite of their inter-
pretation as modeling ‘robust decision-making’, this interpretation is lacking decision-theoretic
foundations.



tive measure nor the subjective measure used by the individual being described.
Its role is to define null events; there will be no disagreement or ambiguity about
which events are null. Tet W = (W;) be a standard d-dimensional Brownian
motion defined on (Q,F, P) and F = {Fi}o<t<r the (augmented) filtration that
it generates, representing the information available to the individual. Assume
F = Fr and that Fy is trivial. All processes in the sequel are progressively mea-
surable with respect to IF and all equalities involving random variables (processes)
are understood to hold dP a.s. (dt @ dP a.s.).

There is a single consumption good at each instant. Consumption processes
lie in C, a subset of the set of positive progressively measurable processes that are

also square integrable (Fp [ fOT c? ds} < 00).

2.2. The Set of Priors

The first step in specifying a utility function on C is to specify the set of priors
P on the state space (Q, Fr). Because all priors in P are taken to be mutually
absolutely continuous with respect to P, they can be defined via their densities.
These, in turn, may be defined by use of density generators, which is how we refer
to any R%valued process 6 = (6,) satislying

sup | 00| < ky, i=1,...,d,
¢
where k = (ky,...,kq) | is a vector of non-negative parameters. Let © be the set

of all such processes. Fach density generator 6 generates a P-martingale (2¢) via
the equation

dzf = =200, - dW,, 2§ = 1, (2.1)

or equivalently,

1 t t
20 = exp{—= | 0 H2 ds — O, dWys, 0<t<T. (2.2)
! 2 Jo 0

Because 1 = 2§ = FE[29], 2% is a P-density and thus determines a probability
measure Q¢ on (Q, Fr) via
dQ’

Finally, the set of priors is
P={Q%:0€ 0 and Q° is defined by (2.3)}. (2.4)

7



When k =0, then P collapses to the single measure P as in a model without
ambiguity. More generally, P is a nonsingleton that expands as any component
of k is increased. The natural interpretation is that ambiguity increases with k,
or alternatively, that ambiguity aversion increases with x.”

For further clarification of our construction, think of a discrete-time event tree
where nature determines motion through the tree and where F; describes the set
of terminal states or events. Fix a reference probability measure P on Fp. At
each time and state in the tree, the decision-maker’s conditional beliefs about the
state to be reached next period are represented by a set of densities with respect
to the conditional measure induced by P. The set of densities determines a set
of conditional probability measures over the state next period. Finally, the sets
of conditional-one-step-ahead measures for all time-state pairs can be combined
in the usual probability calculus way to deliver a set of measures on Fr. (In this
construction, admit all possible selections of a conditional measure at each time-
state pair.) The definition (2.4) implements this construction in continuous-time;
a density generator 0 is a process that delivers the counterpart of the (logarithm
of) a conditional-one-step-ahead density.

Note that by the Girsanov Theorem, (Wt + fot 0, ds) is a Brownian motion
relative to Q. Thus the multiplicity of measures in P can be interpreted as
modeling ambiguity about the drift of the driving process. The drift may be zero
(0 = 0) but another possibility according to P is that the ‘true’ measure is such
that (W} + kit, W2 + kyt) is a Brownian motion, corresponding to 0; = (K1, kg) "
for all t.

2.3. Utility

Define a utility process (V;(c)) for each consumption process ¢ in C as follows:

T
— min E —B(s—t) d
Vile) = min QM € u(cs) ds

]-}1 . (2.5)

"Given the subjective nature of ambiguity, there is an unavoidable confounding between the
extent of ambiguity and the degree of aversion to it. For example, it is impossible to distinguish
between the absence of ambiguity on the one hand and the presence of ambiguity combined with
indifference to it on the other.



Under specified assumptions on u(-), the utility process is well-defined and it is
recursive in the sense that®

V, = gn% Eqg l/ e Pl u(cs)ds + eﬁ(Tt)VT‘ ‘7'}1 ,0<t <7 <T.
€ t

Because utility also has the ‘min-over priors’ form of the multiple-priors model
[26], we refer to (Vi(+)) as the recursive multiple-priors utility process. Abbreviate
Vo(+) by V(-) and refer to it as recursive multiple-priors utility.

Recursivity ensures dynamic consistency just as in the standard model with a
single prior, which is obtained as the special case k = 0. Recursivity follows from
the fact that the utility process solves (uniquely) a backward stochastic differential
equation (BSDE), that is, for each ¢, there exists a unique process (Vi(c),o.(c))
satisfying, for 0 <t <1,

Ve = [~ule) + AVi+max 6, o] di+ o0 dWe, Vi =0, (2:6)
€

Note that the volatility of utility o,(c) is determined as part of the solution to the
BSDE;; it plays a key role in the sequel.

Additional conditions deliver a range of natural properties for utility. For
example, if u is increasing and (strictly) concave, then so is each Vi(+).

The supergradients of utility are important for characterizing security prices
and equilibrium more generally. A supergradient for V' at the consumption process
¢ is a process () satisfying

V() = V(e) < B l /0 o <c;—ct)dt] , (2.7)

for all ¢ in C. Because V' (= ;) is a lower envelope of expected additive utility
functions (2.5), the well-known structure of supergradients of the standard util-
ity function immediately delivers supergradients for V' [10, Section 4.7]. More
precisely, define P, to be the set of measures in P such that

V(c) = Egp- UOT eﬁtu(ct)dt] : (2.8)

8Sufficient conditions are that w be Borel measurable and that E [ fOT u? (cr) dt} < oo for

all ¢ in C. Below, where we take u to be the log function, this square integrability condition
determines the domain C. Fortunately, the aggregate endowment process specified there lies in
C, implying that we can safely proceed in the equilibrium analysis under the assumption that
for all intents and purposes the foundations for utility provided in [10, Theorem 2.3] apply to
our model.



Then an appropriate envelope theorem delivers (assuming that « is differentiable)
that any process (m(c)) of the following form is a supergradient for V at c:

dQ*
dP |y,

, @ eP. (2.9)

However, Q* € P, if and only if Q* = Q? for some 6" that solves (for every t)
the instantaneous maximization appearing in (2.6), that is,”

" € ©, ={(0:) : 0, = k @ sgn(o,) all t}. (2.10)
Conclude, using (2.3), that each (m(c)) of the form
m(c) = e Pl (e) 20, 0 € O, (2.11)

is a supergradient for V' at ¢. Though there may be other supergradients at
some processes ¢, and these would lead to different equilibria below, we restrict
attention to equilibria corresponding to (2.11).

Note finally that the BSDE (2.6) may be simplified to

dVi = [—ulc) + BV; + k- | oy || dt + o - dW,, VP =0, (2.12)

where for any d-dimensional vector x, | z | denotes the vector with i"* component
A

2.4. Example

We can compute utility explicitly for consumption processes ¢ of the form
degfoy = podt + s°- dW,

where 1 and s¢ are constant. Suppose that u(c;) = (¢ —1)/a, for @ < 1, where
a = 0 corresponds to the log specification. Then

_ a 1 (-5 1) L [p — pelr A1)
Vile) = Ag(cef = 1) Ja Bp  a + €’ Tﬂp o

?

®For any d-dimensional vector z, sgn(zx) is the d-dimensional vector with i*" component equal
to sgn(z;) = | ;| /a; if 1, #0and = 0 if z; = 0. For any y € R?, y ® sgn(x) denotes the
vector in R? with ** component y;sgn(x;) .

10



where

A = p ' [1 = exp(p(t = T))] and
(b= B)/a = — (4 — (1—a)s*- /2 — w | 5°).

The associated volatility is
or = Acy s-.

Evidently the utility of the given consumption process depends on the initial
level of consumption and on the adjusted mean growth rate p — (1 —a)s®-s/2 —
K+ | 8¢ |, where the adjustment is both for risk (via the second term) and ambiguity
(via the third term). We turn next to a discussion of ambiguity.

2.5. Ambiguity and Learning

The equilibrium model to follow deals with an economy in which the Brownian
motion is 2-dimensional (d = 2) and for which, for each individual, at least one
component of the ambiguity parameter k is zero. Thus adopt these specializations
also for the present discussion, taking x = (0,%) .

All measures in P agree on events generated by the first component process
W1l = (W}) and thus we interpret these events as risky and consumption processes
that are adapted to o (W} : s < t) are interpreted as involving only risk. Denote
the set of such processes as C™**. However, there is disagreement within P about
all other events. This leads, in particular, to the interpretation of consumption
processes that are adapted to o (W2 : s <) as being ambiguous. An increase in
% has no effect on the ranking of risky processes. Therefore, we can express the
behavioral significance of a change in ¥ in the following way: Let K* > K and let
V*(-) and V(-) be the corresponding utility functions. Then for all ¢ in C and ¢"***
in Crisk7

V(™) > (3) V() = V(™) > (5) V¥c).

That is, whenever V rejects the ambiguous process ¢ in favor of the risky and
hence unambiguous ¢"**, then so does V*. In a natural sense, therefore, V* is
more ambiguilty averse than V. We emphasize that the change from & to k* does
not affect attitudes towards risky consumption processes, supporting our earlier
assertion that our model of preference delivers a degree of separation between
attitudes towards risk and attitudes towards ambiguity.'’

U The degree of risk aversion is modeled by the concavity of the felicity u(-); however, the
latter will be held fixed in our equilibrium model where we adopt the logarithmic specification.

11



In a model with ambiguity, where individuals do not understand the driving
process well enough to assign precise probabilities to events, the question noted
in the introduction arises, namely, “why don’t they learn?” We do not model
learning; for example, the parameter k is assumed constant and does not respond
to data. We interpret our model as describing the steady state of an unmodeled
learning process during which the individual has learned all she can about the
environment. Moreover, we argue that ambiguity may very well persist in such
a steady state, given an appropriate assumption about the individual’s ex ante
view.

Because the Ellsberg Paradox is the classic illustration of ambiguity, we recast
the stochastic environment in terms of Ellsberg urns in order to consider briefly
the question of learning. Thus suppose that W, is real-valued (d = 1) and think of
motion along the real line occurring in discrete-time. At each time ¢ and at each
position, there is an urn containing 100 balls, either red or black. No information
is provided to the decision-maker about the color composition; she is told only
that the total is 100 for each urn. A ball is drawn at random and motion is one
unit to the right or left according as the color of the ball drawn is red or black.
A different urn is used at each ¢ but the decision-maker has no reason to believe
that the color composition is different for different urns. Finally, because she cares
about ambiguity, her ex ante view is expressible by a nonsingleton set of measures
for each urn.

The way in which ambiguity changes over time depends both on the ‘truth’
and on how the urns are related according to the decision-maker’s ex ante view.
For simplicity, suppose that in fact there are 50 balls of each color in each urn, so
that the true law of motion corresponds to a random walk. As for the subjective
ex ante view, suppose first that she views the urns as being physically identical
(having the identical color composition). Then observations of realized Wy’s are
viewed as though they were repeated samples from a single urn and it is intuitive
that ambiguity will vanish and that the truth will be learned asymptotically.

At the other extreme, however, that the individual views the urns as ‘inde-
pendent’, corresponding to a view of the data generating mechanism as changing
through time in a way that she does not understand and cannot hope to learn.
Then observed realizations correspond to draws from independent urns and intu-
ition does not suggest that ambiguity would disappear asymptotically. Marinacci
[38] proves a form of the LLN appropriate for this setting in which the connection
between empirical frequencies and asymptotic beliefs is weakened to a degree that
depends on the extent of ambiguity in prior beliefs. Asymptotically, the decision-

12



maker believes that the limit frequency of any given color lies in an interval, where
the interval collapses to a point if there is no ambiguity in prior beliefs but not
more generally. This limiting situation is the one that we model.t

3. TWO-PERSON EQUILIBRIUM

3.1. The Economy

Information structure and preferences. The primitive probability space is (2, Fr, P).
Suppose the associated Brownian motion is 2-dimensional, W, = (W}, W?2). We
assume a population of two individuals. They have the common information
structure represented by the augmented Brownian filtration F = {F;}o<t<r. In
particular, the differing beliefs of the two individuals described below are not
due to asymmetric information; they reflect differing prior views about the en-
vironment.'? Note that the assumption that consumer i observes realizations of
both W* and W/ does not contradict the intuition described in the introduction
whereby i is less familiar with securities that are driven primarily by W7 than with
those driven by W*. For example, Canadian sports fans have access to scores and
satellite telecasts of soccer matches. However, typically they do not pay much
attention to them with the result that many feel much more familiar with hockey
and prefer to bet on hockey rather than on soccer matches.

There is a single perishable good (the numeraire), leading to the consumption
set C. Fach individual has a recursive multiple-priors utility function on C and for
i= 1,2, ¢ and (V/()) denote i’s consumption and utility processes. Each utility
function has the form (2.5) with common rate of time preference 3 and felicity
function

u(cy) = logey. (3.1)

Preferences differ, however, because individuals have different sets of priors, that
is, different ignorance parameters x*. We assume that

k' = (0, k1)" and K? = (kg, 0)'. (3.2)

"'The general recursive multiple-priors model in [10] permits learning. This aspect of the
model is being developed further in [22]; they model a decision-maker who views some aspects
of her environment as learnable and others as not learnable. See [5] for the argument that
economic time series may be generated by stochastic processes that could never be discovered
from the data that they generate.

12See [39] for a discussion, in a Bayesian setting, of the merits of differing priors, rather than
asymmetric information, as a basis for differing beliefs.
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The interpretation is that 7 is more familiar with ‘her own’ component process W*
than with the other component W7.13 In extreme form this leads to no ambiguity
for i about W*, though W/ is ambiguous for her.!* A concrete setting where this
specification seems natural is where i is a representative consumer in country % in
which W? is the driving state process. Henceforth we adopt this interpretation
and refer to individuals alternatively as countries.

We argued in Section 2.5 that the persistence of ambiguity is plausible given
priors that reflect initial ambiguity, even given observability of realizations of the
(domestic and) foreign state processes. At a theoretical level, this refutes the
suggestion that ambiguity about foreign markets should be unimportant because
of improved information about foreign security markets that is available in recent
years. At a less formal level, many have claimed that it is not at all clear that
investors could learn the true statistical model driving security returns even where
one exists. For example, French and Poterba [25, p. 225] write that “the statistical
uncertainties associated with estimating expected returns in equity markets makes
it difficult for investors to learn that expected returns in domestic markets are not
systematically higher than those abroad.” In such an environment, where there
may be less than complete confidence in estimated moments of expected returns,
the investor may not treat these estimates as true in making portfolio decisions.'®
Rather she may be aware of the possibility that the estimates are wrong and thus
seek to make robust decisions. As suggested in the introduction (Section 1.3), the
multiple-priors model can be interpreted in these terms.

Securities markets. Investment opportunities are represented by a locally riskless
bond earning the instantaneous interest rate r and by two securities, with respec-
tive (non-negative) dividend streams Y;! and Y;2. Thus cumulative dividends are

13We write the second component of k' as k1 to indicate that it is the ambiguity parameter
for individual 1, though it relates to ambiguity about W?2. When referring to individuals ¢ and
7, it is understood that @ # j.

14To describe i’s set of priors P' more formally, write Fr = FL © FZ, where Ff =
o (WSZ 18 < t), and denote by P() the first marginal of P. Then P! consists of all products of
the form P @ Q, where Q is a measure on f% that is consistent with 1’s ambiguity about W2,
as measured by y; that is, @ is defined by the one-dimensional counterpart of (2.3). Similarly
for P2.

L5See [37] for a discussion of some of the literature on portfolio choice under estimation risk
where it is assumed that estimates are treated as true.
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described by

(3.3)

Hr_ ) fo;ygds, IN Tyfds), fo<t<T
! (1, [, Yids, [, Y2ds) ift="T.

Because some of our results do not require that we specify further the nature of
the individual processes (Y}'), we defer further assumptions until they are needed
(Section 4.4). In anticipation of the more detailed specification, the reader might
think of (Y}) being driven ‘primarily’ by the state process (W}) associated with
country 1.

At each t, securities are traded in a competitive market at prices S; = (S?, S}, S52)"
denominated in units of consumption. In equilibrium, S is an Ito process so that
the gain process S 4+ D is also an Ito process,

d(S, + D) = pldt + sFdWy,

where p¢ is R3-valued and s& is R**2-valued. A trading strategy is an R3*-valued
process v = (7,), satisfying

T T
| bl + [l s06) e < o
0 0

This condition insures that the stochastic integral f v, - d(Se+ Dy) is well defined.

Note that v, = (’Yo,ta Y1t ’yQ’t>T, where 7, , represents the number of shares of the
bond (n = 0) and securities 1 and 2. The set of all trading strategies is denoted
r.

Endowments and objectives. The aggregate endowment or output process (V;) is
assumed to follow the geometric law

dy, )Y, = p¥dt+s" -dW,, (3.4)
where p¥ and s¥ = (s}/, s?)T are constants. Aggregate dividends do not exhaust
output. Rather we assume that

}/t = }/tl + }/152 + q)tv
where (®;) is the part of aggregate output that is not traded.'®

18 The presence of a nontraded endowment complicates the model somewhat. We include it
not for greater generality but primarily because, as explained in Section 4.4, it is unavoidable
given the intuition we are trying to capture with our model and given our desire to obtain
closed-form solutions.
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FEach country owns 1/2 of the nontraded endowment (®;). Initial share hold-
ings are given by

/yl = (077%,0775,0)T and 72 = (07 1- 7%,07 1- 7;,0)T;

the assumption of zero initial bond holdings is made purely for simplicity.
Given a security price process S, individual i solves

sup V(e (3.5)

(et,yt)eCxT

subject to

t t
St : %Z; = SO : 7(i) + / 72 ' d<Ss + Ds) - / <€; - %(I)s> dS, le [O,T], (36>
0 0

and a credit constraint that is specified in Appendix A (see (A.15)).
The preceding defines the economy

&= ((QUFF P), (W), (u,0,57),_,, (D), 00). (37

3.2. Equilibrium

We define two notions of equilibrium. An Arrow-Debreu equilibrium for the econ-
omy € is a tuple ((¢");—1,2,p) where p is a non-negative real-valued (state) price
process, ¢ solves (for i = 1,2)

sup V(') subject to

etcC

T T T
B l / pa (€5 = 524) d81 < Vol l / psY; d81 +Y50F l / psY; dS] (38
0 0 0
and where markets for contingent consumption clear, that is,
et =Y.

A Radner equilibrium for the economy £ is a tuple ((c%,7")i=1,2, S) such that
given the security price process S, (c’,7") solves problem (3.5) for i = 1,2 and
markets clear:

’Y% + ’Yf = (0,1, 1)T forallt and ¢! +¢%2 =Y. (3.9)
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According to this definition, individuals make consumption and portfolio plans
for the entire horizon at t = 0. Because of the sequential nature of markets, one
may ask whether they have incentives to revise plans as time proceeds. However,
the recursivity of utility, pointed out earlier, ensures that plans will be carried
out.

The riskless rate and the bond price are related by

re dt = dSP /Sy,
Let the returns process for risky securities be

dSr +Yrdt
AR} = tg—nt n=1,2, (3.10)
t

and write [, = (R%,R?)T,
th = bt dt —I— St th, (311>

where b; is R?-valued and each s; is a 2 X 2 matrix. The equilibrium has complete
markets (in the usual sense) if s; is invertible. In that case, the state price process
(p;) satisfies

—dp [ pe = redt + 0, - dWy, po =1, (3.12)

where 1, = s, 1(bt —r1). To permit later use of the martingale approach, assume
that r, and 7, are uniformly bounded.!” Typically, 7, is referred to as the market
price of risk. We refer to it as the market price of uncertainty to reflect the fact
that (W;) and hence also security returns, embody both risk and ambiguity.

We establish existence of a complete markets equilibrium and characterize it
‘almost’ completely in closed form, under the assumption that'®

0<k; <sy and 0< Ky <s. (3.13)

Because these restrictions limit the ambiguity parameters to be ‘small’, they seem
uncontentious. Moreover, they are crucial in delivering closed-form solutions. The
derivation of even a limited analytical solution may seem surprising, (it was to

17 As shown in Theorem 3.1, they are uniformly bounded in equilibrium.
18 The positivity assumption for volatilities 83/ is without loss of generality because the negative
of a P-Brownian motion is also a P-Brownian motion. In other words, the assumption and
following theorem can be restated to apply to any parameters satisfying 0 < ; <| 83/ |. The

current statement is adopted for simplicity.
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us), because supergradients for recursive multiple-priors utility depend on the
volatility of the utility process (see (2.10) and (2.11)), about which one might
expect typically to know very little. However, under (3.13), we show that the
density generators that support equilibrium consumption processes are

0;' = (0,k1)"  and 0> = (k2,0) for all ¢, (3.14)

which explicit expressions are the key to the availability of an analytical solution.
The description of equilibrium makes use of the process

St = exp {% ((;{1)2 _ (,{2)2> t+ kW2 — KQth} (3.15)

and A, the relative Pareto utility weight for country 2, which is given by (3.14),
(2.2) and

B (A aloV Y eV Y - YD

(3.16)
B |y e P2 (oY Yo+ o¥? Ve + 300/ Y5) dt]

It is useful also to introduce the (shadow) price of the nontraded endowment

— 1 T
St = —F [/ psq)s ds ’ ft} .
yg t

given by

Write .

Define the (total) wealth process for i by

Theorem 3.1. Assume (313) and define ¢; and X\ as above.
(i) There exists an Arrow-Debreu equilibrium ((¢');—1 9, p) where

1 ASt
1 2
= Y, = Y, d 3.19
Ct 1+)\gt ts Ct 1+)\gt t an ( >
—pBt e*i
C S i=1or2 (3.20)

bt = i N 7
(¢t / cb)
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Here 0** and 20" are defined by (3.14) and (2.2).
(ii) Define prices of the two risky securities by

1 T
Sy =—F l/ p Y dT ‘7-}1 ., n=1,2, (3.21)
Pt t
and define the bond price by
1
Sy = ;E[pT | Fel. (3.22)
¢

Let s; be the returns volatility matrix as in (3.11). If s; is invertible, then the
Arrow-Debreu equilibrium ((¢*);—1,2,p) can be implemented by the Radner equi-
librium ( (c*,7")i=1,2, S) described as follows:

(a) The interest rate ry satisfies

1
re= B4 — ¥ .Y — [;{23{ — }C/—t (/{23{ — /ﬁsg)] , (3.23)

¢

the market price of uncertainty n, is
2

Y KaCy /Yy
=5 + 3.24
m ita (324

and the state price process (p;) satisfies (3.12).
(b) Excess returns for the two risky assets are

2 1
C C
1 _ 1 Y t 11 t 12
bt — Ty = St 8 —|— KQ?St —|— I{1?St s (325>
t t
1 2
C C
2 _ 2 Y t .22 t .21
by —re = ;-8 +<K1?8t +Ii2?8t>,
t t

where s is the n'" row of s;, and s?™ is the (n,m) element of s.
(¢) Wealth processes satisty

X, =8" (1 — e T 0) ¢l (3.26)

(d) Trading strategies for the risky securities are given by’

Sid —1 - =1 Ky 52t
Sk | = ReD e e e R g [ T | e

Y Trading strategies for the bond are described in the proof of the theorem.
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StV 2/, JTy-1 1. T\-1= | 32 K2 —s7?
) — b _ 1 N s t
l vag’t Xt<3t3t> ( ¢ — 1el) 2<3t> St + X,y det(st) St12 ;

where S;, the volatility defined in (3.17), is given by

5= Vs — (s S - (s SE (3.28)

Given security prices as in (3.21), equations (3.10)-(3.11) determine the equi-
librium drift and volatility of returns b; and s;. Thus the characterization of
equilibrium provided by the theorem is complete, apart from the gap regarding
the invertibility of s;. For the particular specification of the individual processes
(Y}") described below (Section 4.4), we derive explicit solutions for S; and confirm
the invertibility of s;, providing thereby a complete characterization of equilib-
rium. First, however, we discuss features of the equilibrium that are valid at the
general level of the theorem.

Consider briefly equilibrium in the benchmark model k1 = k9 = 0. Because
there is no ambiguity and (representative individuals in) both countries use the
single and common probability measure P, equilibrium has the familiar form. For
example, each country consumes a fixed proportion of the world output, imply-
ing equal growth rates of consumption. The riskless rate and market price of
uncertainty are constant and depend in the familiar fashion on properties of the
aggregate endowment process and excess returns for the risky securities are de-
termined as in the representative-agent C-CAPM. Finally, each country’s (value)
portfolio of risky securities consists of two components, the mean-variance-efficient
portfolio Yz(stsj)fl(bt — 1) and a component —%(sj)flgt that hedges the risk
due to the nontraded endowment.

3.3. Observational Equivalence

Before turning to a detailed discussion of equilibrium including, in particular, the
role of ambiguity, consider an alternative interpretation of the equilibrium that
does not involve ambiguity.

The supergradient (2.11) is identical to that for an expected additive utility
maximizer who uses the single prior Q* (see also (2.8)). It follows immediately,
that our model’s predictions can be generated alternatively by a model without
ambiguity and in which beliefs are probabilistic, heterogeneous and (if P is the
true measure), wrong. More precisely, the equilibrium described in the theorem
is an equilibrium also for the economy in which the sets of priors P! and P? are
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replaced by the singletons Q! and Q? respectively, where these are defined by
their densities

dQ? 1
L SRS

dQ? 1
% :exp{—E(/@)QT — KQW%}.

Some insight into these measures and the difference between them is provided by
noting (recall the end of Section 2.2) that (W', W2 + kit) is a Brownian motion
under Q! and (W} + kot, W?2) is a Brownian motion under Q2.

We have already commented in Section 1.3 on the relative merits of our ap-
proach based on ambiguity. It seems to us to be: (i) less ad hoc than basing an
explanation of behavior on a particular specification of heterogeneous and erro-
neous beliefs; and (ii) more coherent in that it models individuals as being aware
of the possibility that any single probability measure that they consider could be
wrong and seeking, therefore, to adopt robust decisions.

A final point that has not been made previously (see [10], however), is that
the above observational equivalence is not complete. In the context of the equity
premium puzzle, for example, one employs informally auxiliary ‘data’ regarding
the degree of risk aversion. One aspect of the noted puzzle is that to explain
historical averages of the excess return to equity one needs to assume a degree of
risk aversion in excess of what seems plausible given introspection and/or casual
observation. However, if only part of the excess return to equity is a premium
for bearing risk, (with the remainder being a premium for bearing ambiguity),
then only a smaller degree of risk aversion is required and consistency with other
evidence may be possible. In this way, the (re)interpretation of security returns
as involving ambiguity in addition to risk can matter for empirical performance.

4. THE NATURE OF EQUILIBRIUM

In the sequel, references to ‘mean excess returns’, covariances or other moments of
distributions induced by stochastic processes are intended relative to the measure
P. The reader may wish to think of P as being the true measure.

4.1. Which Country Faces More Ambiguity?

Naturally, our interpretation of the equilibrium described in the theorem centers
on the presence of ambiguity. One aspect of the presence of ambiguity is the
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question “which country faces more ambiguity?” We will see that the answer
influences several properties of equilibrium.?”

It is important to understand how the above question differs from the issues
addressed in Section 2.5. There we showed that given a preference order of the
sort employed in our equilibrium model, where k = (0,%;)" (or kK = (k2,0)"), an
increase in Ky (or In Kg) can be interpreted as an increase in ambiguity aversion.
This justifies in part our interpretation of some expressions in the theorem as
reflecting ambiguity aversion on the part of either 1 or of 2. In particular, such a
change in k; models a hypothetical change in the single country 7. However, it is
not relevant to a comparisons of the two countries; for example, it does not justify
interpreting k9 > Ky as “country 2 is more ambiguity averse than 1”. The reason
is that the two countries perceive ambiguity in different parts of the state space (1
views only W? as ambiguous, while 2 views only W' as ambiguous), while the two
hypothetical versions of country 7 dealt with in Section 2.5 agree on the identity
of the ambiguous events.

Our answer to the question posed at the start is that country 2 faces more
ambiguity than does country 1 if

Kes] — kKysy > 0. (4.1)
We use the aggregate output process (Y;) to measure ambiguity. Thus an informal
justification for the suggested interpretation of (4.1) is that it is true if s is
sufficiently large relative to sy and in that case, aggregate output is driven mostly
by W1, which is unambiguous for country 1 but ambiguous for 2.
For a more formal argument, let (Y;*) be the ‘reference’ process satisfying

dY; /Yy = prdt + (s + 53 ) dW,, Y5 = Yo,

where the drift p* is chosen so that country 1 is indifferent between (Y;*) and
the aggregate output process (Y;). Because (Y}*) involves no ambiguity for 1, it
serves as a ‘risky equivalent’ process for (Y;) from the perspective of country 1
and p¥ — p* measures the ‘cost’ of ambiguity in (V;) for country 1. Because both
processes are geometric, we can apply the illustrative calculation in Section 2.4
to compute (from the hypothesis that the two processes imply the same utility at
time 0) that

p’ — s sV /2 — kysy = pt— (si/—l—s%/)Q/Q.

20Put another way, the sign of mgs}/ — mls%/ affects the qualitative properties of equilibrium
and our goal here is to suggest an interpretation for this sign.
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Similarly for country 2 use the ‘risky equivalent’ process (Y;**), where
AV = e (Y s AWE YT = Y

and calculate that
p =88 )2 — Res) = ™ — (s + 35)2/2.

Conclude that (4.1) is equivalent to p* > p**. Because the two reference risky
processes (Y;*) and (Y;**) involve the same risk for both countries, (the measure
P applies in both cases and the identical probability distributions are induced),
we are justified in interpreting p* > p**, or equivalently,

NY _N* <MY _M**7

as expressing that the cost of ambiguity for 1 is smaller than that for 2.

4.2. Consumption

Equation (3.19) makes explicit the implications of ambiguity for the equilibrium
(or efficient) allocation of consumption. Individual consumption levels depend
not only on the aggregate endowment but also on country-specific shocks W} and
W2. This dependence is readily understood as we now show.

Let 0! and 6*? be the density generators given in (3.14) and qu and QG*Q the
corresponding measures as in (2.3). Given (2.8) and the discussion in Section 3.3,
it is natural to refer to Qe*l and QQ*Q as ambiguity-adjusted probabilistic beliefs of
the two individuals. We noted above that (W}!, W2 + kit) is a Brownian motion
under Qe*l. In particular, under qu the unconditional distribution for W2 is
N(—kqt,t), while it is N(0,¢) under P. This leftward shift as a result of country
1’s ambiguity about W?2 is intuitive. Roughly, the assumption that aggregate
output covaries with W? (sy > 0) implies that higher values of W} are better
for both countries and particularly for 1.2! As a multiple-priors decision-maker,
country 1 evaluates prospects through the worst-case scenario. Thus she is led
to attach relatively less weight (than under P) to good realizations of W2, which

*1
explains the leftward shift and the related fact that the restricted density d?z;

Fi
is decreasing in W7.

2Hn precise terms, the claim is that (under the parameter assumptions in the theorem) the
equilibrium utility process for country 1 has positive volatility with respect to WE This is
equivalent to (3.14), which is the key to the theorem.
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The ambiguity adjusted probabilities affect consumption because, as in (2.9),
i’s marginal rate of substitution between time 0 and time ¢ consumption is
e Pul(d) Q"
' (ch) dpP

?

MRS, =

T

with the density term acting like a preference shock that redistributes weight away

from states where W} is large. Thus, if we define (¢;) as in (3.15), or equivalently
by22

dQ°” /dp

St = T
" dQeT /dP

?

T

then (i) ¢; is increasing in W2 and decreasing in W}'; and (ii) a larger value for
G¢ increases M RSS’t relative to M RS&t, inducing a shift in time ¢ consumption
towards individual 2. Given the log utility specification, the latter effect takes the
precise form
o _ala

¢ [ co
that is, ¢; equals the relative average consumption growth rates of the two coun-
tries. Because ¢; measures the difference in ambiguity-adjusted beliefs (restricted
to JF;), we refer to (g;) as the disagreement process (of 2 relative to 1).%

The above simple intuition explains also other nonstandard features of equi-
librium consumption processes. First, the presence of disagreement leads to the
‘crossing’ of individual consumption paths in some realizations; that is, even if
A < 1 and thus ¢} > c3, country 2 consumes more than country 1 at times
and states where ¢; is sufficiently large. Assuming that P is the true mea-
sure, then, conditional on F,, the (log) consumption ratio log (¢? /¢}) is nor-
mally distributed with mean [log (c2/cl) + %((/{1)2 — (k9)?) (t — T)] and vari-
ance [((k1)% + (k2)?) (t — 7)]; it is a P-martingale if k1 = k9.2*

Unlike the case in the standard model, the consumption share ¢!/Y; of each
country is stochastic. The behavior of these shares is readily deduced from Ito’s

22 Equivalence follows from (2.2) and (2.3).

23 Note that this disagreement is endogenous and is determined as part of the equilibrium.
This differentiates it from the disagreement process in Basak’s model [3].

?4Because each individual consumes a deterministic and common fraction of wealth in equi-
librium (see (3.26)), the log wealth ratio has similar properties.
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Lemma - d(c}/Y;) is positively correlated with dY; if and only if 1 faces less
ambiguity than does 2 in the sense of (4.1). This is true, for example, if s] is
sufficiently larger than sj . Then aggregate output is driven mostly by W1, which
situation is favorable for country 1 because her ambiguity concerns only the other
process W? and country 1’s consumption increases more than proportionately
with total output. The mechanics underlying this effect stem from the following
relation between output growth and the disagreement process:

ds, dY, v v
= =) == < 0.
COVy < LY, K981 + K1Ss

In light of the connection described above between (s;) and marginal rates of
substitution, the instantaneous change in the ratio M RS&’t /M RS&t covaries with
dY;; thus dY; being positive leads to an increase in the share of consumption going
to country 1.

Turn to instantaneous mean growth rates. Ito’s Lemma applied to (3.19) shows
that dci/ct, i = 1,2, have drifts

C2

it = oo+ (B - )] a2)

1 c

c ¢ C2 j
it = =g e (e - )]

Evidently, mean growth rates differ from one another and from the rate for aggre-
gate output, with one country growing faster and the other slower than aggregate
output. To identify the faster growing country, assume for simplicity that

K1 = R9. (43>

Then
2 1

c c Cy — C
et =i = sy =) o+ () (S5, (14)

Thus s > sy (which is here equivalent to (4.1), that is, 2 faces more ambiguity
than 1) contributes to a larger mean growth rate in country 1 and this effect is
larger the larger is the common degree of ambiguity aversion. The second com-
ponent on the right is time varying and stabilizing in that it raises the relative
mean growth rate of the country with lower consumption. The difference in mean
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growth rates is an increasing function of A (for given realizations of W). Conse-
quently, the noted difference increases if initial endowments are redistributed in
favor of country 2.%

Second-order moments of consumption processes are also nonstandard. Once
again, by Ito’s Lemma, the volatilities of dci/ci, i = 1,2, are given by

2

ol Yy Cp | RKe

s = s+ Y, [ e ] , (4.5)
1

62 _ Y Ct | —HRe

S; = s + Y, [ Ky ]

Thus, from (3.13), consumption growth rates in the two countries are positively
correlated, as in the standard risk-based model. However, unlike the standard
model, the country-specific growth rate dcf /e; — dY;/Y; is positively correlated
with shocks in country 1, that is,

covy (dey ey —dYe)Yy, dW])) = kas) ¢} /Yy > 0.

Such positive correlation is essentially what Lewis [37, p. 574] defines as consump-
tion home bias. (See Section 4.4 for more on her definition and the predictions of
our model.)

Assuming (4.3), then (4.5) implies that
2\’ c?
o = -t (B e (-

. . A\ ? ol
22 = g Y 2 (k) <?t> — 2Ky <?t> (s} —s3)
t t

and hence that the difference in variances is

1 1 2 2 i — ¢
c, c, c, c, _ 2 (4 (4 Y Y
§ 8y —syTesyT = 2(k1) + 2k1 (5] — s3)

Y,
= 2 (' — )

Though both means and variances are stochastic, the last equality implies
that at all times and states, the country with higher mean growth rate also has

25Tt is straightforward to show that \ increases in response to such a redistribution of initial
endowments. We use this fact frequently in the sequel.
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the larger variance of consumption growth. The close connection between the
difference in variances and the difference in mean growth rates implies also that
Y Y
1> 5

larger variance for consumption growth in country 1 relative to that in country 2

factors underlying both are similar. For example, (i) s contributes to a
and (ii) a redistribution of initial endowments in favor of country 2 (that is, an
increase in \) increases the variance of consumption growth for country 1 relative
to that for country 2. Consolidating with the previous discussion of mean growth
rates and information about levels provided by (3.19), it follows that an initial
redistribution towards country 2 results for that country in a higher initial level
of consumption, and (in relative terms) a lower mean and variance for the rate of
growth of consumption.

In terms of absolute (rather than relative) variance, consumption growth has
a higher variance than aggregate output growth for at least one country, and for

both countries if s¥ = s) .

4.3. Riskless Rate, Market Price of Uncertainty and Excess Returns

Equation (3.23) shows that like risk, ambiguity drives down the riskless rate; their
effects are captured respectively by s* - s¥ (the variance of total output growth)
and the last bracketed expression on the right. The riskless rate is stochastic

and varies over time between the extremes 3 + p¥ — s¥ . 8" — s¥k; and 8 +

p¥ — s¥ . s¥ — s¥ky, depending on the distribution of aggregate consumption.
To interpret the latter dependence, assume (4.1). Then 7, is increasing in 1’s
share of total consumption. The reason for this dependence is that by (3.26), the
noted consumption share serves as a proxy for 1’s share of total wealth. Moreover,
by (4.1) country 1 faces less ambiguity than does 2. Thus as the distribution of
wealth shifts in favor of 1, the ‘aggregate’ ambiguity in the economy falls. Because
ambiguity depresses the riskless rate, the latter is induced to rise.

Under (4.1), it is also the case that ¢ is increasing as a function of 1’s initial
endowment (decreasing in A). In the special case that 1 and 2 face the identical
ambiguity (k9s] = kys) ), then r, is constant and independent of the initial
distribution.

Ambiguity acts to increase the market price of uncertainty, with the qualitative
features of its effect being similar to those discussed for the riskless rate. The time
variation of 7, is of particular interest. Refer to the component 7} as the domestic
market price of uncertainty for country i. The significance of 5}, for example, is
that it determines equilibrium excess returns for ‘domestic securities’ in country
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1. That is, for a security whose return process (R}) satisfies dRf = b}dt + s;dW},
its mean excess return equals

* o oax ol — % Y 1
by — = siny = s7 () + Ky — Koy /YY)

It is noteworthy that each domestic market price 1! is a decreasing function
of ¢t/Y;. Campbell [8] argues that asset market data in a number of countries
suggest that the (domestic) market price of uncertainty is negatively correlated
with the level of domestic consumption. Our model delivers negative correlation,
though with the share of aggregate consumption that occurs domestically. An
immediate further implication is that the market price of uncertainty in country
1 is increasing in country 2’s share of aggregate consumption. Finally, an increase
in A increases the domestic market price of uncertainty in country 1 and reduces
that in country 2.

Turn to the excess returns (3.25). Rewrite them in vector form

2 Ci
_ Y E t n)*i
bt—’f'tl—StS +3t ?Qt s
. t
=1

where 0" satisfies (3.14) for each i. A corresponding decomposition of excess
returns is derived in [10] in a representative agent model and they interpret the two
components as premia for risk and ambiguity respectively. A similar interpretation
applies here. The first risk premium term is the familiar instantaneous covariance
of asset returns with the growth rate of aggregate consumption. The second
component (which vanishes if each k; = 0) is a consumption-share weighted
sum of individual ambiguity premia. If returns to the country i security are
positively correlated with shocks in both countries (s?™ > 0, for m = 1,2), then
the ambiguity premium for the security is positive. This is true in particular for
each country given the specification of dividend processes described in the next
section (see Corollary 4.1).

4.4. Country-Specific Securities and Home Bias

The properties of equilibrium discussed to this point depend on the hypothesis
that aggregate output is geometric as in (3.4), but not on how that output is
distributed between the dividend streams (Y}’) of the two traded securities and
the nontraded endowment ®. We turn now to properties that depend on the
specification of (Y}).
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Henceforth assume that
Vi /Yo = (W), i=1.2, (16)

where the ‘share’ function v : R! — (0,1/2) is twice continuously differentiable
with v/ > 0. An immediate consequence is that

0<Y, i=12and V' +Y? <Y,

A second consequence is that, by Ito’s Lemma,

o' (W}
ALY = aldt + |8V + =] dW)! + s¥ aW? (4.7)
v(Wy)
/ W2
dY2/Y? = aldt + s] dW! + |sy + ol ;> dW?,
v(W7)

for suitable drifts a} and a?. Consequently, dY,!'/Y,! — dY;/Y; is positively corre-
lated with ! and uncorrelated with W2. This justifies interpretation of Y;! as
the domestic security in country 1 - the idiosyncratic part of its growth rate is
driven by domestic shocks. Moreover, because a similar statement applies to Y;?
and because the representative investor in country 1 views W/ as unambiguous
and W? as ambiguous, the foreign security is ‘more ambiguous’ for her.Thus the
above specification of dividend streams is consistent with our guiding intuition,
namely that foreign securities are more ambiguous than domestic securities.?

Given the specification for Y/, we can elaborate on or reformulate the con-
sumption home bias that is delivered by our model. From (4.5) and (4.7), it
follows that

i i o' (W)
2 1
Vi o(W)

cov, (dey [ep —dYy )Y, dY] )Y, —dY,)Y,) = > 0.

In other words, there is positive correlation between country-specific consumption
growth and country-specific output growth [37, p. 574].

26 This discussion is admittedly informal. We do not yet have a well-founded formal definition
of ‘more ambiguous than’.

Conformity with the guiding intuition is the reason that we cannot specify dividends so that
they exhaust total output and thus obviate the need for a nontraded endowment. For example,
if we adopt (4.6) for country 1 and then define Y2 as Y; — Y}!, then Y;2/Y; is driven by the shock
in country 1.
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Turn next to home bias in equities. Trading strategies for the two risky se-
curities are given by (3.27). Suppose that our model is correct, including, in
particular, regarding security prices and returns volatilities. Then, if one mistak-
enly adopts the standard model with no ambiguity, the first two expressions on
the right side of (3.27) would be used to predict the components of the (value)
portfolio of risky assets. The error that results is captured in the third term on
the right which represents the effect of ambiguity. If volatilities satisfy

s >0,4,j=1,2 and det(s;) > 0, (4.8)

then ambiguity induces country 7 to invest more in the domestic asset and less in
the foreign asset. Thus from the perspective of a model that ignores ambiguity
and focuses exclusively on the risk characteristics of securities, there is a seemingly
irrational bias towards domestic securities. In this sense, if (4.8) is satisfied, our
model can resolve the equity home bias puzzle, at least in qualitative terms.
Finally, (4.8) is valid, as shown in the following corollary of Theorem 3.1.

Corollary 4.1. Let dividend processes be given by (4.6) and refer to the Arrow-
Debreu equilibrium in Theorem 3.1. Then the returns volatility matrix s; satisfies
(4.8). In particular, the Radner equilibrium described in the Theorem exists.

The positivity of returns volatilities has other noteworthy implications. In par-
ticular, it follows immediately that security returns in the two countries are posi-
tively correlated (covy(dR},dR?) > 0) and, from (4.5), that returns are positively
correlated with consumption growth in each country (cov,(dR:, dct/ct) > 0).

Finally, with regard to home bias in equities, in the introduction we pointed
to evidence that investors are more optimistic about domestic securities. Such
a bias in expectations about mean returns can be identified in our model as fol-
lows: While the returns process for security 1 is given by (3.11), investors in
the two countries view the driving processes W' and W? differently. In partic-
ular, in terms of the ambiguity adjusted probability measures (Section 4.2), 1
views (W}, W2 + k1t) as a Brownian motion while 2 views (W} + kat, W?) as a
Brownian motion. Rewriting the returns process in terms of the Brownian driving
process that is appropriate for each investor, leads to

AR} = (b — k1s)?) dt + s, dW} + s d(W] + kat), (4.9)
dR! = (B} — kosit) dt + s (W) + kat) + siZdW.
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Consequently, after adjusting for ambiguity, country 1 attaches a higher mean
return to security 1 than does country 2 if and only if

Kasit > K18t (4.10)
From the explicit expressions for the returns volatilities that are derived in Appen-
dix B, conclude that (4.10) and hence the noted relative optimism are confirmed
for our model in the symmetric case?”

K9S1 = FK1Sy.
We can interpret this prediction as being confirmed by the survey evidence re-
garding relative optimism about domestic securities cited in Section 1.2; to do so
interpret elicited probability measures as including an adjustment for ambiguity.
It is noteworthy that differences in ambiguity-adjusted expectations are re-
stricted to means. Agreement regarding volatilities is consistent with the well-
known relative ease of estimating the variance-covariance matrix of returns.

4.5. A Further Parametrization and Trading Strategies

To study further the nature of trading strategies, we specialize (4.6) and assume:*®

o(z) = ie‘” fx<0
N %(1— %e"”) if x> 0.

It is readily computed that (with respect to the reference measure P),

E(Y]/Y;) = and lim var (Y /Y:) =5
As explained following Theorem 3.1, security prices (3.21) are the key to the
complete description of equilibrium. Since (3.20) provides an explicit character-
ization of state prices, closed-form solutions for all endogenous variables can be
obtained if the dividend streams (Y}") are specified so that the integration in (3.21)
can be carried out analytically. The preceding specification for v permits such in-
tegration. For example, the formulae in Theorem 3.1 and (4.6) imply that S} can
be written in the form

T T
St = cf / e PO E, [v(W )] dr + ¢} / e PO R,
¢ ¢

9
<t

ZQ*Q
T*QU(WTI)] dr

2TSee Section 4.1 for interpretation of this equality.
28Contrary to previous assumptions, v fails to be twice continuously differentiable though
only at the origin. This does not affect preceding arguments, including (4.7), for example.
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and the conditional expectations can be computed explicitly in terms of the stan-
dard univariate normal cdf. Therefore, S} = h(t, W,,Y;) and h(-) is in closed-form
up to the presence of some Riemann integrals.

However, the resulting expressions are lengthy and not easily interpreted and
thus we have simulated our model numerically. For parameter values, we take®

pt = 0179, 57 = s5 = .0406, 3 =.02 and T' = 42.5.

To treat the two countries symmetrically, we assume that initial endowments are
such that the relative utility weight A equals 1 and that k1 = k9. Finally, the
common value of the ambiguity parameter is specified to be .02.

To clarify the meaning and plausibility of the value .02, note that just as we
derived (4.9), we can derive the corresponding ‘ambiguity-adjusted’ laws of motion
for the aggregate endowment process. For country 1, for example, it is

dY,)Y, = (p¥ — sy k1) dt + s)dW,' + sy (dW? + kit),

implying that the adjustment for ambiguity calls for lowering the mean to .0170,
a reduction of only about 6%. From this perspective, a value of .02 for the &;’s
does not seem excessive.

As a benchmark, note that if x = 0, then the equilibrium trading strategies
are to buy and hold 1/2 share of each of the domestic and foreign securities. In
contrast, Figure 1 describes the optimal holding ’y%’t of the foreign security in
one realization of the Brownian motion. There is a downward bias (’y%’t < 1/2)
and continual retrading. To illustrate the latter, Figure 2 plots the corresponding
turnover process | d’y%’t |-

5. CONCLUDING COMMENTS

We have extended the standard, log-utility, two-country general equilibrium model
by incorporating a feature that seems to us to be intuitive, namely (greater) am-
biguity about foreign securities. This extension moves predictions in the right
direction in terms of helping to resolve the puzzles concerning home bias in con-
sumption and equity. A more thorough (and quantitative) assessment of the mod-
el’s usefulness for this purpose is left for future work. A multi-country extension
would permit a fairer comparison with data.

29The values for p¥ and s¥ are based on the discretized version of (3.4) and IFS quarterly
consumption data (transformed into per capita terms) for the period 1957:1 to 1999:3.
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On the other hand, we hope that the reader is already convinced of the broader
potential usefulness of the model as a tool for exploring other questions concerning
dynamic stochastic economies. The fact that the model admits a complete closed-
form solution should make it useful in a variety of applications.

A. Appendix A
This appendix proves Theorem 3.1. The parametric restrictions
0<ky <sy and 0 < Ky < 57 (A1)

are adopted throughout.
Given consumption processes ¢/, i = 1,2, (0?) is the volatility associated with
i’s utility process (V(c')). Write

1 _ 1 1\ T 2 _ 2 2\
0y = <O_1,t70_2,t> and o} = <U1,t702,t> .

Thus U%’t is that part of the volatility of 1’s utility process that corresponds to
W2, the component that is ambiguous for 1.

Lemma A.1. For the specific consumption processes ¢! and ¢ defined by (3.19),
the volatilities of utility satisfy

oy, > 0 and o7, > 0. (A.2)

Proof. Consider individual 1’s utility process and show

1

o3 > 0; (A.3)

the other inequality can be proven analogously.

Let @ be the measure defined as in (2.1)-(2.3) by taking
0, = (0,r1)" (A.4)
for all t. Define .
Vi = Fg l / e P70 log el dr
t

Then (V;) is an Ito process and we can write

}}1 . (A.5)

dV, = p) dt + U}/’tthl + J;ftde.
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Claim: oy, > 0. If true, then we can conclude that V; = V;'(c') and hence that
U%’t = U;/’t > 0. The point, roughly, is that the positivity of the volatility U;/’t
validates the specification (A.4) as the one that is consistent with the minimization
over all priors in P, as described in (2.10). In more formal terms, Girsanov’s

Theorem implies that (V}) solves the BSDE:
dVi = [~logc} + BVi + ki | oy, |]dt + o) - dWi, Vi = 0.

But given that x = (0,k1)", this is the BSDE that defines, via an appropriate
form of (2.12), the utility process (V;}(c!)). By uniqueness of the solution, conclude
that V'(c!) = V.

Turn to the proof of the claim. Given the explicit expression for V;, a di-
rect approach is possible. Substitute into (A.5) for ¢! using (3.19) to obtain

V, = K, — Ly, where K, = I, [ [T e P09 logY, dr ft}
and L, = FEg [ftT e P log(1 + As,) dT‘ ft} . By Girsanov’s Theorem, (W}, W2 + k1t)

is a martingale under ). Thus we can compute K; and, to a lesser degree, L.

Because Y is a geometric process, compute that

K, = a, + dy (sy W + sy W7),

T
dy :/ e PN dr .
t

Write Ly = H, (W}, W2), where

where a; is deterministic and

I

T
H, (w'w?) = / e P ETtog (1 + )\e<%((”1)27(“2)2)7+“1“’”27“2“’”1)) dr
t

and the expectation E™ " refers to integration on the plane of points (z!, z?) with
respect to the bivariate normal distribution N (m,_., ;) with

My = (wl,w2 — Ry (T — t)) and %,y = (7 — 1) [oxo.
By Ito’s Lemma and the preceding, it suffices to prove that (for all (¢,w! w?) €

0,7] » R?)
disy — OH(w' w?)/ow® > 0. (A.6)
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Direct computation and reversing the order of differentiation and integration (by

[6, p. 215]) yields

%ETt log (1 425 (=) dria® - F"ﬁl)) B
w

i [/ 10g (1 + )\e(%((ﬁl)Q,(,@)?)T#»51(m2+w2751(77t))fﬁg(m1,w1)>) dN(O)ETt)‘|
R2

Ow?

< Kq, which leads to (A.6). W

Lemma A.2. For any given A > 0, the consumption processes defined in (3.19)
solve (uniquely)*

max {V'(e') + AV?(e?): €', e €C, e + 2 <Y}, (A7)

Proof. Clearly, ¢! and ¢? are feasible. Therefore, it suffices to verify that there
exists a RY | -valued shadow price process m = (m;) satisfying

7w € Vi) NAIV?(c?), (A.8)

where OV*(¢*) denotes the set of supergradients for V* at ¢’. Given such a 7, then
Vie) + AVEe?) — V(') — AV
T T
Ep [/ 7 (ef —c}) dt] + AN Ep [/ (me /) (e —ct)dt]
0

= Fp UTm —ct))dtl = Ep U()Tm(zie;'—yt)dt] < 0.

To establish (A.8), recall (2.11) and thus that 7* € dV*(c?), where

() = 72"/,

IA

and, following (2.10),
0" € ©l ={(0,): 0, = (0,k1)" @ sgn(a}) all t}, (A9)

0% € ©2 ={(0,): 0, = (r2,0)" @ sgn(c?) all t}.

30Because ¢ denotes the equilibrium consumption process, we use €' below to denote the
generic process in C.
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By the positivity of volatilities in (A.2), (A.9) is equivalent to
0;' = (0,51) and 0;> = (k9,0) for all t.
Thus (A.8) is satisfied by 7, where

T = e 7 e*l/ct = Ae P07 Jel. (A.10)

Turn to description of an equilibrium of the form ((¢*,7%);—19, S), where the
s are defined by (3.19) and where X is defined by (3.16). Because these consump-
tion processes are efficient, they can be implemented as part of an Arrow-Debreu
equilibrium and subsequently also as part of a Radner equilibrium. To see this,
let p = /7o, where 7 is defined in (A.10). Use p as a state price process; in par-
ticular, define security prices S™, n =0, 1, 2, by (3.22) and (3.21) and associated
returns as in (3.11). Define person i’s financial wealth by X} = ~% - S;. Let

Uy =St/ Xi, n=1,2, (A.11)

and 1! = <,L/}it71/}é,t>—r denote portfolio shares. (If X} = 0, let w;t = 0.) The
proportion invested in the riskless asset is 1 — 1/); - 1. Then 7’s initial total wealth
is (lettingi, j = 1, 2, j # 1)

1

. . 1— ) 1—
X, = Xi+=Sy=-=n S+ =5
0 0"‘2 0 2’70 0+2 0

: T . . T . 1 T
= ’YE,OE [/ psYy ds] + ’Y;‘,OE [/ psYy dS] + §E [/ psPs ds] )
0 0 0

Therefore the static budget constraint (3.8) is equivalent to
T . — .
E l/ pse;ds] < X,, € €cC. (A.12)
0

By the definition of A, these constraints hold with equality if ¢/ = ¢*. Finally, at
', each individual i satisfies the first-order conditions

e = 8p (A.13)

for suitable multipliers ' = 1 and 6> = A '. Conclude that ¢! and ¢? are utility
maximizing. Because they clear output markets, they constitute an Arrow-Debreu
equilibrium allocation.
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The following two Lemmas show that the static Arrow-Debreu equilibrium
can be implemented by some security trading strategies v¢, i = 1,2, to form the
Radner equilibrium described in Theorem 3.1.

First, notice that the budget constraint (3.6) is equivalent to the following
familiar dynamic budget constraint:

dX; = {[re+ @) (b — )] X; — (e} —3®,)} dt + X;(¥)) " s dWi. (A.14)
In order to rule out arbitrage opportunities [19], impose also the credit constraint
X; > -15, te]0,7). (A.15)

Lemma A.3. Let S = (S°,5' 5?)" be given by (3.21) and (3.22) and suppose
that s; is invertible. Then:

(i) The state price process p satisfies (3.12).

(i) If (", X *) satisfies the dynamic budget constraint (A.14) and the credit
constraint (A.15), then €' satisfies the static budget constraint (A.12).

(iii) Conversely, if €' satisfies (A.12), there exist a portfolio share process 1"
and financial wealth process X* such that (ei,wi, X*) satisfies (A.14) and (A.15).
Moreover, if ¢ = ¢, then 9" is unique up to equivalence and person i’s financial
wealth X} is given by

i_ 1 i
X; = —F ps(c, — 5P5)ds
Pt t

ft] . (A.16)

Proof. (i) Since S is given by (3.21) and (3.22), the deflated gains process
( fot psdDs + pSy) is a 3-dimensional P-martingale and hence it has a zero drift.
Then (3.12) follows from Ito’s Lemma and the definitions of D and returns.

(ii) Adapt arguments from [31]. By (i), (A.14) and Ito’s Lemma,

¢ ¢
P X} + / p-(el — 3®;) dr = X{ + / prXE (sl — ) dW.. (A.1T)
0 0

The left side of this equation is a local martingale. Because of the credit constraint
(A.15), it is bounded below by a martingale and hence is a supermartingale. By
the optional sampling theorem, therefore,

T
E lpTXZT —I—/ pe(e; — %(I)t)dt] < X;.
0
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From X7. > 0, derive the static budget constraint (A.12).
(iii) Conversely, let €! satisfy the static budget constraint (A.12), or equiva-
lently,

T
0

Introduce the P-martingale
H, =F l/ pele} — %(I)t) dt‘ ‘7-}1 - F l/ pele} — %(I)t) dt] )
0 0
By the martingale representation theorem, H*® can be written as
;= [ tyaw,
0

for some progressively measurable R?-valued process ¢* with fOT I ¢; |? ds < o0,
a.s. Let the financial wealth process (X}) and portfolio share process (1/)@) satisfy

1 . ¢ . .
X!l =— <X6 — / ps(efg — %(I)S) ds + HZ> and (A.18>
Dt 0

wi= 0 (n+ ). (A19)

Then .
= [ X (st =) s,
0
and, by (A.18),

¢ ¢
pX] = X, — / pr(el — 1@ )dr —I—/ pr X (sTaph — m)T A,
0 0

T T
= Xg-F U pe(e; — %CI%)dt} +E U ps(el — 12,) ds
0 t

7.

From this one can verify that X! satisfies the dynamic budget constraint (A.14)
and the credit constraint (A.15).

If e = ", the static budget constraint (A.12) holds with equality. Conse-
quently, (A.16) follows from the preceding equation.
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Finally, consider the uniqueness of portfolio shares. By (A.16), X% = 0 and
M?* is a P-martingale, where

¢
M} =p X} —l—/ ps(c, — 3@,)ds, t€0,T). (A.20)
0

Suppose there are two such portfolios 1" and @Z satisfying the stated properties.
Let X* and X* represent the corresponding financial wealth processes and (M)

and (@) the corresponding P- martingales as in (A.20). By (A.17) and

2

M= = [ B feas
0
the martingale
V=T = [ B =B, ve o1
0
is identically zero. Thus the quadratic variation

t .
< M= T > / (BXO2 || (W — )T s, |2dr =0, te[0,7].
0

Since s; is invertible for all ¢, 1/} = @z a.s. dt@dpP. 1l

Lemma A.4. Let the returns volatility matrix s; be invertible. Then the Arrow-
Debreu equilibrium ((¢');—1 2, p) can be implemented to form a Radner equilibrium
((¢",7")i=1,2,5) , for some trading strategies (y',7?) € I'xT and for security prices
S™ n =0,1, 2, given by (3.21)-(3.22).

Proof. By the equivalence of the static and dynamic budget constraints proven
in the preceding lemma, the two associated optimization problems are equivalent.
Hence, we need only find trading strategies to clear all markets. Note that the
static budget constraint (A.12) holds with equality in equilibrium.

Let ’Yi,t = thd);t/Sf,n = 1,2, and ’Yé,t = th<1 — 1, — ¢;,t)/S?a where ¢} is
given by (A.19) and X7 is given by (A.16). Then +* € T'. By the preceding lemma,
(¢, X *) satisfies the dynamic budget constraint (A.14). Stock markets clear if

and only if
Xy + X2} = (1, S7)T. (A.21)
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Sum financial wealth (A.16) over i and use pricing equation (3.21) and contingent
consumption market clearing condition (3.9) to obtain

X+ X2 =84 52 (A.22)

This equation and (A.21) imply that the bond market also clears. Therefore, we
need only verify (A.21).

By Ito’s Lemma, (3.12) and (A.14) to obtain (A.17). Sum (A.17) over i and
apply Ito’s Lemma and (A.22) to obtain

d [pe(S; + 57)]
= —p(Y H YD)+ p [X] (W) + X7 (¥7)"] sedWi — pi(S) + S7) 1, - AW

On the other hand, apply Ito’s Lemma and use (3.10)-(3.12) to obtain
d [p (S} + S7)] = adt +p(Si, SP)sdWy — p( Sy + S7) n - AW,

for some process (a;). Match the volatility terms in the above two expressions
and apply invertibility of s; to derive (A.21). W

It remains to verify the security market conditions asserted in the theorem.
Apply Ito’s Lemma to the first-order conditions (A.13) and compare with (3.12)
to derive

re =3+ ug’i — sg’i . sg’i — sg’i . Q:i and (A.23)
n, = syt 407 =507 4072 (A.24)

Substitute (4.5) and (3.14) into (A.24) to obtain (3.24).
Apply Ito’s Lemma to the market clearing condition (3.9) and derive

2 2
Y c,t i Y c,t i
Bo= E petc/Ye, s = E S
=1 i=1

Multiply ¢! on each side of (A.23) and sum over i to obtain
re =04 p" — s,

Substitute expression (3.24) for 7, into the preceding to obtain (3.23).
By the definition of the market price of uncertainty process,

bt — Tt]- =8¢
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Substitute (3.24) for 7, into the preceding to obtain (3.25).

Finally, turn to parts (¢)-(d). Equation (3.26) follows directly from the follow-
ing Lemma.

Lemma A.5. In equilibrium, consumption and total wealth are related by
C = th (A25>

Proof. Use (A.16> and the definition of total wealth (3.18) to obtaln

- 1.7/ .
X,=—F / psCads ‘7-}1 . (A.26)
bt LJe
Thus
O'peX, = F / psc ds ‘7-}1
T
== E / BS 9 t‘|

- (e st _ ) 9“,

where the second equality follows from the first-order conditions (A.13) and the
third equality follows from the fact that 2/ is a P-martingale. Apply (A.13) once
more to derive (A.25). W

Write . .
dX. /X, = pidt + s dWw. (A.27)

Thus sty’i is the volatility of i’s total wealth process. From (A.25) and Ito’s
Lemma, deduce that

50 = g0, (A.28)
Irom (A.19), the key to solve for portfolio shares and trading strategies is to

solve for ¢;, the integrand in the martingale representation of H;. Use (A.26) and
the definition of S; to rewrite H} as

) T ) 1 T T )
0 0 0
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t

— _ t ] 1 T ]
= X, — 505t +/ pscyds — 5/ ps®sds — E U pe(c; — 5P¢) dt} :
0 0 0

Apply Tto’s Lemma to the above equation and use (3.12), (3.17) and (A.27) to
obtain o .
pfﬁSf"i - ptyim - %Ptgt + %p@m = ¢,
Substitute this into (A.19) and use (A.28) and (3.18) to derive
i Lo vt ei 1—
Yy = YZ (si) (tht - §3t) .

Use (A.11), (A.24), (3.14) and n, = (s;) ' (b — 7¢1) to substitute for sg’i in
the above equation to obtain trading strategies (3.27) for the two risky securities.
The trading strategy for bond is given by

Yo =Xi(1—v;-1) /8.
By (3.18), (A.22), (A.25) and the market clearing condition (3.9),
X+ X, =X + X2 +5, =5+ 5245, =" (1-e T )y,

Apply Ito’s Lemma to this equation to obtain (3.28). W

B. Appendix B

Proof of Corollary 4.1: Denote E(:|F;) by Ei(-). Substitute dividends processes
(4.6) and the state price process (3.20) into pricing equations (3.21) to obtain

St =l K(WhH +2L(W)) and (B.1)
St = c; My(W?) + ¢, N(WP), (B.2)

where

T
K(W)) :/ e PTVE, [o(W))] dr,
¢

T
Lt<Wt1) — / e*ﬁ(Tft)Et
t

9*2 T
<t

ZQ*Q
T—U(Wl)] dr,

Ze*l
=) .
<t

T
Mt<Wt2) — / e*ﬁ(Tft)Et
t
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T
Nt(Wf) :/ e P p, [U(Wf)} dr.
¢

Since v(+) is increasing and positive, it is easy to show that K;(-), L(-), M(-) and
*2

N,(+) are all increasing and positive. (For example, to show that F [:Z*QU(W})

is increasing, use the facts (1) zﬁﬁ /22 v depends only on the increment (W! — W)
and (ii) v is increasing.)

Apply Tto’s Lemma to (B.1) and (B.2) to obtain all elements in the returns
volatility matrix:

s = (8 4 koY) Kycl /SY + (8 — kocl [Y;) Loc2/ S
+ (e KW + G LU(WY)) /54,

512 = (s¥ — rc? V) Kycl /SE + (sy + kicl /Yi) Loc? ) SE,
s2 = (¥ 4 koY) Mycl /S2 + (87 — kacl JY)Nic?)S2,
s2 = (s¥ — kic?)Y) Myc! /S? + (¥ + kicl /Y, Nyc?/ S

+ (e My(W2) + NL(WP)) /52,

where prime denotes derivative. Given the assumption (A.1) on parameters, each
term in above equations is positive and hence

s >0, foralli, j =1,2.

For the determinant,

det(s;) = s;'s2 — s/%s
¢y Y
= Q¢ + W<81 K1 + 82 KQ)(KtNt — MtLt),
Pt
where a; is a positive process. We claim that K; > L; and N; > M;. In fact,
T T ZQ*Q
Ki— L = / e OB [u(W])] dr — / e OB | Zme(W)| dr
t t Zt

T
_ / e B0 p, [(1 _ e—;(HQ)Q(Tft)—m(W;st)) U<W71)} dr
t
T 1 2
— / e*ﬁ(Tft)Em [(1 — e 2(k2) (Tft)*m:c) v(x + th)} dr > 0,
t
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where F, denotes expectation with respect to N(0,7 — t). To obtain the last
inequality, use the fact that both v(z+W}) and 1— e 35?0 mr are increasing
in x, which implies that

E, [(1 — e*%(ﬁz)Q(T*t)fﬁzm) vz + thﬂ -

E, [1 = 675(52)2(7%)*“2“’”} By [u(x+ W] = 0.

Similarly, N, > M;. Therefore, det(s;) > 0. W
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