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1 Introduction.

There is considerable evidence suggesting that financing constraints are important

determinants of firm dynamics.1 Such constraints may arise in connection to the

financing of investment opportunities faced by firms or temporary liquidity needs,

such as those required to survive a recession. This paper develops a theory of

endogenous financing constraints and studies its implications for firm growth and

survival. In our model, borrowing constraints arise as part of the optimal design of

a lending contract under asymmetric information.

The model is as follows. At time zero the borrower (entrepreneur) has a project

that requires a fixed initial investment. Once in operation, the project yields rev-

enues that are subject to i.i.d. shocks and increase with the amount of working

capital advanced in the period. The project can be discontinued at anytime, pro-

viding a fixed liquidation value. A lender finances the initial investment and provides

for working capital. Both the borrower and the lender are risk neutral and discount

future cash-flows at the same rate. Informational asymmetries arise as the lender

cannot monitor either the use of funds or the outcome of the project. We study the

optimal dynamic contract subject to the incentive compatibility and limited liability

constraints.

The environment is chosen so that in the absence of asymmetric information, the

outcome is trivial: there exists an efficient level of working capital which is advanced

every period. There is neither growth nor exit. In contrast, with asymmetric in-

formation the optimal contract determines non-trivial stochastic processes for firm

size (working capital invested), equity (the entrepreneur’s share of total firm value),

and debt (the lender’s share). These processes have two absorbing states: either the

firm is liquidated, or a point is reached where borrowing constraints cease to bind

and the firm attains its efficient size.

1Fazzari, Hubbard and Peterson [15], Gilchrist and Himmelberg [18], and Whited [31] among
others, find that at the firm level capital expenditures respond positively to innovations in the cash
flow process, even after controlling for measures of the expected marginal return on investment.
Gertler and Gilchrist [17] argue that liquidity constraints may explain why small manufacturing
firms respond more to a tightening of monetary policy than do larger manufacturing firms. Perez-
Quiros and Timmermann [24] show that in recessions smaller firms are more sensitive to the
worsening of credit market conditions as measured by higher interest rates and default premia.
For surveys see Hubbard [21] and Stein [29].
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Revenue shocks affect the financial structure of the firm and thus have persis-

tent effects on firm size, growth, and probability of survival. As in all models of

moral hazard, rewards and punishments serve to discipline the conduct of the en-

trepreneur. This explains why the value of equity (i.e. the expected discounted

value of the cash flows accruing to the entrepreneur) increases with high revenue

shocks and decreases with low ones. Moreover, the spread between future contingent

equity values increases with the amount of working capital advanced. This mimics

the standard moral hazard problem of unobserved effort, where higher sensitivity

of a worker’s compensation to output is needed if higher effort is required. Due

to the interaction of limited liability and a concave profit function, in our model

the total value of the firm is a concave function of the entrepreneur’s equity. As

a result, a spread in future equity is costly. This accounts for the borrowing con-

straints. A sequence of good shocks results in an increasing path for equity. As its

value approaches a threshold, working capital (firm size) eventually increases to the

unconstrained efficient level. On the other hand, a sufficiently long sequence of bad

shocks leads equity value to a region of liquidation. We find that in the neighbor-

hood of this region risk taking is encouraged, and capital advancements can also be

larger.

In spite of its simplicity, the model seems to match most of the qualitative prop-

erties of firm dynamics that have been recently documented. In average, investment

(change in the working capital invested in the project) is sensitive to innovations

in the cash flow process. This sensitivity decreases with age and size. Firm size

increases with age; survival increases with firm size; hazard rates for exit increase

initially and then decrease with the age of the firm; mean and variance of the growth

rate decrease with size and age.2

2All of these facts have been widely documented. Caves provides a comprehensive survey of the
literature. Gertler and Gilchrist [17] and Gilchrist and Himmelberg [18] find that the sensitivity of
investment to cash-flow is higher for smaller and younger firms. Dunne, Roberts, and Samuelson
[13] and Troske [30] document the positive association between age and size. Evans [14], Hall
[20], and Troske [30] report the negative correlation between age, size, and the mean and variance
of growth. Evans [14] and Dunne, Roberts, and Samuelson [12] provide evidence in favor of
the existence of the mentioned relationship between age, size, and survival probabilities. Finally,
Andretsch [5] and Baldwin [6] provide evidence that hazard rates are decreasing with age. Bruderl,
Preisendorfer, and Ziegler [9] are the only one able to measure hazard rates by month. They find
that hazard rates increase for most of the first year and decline thereafter.
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Incentive compatibility and limited liability constraints imply a set of feasible

debt/equity values. The Pareto frontier of this set defines implicitly the value of

equity as a decreasing function of debt. Values on the frontier can be implemented

by one-period contingent contracts and debt rollover. There is some debt forgiveness

when low shocks occur. The lender is compensated for this loss when high shocks are

realized. There is also a maximum sustainable debt, which corresponds to the lowest

value of equity on the Pareto frontier. Two possible cases can arise, depending on

whether this equity value is zero (the smallest feasible value) or greater than zero.

In the first case, the contract is renegotiation-proof and the maximum level of debt

is equal to collateral of the project (i.e. its liquidation value). In the second case,

the maximum level of debt exceeds the value of the collateral. The first case occurs

for high levels of liquidation value while the second occurs for low ones.

Our work builds on recent contributions by Gertler [16] and Bolton and Scharf-

stein [8]. Gertler [16] studies the optimal contract between a lender and a borrower

in a three-period production economy with asymmetric information. Similarly to

ours, in Gertler’s model the tradeoff between current employment and ”ex-post fi-

nancial position” induces borrowing constraints and investment-cash flow sensitivity.

A shortcoming of this model, as pointed out by Gertler, ”is that it lies well short of

a fully dynamic framework to be matched to the data.” Our work is a move in that

direction and can be viewed as a dynamic extension of Gertler’s - with a minor dif-

ference in the timing of the allocation of capital. In addition, our model introduces

a positive liquidation value and derives implications for firm survival. Bolton and

Scharfstein [8] consider a two-period model with asymmetric information similar to

ours, but without a choice of scale. In their scenario, either the project is funded

or not. The threat of not providing funds in the second period (i.e. the threat of

liquidation) provides incentives for truthful reporting in the first one. As in our

model, moral hazard can lead to inefficient liquidation.

The two studies that are most closely related to ours are working papers by

DeMarzo and Fishman [11] and Quadrini [25]. Both of these papers consider op-

timal long-term lending contracts in environments characterized by asymmetric in-

formation. DeMarzo and Fishman [11] focus on the implementation of the long-
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term arrangement by means of simple contracts, while Quadrini [25] characterizes

renegotiation-proof contracts.

The effects of moral hazard on investment when long-term lending contracts

are allowed, have also been investigated by Atkeson [3] and Marcet and Marimon

[23]. Atkeson shows that asymmetric information and limited enforcement consid-

erations can explain why developing countries experience capital outflows when hit

by bad idiosyncratic shocks. Marcet and Marimon study the effects of the same

imperfections on capital accumulation.

In recent work, Albuquerque and Hopenhayn [1] study lending and firm dynam-

ics in a model with limited enforcement. In spite of the similarities between our

approach and theirs, some of the implications are radically different. To illustrate

this point, Section 9 considers a variant of our model where moral hazard is replaced

by incomplete enforcement. In contrast to the moral hazard case, the entrepreneur’s

equity and firm size never decrease and there is no exit.

Our model is one of repeated moral hazard. The recursive representation that

we use was developed by Green [19] and Spear and Srivastava [28]. The pioneering

work in the area goes back to Radner [26] and Rogerson [27].

The remainder of this paper is organized as follows. The model is introduced in

Section 2. In Section 3 we characterize the main properties of the optimal contract.

In particular, we describe the optimal capital advancement and repayment policies,

and the evolution of equity over time as implied by the contract. The implications

for firm growth survival are described in Section 4. In Section 5 we consider the im-

plementation of the optimal lending contract by means of short-term loans. Section

6 discusses the role of collateral. In Section 7 we consider the financial feasibility

of the optimal contract. Section 8 shows that there is an equivalent formulation

if it is the use of funds, rather than realized revenues, that cannot be monitored.

In Section 9 we provide the comparison with the incomplete enforcement model.

Section 10 concludes.
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2 The Model.

Time is discrete and the time horizon is infinite. At time zero the entrepreneur has a

project which requires a fixed initial investment I0 > 0 and a per-period investment

of working capital. Let kt be the amount of working capital invested in the project

- its scale - in period t . The project is successful with probability p, in which

case the entrepreneur collects revenues R(kt). If the project fails, revenues are zero.

We assume that the function R is continuous, uniformly bounded from above, and

strictly concave. At the beginning of every period the project can be liquidated.

The liquidation generates a scrap value S.

We assume that the lender cannot observe the revenue outcome. In other words,

such outcome is private information for the entrepreneur.3

The entrepreneur’s net worth is given by M < I0. Therefore, to undertake the

project, he requires a lender (bank) to finance part of the initial setup cost and

the project investments in every period. We assume that in every period the en-

trepreneur is liable for payments to the lender only to the extent of current revenues.

Therefore the firm is restricted at all times to a nonnegative cash flow.4

Both the borrower and the lender are risk neutral, discount flows using the same

discount factor δ ∈ (0, 1), and are able to commit to a long term contract.

We model the relation between the bank and the entrepreneur as a message

game. At time 0 the bank makes a take-it-or-leave-it offer to the entrepreneur. The

offer consists of a contract whose terms can be contingent on all public information.

Let θ be a Bernoulli random variable, with θ ∈ Θ ≡ {H, L} and prob{θ = H} = p.

Revenues are positive (and equal to R(k)) when θ = H, and identically zero when

θ = L. We invoke the Revelation Principle to reduce the message space to the set

Θ. Thus a reporting strategy for the entrepreneur is given by θ̂ = {θ̂t(θ
t)}∞t=1, where

θt = (θ1, ..., θt).

The dynamic contract specifies cash-flow and liquidation policies which are con-

tingent on all information provided by the agent. Letting ht = (θ̂1, ..., θ̂t) denote the

history of reports of the agent, the contract σ = {αt(h
t−1), Qt(h

t−1), kt(h
t−1), τt(h

t)}
3An alternative formulation where revenue is observable but the use of funds (or investment)

cannot be monitored is considered in section 8. The two formulations turn out to be equivalent.
4This assumption can be easily relaxed to a lower bound.
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specifies a contingent policy of liquidation probabilities αt, transfers Qt from the

lender to the entrepreneur (in case of liquidation), capital advancements kt and

transfers τt from the entrepreneur to the lender (in case of no liquidation).

The timing is the same at every information node (i.e. after every history ht) and

is described in Figure 1. At the beginning of the period, the lender has the chance

of liquidating the project. The contract dictates that he will do so with probability

αt(h
t−1). In case liquidation occurs, the entrepreneur is compensated with a value

Qt(h
t−1), while the lender receives S−Qt(h

t−1). If the project is not liquidated, the

lender provides the entrepreneur with capital kt(h
t−1). Thereafter, the entrepreneur

observes the revenue realization and makes a report to the lender. The lender will

require a transfer τt(h
t), where ht = (ht−1, θ̂t).

¡
¡

¡
¡

¡
¡
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Continue
1− αt(ht−1)

αt(ht−1)
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6
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Entrepreneur pays τt(ht−1, θ̂t)

?
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Entrepreneur receives Qt(ht−1)
Lender receives S −Qt(ht−1)

Figure 1: The Timing.

At every time t, conditional on success, the entrepreneur will receive a net cash-

flow R(kt)− τt. We assume, without loss of generality, that these resources are fully

consumed by the entrepreneur (i.e. not reinvested in the business venture).5 As

a consequence, the nonnegativity constraint on entrepreneur’s cash-flows requires

that τt ≤ R(kt). When the project fails no payments are made to the bank. We are

5Alternatively, we might allow the entrepreneur to save and assume that the bank can observe
the return on his wealth and monitor the size of the project.
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now in the position to provide our definition of feasible contract.

Definition 1 A contract σ is feasible if ∀ t ≥ 1 and ∀ ht−1 ∈ Θt−1

(i) αt(h
t−1) ∈ [0, 1],

(ii) Qt(h
t−1) ≥ 0,

(iii) τt(h
t−1, H) ≤ R(kt(h

t−1)),

(iv) τt(h
t−1, L) ≤ 0.

After every history ht−1, the contract and reporting strategies (σ, θ̂) imply ex-

pected discounted cash flows for the entrepreneur and the lender. Denote such

values as Vt(σ, θ̂, ht−1) and Bt(σ, θ̂, ht−1), respectively. These also correspond to

the values of equity and debt.

Definition 2 A contract σ is incentive compatible if ∀ θ̂, V1(θ,σ, h0) ≥ V1(θ̂,σ, h0).

Now define the set V ≡ {V | ∃ σ s.t. (feas), (ic) and V1 [σ,θ, h0] = V } . V is

the set of equity values that can be generated by feasible and incentive compatible

contracts.6 For any V ∈ V , an optimal contract maximizes the value obtained by the

lender (and thus total value) among all incentive compatible and feasible contracts

that deliver the entrepreneur an initial value V. This defines a frontier of values

B (V ) = sup{B | ∃ σ s.t. V1

[
σ,θ, h0

]
= V and B1

[
σ, θ, h0

]
= B}.

Every point on the frontier corresponds to a capital structure (V, B (V )). The

corresponding total value W (V ) is a function of the capital structure, as W (V ) =

V + B (V ). In the remainder of this paper we characterize the set of contracts

yielding values on the frontier.

2.1 A Benchmark: Contracts under Symmetric Informa-
tion.

As a first step, it is useful to consider the case of symmetric information, where the

lender observes the revenue realizations and can write contracts contingent on them.

Since the two agents discount cash flows at the same rate, the optimal contract

6As shown below, there is an incentive compatible and feasible contract for any V ≥ 0.

7



will maximize the total expected discounted profits for the match. This result

is achieved by having the lender provide the entrepreneur with the unconstrained

efficient amount of capital in every period.

The unconstrained efficient capital advancement is given by k∗ ≡ arg max
k

pR (k)−
k and implies a per-period total surplus π∗ ≡ max

k
pR (k)− k. Then, the total sur-

plus is given by W̃ ≡ π∗
1−δ

. Undertaking the project is optimal as long as W̃ > I0.

Once started, the firm will never grow, shrink, or exit. Any division of the surplus W̃

among the lender and the entrepreneur is feasible, provided that the latter obtains

a nonnegative value.

2.2 The Contract with Private Information: a Recursive
Representation.

In any lending contract, the evolution of equity satisfies the following accounting

identity:

Vt = p (R (kt)− τt) + δ
[
pV H

t+1 + (1− p) V L
t+1

]
, (1)

where the first term on the right-hand side corresponds to expected dividends and

the second to the expected continuation value. The quantities V H
t+1 and V L

t+1 are the

continuation values contingent on high and low report, respectively. Equation (1)

suggests a tradeoff in the assignment of values over time and across states. These

are precisely the margins considered in the optimal contract design.

The above observations also suggest a recursive representation of the optimum

problem defined in the previous section.7 The state variable for the problem is the

entrepreneur’s value entitlement at the beginning of a period, V . The first choice

to be made is whether to liquidate the project, obtaining the value S, or keep it in

operation.

We start by defining the total value of the firm in case the project continues. The

flow equation (1) becomes now a constraint, as the initial value V must be delivered

7Green [19] and Spear and Srivastava [28] were the first to show that, under mild boundedness
conditions, there exists a recursive formulation for the maximization problem faced by the principal
in models of repeated moral hazard. Such conditions hold in our case. We decide to omit the proof
of equivalence between the sequence problem and the recursive problem, because it consists of the
mere application of the techniques used by Atkeson and Lucas [4], among the others.
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to the entrepreneur by the continuation contract. Suppressing time subscripts, this

gives:

V = p (R(k)− τ) + δ
[
pV H + (1− p) V L

]
. (2)

As usual, the only relevant incentive constraint is the one imposing truthful

reporting in the high state:

R (k)− τ + δV H ≥ R (k) + δV L.

By reporting truthfully, the entrepreneur obtains dividends R (k)− τ in the current

period and a continuation value V H . By reporting a low state, the agent avoids

making any repayment and thus increases dividends at a cost of a lower continuation

value. The incentive compatibility condition can be rewritten as

τ ≤ δ
(
V H − V L

)
. (3)

Finally, the limited liability constraint requires that

τ ≤ R(k). (4)

A continuation value V i (i = H, L) must be supported by a feasible continuation

contract. Any positive continuation value V i ≥ 0 is feasible, as it can be imple-

mented by giving the entrepreneur no capital and a transfer equal to V i, and then

liquidating the project. Any continuation value V i < 0 is not feasible, for it would

violate the limited liability constraint (4) in some future period. Hence, a value V

can be supported by a feasible contract if and only if V ≥ 0 .

We denote firm value contingent upon continuation as Ŵ . This is different from

the value of the firm prior to the liquidation decision, which is denoted as W . The

choice variables are the capital advancement for the period k, the repayment τ , and

the contingent continuation values V H and V L. The value Ŵ (V ) is given by

Ŵ (V ) = max
k,τ,V H ,V L

[pR (k)− k] + δ
[
pW

(
V H

)
+ (1− p) W (V L)

]

subject to (2), (3), (4)

and V H , V L ≥ 0.

(P1)
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The first term of the maximand corresponds to the current period’s expected profits.

The second term indicates the expected discounted total value of the firm at the

beginning of the following period, prior to the liquidation decision.

We now turn to the liquidation decision. Due to the non-convexity introduced

by a positive liquidation value, a stochastic liquidation decision may be optimal in

some states. Allowing for randomizations over the liquidation decision is equivalent

to assuming that at the beginning of every period the lender offers a lottery to the

borrower. The firm is liquidated with probability α, in which case the borrower

receives Q, and it is kept in operation with probability 1 − α. In the latter case,

the borrower receives Vc, where c is mnemonic for continuation. Then, the function

W (V ) solves the following functional equation:

W (V ) = max
α∈[0,1],Q,Vc

αS + (1− α)Ŵ (Vc)

subject to αQ + (1− α) Vc = V,

and Q, Vc ≥ 0.

(P2)

Figure 2 illustrates the basic features of the value function. Following standard

dynamic programming arguments, it is easy to show that the W (V ) is concave and

increasing. The domain of V can be partitioned in three regions: (i) a randomization

region, 0 ≤ V ≤ Vr; (ii) a region where there is no current liquidation and total firm

value increases with the entitlement of the entrepreneur, Vr ≤ V ≤ Ṽ ; (iii) a region

where the total value of the firm equals the value under symmetric information, V ≥
Ṽ . We examine each region in turn.

First note that if V = 0 at the liquidation stage, the project is scrapped for sure,

providing a total value W (0) = S. If the firm were not liquidated and V = 0, no

capital could be advanced in the current period and the firm would be liquidated for

sure the following period, so Ŵ (0) = δS. For values 0 < V ≤ Vr, it is optimal to give

the entrepreneur a lottery with values of Q = 0 in case of liquidation and Vc = Vr in

case of continuation. The total value of the firm in this region is given by a linear

10
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Figure 2: The Value Function.

combination of S and Ŵ (Vr), with weights α (V ) and (1− α (V )), respectively.

The probability of liquidation is α (V ) = (Vr − V ) /Vr. Notice that for V ≤ Vr such

probability is decreasing in the entrepreneur’s value entitlement.

Consider now region (iii), where borrowing constraints cease to bind. The thresh-

old Ṽ is defined as the minimum entitlement such that the policy of providing every

period the optimal advancement k∗ is incentive compatible. The value Ṽ can be

derived from the following necessary conditions:

Ṽ = p (R (k∗)− τ) + δ
(
pV H + (1− p) V L

)
,

τ ≤ δ
(
V H − V L

)
,

V L ≥ Ṽ , V H ≥ Ṽ .

The smallest value that satisfies these constraints is obtained when the incentive

compatibility constraint binds and V L = Ṽ . Substituting in the first equation, we

obtain

Ṽ =
pR (k∗)
1− δ

.

Notice that this value entitlement can be implemented by giving the entrepreneur

the efficient capital advancement k∗ in every period, with no need of repayment.

This also corresponds to a situation where the entrepreneur has a positive balance

equal to k∗/ (1− δ) in the bank at an interest rate r = (1− δ) /δ. Such balance is

exactly enough to finance the project at full scale in all contingencies.
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The results proved in this section are summarized in the following Proposition.8

Proposition 1 The value function W (V ) is increasing and concave. There exists

values 0 < Vr < Ṽ ≡ pR(k∗)
1−δ

, such that:

1. The firm is liquidated with probability (Vr−V )
Vr

when V ≤ Vr;

2. W (V ) is linear for V < Vr, strictly increasing for V < Ṽ and equal to W̃ for

V ≥ Ṽ .

3 Properties of the Optimal Lending Contract.

This section characterizes the provisions of the optimal contract when V ∈ [Vr, Ṽ )

( region (ii) ). We start with a general proposition that shows that in this region

borrowing constraints bind.

Proposition 2 i) The optimal capital advancement policy k (V ) that solves (P1) is

single valued and continuous. ii) V < Ṽ implies k(V ) < k∗; (iii) V ≥ Ṽ implies

k (V ) = k∗.

Although this result does not depend on a particular repayment policy, its eco-

nomic intuition is clearest in the case in which τ = R(k).9 Lemma 1 shows that

when this is the case, the incentive compatibility constraint (3) binds for all V < Ṽ .

Therefore the level of capital advancement is tied to the spread in equity values

(V H − V L). Due to the concavity of W (V ) this spread is costly so that k < k∗

unless the value function W is flat in the relevant portion.

3.1 Optimal Repayment.

As the total value of the firm increases with V, there is an efficiency gain in delaying

dividend distribution. Given that both agents are risk-neutral and discount future

cash-flows at the same rate, the optimal repayment schedule is the one that allows

the equity value V to reach the threshold Ṽ in the shortest possible time. Setting

8The proofs not included in the body of the paper can be found in Appendix.
9Proposition 3 below shows that setting τ = R(k) is indeed optimal.
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τ = R (k) , equation (10) implies V
δ

= pV H + (1− p)V L, which gives the maximum

feasible rate of growth of equity. This is a necessary condition for efficiency as

long as V H < Ṽ , as indicated by Proposition 3. In the region of values where

V H ≥ Ṽ , there is some degree of indeterminacy on the optimal repayment policy.

In particular, among the optimal repayment policies is the one that requires the

entrepreneur to transfer all the cash flows to the lender until his value reaches Ṽ ,

and to pay nothing thereafter.

Proposition 3 (i) The following condition is necessary for an optimal contract: if

V H < Ṽ then τ = R (k); (ii) It is optimal to set τ = R (k) for all V < Ṽ .

Proof. For part (i), consider the case where V H < Ṽ . If τ < R (k) , then V H and

τ can be increased in a way that all constraints are still satisfied. This results in a

strictly higher value for W
(
V H

)
and, correspondingly, a higher current firm value

W (V ). Part (ii) follows immediately from the monotonicity of the value function.

¥

3.2 The Evolution of Equity.

The optimal contract generates a stochastic process {Vt} for the value of the en-

trepreneur. In this section we characterize its evolution. By Proposition 3, optimal-

ity implies a unique path for Vt as long as V H(V ) < Ṽ . When this condition does

not hold, the path followed by Vt depends on the choice of dividend distribution

policy. In this section we choose to characterize the evolution of equity in the case

in which τ = R (k) for all V < Ṽ .10 This choice, along with the flow equation (2),

implies that Vt < pV H
t + (1− p) V L

t , so that {Vt} is a submartingale. This process

has two absorbing sets, Vt = 0 and Vt ≥ Ṽ . Eventually, either the first one is reached

and the firm is liquidated, or the second one is reached and borrowing constraints

cease forever. In the set 0 < Vt < Vr, the randomization described above takes

place. We will now characterize the process for Vr ≤ Vt < Ṽ .

Using the incentive compatibility constraint (3) we can define an indirect profit

10All relevant properties are independent of the selection used. In particular, this is true for the
optimal capital advancement policy k (V ), which is uniquely determined.
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function as follows:

Π
(
V H − V L

) ≡max pR (k)− k

s.t. R (k) ≤ δ
(
V H − V L

)
.

It is straightforward to show that Π is strictly concave and strictly increasing for

V H − V L < R(k∗)
δ

, and constant at the value pR (k∗) − k∗ thereafter. For V ≥ Vr,

the optimal contract design problem can be conveniently restated as

W (V ) ≡ max
V H ,V L

Π
(
V H − V L

)
+ δ

[
pW

(
V H

)
+ (1− p) W

(
V L

)]

s.t. V = δ
(
pV H + (1− p) V L

)
.

(P3)

Since W is concave, it is almost everywhere differentiable. Let λ denote the

Lagrange multiplier for the constraint. Then, the necessary conditions for optimality

are given by

Π′ (V H − V L
)

+ δpW ′ (V H
)− δpλ = 0 (5)

−Π′ (V H − V L
)

+ δ (1− p) W ′ (V L
)− δ (1− p) λ = 0 (6)

and by the envelope condition

λ = W ′ (V ) . (7)

Together with Lemma 1, Proposition 2 implies that Π′ (V H − V L
)

> 0 for V < Ṽ .

Using (5), (6) and (7) we obtain that

W ′ (V H
)

< W ′ (V ) < W ′ (V L
)
.

By concavity of the value function, it follows that

V L < V < V H . (8)

The results reached so far are summarized in Proposition 4.

Proposition 4 Let V ∈
[
Vr, Ṽ

)
. If τ = R(k) the following holds: (i) V L < V <

V H ; (ii) V < pV H + (1− p)V L.

Value increases with a good shock and decreases with a bad shock. Moreover, as

Proposition 5 shows, the process {Vt} displays persistence. Lower values in a given

period result in lower future values.
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Proposition 5 The policy functions V H (V ) and V L (V ) are nondecreasing in V .

Using (2), (3), and τ = R (k), the law of motion for V can be explicitly obtained:

V L =
V − pR (k)

δ
, V H =

V + (1− p) R (k)

δ
. (9)

This shows that in general there is an asymmetry between the change in equity value

following good and bad shocks. In particular, if p and δ are large, V −V L > V H−V,

while the opposite will hold if p < 1/2. Figure 3 shows the qualitative behavior of

the functions V H (V ) and V L (V ). We already know that, for V < Vr, randomizing

over the liquidation decision emerges as an optimal strategy. By Proposition 5 these

functions are nondecreasing for V ≥ Vr. As illustrated in the figure, starting from

an equity value V0 ∈ [Vr, Ṽ ) a finite sequence of high shocks leads to Ṽ . From the

same value, a sequence of low shocks leads to the randomization region.

-

6

VṼ

Ṽ

V L

V H

Vr V0

←

↑

Figure 3: The Dynamics of Equity.

3.3 The Optimal Capital Advancement Policy.

In subsection 2.1 we have shown that, under symmetric information, it would al-

ways be optimal for the lender to provide the entrepreneur with the unconstrained

efficient amount of capital. However, this ceases to be the case when the lender

15



cannot observe the firm’s cash flows. Proposition 2 establishes that borrowing con-

straints are indeed a feature of the optimal long-term contract under asymmetric

information.

An immediate consequence of Proposition 2 is that the allocation of capital

increases with V over some range of values. The numerical results discussed below

suggest that this range may include most of the domain, yet general properties are

hard to derive. Indeed, monotonicity does not hold throughout the whole range of

values. Proposition 6 shows that as equity values get close to the randomization

region, capital advancements actually increase. There is an intuitive explanation for

this result. As a consequence of the option of liquidation, risk taking is encouraged

in a neighborhood of the exit region. This is reflected both by the randomized

liquidation decision and the increase in capital advancements. At the other extreme,

capital advancements increase with V in a neighborhood of Ṽ .

Proposition 6 There exist value entitlements V ∗ and V ∗∗ , with Vr < V ∗ ≤ V ∗∗ <

Ṽ , such that:

1. the policy function k (V ) is non-increasing for V ∈ [Vr, V
∗];

2. the policy function k (V ) is non-decreasing for V ∈
[
V ∗∗, Ṽ

]
.

We now turn to the results of our numerical experiment.11 Figure 4 shows

how the advancement of working capital responds to good and bad realizations of

the revenue process. The higher curve corresponds to the growth rate of capital,

conditional on success, i.e. k(V H)
k(V )

. The lower one corresponds to k(V L)
k(V )

. Even though

k(V ) is not monotone, in the case of our experiment success is always followed by an

increase in the capital invested, while failure always triggers a decline. Also, notice

how the magnitude of the response of investment to cash-flow innovations changes

with V . Percentage changes in capital tend to be larger (in absolute value) for small

values of V and show a tendency to decline as V increases. When V equals the

threshold Ṽ , the level of capital invested is independent of cash-flows.

Our results suggest that for a panel of firms obtaining external finance through

our contract, investment-cash flow sensitivity would decrease with both size (as

11The parameter values are the same as those listed in Section 4.
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Figure 4: Growth rates of capital conditional on revenue realization.

measured by the level of working capital invested) and age. This relation between

sensitivity and size obtains because, as we have just argued, k(V ) is monotone for

most values of V . The relationship with age stems from the positive correlation

between age and size, outlined in the next section.12

4 Firm Growth and Survival.

This section considers some of the implications of the model for firm dynamics.

Since detailed implications are very difficult to derive, we complement our analysis

with some numerical results, which suggest that our model is consistent with a set

of widely established empirical findings. We proceeded to draw a large number of

independent sample paths for firm shocks, assuming all firms start at the same initial

value V0 ∈
[
Vr, Ṽ

)
. Figure 5 summarizes the results of our simulation exercise.13

12In most of the empirical literature we refer to (Fazzari, Hubbard and Petersen [15] and Gilchrist
and Himmelberg [18], for instance), investment is regressed on cash-flows and on a predictor of the
expected marginal return of capital. In the case of our model, the equity value Vt is a sufficient
statistic for kt and is therefore a natural candidate for the role of control. The coefficient of cash
flows will be positive and statistically significant as long as there is at least one period lag between
investment and the control. This is actually the case in all regression specifications we are aware
of. Conversely, the coefficient will be zero if the two variables are contemporaneous. We thank
Joao Gomes for pointing this out to us.

13Our parametric assumptions are as follows. We set R(k) = k2/5, p = 0.5, δ = 0.99, and
S = 1.5. The discount rate yields an interest rate 1

δ − 1 = 1%, which we interpret as the quarterly
interest rate. The time series obtained have been aggregate to generate yearly data, and then
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Throughout this section we identify firm size with its working capital k. Sample

paths either end with exit or in the unconstrained region. Since k < k∗ whenever

V < Ṽ , in average surviving firms grow with age. Firm age and size are positively

correlated. Both mean and variance of the growth rate decrease systematically with

age, and thus with size. These predictions are qualitatively in line with the findings

of the recent empirical literature on firm dynamics. In particular, we refer the reader

to work by Evans [14] and Hall [20].
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Figure 5: Dynamics of Growth and Survival.

As mentioned in the introduction, there is widespread agreement on the finding

that failure rates decrease with firm age and size. Moreover, conditional on age,

a larger size implies a lower failure rate. Our model predicts that the conditional

probability of survival increases with the value of the firm’s equity V .

averaged in the cross-section.
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Proposition 7 Let T be the stopping time corresponding to firm exit. Then, for

every t, Pr (T > t | V ) is strictly increasing in V for V < Ṽ and Pr (T = ∞ | V ) = 1

for V ≥ Ṽ .

A firm may exit only after having reached the randomization region. This occurs

as the consequence of a series of negative shocks. Since the continuation values V H

and V L are weakly increasing in current value, any history of shocks - including the

outcome of randomization - that leads a firm with an initial value V to exit will lead

a firm with a lower initial value to exit too. As in Jovanovic [22], selection occurs

as a consequence of exit. The values of older firms will tend to be higher, thus

reducing the probability of exit. Given that the initial value V0 > Vr, it may take a

few periods for firms to exit. We conjecture that our model implies that hazard rates

are likely to increase in the early stages of the firm lifetime and decrease thereafter.

Figure 5 shows that our simulations are consistent with this conjecture. In addition,

for a range of values where k is increasing in V , our model predicts that failure rates

decrease with firm size, both unconditionally and controlling for age.

5 Long vs. Short-Term Contracts, Debt Limit,

and Forgiveness.

Can a long term lending contract be replicated by a sequence of short term contracts?

This section provides a general answer to this question. An optimal lending contract

defines a continuous frontier of values B (V ) = W (V )− V on the domain of equity

values V . The level of debt B is a sufficient statistic if and only if the function

B (V ) is strictly decreasing on V . In such case, the inverse function V (B) gives the

entrepreneur’s value as a function of the outstanding debt. The optimal contract

can thus be formulated as a debt management problem, as in Gertler [16]. More

precisely, letting B̄ = supV ∈V B (V ) , the optimal contract satisfies the following
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dynamic programming problem:

V (B) = max
k,τ,BH ,BL

p (R (k)− τ) + δ
[
pV

(
BH

)
+ (1− p) V

(
BL

)]

s.t. BL, BH ≤ B̄,

B = pτ − k + δ
[
pBH + (1− p) BL

]
, (10)

τ ≤ δ
(
V

(
BH

)− V
(
BL

))
. (11)

In the region where borrowing constraints are effective, W ′ (V ) = B′ (V ) + 1 > 0.

This implies that B′ (V ) > −1 and thus V ′ (B) < −1. As a consequence, V
(
BH

)−
V

(
BL

)
> BL − BH > 0. Substituting the incentive constraint (11) in (10), we

obtain that

B = pτ − k + δBL + δp
(
BH −BL

)

> pτ − k + δBL − δ
(
V

(
BH

)− V
(
BL

))

= −k + δBL,

where the last equality holds since the incentive constraint binds. From this in-

equality it follows that

BL <
B + k

δ
. (12)

The right hand side of (12) corresponds to the outstanding debt in the following

period, if no payment was made. This inequality implies that the contract provides

explicitly for some debt forgiveness. This is of course compensated by debt falling

by less than the value of repayment in the high state. These remarks apply even

when B (V ) is not strictly decreasing on all its domain, when restricted to the region

where it is.

It is easy to see that by rolling over the debt, a sequence of short term con-

tingent debt contracts is sufficient to implement the solution of the above dynamic

program. There is no need for a long term contract. The condition that B (V ) is

strictly decreasing in the domain of the contract is equivalent to the contract being

renegotiation-proof. Hence, renegotiation proofness characterizes financial contracts

that can be implemented by one-period contingent debt contracts.

This conclusion does not necessarily apply to our model, since for low values of

equity it is possible that B′ (V ) > 0. This is the case, for example, when S = 0
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and R′ (0) = ∞. However, for a sufficiently high scrap value, B (V ) will be strictly

decreasing. To see this, first note that by concavity W ′ (V ) is decreasing, and so is

B′ (V ) = W ′ (V )−1. Hence, B (V ) will be strictly decreasing if and only W ′ (V ) ≤ 1

in the randomization area. This will occur for high levels of S.14 Incidentally, this

condition is equivalent to saying that the liquidation decision is renegotiation-proof.

As indicated above, there is a maximum level of sustainable debt B̄, which

corresponds to the lowest level of equity in the region where B′ (V ) < 0. There are

two possible cases: the corresponding value of equity is either zero or positive. In

the first case, the contract is renegotiation proof and B̄ = S. The entrepreneur’s

debt is fully collateralized. In the second case, B̄ > S. The debt can exceed the

value of collateral.

The results of this section are summarized in the following proposition.

Proposition 8 i) The optimal contract can be implemented by a sequence of one-

period contingent debt contracts if and only if it is renegotiation-proof. ii) in any

region where there is no incentive for renegotiation the contract involves debt for-

giveness in the low state. iii) The maximum sustainable debt B̄ ≥ S, where B̄ = S

if and only if the contract is renegotiation-proof.

6 The Role of Collateral.

The scrap value S constitutes the resale value of the project and thus its collateral.

In this section we investigate how an increase in the value of S affects the lending

contract.

Obviously, a larger S implies a larger surplus W for every V < Ṽ . In turn, this

implies that the set of pairs (I0,M) that insure financial feasibility is also larger.

Our analysis in Section 7 also implies that when the lending market is competitive

a larger collateral translates into an higher initial equity value V0.

A more subtle yet interesting implication can be inferred by inspection of Figure

6.15 As shown in the top panel, an increase in S decreases the degree of concavity

14It is obviously true for S = W̃ , since in that case W (V ) = W̃ and W ′ (V ) = 0. By continuity,
it will also hold for lower S.

15The right-most panel of the figure is the result of a simulation exercise conducted as described

21



of the function W (V ). As a consequence, one may expect the capital advancement

k to increase for every V < Ṽ . There is an intuitive explanation. As explained

in Section 3.3, higher capital advancements are costly since by lowering V L they

increase the risk of future (inefficient) liquidation. A larger collateral S makes this

risk less costly, resulting in a higher capital advancement. Figure 6 illustrates this

effect. In the case of our numerical experiment, the elasticity of capital advancement

to changes in the value of collateral can be larger than 1.
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Figure 6: Comparative Statics with respect to the value of collateral.

It is also of interest to study the effect of different collateral values on firm sur-

vival. In this respect, the analysis that we have conducted so far is inconclusive.

While a larger S makes liquidation more appealing, it also has the effects of in-

creasing the initial equity V0 and the continuation value of the project.16 Figure

6 illustrates that from our simulation exercise does not emerge an ordering of the

survival functions. However, in the limit survival increases with S.

in Section 4. The initial equity values were pinned down by assuming that the lending market is
competitive.

16The analysis carried out in Section 7 implies that if the lending market is competitive, the
initial equity V0 is larger when the value function W (V ) is uniformly less concave.
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7 Financial Feasibility.

Our previous analysis did not consider the initial distribution of surplus. Letting V0

denote the initial value to the entrepreneur, B0 (V0) = W (V0) − V0 is the value to

the lender. Given the entrepreneur’s initial net worth M < I0, the project requires

an initial contribution from the lender I0−M. The lender will be willing to provide

financing to the entrepreneur, as long as V0 satisfies

[W (V0)− V0]− [I0 −M ] ≥ 0.

The entrepreneur will be willing to invest as long as V0 > M . The project is

financially feasible if there exists an initial allocation of value (B0, V0) such that

both parties are willing to invest.

If the maximum sustainable debt B̄ < I0 − M, the project is not financially

feasible. Otherwise, let V denote the largest V0 ≥ 0 such that B (V0) = I0 − M.

The project is financially feasible if an only if V ≥ M. The value V also defines the

equilibrium starting level of equity in a market with competing lenders. This initial

equity V is strictly increasing in the net worth of the entrepreneur M .

It is instructive to examine again the role of collateral. As indicated above,

for large collateral, B̄ = B (0) and initial lending is constrained by the value of

collateral. However, when the collateral is relatively low, initial lending will exceed

its value. In the latter case, the contract cannot be implemented by one-period

contingent debt. This suggests the importance of long term lending when the value

of collateral is small compared to initial setup costs, which is the case for investments

that involve large sunk costs.

8 Unobservable Investment.

This section considers an alternative source of moral hazard. We assume that the

lender can monitor the outcome of the project each period but not the use of funds.

The entrepreneur faces an outside opportunity that provides utility Va (k) . We as-

sume that Va is strictly increasing and strictly concave. The incentive compatibility
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constraint for this problem is given by

pR (k)− τ + δ
(
pV H + (1− p) V L

) ≥ Va (k) + δV L.

All our previous analysis still goes through, once we define

Π
(
V H − V L

) ≡max pR (k)− k

s.t. Va (k) ≤ δp
(
V H − V L

)
.

Our previous analysis uses only two properties of the indirect profit function, namely

monotonicity and concavity. The first property is immediate from the above defi-

nition. Sufficient conditions for concavity are given in Lemma 2 in the appendix.

Notice that in the special case where Va (k) = pR (k), the two indirect profit func-

tions are identical.

9 A Comparison to Incomplete Enforcement.

Several papers in the literature on financing contracts consider an alternative for-

mulation, where borrowing constraints result from incomplete enforcement. There

are no informational asymmetries, but borrowers can default on their debts and

take an outside option. This section provides a sharp distinction between the two

alternative approaches.

The incomplete enforcement model that we describe is the natural counterpart

to our moral hazard model. Take the same revenue function R (k) and process for

the shocks. There is no asymmetric information, so the lender observes the outcome

of the project. However, the entrepreneur can default by keeping the revenues

and not paying back the loan. The project is then liquidated, giving the lender

the liquidation value S. By defaulting, the entrepreneur gets a value R (k) if the

productive state had realized. Otherwise, there is no value from defaulting.

Letting V H denote the continuation value in the productive state, the no-default

constraint is given by

R (k) ≤ δV H .
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Define now the indirect profit function as

Π
(
V H

) ≡max
k

pR (k)− k

s.t. R (k) ≤ δV H .

The optimal no-default contract solves the following dynamic programming equa-

tion:

W (V ) = max
V H ,V L

Π
(
V H

)
+ δ

[
pW

(
V H

)
+ (1− p) W

(
V L

)]

s.t. V ≥ δ
(
pV H + (1− p) V L

)
.

This problem is the analogue of (P3). The only difference is that V L is not an

argument of the indirect profit function. First order conditions for the choice of

continuation values are given by

Π′ (V H
)

+ δpW ′ (V H
)− δpλ = 0

W ′ (V L
)− λ = 0.

Using the envelope condition λ = W ′ (V ), it follows that

W ′ (V H
)

< W ′ (V ) = W ′ (V L
)
,

which implies that

V L = V < V H .

The equity value increases in response to good shocks but never decreases! As a

consequence, the firm never shrinks nor exits.

10 Final Remarks.

There exist a large variety of lending contracts with implicit and unwritten con-

tingencies and clauses. This makes it very difficult to assess directly the empirical

implications of borrowing constraints. Existing empirical tests are indirect, focus-

ing mostly on the sensitivity of investment to cash-flows and on other features of

firm dynamics. It is our view that theory can contribute to this debate through

a better understanding of borrowing constraints and their empirical implications.
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This requires theories that derive borrowing constraints from first principles and are

suitable for the analysis of firm dynamics. Gertler [16] was clearly a move in this

direction. Our paper contributes to this research program.

We have chosen to keep the model as simple as possible, with the minimal

elements needed to derive endogenous borrowing constraints in a dynamic setup. In

spite of its simplicity, our model matches most of the qualitative properties of firm

dynamics that have been recently documented. Moral hazard thus seems to be a

good foundation for the analysis of borrowing constraints.

Our model is also useful to better understand the value and importance of

long term lending contracts. We have shown that projects with high collateral

are renegotiation-proof and are implementable through a sequence of one-period

(contingent) loans. Borrowing is limited by the value of the collateral itself. In

contrast, when the collateral is low relative to the total value of the project, initial

lending can exceed its value. In the latter case, the optimal contract requires com-

mitment of the lender to no-renegotiation and cannot be implemented by a sequence

of short-term contracts. Long term lending is thus more valuable for investments

that involve high sunk costs.

The restriction to renegotiation-proof contracts can limit lending opportunities.

In some cases, it could lead to the extreme of making the project financially in-

feasible. The ability of lenders to commit to long term contracts can thus have

considerable value. The same can be said of institutions that facilitate reputation

building and the establishment of long-term relationships.

It is interesting to compare the implications of our model to theories of incom-

plete contracts where borrowing constraints arise from incomplete enforcement, as

in Albuquerque and Hopenhayn [1]. We have shown that, differently from our setup,

in the incomplete enforcement analogue of our model firm size never decreases. In

the environment studied by Albuquerque and Hopenhayn [1], the stochastic struc-

ture is such that firm size does decrease in response to low productivity shocks.

Conditional on a given productivity shock, however, size never decreases. While

these these predictions are difficult to test, we still conjecture that the two classes

of models would differ considerably in their quantitative implications.
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In the recent past, many scholars have conjectured the existence of a causation

link between financing constraints and the sensitivity of investment to cash flows. In

this paper we have provided a model that endogenously generates this link. However,

the observed sensitivity may also be due to a simple selection process, as in the

models of Jovanovic [22] and Alti [2]. In either one of these papers, entrepreneurs

start out not knowing the productivity of their firms and learn about it by observing

the cash-flows realizations. With Bayesian learning, an increase (decrease) in cash-

flows prompts an upward (downward) revision of the firm’s expected productivity

level, and therefore adjustments in capital expenditures of the same sign. It is of

obvious interest to develop testable predictions that can help to discriminate between

the two theories. We will discuss two potential candidates. In our model the value

of equity is a sufficient statistic for investment. The investment-cash-flow sensitivity

varies with age only because age is correlated with size. Controlling for size, age

should not matter. In the cases of Jovanovic and Alti, exactly the opposite occurs.

The investment-cash flow sensitivity varies with size only because it is correlated

with age. Further, consider the role of sunk costs. In Jovanovic [22], the level of

sunk costs affects the degree of selection, but should not have a considerable impact

on firm dynamics. In contrast, in our model higher sunk costs imply that firms start

smaller and thus exhibit higher average rates of growth. Our analysis also suggests

that a higher liquidation value can lead to higher variance in growth rates.

We have assumed that both lender and borrower are risk neutral. In spite of this,

risk considerations arise in the optimal contract design as a result of the interaction

of limited liability and a concave revenue function. The resulting degree of risk

aversion is not constant and depends on the entrepreneur’s equity. We find that

risk taking is encouraged at the extremes, close to the liquidation area and for

large values of equity. In our model the project and its risk are taken exogenously.

Allowing for risk to be a choice variable is an interesting direction in which our

theory could be extended.

There are many other interesting extensions. Multiple shocks can be easily ac-

commodated, as in Quadrini [25]. A model with partial liquidation (downsizing)

has been studied by DeMarzo and Fishman [11]. The dynamics of capacity uti-
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lization may be studied adopting the timing of Gertler [16]. Finally, we suggest

that our model may have interesting applications in macroeconomics. Starting with

Bernanke and Gertler [7], there has been a growing interest in understanding to

what extent various forms of frictions in financial markets may generate and/or

amplify macroeconomic fluctuations. However, the financial arrangements that are

considered in this literature are never intertemporally optimal, meaning that con-

tracts’ provisions are not contingent on all public information. The only exception

is recent work by Cooley, Quadrini, and Marimon [10], that embed the model by

Albuquerque and Hopenhayn [1] in a general equilibrium framework. It would defi-

nitely be of interest to perform a similar exercise with the model developed in this

paper, and then contrast the predictions generated by the two approaches.
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A Appendix - Proofs and Lemmas.

Proposition 1.

Proof. All but one of the statements of the proposition were proven in the text. It

is left to show that W (V ) is strictly increasing for V < Ṽ . By contradiction, assume

that there exists a pair (V ′, V ) such that V ′ < V < Ṽ and W (V ′) = W (V ). Then,

by concavity of the value function it must be that W (V ′) = W (V ) = W̃ , which is a

contradiction. ¥

Proposition 2.

Proof. i) It follows from standard dynamic programming arguments, since (P1)

defines a concave programming problem which is strictly concave in k. ii) By con-

tradiction, assume that there exists some V < Ṽ such that k(V ) = k∗. Then, since

W̃ = pR(k∗)−k∗
1−δ

, W (V ) = (1 − δ)W̃ + δ
[
pW (V H) + (1− p)W (V L)

]
. By Proposi-

tion 1, it must be the case that W (V ) < W̃ , and therefore either V H < Ṽ , or

V L < Ṽ , or both. If W ′(V H) < W ′(V L), consider lowering slightly k and τ in

such a way that R(k) − τ does not change. The marginal effect of this change on

the surplus is zero, since pR′(k∗) = 1. However, it has the effect of relaxing the

incentive compatibility constraint. By Jensen inequality, total surplus can be in-

creased by lowering V H and raising V L, in such a way that the promise-keeping

constraint still hold. If W ′(V H) = W ′(V L) then the value function is linear over

the range
(
V L, V H

)
. By Proposition 1, it must be that V H < Ṽ . Therefore, by

Proposition 3 it follows that τ = R(k∗). Thus, pV H + (1 − p)V L = V
δ
. By lin-

earity, it follows that pW (V H) + (1 − p)W (V L) = W (V
δ
). On the other hand,

W (V ) < W̃ implies
[
pW (V H) + (1− p)W (V L)

]
> W (V ). Summarizing, we have

that
[
pW (V H) + (1− p)W (V L)

]
= W (V

δ
) > W (V ) >

[
pW (V H) + (1− p)W (V L)

]
,

which is a contradiction. iii) Again by Proposition 1, W (V ) = pR(k∗)−k∗
1−δ

for V ≥ Ṽ .

The only way such surplus can be achieved is by setting k(V ) = k∗. ¥

Lemma 1 When τ = R(k), then the IC constraint (3) binds for every V < Ṽ .

Proof. By Proposition 2, V < Ṽ implies that k (V ) < k∗. For the sake of con-

tradiction, assume there exists V such that R (k) < δ
(
V H − V L

)
. Then by strict
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monotonicity of the revenue function it is possible to increase the surplus of the

match strictly just by raising k. But this contradicts optimality. ¥

Proposition 5.

Proof. We begin by proving that the function V H(V ) is nondecreasing. Take any V ,

V < Ṽ . Consider raising V . By concavity of the value function, W ′(V ) decreases

weakly. By contradiction, assume that V H is now strictly lower. It follows that

W ′(V H) is weakly higher. For constraint (2) to hold, V L must increase strictly.

Since Π is strictly concave in the relevant range, Π′(V H − V L) must also increase

strictly. However, this contradicts condition (5). The proof of monotonicity of

V L(V ) is very similar. Take any V , V < Ṽ . Consider raising V . By concavity

of W , W ′(V ) decreases weakly. By contradiction, assume that V L is now strictly

lower. It follows that W ′(V L) is weakly higher. For constraint (2) to hold, V H must

increase strictly. Since Π is strictly concave in the relevant range, Π′(V H − V L)

increases strictly. However, this contradicts condition (6). ¥

Proposition 6.

Proof. Combining conditions (5) and (6), one obtains that a necessary condition for

the optimal contract is p(1− p)
(
W ′(V L)−W ′(V H)

)
= Π′(V H − V L) = 1− 1

pR′(k)
.

1) By Proposition 5, V L (Vr) < Vr. By continuity of the function V L (·), there ex-

ists V > Vr such that V L (V ) < Vr. Combining this fact with monotonicity of V H (·)
and concavity of the value function yields the prediction that

(
W

′ (
V L

)−W ′(V H)
)

is non-decreasing and thus k (·) non-increasing on [Vr, V ].

2) We know that V H
(
Ṽ

)
> Ṽ . By continuity of the function V H (·), there exists

V < Ṽ such that V H (V ) > Ṽ . Combining this fact with monotonicity of V L (·) and

concavity of the value function yields the prediction that
(
W

′ (
V L

)−W
′ (

V H
))

is

non-increasing and thus k (·) non-decreasing on
[
V, Ṽ

]
. ¥

Lemma 2 The sign of Π′′ (V H − V L
)

is given by the sign of pR′′(k)
pR′(k)−1

− V ′′0 (k)

V ′0(k)
.

Proof. It is immediate, by implicit differentiation of Π. ¥
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