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1 Introduction

The monotonic transformation function in its most basic form is usually expressed as

T (yi) = x′iβ0 + εi i = 1, 2, ...n (1.1)

where (yi, x
′
i)
′ is a (k + 1) dimensional observed random vector, and the random variable εi

is unobserved. The function T (·) is assumed to be monotonic, but otherwise unspecified1.

The k-dimensional vector β0 is unknown, and is often the object of interest to be estimated

from a random sample of n observations.2

The model in equation (1.1) has become increasingly popular in the applied and theo-

retical econometrics literature. Its popularity stems from two main reasons. First, economic

theory rarely provides guidelines on how to specify functional form relationships among vari-

ables while (1.1) can accommodate many functional relationships used in practice such as lin-

ear, log-linear, or the parametric transformation in Box-Cox models, without suffering from

the dimensionality problems encountered when adopting a fully nonparametric approach.

The second reason is that (1.1) can be derived from a wide class of duration models which

includes the Accelerated Failure Time (AFT) model and the proportional hazard model with

unobserved heterogeneity which are both widely popular in the unemployment spell litera-

ture. In the proportional hazards model with unobserved heterogeneity, the function T (·) is

related to the integrated baseline hazard function- see Ridder(1990) for details.

Several estimators for β0 have been proposed in the econometrics and statistics literature

in the case where ε is independent of x. The first was the Maximum Rank Correlation (MRC)

estimator proposed in Han(1987)3. MRC maximizes the following objective function:

Hn(β) =
1

n(n− 1)

∑
i6=j

I[yi > yj]I[x′iβ > x′jβ] (1.2)

where I[·] denotes the usual indicator function. Consistency of this estimator is based on

the condition:

P (yi ≥ yj|xi, xj) ≥
1

2
iff x′iβ ≥ x′jβ (1.3)

1The transformation model is sometimes expressed even more generally than in (1.1), where additive

separability between εi and x′iβ0 is weakened to monotonicity in each argument.
2More recently, the unknown function T (·) has also been a “parameter” of interest to be estimated. While

estimation of β0 will be the initial focus of attention in this paper, we also consider estimation of T (·) later

in the paper.
3A related rank estimator was proposed in Cuzick(1988).
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A similar estimator was proposed in Cavanagh and Sherman(2001). Their Monotone Rank

Estimator (MRE) maximized the function:

Mn(β) =
1

n(n− 1)

∑
i6=j

M(yi)I[x′iβ > x′jβ] (1.4)

where M(.) is a known monotonic function. Consistency of the MRE is based on the condi-

tion:

E[yi|xi] is monotonic in x′iβ0 (1.5)

which is mildly more general than the condition in (1.3).

Both the MRC and MRE involve non-continuous objective functions which makes their

computation relatively difficult. The non-smoothness problem is compounded by the fact

that calculation of each objective function involves O(n log n) operations, as shown in Abre-

vaya(2001). Nonetheless, algorithms such as Nelder-Meade and Simulated Annealing have

been shown to be effective in their computation. Furthermore, they have the advantage of

not involving any non-parametric procedures requiring the selection of smoothing parame-

ters, in contrast to the estimators proposed in Powell Stock and Stoker (1989) and Ichimura

(1993).

In this paper we propose a pairwise comparison estimator that can accommodate data

which is subject to random covariate dependent censoring. The new estimator shares the

same advantages of the original MRC- specifically it does not involve any non-parametric

procedures, but will be consistent and/or more efficient than the original MRC for a wide

class of censored models. Furthermore, the new estimator is numerically equivalent to the

MRC for uncensored data, and data exhibiting fixed censoring.

The rest of the paper is organized as follows. The following section describes the model

to be estimated and explains the disadvantages of estimating it by the MRC. This then

motivates the new estimation procedure which is described in detail, and whose asymptotic

properties are provided. Section 3 describes extensions of the new procedure to accommodate

doubly censored, heteroskedastic, and panel data, as well as estimate T (·). Section 4 explores

the finite sample properties of the new estimators by means of a small scale simulation

study. Section 5 applies the new estimator to two data sets, and section 6 concludes by

summarizing results and discussing areas for future research. The proofs used in establishing

the asymptotic properties of the estimators are left to the appendix.
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2 Censored Transformation Model

We consider estimation of the regression coefficients in a transformation model subject to

random left censoring. Specifically, as in equation (1.1) we have

T (yi) = x′iβ0 + εi i = 1, 2, ...n (2.1)

where εi is independent of xi but now the latent dependent variable yi is no longer always

observed. Instead one observes the pair (vi, di) where

T (vi) = max(x′iβ0 + εi, ci)

di = I[x′iβ0 + εi ≥ ci]

where ci is the censoring random variable whose distribution may depend on the covariates

xi but conditional on xi is assumed to be independent of εi. It is also assumed that εi and

xi are independent.

Randomly censored models have received a great deal of attention in the econometrics

and statistics literature primarily when the function T (·) is known and strictly increasing

function, such as the identity or logarithmic functions. In the latter case the model is often

referred to as the Accelerated Failure Time model. Estimators for β0 when T (·) is known and

assumed to be strictly monotonic have been proposed in Buckley and James(1978), Koul,

Sousarla and Van Rysin (1980), Ritov(1990), Tsiatsis(1991), Ying Jung and Wei(1995),

Yang(1999), Honoré, Khan and Powell(2002) among others. A main disadvantage of these

estimators is that they all are based on knowledge of T (·), and some suffer from the additional

drawback of assuming that the censoring variable and the observed covariates are statistically

independent.

There are few estimators for β0 in (2.1) when T (·) is unknown and censoring depends

on the covariates. We note that the proportional hazards model can be expressed as a

transformation model (see, e.g. Ridder(1990)) in which case β0 could be estimated (even in

the presence of covariate dependent censoring) via the partial MLE in Cox(1975). However,

this requires that εi have an extreme value distribution.

It is also well known that the MRC estimator, with yi replaced with the observed variable

vi can result in a consistent estimator when ci and xi are independent. However, even under

this strong assumption, it will be rather inefficient, as it “discards” the information in the
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value of the indicator di. Worse still, the MRC is inconsistent in the presence of covariate

dependent censoring. This problem can be corrected by weighting observations of vi by a

conditional Kaplan-Meier estimator of the conditional c.d.f. of ci given xi as suggested by

Cuzick(1988). For example, if the c.d.f. of ci were known, one could modify the MRC and

the MRE as the maximizers of :

Hn(β) =
1

n(n− 1)

∑
i6=j

(di/F (vi))(dj/F (vj))I[vi > vj]I[x′iβ > x′jβ] (2.2)

and

Mn(β) =
1

n(n− 1)

∑
i6=j

M (divi/F (vi)) I[x′iβ > x′jβ] (2.3)

respectively, where here F (·) denotes the unknown c.d.f; this estimator can be made feasible

by replacing the unknown F (·) with the Kaplan Meier estimator, F̂ (·). This approach suffers

from several drawbacks. For one, computation of a conditional Kaplan-Meier estimator

requires the selection of smoothing parameters. Furthermore, it can be very numerically

unstable as it divides variables by estimators that are not bounded away from 0. Moreover,

weighing by the Kaplan Meier estimator does not allow for fixed censoring.

The assumption of independence between the censoring variable and the covariates is

often considered too restrictive. For example it rules out all competing risks models where

the researcher only observes the minimum of two dependent variables depending on covari-

ates and having some common covariates. Thus we feel that an estimator for the regression

coefficients in a transformation model with covariate dependent censoring that is simple to

implement, in the sense that it does not require smoothing parameters or trimming proce-

dures, is something that is lacking in the literature. In this paper we propose an estimator

which aims to address this problem.

Our estimator is based on results from the rank regression and pairwise comparison

literature in statistics and econometrics- see e.g. Jureckova(1971), Jaeckle(1972) and Pow-

ell(1994).

To motivate an estimator in terms of the rank regression and pairwise comparison lit-

erature for the problem at hand, we define the vector yi = (vi, di)
′. To construct a rank

regression estimator, analogous to Han(1987), we wish to construct a function:

fij ≡ f(yi,yj)
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which satisfies the property

E[I[fij ≥ 0]|xi, xj] ≥ E[I[fji ≥ 0]|xi, xj] iff x′iβ0 ≥ x′jβ0 (2.4)

Alternatively, in terms of the pairwise comparison literature, we define the vector zi =

(vi, di, x
′
i)
′, and we wish to construct the function

eij(β) ≡ e(β, zi, zj)

which satisfies

eij(β0)− eji(β0) is symmetric around 0, conditional on xi, xj (2.5)

For the uncensored transformation model, Han(1987) sets fij = yi − yj. For the problem

at hand with covariate dependent censoring, we propose an alternative form for fij(β) that

satisfies (2.4), and a resulting rank regression estimator. This will also suggest a form for

eij(β), and place the estimator within the class of pairwise comparison estimators.

We first define the random variables

y1i = vi (2.6)

y0i = divi + (1− di) · (−∞) (2.7)

from which we define fij, and consequently I[fij ≥ 0] as

fij = y1i − y0j (2.8)

I[fij ≥ 0] = (1− dj) + dj(vi − vj) (2.9)

We wish to show that (2.4) holds for the censored transformation model. Another way to

motivate our estimator is to notice that by the definition of y1 and y0, we have

y0 ≤ y ≤ y1

and hence that

y0 ≤ T−1(xβ0 + ε) ≤ y1
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which implies that

xiβ ≥ xjβ ⇒ Pr(y1i ≥ y0j) ≥ 1

2
(2.10)

Our result is based on the following conditions:

I1 Letting SX denote the support of xi, and let Xuc denote the set

{x ∈ SX : P (di = 1|xi = x) > 0}

Then Xuc has positive measure.

I2 The random variable εi is distributed independently of the random vector (ci, x
′
i)
′.

I3 SX is not contained in any proper linear subspace of Rk. Furthermore, the first component

of xi has everywhere positive Lebesgue density, conditional on the other components.

We have the following identification result, whose proof is left to the appendix.

Lemma 2.1 Under Assumptions I1-I3, (2.4) holds.

It is this result which motivates our estimator. Before describing it in detail, we note that the

object of interest β0 is only identified up to scale as the function T (·) is unknown. Following

convention, we set the first component of the vector β0 to 1, express β0 = (1, θ′0)
′ and consider

estimation of θ0. We let x(1) denote the first component of xi and x−1
i denote its remaining

components. Following standard notation, for any θ ∈ Θ, we let β denote (1, θ′)′.

Our censoring robust rank estimator, which we refer to hereafter as CRMRC, is of the

form:

θ̂ = arg max
θ∈Θ

1

n(n− 1)

∑
i6=j

I[fij ≥ 0]I[x′iβ ≥ x′jβ] (2.11)

= arg max
θ∈Θ

1

n(n− 1)

∑
i6=j

(djI[vi ≥ vj] + (1− dj))I[x′iβ ≥ x′jβ] (2.12)

where Θ denotes the parameter space.
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Remark 2.1 The above estimator is numerically equivalent to maximizing the objective

function:

1

n(n− 1)

∑
i6=j

I[y0i ≥ y1j]I[x′iβ0 ≥ x′jβ0] =
1

n(n− 1)

∑
i6=j

diI[vi ≥ vj]I[x′iβ0 ≥ x′jβ0]

Interestingly, our estimator has an inherent “asymmetry” in the objective function, where

we include one censoring indicator, but not the other. It appears that this asymmetry is what

permits us to accommodate covariate dependent censoring.

Remark 2.2 To interpret the above as a pairwise comparison estimator, we can define

eij(β) = sgn{I[fij(β0) > 0]− I[(xi − xj)
′β0 > 0]}

and the conditional symmetry of eij(β)− eji(β0) follows from Lemma 2.1

We first establish consistency of the CRMRC. For this we require the additional condition

that the parameter space is compact:

I4 Θ is a compact subset of Rk−1.

The following theorem, whose proof is left to the appendix, establishes the consistency

of the CRMRC.

Theorem 2.1 Under Assumptions I1-I4,

θ̂
p→ θ0

Remark 2.3 We note that the consistency of the proposed estimator follows from Lemma

2.1. Consequently, as is the case with the MRC and MRE, the estimator is applicable to

models even more general than (1.1). Specifically, additive separability between x′iβ0 and εi

is often not required if we have monotonicity in each of the two arguments.
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We now establish the limiting distribution theory of the CRMRC. The arguments are

completely analogous to those used in Sherman(1993) for establishing the asymptotic distri-

bution of the MRC. Our results are based on a set of assumptions analogous to those found

in Sherman(1993), and we deliberately choose notation to match his as closely as possible.

Recalling that zi denotes the vector (di, vi, x
′
i)
′, we define

τ(z, θ) = E[(diI[v ≥ vi] + (1− di))I[x′β ≥ x′iβ]]

+ E[(dI[vi ≥ v] + (1− d))]I[x′iβ ≥ x′β]]

Finally, we let N denote a neighborhood of θ0.

A1 θ0 lies in the interior of Θ, a compact subset of Rk−1.

A2 For each z, the function τ(z, ·) is twice differentiable in a neighborhood of θ0. Fur-

thermore, the vector of second derivatives of τ(z, ·) satisfies the following Lipschitz

condition:

‖∇2τ(z, θ)−∇2τ(z, θ0)‖ ≤ M(z)‖θ − θ0‖

where ∇2 denotes the second derivative operator and M(·) denotes an integrable func-

tion of z.

A3 E[‖∇1τ(zi, θ0)‖2] and E[‖∇2τ(zi, θ0)‖] are finite.

A4 E[∇2τ(zi, θ0)] is non-singular.

We now state the main theorem, characterizing the asymptotic distribution of the CRMRC;

its proof is left to the appendix.

Theorem 2.2 Under Assumptions I1-I4, A1-A4,

√
n(θ̂ − θ0) ⇒ N(0, V −1∆V −1) (2.13)

where V = E[∇2τ(zi, θ0)]/2 and ∆ = E[∇1τ(zi, θ0)∇1τ(zi, θ0)
′].

We conclude this section with a brief discussion on conducting inference with the CRMRC.

The asymptotic variance matrix can be estimated in a similar fashion to the estimator in

Sherman(1993). As is the case with that estimator, the selection of smoothing parameters
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will be required. Unfortunately, it has not been formally established that the bootstrap is

asymptotically valid in this setting, or else inference could be conducted without the selection

of smoothing parameters.

Also, the CRMRC can be used to construct model specification tests by comparing its

value to those of existing estimators. For example, the CRMRC may be compared to the

MRE or MRC to test for the presence of covariate dependent censoring. We can compare the

CRMRC to the relative coefficients obtained from Cox’s partial likelihood estimator (PLE)

to test for the presence of unobserved heterogeneity. Also, we can compare the CRMRC to

relative coefficients obtained from the Tsiatsis(1990) and/or Ying(1995) estimators, to test

for particular functional forms of the transformation.

3 Extensions of the CRMRC

In this section we propose two extensions of the CRMRC to accommodate doubly censored

and heteroskedastic data.

3.1 Doubly Censored Data

Many data sets are subject to double (i.e. left and right) random censoring. Examples are

when the dependent variable is duration until an event occurs, and individuals are regularly

and frequently surveyed or tested for an interval of time. If the occurrence of the event (e.g.

unemployment, cancerous tumor) is detected on the first survey/test, the duration is left

censored, and if no such events have occurred by the last survey/test, the duration is right

censored.

In the monotonic transformation framework, the doubly censored regression model can

be expressed as follows. (1.1) still holds, but the econometrician does not always observe the

dependent variable yi ≡ T−1(x′iβ0 + εi). Instead one observes the doubly censored sample,

which we can express as the pair (vi, di) where

di = I[c1i < x′iβ0 + εi ≤ c2i] + 2 · I[x′iβ0 + εi ≤ c1i] + 3 · I[c2i > x′iβ0 + εi]

vi = I[di = 1] · (x′iβ0 + εi) + I[di = 2]c1i + I[di = 3]c2i

where I[·] denotes the usual indicator function, c1i, c2i denote left and right censoring vari-

ables, whose distributions may depend on the covariates xi and who satisfy P (c1i < c2i) = 1.
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For the double censored regression model estimators have been proposed by Zhang and

Li(1996), Ren and Gu(1997) to name a few. Both of these require a linear regression speci-

fication and the censoring variables to be independent of the covariates.

With T (·) unknown, once can again perform MRC using vi as the dependent variable if

xi is independent of (c1i, c2i). However in the doubly censored case the efficiency loss can be

very severe for ignoring the value of di.

To estimate β0 in the general model with T (·) unknown and covariate dependent censor-

ing, we first define y1i, y0i as

y1i = I[di < 3]viI[di = 3] ·+∞ (3.1)

y0i = I[di 6= 2]vi + I[di = 2] · −∞ (3.2)

and accordingly we may define fij, I[fij ≥ 0] as:

fij = y1i − y0j

I[fij ≥ 0] = I[di = 3] + I[dj = 2]− (I[di = 3] ∗ I[dj = 2]) + (I[di = 1] + I[di = 2]) ∗ (I[dj = 1] + dj = 3])I[vi ≥ vj]

Letting d1i, d2i, d3i denote I[di = 1], I[di = 2], I[di = 3], respectively, we can express the

CRMRC for doubly censored data as:

θ̂ = arg max
θ∈Θ

1

n(n− 1)

∑
i6=j

((d1i + d2i) · (d1j + d3j)I[vi ≥ vj]

+ (d3i + d2j − d3id2j))I[x′iβ ≥ x′jβ] (3.3)

The following theorem, whose proof is left to the appendix, establishes the asymptotic dis-

tribution of the CRMRC in the doubly censored model. Asymptotic distribution theory is

based on the on Assumptions AD1-AD4 below. We first need to introduce some further

notation for the doubly censored case. Now zi denotes the vector (d1i, d2i, d3i, vi, x
′
i)
′, we

define

τd(z, θ) = E[(d1d3iI[v ≥ vi])I[x′β ≥ x′iβ]]

+ E[(d1id3I[vi ≥ v]]I[x′iβ ≥ x′β]]

Finally, we let N denote a neighborhood of θ0.

AD1 θ0 lies in the interior of Θ, a compact subset of Rk−1.
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AD2 For each z, the function τd(z, ·) is twice differentiable in a neighborhood of θ0. Fur-

thermore, the vector of second derivatives of τd(z, ·) satisfies the following Lipschitz

condition:

‖∇2τd(z, θ)−∇2τd(z, θ0)‖ ≤ M(z)‖θ − θ0‖

where ∇2 denotes the second derivative operator and M(·) denotes an integrable func-

tion of z.

AD3 E[‖∇1τd(zi, θ0)‖2] and E[‖∇2τd(zi, θ0)‖] are finite.

AD4 E[∇2τd(zi, θ0)] is non-singular.

Theorem 3.1 Under Assumptions AD1-AD4,

√
n(θ̂ − θ0) ⇒ N(0, V −1

d ∆dV
−1
d ) (3.4)

where Vd = E[∇2τd(zi, θ0)]/2 and ∆d = E[∇1τd(zi, θ0)∇1τd(zi, θ0)
′].

3.2 Estimating the Transformation Function (incomplete)

In this section we consider estimation of the transformation function T (·). For the un-

censored model, Cuzick(1988) showed that the “infinite dimensional parameter T (·) could

be estimated at the parametric (root-n) rate by his proposed rank regression estimator.

The estimator was then modified to accommodate random, though covariate term inde-

pendent censoring. Other estimators for the transformation function have been proposed

in Horowitz(1996), Gorgens and Horowitz(1999), Ye and Duan(1997) and Chen(2002). An

attractive feature of the rank estimators in Cuzick(1988), Chen(2002) is that they did not

require smoothing parameters. Specifically, for the uncensored model, Chen(2002) proposed

maximizing the following rank based objective function with respect to γ:

Cn(γ) =
∑
i6=j

(I[yi ≥ y1]− I[yj ≥ 0])I[zi − zj ≥ γ] (3.5)

where y1 denotes the point in the domain of T (·) the function is to be estimated, zi = x′iβ0,

where the assumption of a known β0 does not affect the rate of convergence of the estimator

of γ0 ≡ T (y1) since estimators of β0 converging at the root-n rate exist.
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To accommodate censoring, Cuzick(1988), Chen(2002) divided the terms in the above

objective function by the estimated survivor function of the censoring variable, which could

be obtained using the Kaplan Meier estimator. There are certain drawbacks with this ap-

proach which we attempt to address here. One is that the procedure breaks down with fixed

censoring. More importantly, it does not allow for covariate dependent censoring. While

covariate dependent censoring might be accommodated with a conditional Kaplan Meier es-

timator, this would require the selection of a smoothing parameter, which the rank estimator

aimed to avoid, as well as be very numerically unstable.

Here we propose an alternative approach to accommodate random, covariate dependent

censoring, when estimating the transformation function. We note that we can assume β0 is

known, as we have already provided an estimator which converges as the parametric rate,

and here we let zi = x′iβ0. We also note that the transformation function is only identified

up to location and scale, so normalizations need to be adopted. As a scale normalization, we

set the first component of β0 = 1 as before. Here we adopt the usual location normalization

by assuming some point y0, which we set w.l.o.g. to 0, satisfies T (0) = 0. We propose an

estimator for T (y1) for some point y1 in the context of left censoring. To do so, we define

the following variables:

d1ij = I[y0i ≥ y1]− I[y1j ≥ y1] = diI[vi ≥ y1]− I[vj ≥ 0] (3.6)

d2ij = I[y1i ≥ y1]− I[y0j ≥ 0] = I[vi ≥ y1]− djI[vj ≥ 0] (3.7)

To accommodate covariate dependent censoring, we propose the following estimator:

κ̂1 = arg max
κ

∑
i6=j

(I[d1ij = 1]− I[d2ij = −1])I[zi − zj ≥ κ] (3.8)

The following theorem characterizes the limiting distribution of these two rank estimators

of the transformation function:

Theorem 3.2

3.3 Heteroskedastic Models

One of the assumptions that the estimation procedures introduced in this paper have been

based on is that the disturbance term εi be distributed independently of the covariates

xi. This assumption may be overly restrictive in the sense that it rules out any form of
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conditional heteroskedasticity. In this section we relax the independence assumption by

assuming only one of the quantiles of εi, say the median, is independent of the covariates.

Khan(2000) proposed a two step rank estimator for a heteroskedastic transformation model,

but did not allow for random censoring. To permit random, covariate dependent censoring,

we now make the assumption that the random variables ci, εi are statistically independent

given xi.

We illustrate here identification for the univariate censoring case. Similar arguments can

be used to attain point identification results for the double censoring case.

Point identification is characterized by the following lemma, whose proof is left to the

appendix:

Lemma 3.1 Define the set X such that

X = {x : Pr(T (c)− xβ ≤ 0|x) = 1}

Assume further that Prx(X ) > 0. Moreover, the random variable c is such that ε ⊥ c|x.

Finally, define the random variables y1i = vi and y0i = divi + (1− di) · −∞. Then we have

that

Med(T (y0)|x) = Med(T (y)|x) = Med(T (y1)|x) = xβ

if and only if x ∈ X .

The above identification result, along with the invariance of medians, suggests an (infea-

sible) rank estimator based on the conditional medians of y0i and y1i. Letting m0(xi), m1(xi)

denote these conditional median functions, we would estimate β0 by maximizing the function

Q(β) =
1

n(n− 1)

∑
i6=j

I[m1(xi) ≥ m0(xj)]I[x′iβ ≥ x′jβ] (3.9)

To construct a feasible estimation procedure, we replace the unknown median functions in

the above estimator with their nonparametric estimators. To construct these estimators, we

adopt the local polynomial approach introduced in Chaudhuri(1991). For a detailed descrip-

tion of the estimator, see Chaudhuri(1991). Here, we simply let m̂δn,p
0 (xi), m̂δn,p

1 (xi) denote

the local polynomial estimators where the superscripts denote the bandwidth sequence (δn),

and order of polynomial (p) used. Conditions on δn and p are stated in the theorem be-

low characterizing the limiting distribution of our estimator of β0. To avoid the technical
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difficulty of dealing with a smoothing parameter inside an indicator function, we define our

heteroskedasticity robust estimator of β0, denoted here as β̂ht as follows:

β̂ht = arg max
β∈B

1

n(n− 1)

∑
i6=j

Khn(m̂δn,p
1 (xi)− m̂δn,p

0 (xj))I[x′iβ ≥ x′jβ] (3.10)

where Khn(·) ≡ K(·/hn)/hn, with K(·) denoting a smooth approximating function to an

indicator function (i.e. a cumulative distribution function), and hn denotes a sequence of

positive constants, converging to 0, such that in the limit we have an indicator function.

This smoothing technique was introduced in the seminal work of Horowitz(1992).

We next state the limiting distribution theory for β̂ht. Our limiting distribution theory

for this estimator is based on the following assumptions:

Assumptions on the Median Functions

Q1 For any value x(d) in the support of x
(d)
i , mj(·) j = 0, 1 is k times differentiable in x

(c)
i .

Letting ∇kmj(x
(c), x(d)) denote the vector of kth order derivatives of mj(·) in x

(c)
i , we

assume the following Lipschitz condition:

‖∇kmj(x
(c)
1 , x(d))−∇kmj(x

(c)
2 , x(d))‖ ≤ K‖x(c)

1 − x
(c)
2 ‖γ

for all values x
(c)
1 , x

(c)
2 in the support of x

(c)
i , where ‖ · ‖ denotes the Euclidean norm,

γ ∈ (0, 1], and K is some positive constant. In the theorems to follow, we will let

p = k + γ denote the order of smoothness of the quantile function.

Assumptions on the Trimming Function

T The trimming function τ : <d 7→ <+ is continuous, bounded, and bounded away from

zero on its support, denoted by Xt, a compact subset of <d.

Assumptions on the Regressors

B1 The sequence of d + 2 dimensional vectors (vi, di, xi) are independent and identically

distributed.

B2 The regressor vector xi has support which is a subset of <d.

We order the components of xi so it can be written as xi = (xi
(d), xi

(c))′. Let dc denote

dim(xi
(c)). Assume that 1 ≤ dc ≤ d and that the support xi

(c) is a convex subset of
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<dc and has nonempty interior. Assume that the support of xi
(d) is a finite number

of points lying in <d−dc . We will let fX(x) denote the product of the conditional

(Lebesgue) density of x
(c)
i given x

(d)
i (denoted by fX(c)|X(d)=x(d)(x(c))) and the marginal

probability mass function of X(d) (denoted by fX(d)(x(d))).

B3 fX(c)|X(d)(x(c)) is continuous and bounded on the support of x
(c)
i .

B4 Assume that Xt = Xt(d−1) × Xtd where Xt(d−1) and Xtd are compact subsets with non-

empty interiors of the supports of the first d− 1 components, and the dth component

of xi, respectively. For each x ∈ Xt, denote its first d − 1 components by x(d−1). Xt

will be assumed to have the following properties:

B4.1 Xt is not contained in any proper linear subspace of <d.

B4.2 fX(x) ≥ ε0 > 0 ∀x ∈ Xt, for some constant ε0.

Assumptions on the Median Residual Terms

D1 Let u1i = y1i−m1(xi); in a neighborhood of 0, u1i has a conditional (Lebesgue) density,

denoted by fu1|Xi=x(·) which is continuous, and bounded away from 0 and infinity for

all values of x ∈ Xt. As a function of x, fu|Xi=x is Lipschitz continuous for all values

of u1i in a neighborhood of 0. Define u0i analogously and assume it has analogous

properties.

Furthermore, we require conditions on the smoothness of the median functions. Let

τq1(x, θ) =

∫
I[x ∈ X ]I[u ∈ X ]τ(x)I[m1(x) ≥ m0(u)]I[x′β(θ) > u′β(θ)]dFX(u)

+

∫
I[x ∈ X ]I[u ∈ X ]τq(u)I[m1(u) ≥ m0(x)]I[u′β(θ) > x′β(θ)]dFX(u)

and let

τq2(x, θ) =

∫
I[x ∈ X ]I[u ∈ X ]I[x′β(θ) > u′β(θ)]dFX(u)

let N be a neighborhood of the d− 1 dimensional vector θ0. Then we impose the following

additional assumptions:

E1 For each x in the support of xi, τq1(x, ·) is differentiable of order 2, with Lipschitz

continuous second derivative on N .
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E2 E[∇2τq1(·, θ0)] is negative definite

E3 For each x in the support of xi, τq2(x, ·) is continuously differentiable on N .

E4 E[‖∇1τq2(·, θ0)‖2] < ∞

Finally, we impose conditions on the second stage smoothed indicator function and band-

width:

SI1 The function K(·) is positive, strictly increasing, twice differentiable with bounded first

and second derivatives, and satisfies the following:

SI1.1 limx→+∞ K(x) = 1, limx→−∞ K(x) = 0

SI1.2
∫ ∞
−∞ K ′(x)dx = 1

SI2 hn > 0 and hn → 0.

The following theorem establishes that these additional assumptions, along with a stronger

smoothness condition on the quantile function and further restrictions on the bandwidth

sequence, are sufficient for root-n consistency and asymptotic normality of the proposed

estimator:

Theorem 3.3 Assume that p > 3dc/2, and that in the first stage, k is set to int(p) and the

bandwidth sequences satisfy
√

nδp
n → 0, log n

√
n−1δ−3dc

n → 0 and

√
nh−2

n (δ2p
n + log n · n−1δ−dc

n ) → 0

. Define

δ(y1i, y0i, xi) = τ(xi)f
−1
u1i|xi

(0)f ′m0
(m1(xi))(I[y1i ≤ m1(xi)]− 0.5)∇1τq2(xi, θ0)

+ τ(xi)f
−1
u0i|xi

(0)f ′m1
(m0(xi))(I[y0i ≤ m0(xi)]− 0.5)∇1τq2(xi, θ0)

where f ′m1(·), f ′m0(·) denote derivatives of density functions of the median functions; then

under Assumptions A,B,Q,T,E,SI

√
n(θ̂ − θ0) ⇒ N(0, V −1

q ∆qV
−1
q ) (3.11)

where ∆q = E[δq(yi, xi)δq(yi, xi)
′] and Vq = 1

2
E[∇2τq1(xi, θ0)].
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3.4 Panel Data (incomplete)

We note here how the new rank estimator can be modified to accommodate fixed effects in

longitudinal panel data sets. Transformation models with fixed effects have been considered

in Lee(1997), Abrevaya(2000,2001). None of these were able to incorporate covariate depen-

dent random censoring. The transformation model with fixed effects is usually expressed

as:

T (y
(t)
i ) = αi + x

(t)′

i β0 + ε
(t)
i i = 1, 2, ...N t = 1, 2, ...T (3.12)

where here αi denotes the individual effect; following usual panel data asymptotics, we

assume N is arbitrarily large, and T is fixed at a small number; w.l.o.g., we set T = 2. To

estimate β0 in an uncensored model, Abrevaya proposed the “leap frog” estimator, which

maximized the objective function:

LF (β) =
1

n

n∑
i=1

I[y
(1)
i < y

(1)
j ]I[y

(2)
i > y

(2)
j ]I[∆x′iβ > ∆x′jβ] (3.13)

where superscripts denote time periods, and ∆ denotes the time difference operator. Now

we assume the econometrician does not observe yit, but instead the pair (vit, dit) where

vit = max(yit, cit) and dit is a censoring indicator for person i in period t.

Define y0i, y1i as before, and letting superscripts denote time periods, we propose maxi-

mizing the following objective function to accommodate random censoring in the panel data

model:

LFCR(β) =
1

n(n− 1)

∑
i6=j

I[y
(1)
1i < y

(1)
0j ]I[y

(2)
0i > y

(2)
1j ]I[∆x′iβ > ∆x′jβ] (3.14)

=
1

n(n− 1)

∑
i6=j

(
(1− d

(1)
j ) + d

(1)
j I[v

(1)
i ≤ v

(1)
j ]

)
· d(2)

i I[v
(2)
i ≥ v

(2)
j ]I[∆x′iβ > ∆x′jβ]

The following theorem characterizes the limiting distribution theory of the panel data esti-

mator:

Theorem 3.4

4 Monte Carlo Results

In this section we explore the finite sample properties of the new estimators introduced in

this paper by reporting results obtained from a small scale simulation study.
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We first turn attention to the basic CRMRC. Our base design involves two regressors,

and an additive of error term, which we express, in the absence of censoring as:

T (yi) = α0 + x1iβ0 + x2i + εi

where x1i, x2i are distributed as a chi-squared with one degree of freedom, and standard

normal, respectively; α0, β0 were each set to 1. We considered 2 functional forms for T (·),
error distribution pairs

1. T−1(x) = x; εi ∼mixture of two normals, centered around -1,2, respectively.

2. T−1(x) = x3; εi ∼standard normal.

We simulated three types of censoring: 1) covariate dependent left censoring, where the

censoring variable was distributed as 0.5 ∗ zi + x1i− x2i + 1; 2) double covariate independent

censoring, where the left censoring variable was distributed 0.5 ∗ zi were zi was standard

normal and the right censoring variable is distributed as the left censoring variable plus a

chi-squared random variable +1.5; 3) double covariate dependent censoring where the left

censoring variable was the same as in 1) and the relationship between the two censoring

variables was the same as in 2).

Tables I-IV We report results for 3 estimators: 1)CRMRC 2) the MRC 3) the MRE with

M(·) set to the identity function, For each estimator and each design the summary statistics

mean bias, median bias. root mean squared error (RMSE) and median absolute deviation

(MAD) are reported for 100,200, and 400 observations, with 401 replications. As there is

only one parameter to compute, each estimator was evaluated by means of a grid search of

500 evenly spaced points over the interval [-2,2]. The simulation results are in accordance

with the theory. For covariate dependent left censoring, the results clearly establish the

benefits of the CRMRC. It performs quite well with bias and RMSE values shrinking at

the parametric rate. In complete contrast, the MRC and MRE perform very poorly for

both functional forms, with RMSE values in most cases not reducing, and sometimes even

increasing with the sample size.

For double covariate independent censoring, all estimators have RMSE’s shrinking at the

parametric rate, but the efficiency gains of the CRMRC are very apparent for both functional

form error distribution pairs. For covariate dependent censoring, the results are similar to

the one sided censoring case- only the CRMRC exhibits root-n consistency and the others

are clearly inconsistent.
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Tables V-VI report results for panel data models. Here the regressors in the first period

were defined as above, and in the second period, they were defined as the average of the

regressor values in the first period and regressor values from an independent draw from the

same distribution. The fixed effects were set as a linear combination of all regressor values

in both periods plus a standard normal. The error terms in each period were i.i.d standard

normal, and we considered a cubic transformation. For covariate independent censoring, the

censoring variable was set to 0.5 ∗ zi in each period, where zi again represents a standard

normal distribution. For covariate dependent censoring, we set the censoring variable in

each period to be the same (stochastic) function of the regressors in that time period as was

used for the left censoring cross-sectional designs. Results are reported for 2 estimators: the

CRMRC, and the Leap-frog estimator in Abrevaya(1999)(referred to here as LF) , noting

that the latter may be theoretically inconsistent in both (covariate dependent and covariate

independent) cases.

The results indicate that the CRMRC performs very well in both designs, the RMSE

shrinking at the parametric rate. In contrast LF performs very poorly for the covariate

dependent censoring design, with biases and RMSE values staying large for all sample sizes.

LF performs better at the covariate independent design, but its bias stays at 15% as the

sample size increases from 200 to 400, suggesting consistency is suspect here as well.

We next turn attention to estimation of the function T (·). We consider the same base

design, with the same two functional forms, but now only consider left censoring designs,

one with covariate dependence and the other with covariate independence. We report results

for two estimators: the CRMRC and Chen(2002) rank estimator, referred to here as CRNK.

Tables VI-X report mean bias and RMSE for both estimators for a grid of 11 values of γ0

at 100 and 400 observations. Again, the simulation results agree with the theory. Both

estimators perform well for the covariate independent censoring case, with the CRNK do-

ing slightly better at 400 observations, but only the CRMRC performs adequately in the

covariate dependent censoring case.

In summary, the results from our simulation indicate that the CRMRC estimators in-

troduced in this paper perform adequately well in finite samples, so it can be applied in

empirical settings, which we turn to in the following section.
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5 Empirical Illustrations

In this section we further explore the finite sample properties of the new estimators proposed

in this paper by ways of two empirical illustrations.

5.1 Stanford Heart Transplant Data

We consider the well studied Stanford heart transplant data set published in Miller and

Halpern (1982), of which an earlier subset of these data is available in the text by Kalbfleisch

and Prentice (1980. Summarized in this data set are the survival times of 184 patients who

received heart transplants at the Stanford University Medical Center, as well as an indicator

variable which equals one if the patient was dead (uncensored) at the time the data were

collected, the age of the patient (in years) at the time of the transplant, a tissue-mismatch

score variable, and a waiting time variable. We estimate the following model of the survival

times,

T (vi) = min{α0 + β0xi + γ0zi + ρ0wi + εi, ci}, (5.1)

where the dependent variable vi is the observed survival time (in days), xi is age of patient

i, zi is the tissue mismatch score, and wi is the waiting time variable.

For this model, covariate dependent censoring seems quite plausible. Larger censoring

times correspond to earlier transplants; if transplants for younger or older patients were not

typically performed in the earlier years, this would induce a dependence between censoring

and the covariate age.

We drop all the incomplete observations to obtain a total of 69 patients that have complete

records for the mismatch and waiting time variables. We standardize the coefficient on age

to one and provide estimates using the CRMRC and MRC. Table 1 summarizes our results.

In addition to providing point estimates, we estimate standard errors by the mean absolute

deviation of the boostrapped c.d.f, divided by 0.67, as was done in Honoré, Khan and

Powell(2002).

5.2 Marriage length in the CPS

We further illustrate our estimator by studying the effects of age at first marriage and other

covariates on first marriage length. For couples who are still married for the first time at
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Table 1: Stanford Heart Data Estimation Results

Regressor Parameter Median Absolute Deviation/.67

CRMRC

Waiting till Transplant -1.78 1.46

Mismatch -.74 .86

MRC

Waiting till Transplant -.52 1.07

Mismatch -.66 .76

Table 2: Descriptive Statistics for CPS Marriage and Fertility Data

Variable Mean Standard Deviation Min Max

Age at First Marriage 22.5 5.9 14 78.5

Age 64.8 10.11 50 99

Race .85 .31 0 1

Educ 12.2 3.1 1 19

the date of the interview, their marriage length variable is right censored. Moreover, it can

be argued that divorce is correlated with age at first marriage which makes the censoring

point (time of divorce) correlated with age. We draw a random sample of 1000 observations

from the 1985 marriage and fertility June CPS where we restrict our choice to individuals

who have been married at least once and who are 50 years of age or older at the time of

the interview. Table 2 provides descriptive statistics of the data. Moreover, the average first

marriage length for divorcees is 33 years with a standard deviation of 16 years. The amount

of censoring is 52% which means that almost half of our sample of ever married couples

have been divorced at least once. Using age at first marriage and race as regressors, and

standardizing the coefficient on age at first marriage to one, we compute the CRMRC and

MRC estimators. Race coefficient values of 28.12 and 35.12 were obtained using CRMRC

and MRC, respectively. [Bootstrapped confidence bands to come]

6 Conclusions

This paper introduced new estimation procedures for several censored transformation models.

With the exception of the heteroskedasticity-robust variation, the new procedures have the

21



attractive properties of requiring no smoothing parameters. All estimators were robust

to censoring that depends on the covariates. The estimators are shown to converge at

the parametric rate with asymptotic normal distributions. A simulation study indicated it

performed well in finite samples, and also illustrated how erroneous existing rank estimators

can be if the censoring variable depends on covariates. Two empirical illustrations applied

the new estimator to a Stanford heart transplant data set and a data set involving marriage

duration. In both cases, the new estimators gave different results than an estimator which did

not permit covariate dependent censoring and/or required known transformation functions.

The results in this paper suggest areas for future research. For one, it would be useful to

formally establish identification for the transformation function, and the coefficients in the

panel data model. Also, it would be useful to explore under what conditions identification

can be achieved if the censoring variable is not distributed independently of the error term.
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A Appendix

A.1 Proof of Lemma 2.1

Recall we observe the vector zi ≡ (vi, di, x
′
i)
′ which we assume to be generated from the model:

T (vi) = max(x′iβ0 + εi, ci)

di = I[x′iβ0 + εi ≤ ci]

To prove the lemma, we define two random variables which are functions of zi and hence are

observable. We define:

y1i = vi

y0i = I[di = 1]vi + I[di = 0] · −∞

Note that establishing the conclusion of the lemma is equivalent to establishing that

P (y1i ≥ y0j |xi, xj) ≥ P (y1j ≥ y0i|xi, xj) (A.1)

whenever zi ≡ x′iβ0 ≥ zj ≡ x′jβ0. To do so, we can decompose the left hand side of the above

equation as follows:

P (y1i ≥ y0j , ci ≥ cj |xi, xj) + P (y1i ≥ y0j , ci ≤ cj |xi, xj) (A.2)
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and similarly decompose the right hand side of (A.1). We first compare

P (y1i ≥ y0j , ci ≥ cj |xi, xj) (A.3)

to

P (y1j ≥ y0i, ci ≥ cj |xi, xj) (A.4)

Focusing initially on (A.3), we decompose the event into the disjoint union of three cases: (dj =

0), (di = 1, dj = 1), (di = 0, dj = 1). Conditioning on ci, cj , and suppressing the event ci ≥ cj and

the fact we are conditioning on ci, cj , xi, xj , we have, by using the monotonicity of the transformation

function, (A.3) is:

P (εj ≤ cj − zj) (A.5)

+ P (εi − εj ≥ zj − zi, εi ≥ ci − zi, εj ≥ cj − zj) (A.6)

+ P (ci ≥ zj + εj , εi ≤ ci − zi, εj ≥ cj − zj) (A.7)

We denote (A.5) by F (cj − zj) where F (·) denotes the c.d.f. of εj . We next decompose (A.6) as

P (εi − εj ≥ zj − zi, εi ≥ ci − zi, εj ≥ cj − zj , εj + zj − zi ≥ ci − zi)+ (A.8)

P (εi − εj ≥ zj − zi, εi ≥ ci − zi, εj ≥ cj − zj , εj + zj − zi < ci − zi) (A.9)

Noting that ci ≥ cj , we can express the sum of these two terms as

P (εi ≥ ci − zi, εj ≥ cj − zj , εj ≤ ci − zj) + P (εi ≥ εj + zj − zi, εj ≥ ci − zj) (A.10)

which we can express as:

(F (ci − zj)− F (cj − zj)) (1− F (ci − zi))+(1− F (ci − zj))−
∫ ∞

ci−zj

F (e+zj−zi)dF (e)(A.11)

Similarly we can express (A.7) as

(F (ci − zj)− F (cj − zj)) · F (ci − zi) (A.12)

Therefore by summing the three pieces in (A.5),(A.6), (A.7), and averaging over the censoring

variables, we get (A.3) can expressed as:

∫ {
1−

∫ ∞

ci−zj

F (e + zj − zi)dF (e)

}
I[ci ≥ cj ]dFc|x(ci|xi)dFc|x(cj |xj) (A.13)
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where Fc|x(·) denotes the conditional c.d.f. of the censoring variable. We turn attention now to

(A.4), which can be decomposed into two disjoint cases (di = 0), (di = 1, dj = 1) since the case

(di = 1, dj = 0) cannot occur when ci ≥ cj . Using analogous arguments we can express (A.4) as

∫ {
1−

∫ ∞

ci−zi

F (e + zi − zj)dF (e)
}

I[ci ≥ cj ]dFc|x(ci|xi)dFc|x(cj |xj) (A.14)

Thus the difference between (A.3) and (A.4) is

∫ {∫ ∞

ci−zi

F (e + zi − zj)dF (e)−
∫ ∞

ci−zj

F (e + zj − zi)dF (e)

}
I[ci ≥ cj ]dFc|x(ci|xi)dFc|x(cj |xj)(A.15)

we note the above expression is non-negative whenever zi ≥ zj as the differences between the two
terms, each involving non-negative integrands, is the area of integration, which is larger for the
first term whenever zi ≥ zj , and the difference between F (e + zi − zj) and F (e + zj − zi), which is
also positive whenever zi ≥ zj . This shows (A.1) for the case when ci ≥ cj . For the case ci < cj

we proceed similarly and find that the difference between the left hand side and right hand side in
(A.1) can be expressed as

∫ {∫ ∞

cj−zi

F (e + zi − zj)dF (e)−
∫

ci−zj

F (e + zj − zi)dF (e)

}
I[ci < cj ]dFc|x(ci|xi)dFc|x(cj |xj)(A.16)

Again, the above expression is non-negative whenever zi ≥ zj , and this is also for two reasons.

The area of integration as well as the integrand is larger for the first term in the above difference

whenever zi ≥ zj . Since we have shown (A.1) to be true for both cases ci ≥ cj , ci < cj , this

completes the proof. �

A.2 Proof of Theorem 2.1

To show consistency it suffices to show 4 conditions (see e.g. Newey and MacFadden(1994), Theorem

2.1.): compactness, uniform convergence, continuity, identification.

We first turn attention to the proof of identification. Let Q(β) denote the limiting objective

function. We need to show that this is uniquely maximized at β0. Let b 6= β0. We can express

Q(β0)−Q(b) as

EX [P (y1i ≥ y0j |xi, xj)
(
I[x′iβ0 ≥ x′jβ0]− I[x′iβ ≥ x′jβ]

)
] (A.17)

which we can write as

E[I[y1i ≥ y0j ]
(
I[x′iβ0 ≥ x′jβ0, x

′
ib < x′jb]− I[x′iβ0 < x′jβ0, x

′
ib ≥ x′jb]

)
] (A.18)
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which we can rearrange to express as:

E[(I[y1i ≥ y0j ]− I[y1j ≥ y0i])I[x′iβ0 ≥ x′jβ0, x
′
ib < x′jb]] (A.19)

By the previous lemma, the above expectation is non-negative, and only equal to 0 when b = β0

by Assumption I3. This establishes that the limiting objective function is uniquely maximized at

β0, proving identification. Turning attention to the other three items, we note that compactness

holds by Assumption, uniform convergence follows from uniform laws of large numbers for U -

statistics with bounded kernel functions (see, e.g. Sherman(1994), and continuity follows from the

smoothness of the density of x′iβ0 which follows from I3. This establishes consistency. �

A.3 Proof of Theorem 2.2

We note that virtually identical arguments as in Sherman(1993) can be used, as the objective

functions of the MRC and the CRMRC are very similar. The only component of the proof there

that does not immediately carry over to the problem at hand is establishing the Euclidean property

of the class of functions in the objective function. For the problem at hand, we consider the class

of functions:

F = {f(·, ·, θ) : θ ∈ Θ} (A.20)

where for each (z1, z2) ∈ S × S, θ ∈ Θ, we can define

f(z1, z2, θ) = I[y11 > y02]I[x′1β > x′2β] (A.21)

where with our notation, recall β is a function of θ. Alternatively, we can define,

f(z1, z2, θ) = I[y01 > y12]I[x′1β > x′2β] = d1I[v1 > v2]I[x′1β > x′2β] (A.22)

It is easier to establish the Euclidean property (with respect to the constant envelope 1) for the

above definition of f(·, ·, θ). Note the class of functions

f2(z1, z2, θ) = I[v1 > v2]I[x′1β > x′2β] (A.23)

is Euclidean for envelope 1 from identical subgraph set arguments used in Sherman(1993). The

class of functions:

f2(z1, z2, θ) = d1 (A.24)

is trivially Euclidean for envelope 1 as it does not depend on θ. The Euclidean property of f = f1 ·f2

follows from Lemma 2.14(ii) in Pakes and Pollard(1989).
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A.4 Proof of Lemma 3.1

(only if) Consider the following

Pr(T (y1)− xβ ≤ 0|x) = Pr(y1 ≤ T−1(xβ)|x)

= Pr(y1 ≤ T−1(xβ), d = 1|x) + Pr(y1 ≤ T−1(xβ), d = 0|x)

= Pr(y ≤ T−1(xβ), d = 1|x) + Pr(c ≤ T−1(xβ), d = 0|x)

= Pr(ε ≤ 0, ε ≥ T (c)− xβ|x) + Pr(T (c) ≤ xβ, ε ≤ T (c)− xβ|x)

= Pr(ε ≤ 0|x)− Pr(ε ≤ 0, ε ≤ T (c)− xβ|x) + Pr(T (c) ≤ xβ, ε ≤ T (c)− xβ|x)

= Pr(ε ≤ T (c)− xβ|x)

small where the last equality follows from the hypothesis that x ∈ X .

Pr(T (y0) = xβ ≤ 0|x) = Pr(y0 ≤ T−1(xβ)|x)

= Pr(y ≤ T−1(xβ), d = 1|x) + Pr(d = 0|x)

= Pr(ε ≤ 0, ε ≥ T (c)− xβ|x) + Pr(ε ≤ T (c)− xβ|x)

= Pr(ε ≤ 0|x)− Pr(ε ≤ 0, ε ≤ T (c)− xβ|x) + Pr(ε ≤ T (c)− xβ|x)

= Pr(ε ≤ T (c)− xβ|x)

where the last equality follows from the hypothesis. As we can see that for x ∈ X , we have

Pr(T (y1)− xβ ≤ 0|x) = Pr(T (y1)− xβ ≤ 0|x)

= Pr(T (y)− xβ ≤ 0|x)

=
1
2

which implies that the medians are the same.

(if) Now we have

Pr(ε ≤ 0|x) = Pr(T (y1)− xβ ≤ 0|x)

= Pr(T (y1)− xβ ≤ 0, d = 1|x) + Pr(T (y1)− xβ ≤ 0, d = 0|x)

= Pr(T (y1)− xβ ≤ 0, ε ≥ T (c)− xβ|x) + Pr(T (y1)− xβ ≤ 0, ε ≤ T (c)− xβ|x)

= Pr(T (c)− xβ ≤ ε ≤ 0|x) + Pr(ε ≤ T (c)− xβ ≤ 0|x)

= Pr(ε ≤ 0;T (c)− xβ ≤ 0|x)

= Pr(ε ≤ 0) Pr(T (c)− xβ ≤ 0|x)

⇒ Pr(T (c)− x
¯
η ≤ 0|x) = 1

The last equality follows from the hypothesis that ε ⊥ c|x which is the maintained assumption. �
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A.5 Proof of Theorem 3.3

The asymptotic properties follow from arguments that are very similar to those used in Khan(2001),

so we only provide a sketch of the steps involved. First we expand the kernel function of the

estimated median functions around the kernel of the true median functions in (3.10), yielding the

sum of the three components

Γn(β) ≡ 1
n(n− 1)

∑
i6=j

Khn(m1i −m0j)I[x′iβ ≥ x′jβ] (A.25)

Hn(β) ≡ 1
n(n− 1)

∑
i6=j

K ′
hn

(m1i −m0j)h−1
n ((m̂1i −m1i)− (m̂0j −m0j)I[x′iβ ≥ x′jβ] (A.26)

Rn(β)
1

n(n− 1)

∑
i6=j

K ′′
hn

(m∗
1i −m∗

0j)h
−2
n (m̂1i −m1i − m̂0j + m0j)2I[x′iβ ≥ x′jβ] (A.27)

where we have adopted the shorthand notation m̂1i,m1i denotes m̂δn,p
1 (xi),m1(xi) respectively, and

∗ denotes intermediate values.

First we deal with (A.26). It follows by uniform rates of convergence for median function

estimators over compact sets, (see, e.g. Chaudhuri(1991)) where these rates depend on p, δn,

Assumptions SI1,SI2, and the rates imposed on δn, hn stated in the theorem Rn(β) is op(1/n)

uniformly over β within an Op(1/
√

n) neighborhood of β0.

Turning attention to Hn(β), with the properties of K(·) in Assumption SI1, we apply the

arguments in Lemma A.4 in Khan(2000) that uniformly over β within op(1) neighborhoods of β0,

we have

Hn(β) = (β − β0)′
1
n

n∑
i=1

δ(y1i, y0i, xi) + op(1/n) (A.28)

Finally, with regard to Γn(β), we have by the properties of K(·), hn in Assumption SI1,SI2,

using identical arguments as in Lemma A.3 in Khan(2000), that uniformly over β within op(1)

neighborhoods of β0, we have

Γn(β) =
1
2
(β − β0)′Vq(β − β0) + op(1/n) (A.29)

Combining these three results, the limiting distribution of the estimator follows by applying

Lemma A.2 in Khan(2000). �
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TABLE I

Simulation Results for Rank Regression Estimators

One Sided CD Censoring Linear

β

Mean Bias Med. Bias RMSE MAD

100 obs.

CRMRC 0.0717 -0.0160 0.4282 0.3424

MRC 0.8818 0.9680 0.9049 0.8832

MRE 0.8701 0.9760 0.8969 0.8710

200 obs.

CRMRC 0.0704 0.0160 0.3433 0.2654

MRC 0.9624 1.0000 0.9664 0.9624

MRE 0.9563 0.9920 0.9613 0.9563

400 obs.

CRMRC 0.0168 -0.0160 0.2406 0.1843

MRC 0.9905 1.0000 0.9910 0.9905

MRE 0.9879 1.0000 0.9885 0.9879

TABLE II

Simulation Results for Rank Regression Estimators

One Sided CD Censoring Cubic

β

Mean Bias Med. Bias RMSE MAD

100 obs.

CRMRC 0.0336 0.0080 0.2689 0.2083

MRC 0.7411 0.8280 0.7871 0.7422

MRE 0.4942 0.4760 0.6101 0.5119

200 obs.

CRMRC 0.0309 0.0040 0.1867 0.1464

MRC 0.7745 0.8640 0.8114 0.7745

MRE 0.4962 0.4720 0.5827 0.5018

400 obs.

CRMRC 0.0109 0.0040 0.1220 0.0973

MRC 0.8570 0.9200 0.8730 0.8570

MRE 0.5526 0.5240 0.6070 0.5527
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TABLE III

Simulation Results for Rank Regression Estimators

Two Sided CI Censoring Cubic

β

Mean Bias Med. Bias RMSE MAD

100 obs.

CRMRC 0.0443 0.0040 0.3127 0.2452

MRC 0.0688 -0.0400 0.5864 0.4960

MRE 0.0351 -0.0720 0.7114 0.6411

200 obs.

CRMRC 0.0180 0.0040 0.2074 0.1569

MRC 0.0886 -0.0600 0.5319 0.4417

MRE 0.1036 -0.1120 0.6819 0.6091

400 obs.

CRMRC 0.0052 0.0000 0.1318 0.1062

MRC 0.0547 -0.0080 0.3972 0.3075

MRE 0.1321 -0.0400 0.6263 0.5428

TABLE IV

Simulation Results for Rank Regression Estimators

Two Sided CD Censoring Cubic

β

Mean Bias Med. Bias RMSE MAD

100 obs.

CRMRC 0.0917 0.0400 0.3645 0.2782

MRC 0.9880 1.0000 0.9887 0.9880

MRE 0.9895 1.0000 0.9898 0.9895

200 obs.

CRMRC 0.0944 0.0400 0.2821 0.2097

MRC 0.9984 1.0000 0.9985 0.9984

MRE 0.9999 1.0000 0.9999 0.9999

400 obs.

CRMRC 0.0812 0.0667 0.1941 0.1507

MRC 0.9999 1.0000 0.9999 0.9999

MRE 1.0000 1.0000 1.0000 1.0000
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TABLE V

Simulation Results for Panel Data Estimators

Cubic CI
β

Mean Bias Med. Bias RMSE MAD

100 obs.

CRMRC 0.0767 0.0133 0.3781 0.2970

LF 0.2237 0.1733 0.4907 0.3817

200 obs.

CRMRC -0.0088 -0.0400 0.2483 0.1961

LF 0.1515 0.0667 0.3873 0.2894

400 obs.

CRMRC 0.0046 -0.0133 0.1865 0.1419

LF 0.1597 0.1200 0.3106 0.2293

TABLE VI

Simulation Results for Panel Data Estimators

Cubic CD
β

Mean Bias Med. Bias RMSE MAD

100 obs.

CRMRC 0.0664 0.0133 0.3686 0.2878

LF 0.7071 0.8400 0.7790 0.7180

200 obs.

CRMRC 0.0480 0.0133 0.2700 0.2056

LF 0.7900 0.8933 0.8271 0.7909

400 obs.

CRMRC 0.0179 -0.0133 0.1666 0.1318

LF 0.8238 0.9200 0.8484 0.8238
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TABLE VII

Function Estimation- Linear CI
γ0: -0.950 -0.550 -0.150 0.250 0.450 0.650 0.850 1.050 1.250 1.450 1.850

Mean Bias

100 obs.

CRMRC: -0.039 -0.032 -0.005 -0.010 0.024 0.016 0.019 0.031 0.032 0.046 0.075

CRNK : -0.016 0.028 0.010 -0.025 0.024 0.019 -0.004 -0.003 0.017 0.020 0.065

400 obs.

CRMRC: -0.053 -0.048 -0.030 -0.011 0.013 0.015 0.027 0.031 0.041 0.043 0.041

CRNK : 0.001 -0.010 0.000 -0.007 0.015 0.001 0.001 0.005 -0.001 0.000 -0.006

RMSE

100 obs.

CRMRC: 0.266 0.256 0.210 0.161 0.129 0.174 0.228 0.279 0.291 0.311 0.356

CRNK : 0.337 0.272 0.230 0.175 0.150 0.220 0.272 0.317 0.369 0.391 0.424

400 obs.

CRMRC: 0.147 0.133 0.110 0.071 0.055 0.088 0.103 0.119 0.138 0.148 0.154

CRNK : 0.156 0.139 0.120 0.085 0.062 0.097 0.110 0.130 0.147 0.152 0.174

TABLE VIII

Function Estimation- Linear CD
γ0: -0.950 -0.550 -0.150 0.250 0.450 0.650 0.850 1.050 1.250 1.450 1.850

Mean Bias

100 obs.

CRMRC: -0.322 -0.204 -0.099 -0.043 0.018 0.036 0.052 0.064 0.062 0.072 0.032

CRNK : -0.819 -0.588 -0.342 -0.185 0.061 0.188 0.261 0.345 0.485 0.576 0.683

400 obs.

CRMRC: -0.271 -0.175 -0.109 -0.036 0.019 0.046 0.060 0.072 0.079 0.075 0.072

CRNK : -0.795 -0.517 -0.307 -0.116 0.042 0.142 0.228 0.308 0.402 0.547 0.675

RMSE

100 obs.

CRMRC: 0.544 0.379 0.279 0.168 0.117 0.169 0.231 0.250 0.263 0.287 0.276

CRNK : 1.068 0.844 0.598 0.395 0.272 0.401 0.475 0.569 0.716 0.810 0.857

400 obs.

CRMRC: 0.320 0.228 0.158 0.088 0.052 0.095 0.116 0.145 0.150 0.162 0.166

CRNK : 0.907 0.622 0.396 0.186 0.094 0.201 0.288 0.378 0.473 0.637 0.770
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TABLE IX

Function Estimation- Cubic CI
γ0: -0.983 -0.766 0.368 0.819 1.016 1.157 1.270 1.366 1.450 1.525 1.594

Mean Bias

100 obs.

CRMRC: -0.055 -0.023 0.009 0.025 0.037 0.038 0.051 0.050 0.074 0.071 0.071

CRNK : -0.017 0.028 0.015 -0.014 0.015 0.002 0.017 0.024 0.043 0.058 0.068

400 obs.

CRMRC: -0.056 -0.047 0.016 0.036 0.046 0.039 0.043 0.043 0.039 0.039 0.045

CRNK : 0.007 -0.004 -0.004 0.005 0.005 0.002 0.007 -0.005 -0.003 -0.005 -0.010

RMSE

100 obs.

CRMRC: 0.281 0.258 0.185 0.279 0.287 0.306 0.311 0.333 0.351 0.354 0.353

CRNK : 0.338 0.291 0.240 0.324 0.369 0.373 0.386 0.408 0.418 0.426 0.439

400 obs.

CRMRC: 0.157 0.137 0.090 0.116 0.135 0.143 0.148 0.148 0.145 0.154 0.151

CRNK : 0.155 0.141 0.104 0.133 0.143 0.149 0.157 0.162 0.162 0.167 0.176

TABLE X

Function Estimation- Cubic CD
γ0: -0.983 -0.766 0.368 0.819 1.016 1.157 1.270 1.366 1.450 1.525 1.594

Mean Bias

100 obs.

CRMRC: -0.340 -0.240 0.036 0.076 0.064 0.069 0.067 0.052 0.047 0.034 0.029

CRNK : -0.830 -0.659 0.193 0.361 0.470 0.534 0.567 0.586 0.643 0.668 0.678

400 obs.

CRMRC: -0.279 -0.196 0.045 0.071 0.070 0.073 0.077 0.076 0.080 0.075 0.074

CRNK : -0.817 -0.578 0.172 0.312 0.387 0.451 0.536 0.570 0.632 0.668 0.713

RMSE

100 obs.

CRMRC: 0.552 0.412 0.181 0.257 0.254 0.280 0.283 0.290 0.280 0.274 0.284

CRNK : 1.071 0.916 0.400 0.574 0.702 0.770 0.805 0.803 0.835 0.846 0.844

400 obs.

CRMRC: 0.327 0.246 0.099 0.142 0.149 0.155 0.158 0.166 0.167 0.163 0.170

CRNK : 0.938 0.688 0.235 0.379 0.464 0.535 0.624 0.663 0.731 0.766 0.804
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