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Abstract

This paper models an agent in an in�nite horizon setting who does not
update according to Bayes� Rule, and who is self-aware and anticipates
her updating behavior when formulating plans. Choice-theoretic axiomatic
foundations are provided. Then the model is specialized axiomatically to
capture updating biases that re�ect excessive weight given to (i) prior be-
liefs, or alternatively, (ii) the realized sample. Finally, the paper describes
a counterpart of the exchangeable Bayesian model, where the agent tries
to learn about parameters, and some answers are provided to the question
�what does a non-Bayesian updater learn?�

1. INTRODUCTION

This paper models an agent in an in�nite horizon setting who does not update
according to Bayes�Rule, and who is self-aware and anticipates her updating
behavior when formulating plans. Three central questions are addressed.

Are there axiomatic foundations for such a model? We provide such foundations in
the form of a representation theorem for suitably de�ned preferences. A dynamic
version of the (Savage or) Anscombe-Aumann theorem provides the foundation
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for reliance on a probability measure representing prior beliefs and for subsequent
Bayesian updating of the prior belief as information arrives. We generalize this
Anscombe-Aumann theorem so that both the prior and the way in which it is up-
dated are subjective, that is, are derived from preference. The model is dynamic:
consumption processes are the ultimate source of utility, conditional preferences
are de�ned at each time-history pair and these preferences are dynamically consis-
tent. The latter implies that dynamic choice behavior is derived from preferences
at time 0, as in the Bayesian model. Thus, though the model is not normative,
the agent is rational in the sense of maximizing a stable, transitive and complete
preference relation.1

What updating rules are permitted? Our general framework is rich: just as the
Savage and Anscombe-Aumann theorems provide foundations for subjective ex-
pected utility theory without restricting beliefs, the present framework imposes a
speci�c structure for preferences without unduly restricting the nature of updat-
ing. Richness is demonstrated by axiomatic specializations that capture excessive
weight given at the updating stage to (i) prior beliefs, or alternatively, (ii) the
realized sample. A counterpart of the exchangeable Bayesian model, where the
agent tries to learn about parameters, is also described.
It will be evident that there are many other kinds of updating biases that

can be accommodated, including biases similar to some that have been observed
in experimental psychology; see Tversky and Kahneman [23] and the surveys by
Camerer [3] and Rabin [18], for example. Our model does not address the exper-
imental evidence directly, however, because the latter deals with the updating of
objective probabilities, while our model makes sense only when probabilities are
subjective.2

What do non-Bayesian updaters learn? A central focus of the literature on
Bayesian learning is on what is learned asymptotically and how an agent forecasts
as more and more observations are available. Bayesian forecasts are eventually
correct with probability 1 under the truth given suitable conditions, the key con-
dition being absolute continuity of the true measure with respect to initial beliefs.

1As explained in Section 2.1, this claim must be quali�ed.
2See [19] and [17], for example, for models of updating for objective probabilities that address

the experimental evidence. Though the associated models of preference are not made explicit,
to the best of our understanding these authors assume implicitly that the agent is an expected
utility maximizer who is naive in the sense of not anticipating future deviations from Bayesian
updating nor the fact that today�s plans may not be implemented. In contrast, our agent is
sophisticated and dynamically consistent.
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Hence, multiple repetitions of Bayes�Rule transforms the historical record into a
near perfect guide for the future. We investigate the corresponding question for
non-Bayesian updaters who face a statistical inference problem and conform to
one of the above noted biases. We describe simple non-Bayesian updating rules
that, if repeated multiple times, will also uncover the true data generating process.
However, our richer hypothesis about updating behavior permits a broader range
of possibilities for what is learned in the long run. In one of our results, we show
that convergence to correct forecasts holds for an agent who underreacts to obser-
vations when updating. If she overreacts then her forecasts are eventually correct
with positive probability - an example shows that with positive probability she
may become certain that a false parameter is true and thus converge to precise
but false forecasts.

The issue of foundations for non-Bayesian updating is taken up in [5] in a three-
period framework, where the agent updates once and consumption occurs only at
the terminal time. The model is extended here to an in�nite horizon setting. We
take as the benchmark the standard speci�cation of utility in dynamic modeling,
whereby utility at time t is given by

Ut (c) = Et
�
�1�=t �

��tu (c� )
�
, t = 0; 1; :::, (1.1)

where c = (c� ) is a consumption process, � and u have the familiar interpretations
and Et denotes the expectation operator associated with a subjective prior that
is updated by Bayes�Rule. Our model generalizes (1.1) to which it reduces when
updating conforms to Bayes�Rule.
In common with [5], the present paper adapts the Gul and Pesendorfer [9, 10]

model of temptation and self-control. While these authors (henceforth GP) focus
on behavior associated with non-geometric discounting, we adapt their approach
to model non-Bayesian updating. The connection drawn here between temptation
and updating is as follows: at period t, the agent has a prior view of the relation-
ship between the next observation st+1 and the future uncertainty (st+2; st+3; :::).
But after observing a particular realization st+1, she changes her view on the
noted relationship. For example, she may respond exuberantly to a good (or bad)
signal after it is realized and decide that it is an even better (or worse) signal
about future states than she had thought ex ante, and thus retroactively change
her prior. Then she applies Bayes�Rule to the new prior. The resulting posterior
belief di¤ers from what would be implied by Bayesian updating of the original
prior and in that sense re�ects non-Bayesian updating. The exuberant agent de-
scribed above would appear to an outside observer as someone who overreacts to
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data. The implication for behavior is the urge to choose current consumption so
as to maximize expected utility conditioning on the new prior as opposed to the
initial prior. Thus temptation refers to giving in to one�s urges, which here stem
from a change in beliefs. Temptation might be resisted but at a cost.
GP show that temptation and self-control are revealed through preference

over menus. Menus play a central role in [5] and in this model as well. We model
preferences over contingent menus and show that these preferences reveal behavior
that is consistent with non-Bayesian updating rules.
The paper proceeds as follows: Section 2 de�nes the formal domain of choice,

the space of contingent menus, and then the functional form for utility. Section
3 provides axiomatic foundations. Section 4 illustrates the nature and scope of
the model by describing axiomatic specializations that capture speci�c updating
biases.3 Section 5 specializes further to capture an agent who is trying to learn
about parameters as in the Bayesian model with an exchangeable prior. Some re-
sults are provided concerning what is learned in the long run. Section 6 concludes.
Proofs are collected in appendices.

2. UTILITY

2.1. Primitives

The model�s primitives include:

� time t = 0; 1; 2; ::::

� (�nite) period state space S
full state space is �1t=1St, St = S for all t

� period consumption space Ct = C

compact metric and a mixture space

Though we often refer to ct in Ct as period t consumption, it is more accurately
thought of as a lottery over period t consumption. Thus we adopt an Anscombe-
Aumann style domain where outcomes are lotteries.

3Readers who are more interested in the functional forms implied by our model than in their
axiomatic foundations may wish to skip Sections 3 and 4 and proceed directly to Section 5; the
latter is in large part self-contained.
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For any compact metric space X, the set of acts from S into X is XS; it is
endowed with the product topology. A closed (hence compact) subset of C �XS

is called a menu (of pairs (c; f), where c 2 C and f 2 XS). Denote byM (X) the
set of all compact subsets of X, endowed with the Hausdor¤metric. Analogously,
M
�
C �XS

�
is the set of menus of pairs (c; f) as above; it inherits the compact

metric property [1, Section 3.16].
Consider a physical action taken at time t, where consumption at t has already

been determined. The consequence of that action is a menu, contingent on the
state st+1, of alternatives for t + 1, where these alternatives include both choices
to be made at t + 1 - namely, the choice of both consumption and also another
action. This motivates identifying each physical action with a contingent menu,
denoted F , where

F : S �!M (C � C) , (2.1)

and C denotes the space of all contingent menus. The preceding suggests that
C can be identi�ed with (M (C � C))S. Appendix A shows the existence of a
(compact metric) C satisfying the homeomorphism

C �
homeo

(M (C � C))S . (2.2)

Hence, we identify any element of C with a mapping F as in (2.1).
We study preferences on C. In fact, since the model is dynamic and choices are

made at each history st1 = (s1; :::; st), we take as primitive a process of preference
relations (�t)

1
t=0, where �t is the order on C prevailing at t; �t depends on the

history st1, but this dependence is suppressed in the notation.
Though the domain C is time stationary, that is, the objects of choice at each

t are elements of the same set C, when we wish to emphasize that a particular
choice is made at t, we write that the agent chooses contingent menu Ft 2 Ct,

Ft : St+1 �!Mt+1 �M (Ct+1 � Ct+1) , (2.3)

where Ct = Ct+1 = C: (Keep in mind that we have previously de�ned St+1 = S
and Ct+1 = C.)
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The time line is as follows:

�
t�

t+

+�
"

choose Ft

� � � � � �

st+1
#
� t+1�

"
choose (ct+1;Ft+1)2Ft(st+1)

reevaluate Ft+1
#
+ � � � �

t+2�

At t+, the agent chooses a contingent menu Ft in Ct. She does this as though
anticipating the following: at (t + 1)� a signal st+1 is realized; and at t + 1, she
updates and chooses some (ct+1; Ft+1) from the menu Ft (st+1). This leaves her
with Ft+1 at (t+ 1)

+, which she may want to replace if possible. If she does not,
and she will not in our model, the single utility function at time 0+ determines
F0 and subsequently the process of consumption-contingent-menu pairs over the
entire horizon, in parallel with the standard Bayesian model.
The preceding must be quali�ed, however. Our formal model addresses ex-

clusively the choice of contingent menus at each t. The needed model of choice
out of menus after realization of each period�s signal is �suggested� but is not
part of the formal setup. Similar gaps in foundations arise in both GP�s papers
and in Epstein�s three-period framework. In [9], GP show how this gap may be
�lled by the study of suitably extended preferences and a similar solution could
be provided here. Note that foundations provided in this way are subject to the
di¢ culty pointed out in [9, p. 1415], namely the lack of a revealed preference
basis for extended preferences.
Subclasses of C that provide complete or partial commitment are of special

interest. The contingent menu F provides commitment for the next period if
F (s) is a singleton for each s. The set C0 � C of perfect (for all future periods)
commitment prospects, is de�ned by:

F 2 C0 () 8 s 2 S; 9 (c0; F 0) 2 C � C0 s.t.F (s) = f(c0; F 0)g. (2.4)

Repeated application of (2.4) implies that each F in C0 determines a unique
(random variable) consumption process cF =

�
cFt
�
.

Let C0+1 consist of the subset of C0 for which there is not only commitment,
but where also all relevant uncertainty is resolved in the next period. An example
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is a (one-step-ahead) bet on the event G � S, which pays o¤ with a good deter-
ministic consumption stream if the state next period lies in G and with a poor
one otherwise.
Any consumption stream can be viewed as a special contingent menu. We refer

to such streams as risky, because each ct is a lottery over period t consumption.
We identify each risky stream, denoted �!c , with an element of Cr (Cr � C0+1 �
C0 � C); (c;�!c ) denotes the obvious consumption stream.

2.2. Functional Form

We describe the functional form for Ut : Ct �! R1 representing �t.4 Though it
is likely unfamiliar and may seem complicated, the functional form is not ad hoc.
Section 3 provides the axiomatic underpinnings.
Components of the functional form include: a discount factor 0 < � < 1,

u : C �! R1 linear, continuous and nonconstant, p0 2 �(S1) and the adapted
process (pt; qt; �t)t�1, where5

�t 2 R1+, pt; qt 2 �(St+1) , qt << pt, for t � 1.
It is convenient to de�ne the measure mt on St+1 by

m0 = p0 and mt =
pt + �t qt
1 + �t

, t � 1. (2.5)

Utilities are given (for t � 0) by

Ut (Ft) =
Z
St+1

Ut+1 (Ft (st+1) ; st+1) dmt (st+1) , Ft 2 Ct, (2.6)

where Ut+1 (�; st+1) :M (Ct+1 � Ct+1) �! R1 is de�ned recursively via

Ut+1 (Mt+1; st+1) = (2.7)

max
(ct+1;Ft+1)2Mt+1

(1 + �t+1)

�
u (ct+1) + �

Z
St+2

Ut+2 (Ft+1 (st+2) ; st+2) d
�
pt+1+�t+1qt+1

1+�t+1

��
4That is, Ut (�; st1) is the utility function. Similarly, below we often write pt (�) rather than

pt (� j st1). When we want to emphasize dependence on the last observation st, we write pt (� j st).
5�(S) is the set of probability measures on the �nite set S. For any two measures p and q

in �(S), write q << p if q is absolutely continuous with respect to p. A stochastic process (Xt)
on �11 S� is adapted if Xt is measurable with respect to the �-algebra St that is generated by
all sets of the form fs1g � :::� fstg ��1t+1S� .
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� max
(c0t+1;F 0t+1)2Mt+1

�t+1

�
u
�
c0t+1

�
+ �

Z
St+2

Ut+2
�
F 0t+1 (st+2) ; st+2

�
dqt+1(st+2)

�
.

The Bayesian intertemporal utility model (1.1) is speci�ed by u, � and the
process of one-step-ahead conditionals, which determines a unique prior on the
full state space �1t=1St. It is obtained as the special case where �t(qt� pt) � 0 for
all t. Then, (2.7) reduces to

Ut+1 (Mt+1; st+1) = max
(ct+1;Ft+1)2Mt+1

�
u (ct+1) + �

Z
St+2

Ut+2 (Ft+1 (st+2) ; st+2) dpt+1

�
.

This is the standard model in the sense that it extends the model of utility over
consumption processes given by (1.1) to contingent menus by assuming that menus
are valued according to the best alternative they contain (a property termed strate-
gic rationality by Kreps [12]). In particular, time t conditional beliefs about the
future are obtained by applying Bayes�Rule to the measure on �11 S� that is
induced by the one-step-ahead conditionals (p� )11 .
More generally, two processes of one-step-ahead conditionals, pt�s and qt�s,

must be speci�ed, as well as the process of �t�s. The way in which these deliver
non-Bayesian updating is explained below along with further discussion and inter-
pretation. Sections 4 and 5 provide several examples. See also [5] for discussion
in the context of a three-period model.
In terms of the time line described above, at t+ the agent chooses a contingent

menu Ft in C according to the utility function Ut. At (t + 1)� a signal st+1 is
realized. Then she updates and chooses some (ct+1; Ft+1) from the menu Ft (st+1).
The functional form suggests that choice from the menu is made by solving6

max
(ct+1;Ft+1)2Ft(st+1)

�
u (ct+1) + �

Z
St+2

Ut+2 (Ft+1 (st+2) ; st+2) dmt+1(st+2)

�
. (2.8)

This leaves her with Ft+1 (st+1) at (t+ 1)
+ and so on. Note that dynamic in-

consistency does not arise. For example, consider the time t+ choice Ft and
whether replanning at (t+ 1)� will lead to deviations. However, at that point,
after st+1 has been realized and before updating, Ut+1 (�; st+1) represents prefer-
ence over menus. Dynamic consistency between Ut and the collection of utilities
fUt+1 (�; st+1) : st+1 2 St+1g is evident from (2.6). Thus at t+1, when she updates,

6We adopt the suggested model of choice out of menus for purposes of interpretation and
intuition. As noted above, formal justi�cation can be provided.
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the agent is left to choose out of the menu Ft (st+1). This choice cannot con�ict
with prior choices even in principle, because choice out of menus is of a di¤erent
nature than choice of menus - this is the insight of GP. For the same reason,
the resulting choice Ft+1 cannot be overturned by Ut+1. The bottom line is that
dynamic choice behavior can be viewed as resulting from optimizing the single
utility function U0, and also admits a recursive characterization corresponding to
the repeated solution of (2.8).

2.3. Interpretation

Turn to interpretation of the model (2.5)-(2.7). First, for a contingent menu Ft
that provides commitment (Ft 2 C0), compute that

Ut (Ft) =
Z
St+1

Ut+1 (Ft (st+1) ; st+1) dmt (st+1) (2.9)

=

Z
St+1�:::

�1t+1�
��t�1 u

�
cFt�
�
dPt

�
� j st1

�
,

where cFt is the consumption process induced by Ft as explained following (2.4),
and where Pt (� j st1) is the unique measure on �1t+1S� satisfying (for each T )

Pt
�
st+1; st+2; :::; sT j st1

�
= mt (st+1) pt+1(st+2 j st+11 ) � ::: � pT�1(sT j sT�11 ) .

(2.10)
Thus �t restricted to C0 conforms to subjective expected (intertemporally addi-
tive) utility with prior Pt, which we therefore refer to as the commitment prior.
When �t is further restricted to C0+1, (all uncertainty resolves at t + 1), it has
prior mt; for example, mt represents the time t ranking of bets on St+1. Because
the ranking of one-step-ahead bets, and more speci�cally the way in which it de-
pends on past observations, is a common and natural way to understand updating
behavior, we refer to mt frequently below when considering more speci�c models.
The preceding provides behavioral meaning for the measuresmt and pt. It also

clari�es one sense in which updating is non-Bayesian: Pt+1 is not the Bayesian
update of Pt. In other words, commitment beliefs at t + 1 are not derived from
Bayesian updating of the commitment prior at t.
For further interpretation, note that (2.7) can be written in the form:

Ut+1 (Mt+1; st+1) = max
(ct+1;Ft+1)2Mt+1

fU comm
t+1 (ct+1; Ft+1)+ (2.11)
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�t+1

"
Vt+1 (ct+1; Ft+1)� max

(c0t+1;F 0t+1)2Mt+1

Vt+1
�
c0t+1; F

0
t+1

�#
g,

where U comm
t+1 gives utility using pt+1, the Bayesian update of the time t commit-

ment prior Pt, that is,

U comm
t+1 (ct+1; Ft+1) = u (ct+1) + �

Z
St+2

Ut+2 (Ft+1 (st+2) ; st+2) dpt+1(st+2), (2.12)

and where Vt+1 is an expected utility function using the measure qt+1, that is,

Vt+1 (ct+1; Ft+1) = u (ct+1) + �

Z
St+2

Ut+2 (Ft+1 (st+2) ; st+2) dqt+1(st+2). (2.13)

The time t perspective calls for choosing out of the menu Mt+1 by maximizing
U comm
t+1 . However, after seeing the realization st+1, the agent revises her view of
what it implies about the future and adopts the conditional one-step-ahead belief
given by qt+1. Thus she is tempted to maximize Vt+1. To the extent that she resists
this temptation and chooses (ct+1; Ft+1), she incurs the (utility) self-control cost

�t+1

"
Vt+1 (ct+1; Ft+1)� max

(c0t+1;F 0t+1)2Mt+1

Vt+1
�
c0t+1; F

0
t+1

�#
;

thus �t+1 parametrizes the cost of self-control. Finally, (2.11) suggests that choice
out of the menu Mt+1 is made as though she adopts the compromise one-step-
ahead belief mt+1 =

pt+1+�t+1 qt+1
1+�t+1

. The use of mt+1 to guide choice out of the
menu, rather than pt+1, the one-step-ahead Bayesian conditional of Pt, is another
behavioral expression of non-Bayesian updating.7

3. AXIOMATIC FOUNDATIONS

Consider axioms for the preference process (�t), where each �t is de�ned on C.
We adapt the axioms used in the three-period setting of [5], and then add to them
assumptions that are speci�c to the in�nite horizon setting. The former axioms
are �static�in that they deal with preferences at each given time, while axioms in
the second group are �dynamic�in that they relate preferences at di¤erent times.

7We remind the reader of the option of skipping directly to Section 5.
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3.1. A First Group of Axioms

For most of these axioms, intuition is similar to that provided in [5] and thus the
discussion is brief.
The �rst three axioms are standard.8

Axiom 1 (Order). �t is complete and transitive.

Axiom 2 (Continuity). Both fF 2 C : F �t Gg and fF 2 C : G �t Fg are
closed.

Axiom 3 (Nondegeneracy). F �t G for some F and G in C.

In Section 2.1, we described a way to mix any two elements in C. Thus we can
state the Independence axiom appropriate for our setting.

Axiom 4 (Independence). For every 0 < � � 1, F �t G if and only if
�F + (1� �)F 0 �t �G+ (1� �)F 0.

De�ne the union of contingent menus statewise, that is,

(F [G) (s) = F (s) [G (s) :

The counterpart of GP�s central axiom is:

Axiom 5 (Set-Betweenness). For all states s and all menus F and G in C such
that G (s0) = F (s0) for all s0 6= s,

F �t G =) F �t F [G �t G. (3.1)

The axioms Order, Continuity and Independence imply weak separability
across states, so that the rankings appearing in (3.1) are independent of the com-
mon outcomes in states s0 6= s. Thus one can interpret them as being rankings
that are conditional on the realization of s but before updating has been done;
this is the perspective of (t+ 1)� in the time line drawn earlier. For example, the
hypothesis F �t G means that after seeing s, the agent strictly prefers to have
the menu F (s) rather than G (s) from which to choose at (t+ 1) after updat-
ing. Similar interpretations in terms of conditional preference could be adopted
in many instances below.

8States s vary over S. Unless otherwise speci�ed, time t varies over 1; 2; :::
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Set-Betweenness allows for both temptation and self-control - GP show this in
their setting and [5] adapts their interpretation to the domain of (three-period)
contingent menus. Interpret F �t F [ G as a situation where (conditional on
s) the decision-maker is tempted by G. She succumbs to this temptation if also
F [ G �t G, while she is able to exert self-control and resist if F [ G �t G. For
perspective, note that temptations do not exist for a standard decision-maker who
evaluates a menu by its best element. She satis�es the stronger axiom:

F �t G =) F �t F [G

for all F and G that agree in all but one state s. Following Kreps [12, Ch. 13],
we call this axiom strategic rationality.

We model an agent who faces temptations because of �changing beliefs�at the
updating stage. This connection between temptation and updating is imposed
largely through the next two axioms that weaken strategic rationality. To express
them, we need some additional notation. Call the contingent menu ` constant
if ` (s0) = ` (s) for all s0 and s; each such ` can be identi�ed with its range, an
element ofM (C � C). For any state s, F 2 C and ` 2 M (C � C), `sF denotes
the contingent menu given by

(`sF ) (s0) =

�
F (s0) if s0 6= s
` otherwise.

Similarly, for any M � C and L �M (C � C),

LsM = f`sF : ` 2 L; F 2Mg � C. (3.2)

Sets of contingent menus having this form have an important property: imagine
having to make a choice out of LsM . Typically, the time at which this choice must
be made would be important - one would be better o¤ if it could be made after
knowing whether s is true. However, the menu LsM is su¢ ciently rich so that any
ex post choice can be replicated even if the choice must be made before knowing
if s is true: for example, if `� 2 L would be chosen ex post if s is realized and
if F � 2 M would be chosen otherwise, then the ex ante choice of `�sF � 2 LsM
would produce the identical contingent plan. As a result, we are free to think of
choice out of LsM as occurring after learning if s is realized.
For any M � C and c 2 C, denote by (c;M) the set

(c;M) � fcg �M � C � C;
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similarly for the meaning of (K;M) for any K � C. WhenM is a singleton fF 0g,
we write simply (K;F 0) rather than (K; fF 0g). When L � M (C � C), interpret
(K;L) as above except that L is identi�ed with a set of constant contingent menus.
Finally, for any F in C,

�
F�st+1 ; (c; Lst+2M)

�
denotes the contingent menu that

delivers F
�
s0t+1

�
if s0t+1 6= st+1 and fcg � Lst+2M otherwise.

Now we can state:

Axiom 6 (Restricted Strategic Rationality (RSR)). For all (st+1; st+2), c,
contingent menus F , menus M � C and L0; L �M (C � C),�

F�st+1 ; (c; L
0st+2M)

�
�t

�
F�st+1 ; (c; Lst+2M)

�
=)�

F�st+1 ; (c; L
0st+2M)

�
�t

�
F�st+1 ; (c; (L

0 [ L) st+2M)
�
.

Interpret the indicated rankings as conditional on having observed st+1 but
before updating. Then, as above, the hypothesized ranking indicates the (con-
ditional) preference to receive L0 rather than L in the state st+2. The point is
that updating is not relevant to this ranking, because the comparison is between
two menus that di¤er only in the single state st+2. Such a comparison does not
involve trade-o¤s across states and hence does not depend on beliefs about St+2 or
on updating in response to st+1. Because temptations arise only with the change
in beliefs that occurs when updating, a form of strategic rationality obtains for
such comparisons. This explains the implied indi¤erence (conditional on st+1)
between receiving L0 or L0 [ L in state st+2.
The next axiom also re�ects the connection between temptation and updating.

Axiom 7 (Consumption Strategic Rationality (CSR)). For all st+1, con-
tingent menus F and F 0, and all consumption menus K 0; K � C,�

F�st+1 ; (K
0; F 0)

�
�t

�
F�st+1 ; (K;F

0)
�
=)�

F�st+1 ; (K
0; F 0)

�
�t

�
F�st+1 ; ((K

0 [K) ; F 0)
�
.

Conditional on st+1 but before updating, the agent prefers (K 0; F 0) to (K;F 0),
which di¤er only in the menus (K 0 versus K) for consumption at t + 1. After
choosing one of these and then updating in response to st+1, the agent selects
from the chosen menu. However, beliefs about St+2 are not directly relevant to
the choice of consumption at t + 1. Beliefs could be indirectly relevant because
they in�uence the evaluation of the options F 0 for the future, but this connection
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is mute if the ranking of current consumption menus is weakly separable from the
future. In that case, updating is not relevant to the ranking hypothesized in the
axiom and the indicated form of strategic rationality applies.

Given any contingent menu F in C and event A � S, denote by projAF the
restriction of F to A. Similarly, ifM is a subset of C, denote the set of restrictions
(or projections) by

projAM = fprojAF : F 2Mg.
When A = fsg, write simply projsF or projsM .
Some of the following axioms make use of a notion of nullity that we now

de�ne. For any E � St+2, say that (st+1; E) is �t-null if G �t F for all G and F
satisfying (for some c)

G
�
s0t+1

�
= F

�
s0t+1

�
for all s0t+1 6= st+1, (3.3)

G (st+1) =
�
c;MG

�
, F (st+1) =

�
c;MF

�
,

projSt+2nEM
G = projSt+2nEM

F . (3.4)

Because G and F agree for s0t+1 6= st+1 and induce the same set of restrictions
on St+2nE, then G and F �di¤er only on fst+1g � E.� The latter being null
presumably means that any such G and F are indi¤erent. When E = fst+2g is a
singleton, refer to nullity of (st+1; st+2) rather than of (st+1; fst+2g). Say that st+1
is �t-null if (st+1; St+2) is �t-null as just de�ned, that is, if G �t F whenever
(3.3) is satis�ed.

In order to obtain meaningful probabilities, a form of state independence is
needed.

Axiom 8 (State Independence). For all (st+1; st+2) and�t-non-null (s0t+1; s
0
t+2),

and for all c, contingent menus F , menus M � C and L0; L �M (C � Cr),�
F�s0t+1 ;

�
c; L0s0t+2M

��
� t

�
F�s0t+1 ;

�
c; Ls0t+2M

��
=)�

F�st+1 ; (c; L
0st+2M)

�
� t

�
F�st+1 ; (c; Lst+2M)

�
.

The two contingent menus in the hypothesized ranking di¤er only through the
di¤erence between L0 and L. Thus the indicated ranking states roughly that the
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agent prefers to receive L0 rather than L in the state
�
s0t+1; s

0
t+2

�
.9 Suppose that

risk attitudes are not state-dependent. The di¤erence between
�
s0t+1; s

0
t+2

�
and

(st+1; st+2) may still matter because the two states may imply di¤erent beliefs
about the future and hence for the payo¤s from choosing out of L0 rather than
out of L. However, this is not the case when L0 and L are menus of risky prospects,
that is, L0; L � M (C � Cr). Then the preference for L0 should prevail also at
(st+1; st+2).

Axiom 9 (Absolute Continuity). For all (st+1; st+2), c in C, and for all con-
tingent menus F satisfying F (st+1) = (c;M), if�

F�st+1 ; (c; L
0st+2M)

�
�t

�
F�st+1 ; (c; Lst+2M)

�
(3.5)

for all L0; L �M (C � C), then

F 0 =
�
F�st+1 ; (c; Lst+2M)

�
�t F , where L = projst+1M . (3.6)

Note that, given the hypothesis, the conclusion (3.6) is equivalent to asserting
that (st+1; st+2) is �t-null.
The two contingent menus appearing in (3.5) di¤er only in state (st+1; st+2),

where they o¤er either L0 or L. This di¤erence is a matter of indi¤erence, re-
gardless of the nature of L0 and L, which suggests that from the perspective of t,
(st+1; st+2) is viewed as impossible. Suppose that the agent anticipates that she
will continue to view st+2 as impossible also if st+1 is realized at t + 1 (roughly,
that conditional beliefs are absolutely continuous with respect to ex ante beliefs).
Then she anticipates that given st+1 and facing M , she will believe that st+2 is
impossible and thus will �nd herself �as if�she can choose fromM after learning if
st+2 is true. But, as explained in the discussion surrounding (3.2), this is precisely
the situation she would anticipate if she expected that state st+1 would lead to the
menu Lst+2M , where L = projst+1M . Conclude that at t she will be indi¤erent
between F and

�
F�st+1 ; (c; Lst+2M)

�
.

The last two axioms, like Consumption Strategic Rationality above, do not
have counterparts in [5] because consumption was assumed there to be limited to
the terminal time. These axioms are needed, however, in any multi-period setup
once intermediate consumption is permitted as it is here.

9The earlier point about equivalence between ex ante and ex post choice out of Ls0t+2M is
important here.
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Axiom 10 (Risk Preference). There exist 0 < � < 1 and u : C �! R1 non-
constant, linear and continuous, such that, for each F in C, �!d and �!e in Cr, and
for every t and st+1 such that st+1 is �t-non-null,�

F�st+1 ;
�!
d
�
�t

�
F�st+1 ;

�!e
�

()

�t+1�
��(t+1)u

��!
d �

�
� �t+1���(t+1)u (�!e � ) . (3.7)

The axiomatic characterization of the utility function over streams of lotteries
appearing in (3.7) is well known (see [4], for example). Because risk preferences
are not our primary focus, we content ourselves with the statement of the above
unorthodox �axiom.�

Axiom 11 (Invariant Discounting). For all st+1; all c; d and e in C,
�!
d and �!e

in Cr, and F in C, if:�
F�st+1 ; (c; F

0)
�
�t

�
F�st+1 ;

n
(c; F 0); (d;

�!
d )
o�

�t

�
F�st+1 ; (d;

�!
d )
�

(3.8)

and similarly with (e;�!e ) in place of (d;�!d ), then�
F�st+1 ; f(c; F 0); (e;�!e )g

�
�t

�
F�st+1 ;

n
(c; F 0); (d;

�!
d )
o�

(3.9)

()
�
F�st+1 ; (d;

�!
d )
�
�t

�
F�st+1 ; (e;

�!e )
�
.

Conditional on st+1, each of (d;
�!
d ) and (e;�!e ) tempts (c; F 0) and in each

case the temptation is resisted. The question is which is more tempting. Because
(d;
�!
d ) and (e;�!e ) correspond to constant contingent menus, they are purely risky.

Thus their comparison re�ects the di¤erent trade-o¤s that they o¤er between
times t + 1 and the future, that is, it re�ects discounting. This is so both in
evaluating which is more tempting and also when comparing them as commitment
prospects. Accordingly, (3.9) says that the agent discounts in the same way when
deciding how tempting are (d;

�!
d ) and (e;�!e ) as she does when ranking them

under commitment.
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3.2. �Dynamic�Axioms

All of the above axioms have counterparts in a three-period setting (with inter-
mediate consumption) where updating is done only once. The remaining axioms
impose structure that is speci�c to a multi-period setting. Speci�cally, they relate
preferences at di¤erent times.10

Axiom 12 (Restricted Recursivity (RRC)). For all �t-non-null (st+1; st+2),
all c, contingent menus F , M � C and `0; ` � C � C,�

F�st+1 ; (c; f`0gst+2M)
�
�t

�
F�st+1 ; (c; f`0gst+2M)

�
()

�
F�st+2 ; (c; `

0)
�
�t+1

�
F�st+2 ; (c; `)

�
.

Suppose that at t the agent, looking forward two periods, prefers to receive `0

in (st+1; st+2) to receiving `. Then also at t+ 1, after st+1 is realized, if she looks
forward one period, she prefers to receive `0 in st+2 to receiving `. Similarly for
the converse.

Axiom 13 (Bias Persistence). For all st+1 and c, and for all F; F 0; G and H
in C: if either�

F�st+1 ; (c; F
0)
�
�t

�
F�st+1 ; f(c; F 0); (c;G)g

�
�t

�
F�st+1 ; (c;G)

�
; (3.10)

or �
F�st+1 ; (c; F

0)
�
�t

�
F�st+1 ; f(c; F 0); (c;H)g

�
�t

�
F�st+1 ; (c;H)

�
,�

F�st+1 ; (c;G)
�
�t

�
F�st+1 ; f(c;G); (c;H)g

�
�t

�
F�st+1 ; (c;H)

�
, (3.11)

and
�
F�st+1 ; f(c; F 0); (c;H)g

�
�t

�
F�st+1 ; f(c;G); (c;H)g

�
,

then
F 0 �t+1 G. (3.12)

10In the next axiom, �t and �t+1 are the preferences corresponding to histories (s1; :::; st)
and (s1; :::; st; st+1) respectively. In addition, it may be clarifying to include the time subscripts
and write `0; ` � Ct+2 � Ct+2.
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Consider the rankings hypothesized in (3.11). They indicate that ex ante at t,
prior to the realization of st+1 and in anticipation thereof, the agent anticipates
that H will be tempting given either G or F 0. (Because c is �xed throughout, it
is suppressed in this explication). Further, she anticipates having self-control at
both fG;Hg and at fF 0; Hg, and choosing G from fG;Hg and F 0 from fF 0; Hg.
The �nal ranking in (3.11) indicates that she anticipates H being less tempting
to F 0 than to G, and consequently that she will prefer to choose F 0 from fF 0; Hg
rather than G from fG;Hg. The axiom then requires that at t+ 1, after st+1 is
in fact realized, she should also prefer F 0 to G.
The connection to persistence in updating is implicit. Updating, whether an-

ticipated or actual, underlies both the rankings in (3.11) and that in (3.12). Thus
the axiom can be interpreted as requiring that the updating anticipated to under-
lie the choice out of menus, say of F 0 from fF 0; Hg and G from fG;Hg, persists
and is used at t+1 when ranking contingent menus. Though this requirement may
at �rst glance seem necessary for a dynamically coherent model, this is not the
case because the two choice problems indicated are di¤erent: the choice at t+1 is
between the individual contingent menus F 0 and G, while the problem anticipated
at t involves choice from speci�c menus containing the tempting alternative H.
The interpretation di¤ers slightly when considering the alternative hypothesis

(3.10). The latter indicates anticipation that G will not tempt F 0 on realization
of st+1. Thus she anticipates that if st+1 is realized, then she will choose F 0 from
fF 0; Gg. According to (3.12), she should then prefer F 0 to G at t+1 after st+1 is
realized.
The role of the axiom is to deliver the relation (2.5) between the various

measures mt, pt and qt.

3.3. Representation Result

We are �nally in a position to state our �rst result.

Theorem 3.1. If the process (�t) of preferences satis�es axioms (1)-(13), then
it admits representation of the form (2.5)-(2.7), where u; �; p0 and (�t; pt; qt)t�1
satisfy the properties stated there.
Conversely, suppose that equations (2.5)-(2.7) admit a unique solution (Ut),

where Ut (�; st1) :M (C � C) �! R1 is continuous and uniformly bounded in the
sense that

jj (Ut) jj � sup
t;st1;M

j Ut
�
M ; st1

�
j< 1.
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Let �t be represented by Ut (�; st1) : C �! R1,

Ut
�
F ; st1

�
=

Z
St+1

Ut+1
�
F (st+1) ; s

t+1
1

�
dmt (st+1) ; F 2 C.

Then (�t) satis�es axioms (1)-(13). Finally, a su¢ cient condition for the existence
of a unique solution (Ut) as above is that 

1 + 2 sup
t; st1

j �t
�
st1
�
j
!
� < 1. (3.13)

Remark 1. The proof reveals that if Bias Persistence is dropped, then the re-
maining axioms imply the representation (2.6)-(2.7) where the relation (2.5) be-
tween mt and the other measures is weakened to the absolute continuity require-
ment pt << mt.

We conclude with an examination of the uniqueness properties of the repre-
sentation.

Corollary 3.2. Let (�t) satisfying the axioms admit representations by both
(�; u; p0; (�t; pt; qt)t�1) and (�

0; u0; p00; (�
0
t; p

0
t; q

0
t)t�1) as assured by the theorem. Then

�0 = �, u0 = au+ b for some a > 0, and

p0t = pt, m0
t+1 =

p0t+1 + �0t+1q
0
t+1

1 + �0t+1
=
pt+1 + �t+1qt+1
1 + �t+1

= mt+1 for t � 0. (3.14)

Moreover, if t � 0 and st+1 are such that�
F�st+1 ; (c;M

0)
�
� t

�
F�st+1 ; (c;M)

�
and (3.15)�

F�st+1 ; (c;M
0)
�
� t

�
F�st+1 ; (c;M

0 [M)
�

for some c 2 C and M 0; M � C, then�
�0t+1 (st+1) ; q

0
t+1 (� j st+1)

�
= (�t+1 (st+1) ; qt+1 (� j st+1)) . (3.16)

Absolute uniqueness of all components is not to be expected. For exam-
ple, if �t+1 (st+1) = 0, then every measure qt+1 (� j st+1) leads to the same st+1-
conditional preference; similarly, if qt+1 (� j st+1) = pt+1 (� j st+1), then �t+1 (st+1)
is of no consequence and hence indeterminate. These degenerate cases constitute
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precisely the circumstances under which st+1-conditional preference is strategically
rational, which is what is excluded by condition (3.15). Once strategic rationality
is excluded, the strong uniqueness property in (3.16) is valid.11

4. SOME SPECIFIC UPDATING BIASES

The framework described in Theorem 3.1 is rich. One way to see this is to focus on
one-step-ahead beliefs at any time t+ 1. As pointed out in Section 2.3, these are
represented by mt+1 =

pt+1+�t+1 qt+1
1+�t+1

, while Bayesian updating of the time t com-
mitment prior would lead to beliefs described by pt+1. Thus, speaking roughly,
updating deviates from Bayes�Rule in a direction given by qt+1 � pt+1 and to
a degree determined by �t+1, neither of which is constrained by our framework.
Consequently, the modeler is free to specify the nature and degree of the updating
bias, including how these vary with history, in much the same way that a mod-
eler who works within the Savage or Anscombe-Aumann framework of subjective
expected utility theory is free to specify beliefs as she sees �t.
In this section, we go further and describe axiomatic specializations of the

model that impose structure on updating. Two alternatives are explored, whereby
excess weight at the updating stage is given to either (i) prior beliefs, or (ii) the
sample frequency. The axioms imply restrictions on the relation between qt+1 and
pt+1, but not on �t+1. Thus they limit the direction but not the magnitude of the
updating bias.

4.1. Prior-Bias

The agent at t+1, when updating in response to seeing st+1, may attach inordinate
weight to his prior view of St+2, that is, to his view at t. To express this, let
(ct+1; G) 2 C�C, where ct+1 is consumption for t+1 and where G represents the
random future beyond t + 1; formally G : St+2 �! M (Ct+2 � Ct+2). Denote by
(ct+1; G) the contingent menu in C that assigns the singleton f(ct+1; G)g to every
st+1. The ranking of such contingent menus induced by �t re�ects the noted prior
view at t.
11The proof is analogous to the proof of the uniqueness properties in [5]. For example, (3.14)

follows from the SEU representation of preference restricted to commitment prospects C0 (recall
(2.9)-(2.10)) and uniqueness of the representing prior in an Anscombe-Aumann setting.
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Axiom 14 (Prior-Bias). For all st+1 and ct+1, and all F 0, F and G in C: if�
F 0�st+1 ; (ct+1; F )

�
�t

�
F 0�st+1 ; (ct+1; G)

�
and (4.1)

(ct+1; F ) �t (ct+1; G), (4.2)

then �
F 0�st+1 ; (ct+1; F )

�
�t

�
F 0�st+1 ; f(ct+1; F ); (ct+1; G)g

�
. (4.3)

To interpret the axiom, we suppress the �xed consumption ct+1 (and do the
same for interpretations in the sequel). Condition (4.1) states that, conditionally
on st+1, the agent strictly prefers to commit to F rather than to G. According to
(4.2), she is indi¤erent between them that ex ante at t. Under these circumstances,
she is not tempted by G conditionally on st+1. Thus the absence of temptation
conditionally on st+1 depends not only on how F and G are ranked conditionally,
but also on how attractive they were prior to realization of st+1. This indicates
excessive in�uence of prior beliefs at the updating stage.
Prior-Bias begs the question what happens to temptation if the indi¤erence

in (4.2) is not satis�ed? We consider two alternative strengthenings of the axiom
that provide di¤erent answers.
Label by Positive Prior-Bias the axiom obtained when (4.2) is replaced by

(ct+1; F ) �t (ct+1; G). (4.4)

Then G is tempting conditionally on st+1 only if it was more attractive according
to (time t) prior beliefs about St+2. An alternative, labeled Negative Prior-
Bias, is the axiom obtained when (4.2) is replaced by

(ct+1; F ) �t (ct+1; G). (4.5)

In this case, G is preferred ex ante but the signal st+1 reverses the ranking in favor
of F . Thus st+1 is a strong positive signal for F . The agent is greatly in�uenced
by signals. Thus she is not tempted by G after seeing st+1.

Corollary 4.1. Let (�t) satisfy the axioms in Theorem 3.1. Then it satis�es
Prior-Bias if and only if it admits representation as in the Theorem where in
addition

qt+1 (� j st+1) = (1� �t+1) pt+1 (� j st+1) + �t+1

h
�s0t+1mt

�
s0t+1

�
pt+1

�
� j s0t+1

�i
,

(4.6)
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for some adapted process (�t) with �t+1 � 1.
Further, (�t) satis�es (i) Positive Prior-Bias or (ii) Negative Prior-Bias if and

only if (4.6) is satis�ed with respectively (i) 0 � �t+1 � 1 and (ii) �t+1 � 0.

One can see from (2.10) that the measure �s0t+1mt

�
s0t+1

�
pt+1

�
� j s0t+1

�
repre-

sents commitment beliefs about St+2 held at t; we refer to it as the (ex ante)
view of St+2 held at t. Thus Prior-Bias is characterized by qt+1 being expressible
as a linear combination of pt+1 (the Bayesian update of the time t commitment
prior) and the time t view of St+2. The weight on the former is non-negative but
the weight �t+1 on the latter could be negative. This is ruled out under Positive
Prior-Bias but is compatible with Negative Prior-Bias.
These functional forms for qt+1 support our choice of terminology. When qt+1 =

pt+1, updating consists of applying Bayes�Rule to the commitment prior, which
embodies �the correct� combination of prior beliefs and responsiveness to data.
On the other hand, using the ex ante view expressed by�s0t+1mt

�
s0t+1

�
pt+1

�
� j s0t+1

�
as the posterior would give all the weight to prior beliefs and none to data because
the ex ante view does not depend on st+1. Thus an agent who updates according
to the average scheme in (4.6) exhibits a positive bias to the prior if �t+1 > 0 and
a negative one if �t+1 < 0.
Though qt+1 describes urges for making choices at t+ 1, the agent balances it

with the commitment view represented by pt+1, as described in Section 2.3, and
acts as though she forms the posterior one-step-ahead belief mt+1 =

pt+1+�t+1qt+1
1+�t+1

.
The above noted bias of qt+1 extends to this mixture of pt+1 and qt+1. For another
angle on this interpretation, substitute for qt+1 from (4.6) and deduce that

mt+1 =
�
1� �t+1�t+1

1+�t+1

�
pt+1 +

�t+1�t+1
1+�t+1

h
�s0t+1mt

�
s0t+1

�
pt+1

�
� j s0t+1

�i
. (4.7)

If �t+1 � 0, one can think of the agent as overlooking the evidence represented by
st+1 with probability

�t+1�t+1
1+�t+1

, in which case she continues to use her time t beliefs
about St+2.12

Note that (4.6) de�nes all qt�s inductively given the pt�s and �t�s. Thus the
corresponding model of utility is completely speci�ed by �; u and the process
(pt; �t; �t).
12We considered naming the above axioms Underreaction and Overreaction respectively, be-

cause attaching too much weight to the prior (as in Positive Prior-Bias) presumably means that
in a sense too little weight is attached to data (and similarly for the other axiom). However, the
term underreaction suggests low sensitivity of the posterior to the signal st+1, which need not
be the case in (4.7) unless �t+1 and �t+1 do not depend on st+1. See Section 5.1 for more on
underreaction and overreaction.
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Further content can be introduced into the model described in (4.6) by impos-
ing structure on the way in which �t+1 depends on the history st+11 . For example,
it might depend not only on the empirical frequency of observations but also on
their order due to sensitivity to streaks or other patterns. While each special-
ization we have described �xes a sign for �t+1 that is constant across times and
histories, one can imagine that an agent might react di¤erently depending on the
history. Formulating a theory of the �t+1�s is a subject for future research.

4.2. Sample-Bias

In the last section, temptation and hence also the updating bias, depended on ex
ante beliefs. Here we describe an alternative specialization of the general model
in which temptation and the updating bias depend instead on sample frequencies.
Denote by 	t+1 the empirical frequency measure on S given the history st+11 ;

that is, 	t+1 (s) is the relative frequency of s in the sample st+11 . Let G lie in C.
Then G (st+2) is a subset of C�C and so is the mixture

R
G
�
s0t+2

�
d	t+1. Consider

the contingent menu in Ct+1, denoted
R
Gd	t+1, that assigns

R
G
�
s0t+2

�
d	t+1 to

every st+2. Then
�
ct+1;

R
Gd	t+1

�
denotes the obvious singleton menu.

The axioms to follow parallel the trio of axioms stated in the last section. One
di¤erence is that the contingent menus F and G appearing in these axioms are
assumed, for reasons given below, to lie in C0+1 � C. Thus F and G provide perfect
commitment and are such that all relevant uncertainty is resolved by t+ 2.

Axiom 15 (Sample-Bias). For all st+1 and ct+1, for all F 0 in C, and for all F
and G in C0+1: if �

F 0�st+1 ; (ct+1; F )
�
�t

�
F 0�st+1 ; (ct+1; G)

�
and�

F 0�st+1 ; (ct+1;

Z
Fd	t+1)

�
�t

�
F 0�st+1 ; (ct+1;

Z
Gd	t+1)

�
, (4.8)

then �
F 0�st+1 ; (ct+1; F )

�
�t

�
F 0�st+1 ; f(ct+1; F ); (ct+1; G)g

�
.

The next two axioms provide alternative strengthenings of Sample-Bias. Label
by Positive Sample-Bias the axiom obtained if (4.8) is replaced by�

F 0�st+1 ; (ct+1;

Z
Fd	t+1)

�
�t

�
F 0�st+1 ; (ct+1;

Z
Gd	t+1)

�
. (4.9)
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Similarly, �de�ne�Negative Sample-Bias by using the hypothesis�
F 0�st+1 ; (ct+1;

Z
Fd	t+1)

�
�t

�
F 0�st+1 ; (ct+1;

Z
Gd	t+1)

�
. (4.10)

Interpret Positive Sample-Bias; the other interpretations are similar. First, we
interpret (4.9) as saying that the sample st+11 makes F look more attractive than
G: F delivers F (st+2) in state st+2 and st+2 appears with frequency 	t+1 (st+2)
in the sample. Thus �on average�, F yields

R
Fd	t+1. But the agent is indi¤erent

between F and its average because she satis�es Independence. Thus (4.9) implies
that the average for F is better than that of G: Now the axiom asserts that
if commitment to F is preferred (conditionally on st+1) to commitment to G,
and if the sample makes F look more attractive than G, then G is not tempting
conditionally. The fact that the sample may in�uence temptation after realization
of st+1, above and beyond its role in the conditional ranking reveals the excessive
in�uence of the sample at the updating stage. The in�uence is �positive�because
G can be tempting conditionally only if it was more attractive according to the
sample history.
The preceding intuition, speci�cally the indi¤erence between F and

R
Fd	t+1,

relies on F lying in C0+1. That is because as st+2 varies, not only does F (st+2)
vary but so also does the information upon which the agent bases evaluation of
the menu F (st+2). Independence implies indi¤erence to the former variation but
not to the latter. For F in C0+1, however, information is irrelevant because all
uncertainty is resolved once st+2 is realized.

Corollary 4.2. Let (�t) satisfy the axioms in Theorem 3.1. Then it satis�es
Sample-Bias if and only if it admits representation as in the Theorem where in
addition

qt+1 (� j st+1) = (1� �t+1) pt+1 (� j st+1) + �t+1	t+1 (�) , (4.11)

for some adapted process (�t) with �t+1 � 1.13
Further, (�t) satis�es (i) Positive Sample-Bias or (ii) Negative Sample-Bias if

and only if (4.11) is satis�ed with respectively (i) 0 � �t+1 � 1 and (ii) �t+1 � 0.

The implications of the functional form (4.11) are best seen through the implied
adjustment rule for one-step-ahead beliefs, which has the form

13When �t+1 < 0 in (4.11), qt+1 is well-de�ned as a probability measure only under special
conditions; for example, it su¢ ces that ��t+1

1��t+1 � min
st+2

pt+1 (st+2 j st+1).
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mt+1 =
�
1� �t+1�t+1

1+�t+1

�
pt+1 +

�t+1�t+1
1+�t+1

	t+1.

Under Positive Sample-Bias (�t+1 � 0), the Bayesian update pt+1 (st+2) is ad-
justed in the direction of the sample frequency 	t+1 (st+2), implying a bias akin
to the hot-hand fallacy - the tendency to over-predict the continuation of recent
observations. For Negative Bias,

mt+1 = pt+1 +
�
��t+1�t+1

1+�t+1

�
(pt+1 �	t+1) ,

and the adjustment is proportional to (pt+1 �	t+1), as though expecting the next
realization to compensate for the discrepancy between pt+1 and the past empirical
frequency. This is a form of negative correlation with past realizations as in the
gambler�s fallacy.
Because she uses the empirical frequency measure to summarize past observa-

tions, the temptation facing an agent satisfying any of the models in the above
corollary depends equally on all past observations, although it might seem more
plausible that more recent observations have a greater impact on temptation. This
can be accommodated. For example, both the interpretations of the above axioms
and the corollary remain intact if 	t+1 is a weighted empirical frequency measure

	t+1 (�) = �t+11 w�; t+1�s� (�) .

Here �s� (�) is the Dirac measure on the observation at time � and w�; t+1 � 0 are
weights; the special case w�; t+1 = 1

t+1
for all � yields the earlier model. Thus the

framework, including axiomatic foundations, permits a large variety of biases due
to undue in�uence of the sample. For example, an agent who is in�uenced only
by the most recent observation is captured by the law of motion

mt+1 =
�
1� �t+1�t+1

1+�t+1

�
pt+1 +

�t+1�t+1
1+�t+1

�st+1 .

If �t+1 < 0, the resulting model admits interpretation (in terms of sampling
without replacement from changing urns) analogous to that o¤ered by Rabin [19]
for his model of the law of small numbers.

5. LEARNING ABOUT PARAMETERS

This section describes an example of our model in which the data generating
process is unknown up to a parameter � 2 �. In the benchmark Bayesian model,
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time t beliefs have the form

Pt (�) =
Z
�


T
t+1` (� j �) d�t, (5.1)

where: ` (� j �) is a likelihood function (measure on S), �0 represents prior beliefs
on �, and �t denotes Bayesian posterior beliefs about the parameter at time t and
after observations st1. The de Finetti Theorem shows that beliefs admit such a
representation if and only if P0 is exchangeable. We describe, without axiomatic
foundations, a generalization of (5.1) that accommodates non-Bayesian updating.
Our specialization of the model (2.5)-(2.7) to accommodate parameters is de-

�ned by a suitable speci�cation for (pt; qt), taking (�t), � and u as given. We �x
(�; `; �0) and suppose for now that we are also given a process (�t), where each �t
is a probability measure on �. (The �-algebra associated with � is suppressed.)
The prior �0 on � induces time 0 beliefs about S1 given by

p0 (�) = m0 (�) =
Z
�

` (� j �) d�0.

Proceed by induction: suppose that �t has been constructed and de�ne �t+1 by

�t+1 =
BU(�t;st+1)+�t+1�t+1

1+�t+1
; (5.2)

where BU (�t; st+1) (�) is the Bayesian update of �t.14 This equation constitutes
the law of motion for beliefs about parameters. Finally, de�ne (pt+1; qt+1) by

pt+1 (�) =
Z
�

` (� j �) d (BU (�t; st+1)) and (5.3)

qt+1 (�) =
Z
�

` (� j �) d�t+1. (5.4)

This completes the speci�cation of the model for any given process (�t).
Notice that

mt+1 (�) = pt+1+�t+1qt+1
1+�t+1

=

Z
�

` (� j �) d�t+1. (5.5)

In light of the discussion following (2.10), both the ranking of one-step-ahead bets
and the choice out of menus at t + 1 are based on the beliefs about parameters

14d [BU (�t; st+1)] (�) =
`(st+1j�) d�t(�)R
`(st+1j�0) d�t(�0)

.
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represented by �t+1. If �t+1 � 0, then (�t) is the process of Bayesian posteriors and
the above collapses to the exchangeable model (5.1). More generally, di¤erences
from the Bayesian model depend on (�t), examples of which are given next.15

5.1. Prior-Bias with Parameters

Consider �rst the case where

�t+1 = (1� �t+1)BU (�t; st+1) + �t+1�t, (5.6)

where �t+1 � 1. This is readily seen to imply (4.6) and hence Prior-Bias; the bias
is positive or negative according to the sign of the ��s. Posterior beliefs about
parameters satisfy the law of motion

�t+1 =
�
1� �t+1�t+1

1+�t+1

�
BU (�t; st+1) +

�t+1�t+1
1+�t+1

�t: (5.7)

The latter equation reveals something of how the inferences of an agent with
Prior-Bias di¤er from those of a Bayesian updater. Compute that (assuming
�t+1 6= 0)

�t+1(�)

�t+1(�
0) <

`(st+1j�)
`(st+1j�0)

�t(�)
�t(�

0) i¤ �t+1` (st+1 j �0) < �t+1` (st+1 j �) . (5.8)

For a concrete example, consider coin tossing, with S = fH;Tg, � � (0; 1) and
` (H j �) = � and consider beliefs after a string of H�s. If there is a Positive Prior-
Bias (positive ��s), then repeated application of (5.8) establishes that the agent
underinfers in the sense that

�t+1(�)

�t+1(�
0) <

�Bt+1(�)

�Bt+1(�
0)
, � > �0,

where �Bt+1 is the posterior of a Bayesian who has the same prior at time 0.
Similarly, Negative Prior-Bias leads to overinference.
Turn to the question of what is learned in the long run. Learning may either

signify learning the true parameter or learning to forecast future outcomes.16 The
latter kind of learning is more relevant to choice behavior and thus is our focus.
Suppose that �� 2 � is the true parameter and thus that the i.i.d. measure

15One general point is that, in contrast to the exchangeable Bayesian model, �t+1 depends
not only on the set of past observations, but also on the order in which they were realized.
16See [14] for the distinction between these two kinds of learning.
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P � = 
1t=1` (� j ��) is the probability law describing the process (st). Say that
forecasts are eventually correct on a path s11 if, along that path,

mt (�) �! ` (� j ��) as t �!1.

Rewrite the law of motion for posteriors (5.7) in the form

�t+1 =
�
1� t+1

�
BU (�t; st+1) + t+1�t, (5.9)

where t+1 =
�t+1�t+1
1+�t+1

� 1. In general, t+1 is St+1-measurable (t+1 may depend
on the entire history st+11 , including st+1), but we will be interested also in the
special case where t+1 is St-measurable. In that case, (5.9) can be interpreted not
only in terms of Positive and Negative Prior-Bias as above, but also in terms of
underreaction and overreaction to data. For example, let t+1 � 0 (corresponding
to �t+1 � 0). Then �t+1 is a mixture, with weights that are independent of st+1, of
two terms: (i) the Bayesian update BU (�t; st+1), which incorporates the �correct�
response to st+1, and (ii) the prior �t, which does not respond to st+1 at all. In a
natural sense, therefore, an agent with t+1 � 0 underreacts to data. Similarly, if
t+1 � 0, then BU (�t; st+1) is a mixture of �t+1 and �t, which suggests that �t+1
re�ects overreaction. Clearly, if t+1 = 0 then the model reduces to the Bayesian
updating rule.

Theorem 5.1. Let � be �nite and �0 (�
�) > 0.

(a) Suppose that t+1 is St-measurable and that t+1 � 0. Then forecasts are
eventually correct P � � a:s:
(b) Suppose that t+1 is St-measurable and that t+1 � 1� � for some � > 0.

Then forecasts are eventually correct with P �-strictly positive probability.
(c) If one drops either of the assumptions in (a), then there exist (S;�; `; �0)

and � 6= �� such that

mt (�) �! ` (� j �) as t �!1,

with P �-strictly positive probability.

Assume that before any data are observed the prior belief puts positive weight
on the true parameter, that is, assume that �0 (�

�) > 0: Then multiple repetition of
Bayes�Rule leads to near correct forecasts. This result is central in the Bayesian
literature because it shows that the mere repetition of Bayes�Rule eventually
transforms the historical record into a near perfect guide for the future. Part (a)
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of the theorem generalizes the Bayesian result to the case of underreaction. This
result shows that, if repeated su¢ ciently many times, all non-Bayesian updating
rules in (5.9) with the additional proviso of a Positive Prior-Bias and the indicated
added measurability assumption, eventually produce good forecasting. Hence,
in the case of underreaction, agent�s forecasts converge to rational expectations
although the available information is not processed according to Bayesian laws of
probability.
Part (b) shows that, with positive probability, forecasts are eventually correct

provided that the Bayesian term on the right side of (5.9) receives weight that
is bounded away from zero. This applies in the case of Negative Prior-Bias,
corresponding to overreaction. In fact, the results holds even if the forecaster
sometimes overreacts and sometimes underreacts to new information. However,
part (c) shows that convergence to wrong forecasts may occur in the absence of
either of the assumptions in (a). This is demonstrated by two examples. In the
�rst example the weight t+1 is constant, but su¢ ciently negative, corresponding
to a forecaster that su¢ ciently overreacts to new information. In the second
example, the weight t+1 is positive corresponding to underreaction, but t+1
depends on the current signal and, therefore, t+1 is only St+1-measurable. In
both examples, forecasts may eventually converge to an incorrect limit. Moreover,
wrong forecasts in the limit are at least as likely to occur as are correct forecasts.
The proof of Theorem 5.1 builds on classic arguments of the Bayesian liter-

ature. Consider the probability measure �t on the parameter space and let the
random variable ��t be the probability that �t assigns to the true parameter. It fol-
lows that the expected value (according to the true data generating process) of the
Bayesian update of ��t (given new information) is greater than �

�
t itself. Hence,

in the Bayesian case, the weight given to the true parameter tends to grow as
new information is observed. This submartingale property ensures that Bayesian
forecasts must converge to some value and cannot remain in endless random�uctu-
ations. The submartingale property follows because under the Bayesian paradigm
future changes in beliefs that can be predicted are incorporated in current beliefs.
It is immediate from the linear structure in (5.9) that this basic submartingale
property still holds in our model as long as the weight t+1 depends upon the
history only up to period t. Hence, with this measurability assumption, forecasts
in our model must also converge and, as in the Bayesian case, cannot remain
in endless random �uctuations.17 In addition, convergence to the truth holds in

17We conjecture that beliefs �t may not converge in some examples when the weight t+1 is
St+1-measurable. In our example, it does converge, but to an incorrect limit.
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both the Bayesian paradigm and in the case of underreaction. However, given suf-
�ciently strong overreaction, it is possible that forecasts will settle on an incorrect
limit. This follows because the positive drift of the above mentioned submartin-
gale property on ��t may be compensated by su¢ ciently strong volatility which
permits that, with positive probability, ��t converges to zero.

5.2. Sample-Bias with Parameters

Sample-Bias can also be modeled when learning about parameters is taking place.
Take as primitive a process ( t+1) of probability measures on � that provides a
representation for empirical frequency measures 	t+1 of the form

	t+1 =

Z
` (� j �) d t+1 (�) . (5.10)

Let �0 be given and de�ne �t+1 and �t+1 inductively for t � 0 by (5.2) and

�t+1 = (1� �t+1) BU(�t; st+1) + �t+1 t+1, (5.11)

for �t+1 � 1. Then one obtains a special case of the Sample-Bias model of Corol-
lary 4.2; the bias is positive or negative according to the sign of the ��s. The
implied law of motion for posteriors is

�t+1 =
�
1� �t+1�t+1

1+�t+1

�
BU (�t; st+1) +

�t+1�t+1
1+�t+1

 t+1: (5.12)

To illustrate, suppose that S = fs1; :::; sKg and that `
�
sk j �

�
= �k for each

� = (�1; :::; �K) in �, the interior of the K-simplex. Then one can ensure (5.10) by
taking  0 to be a suitable noninformative prior; subsequently, Bayesian updating
leads to the desired process ( t+1). For example, the improper Dirichlet prior
density

d 0 (�)

�Kk=1d�k
/ �Kk=1�

�1
k

yields the Dirichlet posterior with parameter vector
�
nt (s

1) ; :::; nt
�
sK
��
, where

nt
�
sk
�
equals the number of realizations of sk in the �rst t periods; that is,

d t (�)

�Kk=1d�k
/ �Kk=1�

nt(sk)�1
k . (5.13)
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By the property of the Dirichlet distribution,Z
`
�
sk j �

�
d t (�) =

Z
�k d t (�) =

nk(t)
t
,

the empirical frequency of sk, as required by (5.10).
Finally, compute from (5.12) and (5.13) that (assuming �t+1 6= 0)

�t+1(�)

�t+1(�
0) >

`(st+1j�)
`(st+1j�0)

�t(�)
�t(�

0) i¤ �t+1
 t(�)
 t(�

0) > �t+1
�t(�)
�t(�

0) . (5.14)

Suppose that all �t+1�s are negative (Negative Sample-Bias) and consider the coin-
tossing example. As above, we denote by

�
�Bt
�
the Bayesian process of posteriors

with initial prior �B0 = �0. Then it follows from repeated application of (5.13)
and (5.14) that

�t+1(�)

�t+1(�
0) >

�Bt+1(�)

�Bt+1(�
0)
;

if st+11 = (H; :::; H), j � � 1
2
j> j �0 � 1

2
j and if the common initial prior �0

is uniform.18 After seeing a string of H�s the agent described herein exaggerates
(relative to a Bayesian) the relative likelihoods of extremely biased coins. If instead
we consider a point at which the history st+11 has an equal number of realizations
of T and H, then

�t+1(�)

�t+1(1��)
> �

1��
�t(�)
�t(1��)

= BU(�t;H)(�)
BU(�t;H)(1��)

;

for any � such that �t (�) > �t (1� �). If there have been more realizations of H,
then the preceding displayed inequality holds if�

�
1��
�nt+1(H)�nt+1(T )

< �t(�)
�t(1��)

,

for example, if � < 1
2
and �t (�) � �t (1� �). Note that the bias in this case is

towards coins that are less biased (� < 1
2
). The opposite biases occur in the case

of Positive Sample-Bias.
We conclude with a result regarding learning in the long run. In order to avoid

technical issues arising from � being a continuum as in the Dirichlet-based model,
we consider the following variation: as before S = fs1; :::; sKg and `

�
sk j �

�
= �k

18More generally, the latter two conditions can be replaced by
�0(1��0)
�(1��) > �0(�)

�0(�
0) .
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for each k and �. But now take � to be the set of points � = (�1; :::; �K) in the
interior of the K-simplex having rational co-ordinates. De�ne

 t+1 (�) =

�
1 if the empirical frequency of sk is �k, 1 � k � K,
0 otherwise.

Then (5.10) is evident.19 The law of motion can be written in the form

�t+1 =
�
1� t+1

�
BU (�t; st+1) + t+1 t+1; (5.15)

where t+1 =
�t+1�t+1
1+�t+1

� 1.
We have the following partial counterpart of Theorem 5.1.

Theorem 5.2. Let S, (�; `) and ( t) be as just de�ned and suppose that pos-
teriors (�t) evolve according to (5.15), where t+1 is St-measurable and 0 <  �
t+1 � 1. Then forecasts are eventually correct P � � a:s:

The positive lower bound  excludes the Bayesian case. The result does hold in
the Bayesian case t+1 = 0: However, unlike the proof of Theorem 5.1, the proof of
Theorem 5.2 is in some ways signi�cantly di¤erent from the proof in the Bayesian
case. We suspect that the di¤erences in the approach make the lower bound
assumption technically convenient but ultimately disposable. We also conjecture
(but cannot yet prove) that just as in part (c) of Theorem 5.1, convergence to the
truth fails in general if t+1 is only St+1-measurable. The other case treated in
the earlier theorem - t+1 is St-measurable but possibly negative - (which in the
context of that model corresponded to overreaction) is not relevant here because
these conditions violate the requirement that each �t+1 in (5.11) be a probability
measure and hence non-negatively valued.

6. CONCLUDING REMARKS

We conclude by addressing questions that may have occurred to some readers and
by pointing to some possible extensions.

19If � were taken to be �nite, then one could not assure (5.10) without admitting signed
measures for  t+1 and hence also for �t+1. Bayesian updating is not well-de�ned for signed
measures and even if that problem were overcome, the interpretation of such a model is not
clear.
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Can non-Bayesian updaters survive? A traditional objection to the use of non-
Bayesian updating rules is that they would render an agent vulnerable to a Dutch
Book or money pump. Dutch Book arguments are typically loose but they center
on showing that non-Bayesian updating leads to dynamic inconsistency which
in turn permits the agent to be exploited. In contrast, we have shown in our
explicitly dynamic formal setup that our agent is guided through time by a single
(complete and transitive) preference order. Thus he is dynamically consistent and
immune to Dutch Books.
Another objection comes from the e¢ cient markets hypothesis. This objection

is based on the assumption that agents who do not process information according
to Bayes�Rule will not accummulate su¢ cient wealth to have a signi�cant impact
on asset prices. Sandroni [20] explores this issue but the preferences of agents
in his model are di¤erent from those described here. Whether or not Bayesians
accummulate more wealth than our non-Bayesian updaters is an open question.
We would add that the signi�cance of non-Bayesian agents may not be dismissed
even if they accummulate less wealth than Bayesians. First, some wealth may
belong to all types of agents if there is continuous entry into the market. Second,
trade restrictions, such as the impossibility of selling future wages, imply that all
agents will keep their wages and so will, at least, in�uence economic quantities
and the prices of goods.20

A matter of framing: The agent in our model evaluates prospects by backward
induction, thus taking into account future updating behavior. It merits empha-
sis that she does this even when evaluating commitment prospects (F 2 C0).
One might view this feature of the model as problematic because commitment
prospects do not involve interim choice and hence do not call explicitly for future
updating. However, contingent menus are dynamic objects and thus backward
induction reasoning is intuitive in our view. It is true that there is a natural
identi�cation on formal grounds between contingent menus in C0 and acts in A,
the set of all (suitably measurable) mappings f : S1 �!C1. But we distinguish
between contingent menus and acts on cognitive grounds - contingent menus are
dynamic objects while acts are static and thus it is plausible that the agent eval-
uate them di¤erently. The implicit distinction between C0 and A is the way in
which our model acknowledges that framing matters for choice. To make this

20In addition, the existence of a direct link between wealth and in�uence on asset prices have
been questioned by Kogan et al [11].
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distinction explicit and formal, one would need to consider not only preferences
�t on C but also preferences �At on A. Such an extension is a subject for future
research.
To illustrate how framing might matter, consider uncertainty described by 2

tosses of a coin, with the tosses coming at t = 1; 2. The agent is told the following
at t = 0: �Your consumption in periods 0 and 1 is �xed; consumption in other
periods is constant across time but depends on which of the prospects A and B
you choose. If H1 (the �rst toss yields Heads), then: A pays high consumption if
H2 and low otherwise, while B pays low consumption if H2 and high otherwise. If
T1 on the other hand, then A pays high only in T2 and B only in H2. Now choose
between between A and B.�
One modeling hypothesis is that the agent perceives the prospects as acts

(elements of A), where A is a bet on the two tosses producing identical outcomes
and B is a bet on the two outcomes being di¤erent. Then her evaluation would
depend only on her initial prior on S1 � S2, the obvious i.i.d. prior if the coin is
thought to be unbiased, and updating would be irrelevant. On the other hand, the
above description frames A and B as dynamic prospects (elements of C0) - it calls
attention to future conditional positions and may bring to mind consideration of
future updating and backward induction. Our agent sees the prospects in this
way. Thus the measure P0 from (2.10) that she uses to evaluate commitment
prospects at time 0 re�ects not only prior beliefs about the coin but also future
updating biases.

Other extensions: Our main contribution is to provide a choice-theoretic model of
updating. An important feature of the model is its richness - it can accommodate
a range of updating biases. We have illustrated this to a degree via the (axiomatic)
specializations called Prior-Bias and Sample-Bias. However, much more might be
done in this vein. For example, we characterized two alternative specializations
of Sample-Bias that correspond roughly to the hot-hand fallacy (Positive Sample-
Bias) and the gambler�s fallacy (Negative Sample-Bias) respectively. However,
while in each case the agent is assumed to su¤er from the indicated fallacy at all
times and histories, it is intuitive that she may move from one fallacy to another
depending on the sample history. Thus one would like a theory that explains
which fallacy applies at each history. Our framework gives this task a concrete
form: in light of Corollary 4.2, one must �only�explain how the weights �t+1 vary
with history. Similarly with regard to further specializations of Prior-Bias.
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A. APPENDIX: Contingent Menus

De�ne the following spaces:

D1 = [M (C � C1)]S , and

Dt = [M (C �Dt�1)]
S , for t > 1.

For interpretation, G in D1 yields the set G (s) of consumption streams if s is
realized at t = 1. Thus think of G as a contingent menu for which there is no
uncertainty and no �exibility (in the sense of nonsingleton menus) after time 1.
Similarly, G in Dt can be thought of as a contingent menu for which there is no
uncertainty or �exibility after time t.
Each Dt is compact metric. In addition, there is a natural mixing operation

on each Dt: Given any space X where mixtures �x + (1� �) y are well de�ned,
mix elements ofM (X) by

�M + (1� �)N = f�x+ (1� �) y : x 2M; y 2 Ng .

Mixtures are de�ned in the obvious way onX = C1. OnD1 de�ne �G0+(1� �)G
by

(�G0 + (1� �)G) (s) = �G (s) + (1� �)G (s) .

Proceed inductively for all Dt.

Theorem A.1. There exists C � �11 Dt such that:
(i) C is compact metric under the induced product topology.
(ii) C is homeomorphic to [M (C � C)]S.
(iii) Under a suitable identi�cation,

Dt�1 � Dt � C.

(iv) Let �t be the projection map from �11 Dt into Dt. Then �t (C) � C and

�t (F ) �!
t�!1

F for every F in C.

(v) Let F 0 = (G0t) and F = (Gt) be in C. Then (�G0t + (1� �)Gt) is an element
of C, denoted � � F 0 + (1� �) � F . Under the homeomorphism in (i),

(� � F 0 + (1� �) � F ) (s) =

f(�c0 + (1� �) c; � �H 0 + (1� �) �H) : (c0; H 0) 2 F 0 (s) ; (c;H) 2 F (s)g .
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Part (i) asserts that the topological structure of C is inherited by C. Part (ii)
is the homeomorphism (2.2) that was used heavily in the text.
We noted above that each G in Dt implies no uncertainty or �exibility after

time t. Think of such a G as a special contingent menu in which all uncertainty
and �exibility beyond t have been somehow collapsed into period t. Then (iii)
and (iv) imply that the set [11 Dt of all such special contingent menus is dense in
C.
Part (v) provides the mixing operation promised in Section 3. Roughly it

shows that ���, which is the natural mixing operation induced by C � �11 Dt, is
consistent with that suggested by the homeomorphism in (ii). Thus, there is no
danger of confusion and in the text we have written simply �F 0+(1� �)F rather
than � � F 0 + (1� �) � F .
Parts (i)-(iv) of the theorem are closely related to several results in the lit-

erature dealing with hierarchies of topological spaces and problems of in�nite
regress. For example, Mertens and Zamir [16] and Brandeburger and Dekel [2]
study hierarchies of probability measures, Epstein and Wang [7] study hierarchies
of preferences and GP [10] establish a recursive domain suitable for their in�nite
horizon model. The technical details are now well understood and thus we omit
a formal proof. Note, moreover, that the result for singleton S, when we are sim-
ply dealing with hierarchies of closed subsets, is a corollary of [7, Theorem 6.1].
See also [6, Appendix B], which deals with hierarchies of upper-semicontinuous
functions taking values in [0; 1]; the indicator function of a closed set is such a
function, hence the relevance to hierarchies of closed sets.
Finally, de�ne the spaces Cr � C0+1 � C0 � C. First, C0 is the unique subspace

of C satisfying: C0 �
homeo

(C � C0)S under the homeomorphism in the theorem.

(Details are as in [7, Theorem 6.1(a)].) Take C0+1 = D1. Finally, let Cr = C1,
which can be identi�ed with a subset of C; Cr �

homeo
C � Cr under the induced

homeomorphism.

B. APPENDIX: Proof of Main Theorem

Necessity: Denote by X the set of all processes U = (Ut), where Ut (�; st1) :
M (C � C) �! R1 is continuous and where

jj U jj= jj (Ut) jj � sup
t;st1;M

j Ut
�
M; st1

�
j< 1.

The norm jj � jj makes X a Banach space. De�ne � : X �! X by
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(� (U))t+1 (Mt+1; st+1) =

max
(ct+1;Ft+1)2Mt+1

(1 + �t+1)

�
u (ct+1) + �

Z
St+2

Ut+2 (Ft+1 (st+2) ; st+2) d
�
pt+1+�t+1qt+1

1+�t+1

��
� max
(c0t+1;F 0t+1)2Mt+1

�t+1

�
u
�
c0t+1

�
+ �

Z
St+2

Ut+2
�
F 0t+1 (st+2) ; st+2

�
dqt+1(st+2)

�
.

Then � is a contraction under assumption (3.13) and thus it has a unique �xed
point (Ut). De�ne

Ut (Ft) =
Z
St+1

Ut+1 (Ft (st+1) ; st+1) dmt (st+1) , Ft 2 Ct.

It remains to verify Axioms 1-13.
Order and Continuity are by construction. Nondegeneracy follows from non-

constancy of u. For Independence, let XL consist of all (Ut) in X such that each
Ut (�; st1) is mixture linear. Then XL is closed in X and � maps XL into itself.
Thus the unique �xed point noted above is in XL. Independence follows.
Some abbreviations are used in the sequel. De�ne the conditional order �t jst+1

onM (Ct+1 � Ct+1) byM 0 �t jst+1 M i¤9F such that
�
F�st+1 ;M

0� �t

�
F�st+1 ;M

�
.

De�ne�t jst+1;st+2 on closed subsets ofM (Ct+2 � Ct+2) by: L0 �t jst+1;st+2 L i¤there
exist F; c and M � C such that�

F�st+1 ; (c; L
0st+2M)

�
�t

�
F�st+1 ; (c; Lst+2M)

�
.

Several of the axioms can be restated using these derived orders.

Absolute Continuity: Hypothesis (3.5) () mt (st+1) pt+1 (st+2) = 0 ()
mt (st+1)mt+1 (st+2) = 0, (because qt+1 << pt+1), () (st+1; st+2) �t-null =)
(3.6).

Verify that �t jst+1 is represented by mt (st+1)Ut+1 (�; st+1). It follows that �t

satis�es Set-Betweenness. Verify also that �t jst+1;st+2 is represented by

L 7�! mt (st+1) pt+1 (st+2) max`2LUt+2 (`; st+2) . (B.1)

State Independence: Follows from (B.1) and the fact that Ut+2 (`; st+2) does not
depend on the state if ` 2 C � Cr.
RSR: Follows from (B.1).
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CSR: (K 0; F 0) �t jst+1 (K;F
0) () mt (st+1)max

c2K0
u (c) � mt (st+1)max

c2K
u (c) =)

mt (st+1)max
c2K0

u (c) = mt (st+1) max
c2K0[K

u (c) =) (K 0; F 0) �t jst+1 (K
0 [K;F 0).

Risk Preference: Obvious.
Invariant Discounting: Under the indicated temptation hypothesis,
Ut+1

�n
(c; F 0); (d;

�!
d )
o
; st+1

�
= (1 + �t+1)u (c) + �

R
Ut+2 (F

0 (st+2)) dmt+1 �

�t+1Ut+1

�
(d;
�!
d ); st+1

�
, and similarly for (e;�!e ).

RRC: Let (st+1; st+2) be �t-non-null. Then �t jst+1;st+2 is represented by L 7�!
max`2LUt+2 (`; st+2) and �t+1 jst+2 is represented by Ut+2 (�; st+2). Thus, for `0; ` �
Ct+2�Ct+2, f`0g �t jst+1;st+2 f`g i¤ Ut+2 (`0; st+2) � Ut+2 (`; st+2) i¤ `0 �t+1 jst+2 `.
Bias Persistence: If (3.10), thenZ

St+2

Ut+2 (F
0 (st+2) ; st+2) dpt+1 >

Z
St+2

Ut+2 (G (st+2) ; st+2) dpt+1

and Z
St+2

Ut+2 (F
0 (st+2) ; st+2) dqt+1 �

Z
St+2

Ut+2 (G (st+2) ; st+2) dqt+1.

Therefore,Z
St+2

Ut+2 (F
0 (st+2) ; st+2) d[pt+1+�t+1qt+1] �

Z
St+2

Ut+2 (G (st+2) ; st+2) d[pt+1+�t+1qt+1]

=)
Z
St+2

Ut+2 (F
0 (st+2) ; st+2) dmt+1 �

Z
St+2

Ut+2 (G (st+2) ; st+2) dmt+1

=) Ut+1 (F 0) � Ut+1 (G) .
For the other case, the self-control hypothesis (3.11) implies that

Ut+1 ((c; fG;Hg) ; st+1) = u (c) + �

Z
St+2

Ut+2 (G (st+2) ; st+2) dpt+1+

�t+1 �

�Z
St+2

Ut+2 (G (st+2) ; st+2) dqt+1 �
Z
St+2

Ut+2 (H (st+2) ; st+2) dqt+1

�
,

and similarly for F 0 in place of G. Thus

f(c; F 0); (c;H)g �t jst+1 f(c;G); (c;H)g =)
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Z
St+2

Ut+2 (F
0 (st+2) ; st+2) d[pt+1+�t+1qt+1] �

Z
St+2

Ut+2 (G (st+2) ; st+2) d[pt+1+�t+1qt+1]

=)
Z
St+2

Ut+2 (F
0 (st+2) ; st+2) dmt+1 �

Z
St+2

Ut+2 (G (st+2) ; st+2) dmt+1

=) Ut+1 (F 0) � Ut+1 (G) .

Su¢ ciency: The argument is divided into a series of steps. Steps 1 and 2 are
similar to arguments in [5] for the 3-period case and thus some details are omitted.

Step 1 : Ut (F ) = �st+1U
�
t+1 (F (st+1) ; st+1), where U

�
t+1 (�; st+1) is linear on

M (Ct+1 � Ct+1). This follows from Order, Continuity and Independence for �t

on Ct.
It follows that�t jst+1 is complete and transitive and represented by U

�
t+1 (�; st+1).

The latter is not constant if st+1 is �t-non-null. By Nondegeneracy, there is at
least one non-null state for each �t.

Step 2 : �t jst+1 satis�es GP axioms suitably translated toM (Ct+1 � Ct+1). Thus

U�t+1 (M; st+1) = max
(c;F )2M

�
UGP
t+1 (c; F; st+1) + V GP

t+1 (c; F; st+1)
	

� max
(c0;F 0)2M

V GP
t+1 (c

0; F 0; st+1) ,

for some UGP
t+1 (�; st+1) and V GP

t+1 (�; st+1), linear functions on Ct+1�Ct+1. It follows
that these functions are additive across states in St+2 in the sense that

UGP
t+1 (c; F; st+1) = �st+2ut (c; F (st+2) ; st+1; st+2) (B.2)

and
V GP
t+1 (c; F; st+1) = �st+2vt (c; F (st+2) ; st+1; st+2) , (B.3)

where each ut (�; st+1; st+2) and vt (�; st+1; st+2) is linear and continuous on Ct+1 �
Mt+2. The subscript t indicates that these functions may depend also on the
history st1 underlying �t.

Step 3 : Derive further structure for ut and vt.
De�ne �t jst+1;st+2 as in the proof of necessity. From (B.2)-(B.3), deduce that

�t jst+1;st+2 is represented numerically by eUt (�; st+1; st+2), whereeUt (L; st+1; st+2) = max
`2L

fut (ct+1; `; st+1; st+2) + vt (ct+1; `; st+1; st+2)g
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�max
`02L

vt (ct+1; `
0; st+1; st+2) , for L �M (Ct+2 � Ct+2) :

We claim that

vt (ct+1; �; st+1; st+2) = at (ct+1; st+1; st+2) ut (ct+1; �; st+1; st+2)+At (ct+1; st+1; st+2) ,
(B.4)

for some at � 0.
Case 1: Suppose that ut (ct+1; �; st+1; st+2) is nonconstant. By RSR, �t jst+1;st+2 is
strategically rational. Deduce (B.4) as in [9, p. 1414].
Case 2: Suppose that ut (ct+1; �; st+1; st+2) is constant. Then Absolute Continuity
implies that (st+1; st+2) is�t-null. But then any speci�cation for vt (ct+1; �; st+1; st+2)
is consistent with a representation for �t. In particular, we can take (B.4) to be
valid with at (ct+1; st+1; st+2) = 0 and some At (ct+1; st+1; st+2).
From (B.4), deduce that �t jst+1;st+2 is represented by

L 7! max
`2L

ut (ct+1; `; st+1; st+2) :

Let (st+1; st+2) be �t-non-null. Then RRC implies that

`0 �t+1 jst+2 ` () f`0g �t jst+1;st+2 f`g,

for all `0; ` inM (Ct+2 � Ct+2). By Step 1, �t+1 jst+2 is represented by U
�
t+2 (�; st+2).

Conclude that the latter is ordinally equivalent to ut (ct+1; �; st+1; st+2) on
M (Ct+2 � Ct+2) for every ct+1. Since both are linear functions, they must be
cardinally equivalent, that is,

ut (c; �; st+1; st+2) = bt (c; st+1; st+2) U
�
t+2 (�; st+2) +Bt (c; st+1; st+2) , (B.5)

where bt � 0. But both ut (�; st+1; st+2) and U�t+2 (�; st+2) are linear; and (st+1; st+2)
non-null implies that ut (c; �; st+1; st+2) and U�t+2 (�; st+2) are nonconstant. It fol-
lows that bt (�; st+1; st+2) > 0. Further, bt (�; st+1; st+2) is constant andBt (�; st+1; st+2)
is linear.
To support the two latter claims, adopt the obvious simpli�ed notation and

let
u (c;M) = b (c) U (M) + B (c) ;

where: u (�) and U (�) are linear and U is not constant. Evaluation at � (c;M) +
(1� �) (c0;M 0) yields

[�B (c) + (1� �)B (c0)�B (�c+ (1� �) c0)] =
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�U (M) ( b (�c+ (1� �) c0)� b (c) ) +

(1� �)U (M 0) ( b (�c+ (1� �) c0)� b (c0) ) .

If U is not constant, then one can vary U (M) and U (M 0) independently over open
intervals. But the LHS is independent of M and M 0. Deduce that b (c) = b (c0) =
b (�c+ (1� �) c0) and that �B (c) + (1� �)B (c0) � B (�c+ (1� �) c0) = 0.
Equation (B.5) is valid also if (st+1; st+2) is �t-null: Nullity implies that

ut (c; �; st+1; st+2) is constant. Hence take bt (�; st+1; st+2) = 0 andBt (c; st+1; st+2) =
ut (c;Mt+2; st+1; st+2) for any Mt+2:

Step 4 : Derive more structure for (ut; vt) and some implications.
The argument used for (B.5) can be applied to (B.4) to show that at (�; st+1; st+2)

is constant and that At (�; st+1; st+2) is linear. It follows that
Ut (Ft) = �st+1U

�
t+1 (Ft (st+1) ; st+1), where U

�
t+1 (Mt+1; st+1) =

max
(ct+1;Ft+1)2Mt+1

�
�st+2bt (st+1; st+2) U

�
t+2 (Ft+1 (st+2) ; st+2) + �st+2Bt (ct+1; st+1; st+2)

+�st+2vt (ct+1; Ft+1 (st+2) ; st+1; st+2)

�
� max
(c0t+1;F 0t+1)2Mt+1

�st+2vt
�
c0t+1; F

0
t+1 (st+2) ; st+1; st+2

�
,

where vt (�; st+1; st+2) = atbtU
�
t+2 (Ft+1; st+2)+A

0
t (ct+1; st+1; st+2), andA

0
t (ct+1; st+1; st+2) =

atBt (ct+1; st+1; st+2)+At (ct+1; st+1; st+2). De�neB00
t (ct+1; st+1) = �st+2Bt (ct+1; st+1; st+2)

and A00t (ct+1; st+1) = �st+2A
0
t (ct+1; st+1; st+2) and rewrite in the form:

U�t+1 (Mt+1; st+1) =

max
(ct+1;Ft+1)2Mt+1

�
�st+2bt (st+1; st+2) U

�
t+2 (Ft+1 (st+2) ; st+2) +B00

t (ct+1; st+1)
+�st+2atbt U

�
t+2 (Ft+1 (st+2) ; st+2) + A00t (ct+1; st+1)

�
(B.6)

� max
(c0t+1;F 0t+1)2Mt+1

�
�st+2atbt U

�
t+2

�
F 0t+1 (st+2) ; st+2

�
+ A00t

�
c0t+1; st+1

��
.

The ranking of consumption menus K � C induced by �tjst+1 is represented
by

max
ct+12K

fB00
t (ct+1; st+1) + A00t (ct+1; st+1)g � max

c0t+12K
A00t
�
c0t+1; st+1

�
.

By Consumption Strategic Rationality, this ranking is strategically rational. By
Risk Preference, B00

t (�; st+1) is not constant if st+1 is �t-non-null. Then, as in [9,
p. 1414],

A00t (�; st+1) = a0t (st+1) B
00
t (�; st+1) + a0t (st+1) ,
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where a0t (st+1) � 0. Deduce that the restriction of �tjst+1 to consumption menus
is represented by

K 7�! max
ct+12K

B00
t (ct+1) :

By Risk Preference, this ranking is independent of t and the �t-non-null state
st+1. It follows that, for any �t-non-null st+1,

B00
t (�; st+1) = a00t (st+1) B

� (�) + b00t (st+1) .

The preceding extends also to �t-null states st+1, in which case U�t+1 (�; st+1)
is constant: take a0t (st+1) = a00t (st+1) = 0.
Finally, it follows from (B.6), after dropping irrelevant additive terms, that

U�t+1 (Mt+1; st+1) =

max
(ct+1;Ft+1)2Mt+1

�
(1 + a0t (st+1)) a

00
t (st+1)B

� (ct+1)+
�st+2 (1 + at (st+1; st+2)) bt (st+1; st+2) U

�
t+2 (Ft+1 (st+2) ; st+2)

�
(B.7)

� max
(c0t+1;F 0t+1)2Mt+1

�
a0t (st+1) a

00
t (st+1)B

� �c0t+1�+ �st+2atbt U�t+2 �F 0t+1 (st+2) ; st+2�� .
Step 5 : Deliver probabilities for all t in spite of the pervasive state dependence.
The idea is to �rst restrict attention to subclasses of contingent menus that mimic
the objects of choice in a corresponding �nite T -horizon setting. Here we can
argue by backward induction - roughly speaking, state independence at terminal
T provides a scale that permits de�ning meaningful probabilities at all prior times.
Then we use Continuity to extend these probabilities to all of �11 St.

Step 5(i): Fix 3 � T < 1 and de�ne p0 and (pt; qt; �t)
T�1
1 that represent pref-

erence in a sense to be described. Recall DT � C from the previous appendix,
the subdomain of contingent menus that imply commitment and no uncertainty
(only risk) for periods T + 1 and on. Until further notice, consider preferences
restricted to DT rather than de�ned on all of C.
Argue by backward induction on t. As the induction hypothesis, suppose that

for all � , t+1 � � � T�2,�� is represented by U� (F� ) = �s�+1U��+1 (F� (s�+1) ; s�+1),
where

U��+1 (F� (s�+1) ; s�+1) = m0
� (s�+1)U�+1 (F� (s�+1) ; s�+1) ;
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m0
� is a measure on S�+1, and where, for every �� -non-null s�+1, U�+1 (�; s�+1) has

the form in (2.7). The only relation imposed on the relevant measures is that

q�+1 << p�+1 and p�+1 << m0
�+1. (B.8)

Thus the induction hypothesis amounts to the representation (2.6)-(2.7), where
(B.8), but not (2.5), is assumed. We prove a corresponding representation for
Ut (�).
By de�nition, if s�+2 is ��+1-null, then the speci�cation of U�+2 (�; s�+2) is of

no consequence for U�+1 (�) and hence also ��+1. In fact, it is of no consequence
also for U� (�) or indeed for any Uk (�): s�+2 is ��+1-null i¤m0

�+1 (s�+2) = 0 and the
latter implies, by (B.8), that p�+1 (s�+2)+��+1q�+1 (s�+2) = 0, which means that
U�+2 (F�+1 (s�+2) ; s�+2) enters into the appropriate version of (2.7) multiplied by
zero. It follows that if s�+2 is ��+1-null, then the speci�cation of U�+2 (�; s�+2) is
of no consequence for the representation of �� or indeed of any �k. Consequently,
below we can restrict attention to specifying utilities at non-null states, secure in
the knowledge that utilities at null states can be speci�ed freely to satisfy the
desired recursive equation (2.7).
From Steps 1 and 4,

Ut (Ft) = �st+1U
�
t+1 (Ft (st+1) ; st+1) ;

where U�t+1 (Mt+1; st+1) is given by (B.7). De�ne

b0t (st+1) � �st+2bt (st+1; st+2) m0
t+1 (st+2) .

Then b0t (st+1) = 0 =) bt (st+1; st+2) m
0
t+1 (st+2) = 0 for all st+2. But then (B.7)

and Risk Preference imply that st+1 is �t-null.
For st+1 that is �t-non-null, the preceding implies that

b0t (st+1) > 0.

De�ne

pt+1 (st+2) =
bt (st+1; st+2) m

0
t+1 (st+2)

b0t (st+1)
,

�t+1 =
�s0t+2at

�
st+1; s

0
t+2

�
bt
�
st+1; s

0
t+2

�
m0
t+1

�
s0t+2

�
b0t (st+1)

� 0,

qt+1 (st+2) =

(
at(st+1;st+2)bt(st+1;st+2)m0

t+1(st+2)

b0t(st+1)�t+1
if �t+1 > 0

pt+1 (st+2) otherwise;
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note that qt+1 << pt+1 and pt+1 << m0
t+1, consistent with (B.8). De�ne also

(for the given non-null st+1)

m0
t (st+1) =

b0t (st+1)

�s0t+1b
0
t

�
s0t+1

� � b0t (st+1)

B0
t

> 0 and

Ut+1 (Mt+1; st+1) = U�t+1 (Mt+1; st+1) =m
0
t (st+1) .

On the other hand, if st+1 is �t-null, then de�ne m0
t (st+1) = 0 and specify

Ut+1 (�; st+1) to have the desired form (see the discussion above regarding null
states).
Then

Ut (Ft) = �
st+1

m0
t (st+1)Ut+1 (Ft (st+1) ; st+1) ,

and for every �t-non-null st+1,

U�t+1 (Mt+1; st+1) =b
0
t = Ut+1 (Mt+1; st+1) =B

0
t =

max
(ct+1;Ft+1)2Mt+1

(
�st+2 [pt+1 (st+2) + �t+1qt+1 (st+2)]Ut+2 (Ft+1 (st+2) ; st+2)

+
(1+a0t)a

00
t

b0t
B� (ct+1)

)
(B.9)

� max
(c0t+1;F 0t+1)2Mt+1

n
�t+1�st+2qt+1 (st+2) Ut+2

�
F 0t+1 (st+2) ; st+2

�
+

a0ta
00
t

b0t
B� �c0t+1�o .

Because B0
t is time t-measurable, one could have begun with B

0
tU

�
t+1 (�; st+1) in

place of U�t+1 (�; st+1). As a result, there is no loss of generality in assuming B0
t = 1

in (B.9).
We can simplify further by considering the ranking of risky consumption

streams �!c = (�!c t), elements of Cr. For these streams, (B.9) reduces (using a
convenient abuse of notation and continuing to focus on �t-non-null st+1) to

Ut+1 (ct+1; :::; cT ; st+1) =
a00t
b0t
B� (ct+1) + Ut+2 (ct+2; :::; cT ; st+2) .

By the inductive hypothesis,

Ut+2 (ct+2; :::; cT ; st+2) = u (ct+2) + �Ut+3 (ct+3; :::; cT ; st+3) .

Deduce that

Ut+1 (ct+1; :::; cT ; st+1) =
a00t
b0t
B� (ct+1) + u (ct+2) + �Ut+3 (ct+2; :::; cT ; st+2) ,
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and from Risk Preference conclude that wlog

a00t
b0t
= ��1 and B� (�) = u (�) .

Substitution into (B.9) yields

�Ut+1 (Mt+1; st+1) =

max
(ct+1;Ft+1)2Mt+1

(
� (1 + �t+1) �st+2

pt+1(st+2)+�t+1qt+1(st+2)
1+�t+1

Ut+2 (Ft+1; st+2)

+ (1 + a0t) u (ct+1)

)
(B.10)

� max
(c0t+1;F 0t+1)2Mt+1

�
��t+1�st+2qt+1 (st+2) Ut+2

�
F 0t+1; st+2

�
+ a0t u

�
c0t+1

�	
.

Wlog replace �Ut+1 by Ut+1 on the left side of the equation.
To complete the inductive step, it remains to prove that �t+1 (st+1) = a0t (st+1).

This is done by invoking Invariant Discounting: �x st+1 (�t-non-null) and suppose
that

�t+1 (st+1) 6= a0t (st+1) : (B.11)

Then at least one is nonzero and hence there exist contingent menus satisfying

�
F�st+1 ; (c; F

0)
�
�t

�
F�st+1 ;

n
(c; F 0); (d;

�!
d )
o�

�t

�
F�st+1 ; (d;

�!
d )
�
.

The corresponding strict rankings are valid also for all (e;�!e ) in an open neigh-
borhood of (d;

�!
d ). This implies the hypothesis (3.8) of Invariant Discounting.

Then, by (B.10), the equivalence (3.9) translates into the statement that, for all
such (e;�!e ),

��t+1U
e
t+2 + a0tu (e) � ��t+1U

d
t+2 + a0tu (d) ()

�U e
t+2 + u (e) � �Ud

t+2 + u (d)

where
�!
d = (dt+2; :::; ), Ud

t+2 = �Tt+2�
��t�2u (d� ) and similarly for U e

t+2. This
contradicts (B.11).

This completes the inductive step. It remains to establish the appropriate
representation for preference at T � 2. This amounts essentially to the 3-period
result in [5]. One di¤erence is that only terminal consumption is permitted there,
but the argument there is readily adapted to accommodate intermediate consump-
tion. Another point where extra care must be taken in the present setting is in the
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speci�cation of terminal utility U�T (�; sT ). The latter is evaluated on consumption
streams, which involve only risk. Thus by Risk Preference, U�T (�; sT ) is ordinally,
and hence also cardinally, equivalent to bu (�) = ���u (�) on Cr. Ignoring irrelevant
additive terms, we can write

U�T (�; sT ) = �T (sT ) bu (�) on Cr:
This gives the proper decomposition of terminal payo¤s into �taste�and a state-
dependent term that can be transformed into a probability. (In [5], terminal
payo¤s were given by bu (�) alone.)
Step 5(ii): Repeat the preceding on DT+1 � DT . Verify that the construction
of p0 and (pt; qt; �t)

T
1 can be carried out without changing p0 and (pt; qt; �t)

T�1
1

constructed as above using DT . Proceeding in this way, one obtains p0 and
(pt; qt; �t)

1
1 such that each �t has the representation (2.6), (2.7) and (B.8) on

[11 DT . But the latter is dense in C (Theorem A.1). Apply Continuity to obtain
the desired representation on all of C. (To elaborate, the preceding yields (for
each t) the function Ut+1 (�; st+1) de�ned on [��t+1M (C �D� ) and representing
�tjst+1 there. Moreover, Ut+1 (�; st+1) is bounded above by (1� �)�1maxc2C u (c)

and below by (1� �)�1minc2C u (c). An elementary fact is: If Y is compact met-
ric, Y 0 is a dense subset, � is a complete, transitive and continuous order on Y
and U : Y 0 �! R1 is bounded and represents � restricted to Y 0, then U can be
extended uniquely to a real-valued function on Y so as to represent � there; more-
over, U (y) = limU (y0n) for any sequence fy0ng in Y 0 that converges to y. Apply
this fact to deduce that Ut+1 (�; st+1) can be extended uniquely toM (C � C) so
as to represent �tjst+1 there and so as to satisfy the recursive relation (2.7).)

Step 6 : Apply Bias Persistence to show that

m0
t+1 =

pt+1 + �t+1 qt+1
1 + �t+1

. (B.12)

The representation derived thus far has the form:

Ut (F ) = �

Z
St+1

Ut+1 (F (st+1) ; st+1) dm
0
t (st+1) , F 2 C,

where Ut+1 (�; st+1) :M (Ct+1 � Ct+1) �! R1 is given by Ut+1 (M; st+1) =

max
(c;F )2M

(1 + �t+1)

�
u (c) + �

Z
St+2

Ut+2 (F (st+2) ; st+2) d
pt+1+�t+1qt+1

1+�t+1

�
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� max
(c0;F 0)2M

�t+1

�
u (c0) + �

Z
St+2

Ut+2 (F
0 (st+2) ; st+2) dqt+1(st+2)

�
.

Case 1: Suppose that at t+ 1 and history st+11 ,

�t+1 = 0 or qt+1 (�) = pt+1 (�) .

Then Ut+1 (�; st+1) is strategically rational and thus, for any F 0 and F ,

f(c; F 0)g �t jst+1 f(c;G)g =)

f(c; F 0)g �t jst+1 f(c; F 0); (c;G)g =)
F 0 �t+1 G.

where the last implication uses Bias Persistence. In particular, if F 0 and G lie in
C0+1 = D1, then the above translates into the implicationZ

St+2

(bu (F 0 (st+2)) � bu (G (st+2))) dpt+1 > 0 =)
Z
St+2

(bu (F 0 (st+2)) � bu (G (st+2))) dm0
t+1 � 0,

where bu (G (st+2)) is the utility, computed using ���u (�), of the consumption
stream implied by G (st+2) and so on. It follows from a Theorem of the Alternative
[15, p. 34] that m0

t+1 = pt+1, which implies (B.12).

Case 2: Suppose on the other hand that

�t+1 > 0 and qt+1 (�) 6= pt+1 (�) :

Then pt+1 + �t+1qt+1 6= qt+1 and hence there exist G and H in C such thatZ
St+2

Ut+2 (G (st+2) ; st+2) d[pt+1 + �t+1qt+1] > (B.13)

Z
St+2

Ut+2 (H (st+2) ; st+2) d[pt+1+�t+1qt+1] andZ
St+2

Ut+2 (G (st+2) ; st+2) dqt+1 <

Z
St+2

Ut+2 (H (st+2) ; st+2) dqt+1.
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Let F 0 be su¢ ciently close to G so that these inequalities are preserved if G is
replaced by F 0. Take any c in C and F in C. Then (3.11) is satis�ed i¤Z

St+2

(Ut+2 (F
0 (st+2) ; st+2) � Ut+2 (G (st+2) ; st+2)) d[pt+1+�t+1qt+1] � 0. (B.14)

Thus Bias Persistence implies that for all G and H satisfying (B.13), and F 0

su¢ ciently close to G, then (B.14) impliesZ
St+2

(Ut+2 (F
0 (st+2) ; st+2) � Ut+2 (Gt+1 (st+2) ; st+2)) dm

0
t+1 � 0.

But the integrand in the latter two inequalities varies over an open neighborhood
of zero as F 0, G and H vary over the conditions noted above. Thus (B.12) follows
by a Theorem of the Alternative [15, p. 34]

C. APPENDIX: Proofs for Speci�c Biases

Proof of Corollary 4.1: Necessity of Prior-Bias: Given the representation, let

�t (st+2) =

Z
pt+1

�
st+2 j s0t+1

�
dmt

�
s0t+1

�
:

Then the axiom can be translated into the statement:Z
[Ut+2 (F (st+2) ; st+2)� Ut+2 (G (st+2) ; st+2)] dpt+1 > 0 and

Z
[Ut+2 (F (st+2) ; st+2)� Ut+2 (G (st+2) ; st+2)] d�t (st+2) = 0

imply

�t+1

Z
[Ut+2 (F (st+2) ; st+2)� Ut+2 (G (st+2) ; st+2)] dqt+1 � 0.

This is obviously satis�ed given (4.6).

Su¢ ciency of Prior-Bias: If �t+1 = 0, then

�t+1 (qt+1 (� j st+1)� pt+1 (� j st+1)) = 0
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and we can take any qt+1, including in particular qt+1 as in (4.6) with any �t+1.
Suppose that �t+1 > 0. Then Prior-Bias asserts the implication described

above, where �t+1 = 1 wlog. To argue further, eliminate the state dependence
in Ut+2 by supposing that both F and G lie in C0+1, that is, they provide perfect
commitment and that all uncertainty is resolved at t + 2. Then, recalling the
discussion surrounding (2.4), F (st+2) and G (st+2) can be identi�ed with deter-
ministic consumption process cF (st+2) and cG (st+2) respectively. It follows that

Ut+2 (F (st+2) ; st+2) = ��=t+2 �
��(t+2) u

�
cF� (st+2)

�
� bu �cF (st+2)� ,

and similarly for G. Write

xFG (st+2) = bu �cF (st+2)�� bu �cG (st+2)� .
Then

[

Z
xFG (st+2) dpt+1 (st+2 j st+1) > 0 and

Z
xFG (st+2) d�t(st+2) = 0 ] =)Z

xFG (st+2) dqt+1 � 0.

One can show that xFG (�) can be made to vary su¢ ciently (over an open
neighborhood of zero) as we range over F and G lying in C0+1. Apply a Theorem
of the Alternative [15, p. 34].

The arguments for the other axioms are similar.

Proof of Corollary 4.2: The proof is similar to that of the preceding corollary. We
point out only that for G in C0+1, Ut+1

�
ct+1;

�R
Gd	t+1

�
(st+1) ; st+1

�
= u (ct+1) + �

Z
St+2

Ut+2

�Z
St+2

G
�
s0t+2

�
d	t+1; st+2

�
dpt+1 (st+2)

= u (ct+1) + �

Z
St+2

Z
St+2

Ut+2
�
G
�
s0t+2

�
; st+2

�
d	t+1

�
s0t+2

�
dpt+1 (st+2)

= u (ct+1) + �

Z
St+2

Ut+2
�
G
�
s0t+2

�
; st+2

�
d	t+1

�
s0t+2

�
;

because Ut+2
�
G
�
s0t+2

�
; st+2

�
does not depend on st+2.
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D. APPENDIX: Learning in the Long Run

Proof of Theorem 5.1: (a) First we show that log �t (�
�) is a submartingale under

P �. Because

log �t+1 (�
�)� log �t (��) = log

��
1� t+1

�
`(st+1j��)
mt(st+1)

+ t+1

�
, (D.1)

it su¢ ces to show that

E�
h
log
��
1� t+1

� `(st+1j��)
mt(st+1)

+ t+1

�
j St
i
� 0, (D.2)

where E� denotes expectation with respect to P �. By assumption, t+1 is constant
given St. Thus the expectation equalsX

st+1

` (st+1 j ��) log
��
1� t+1

�
`(st+1j��)
mt(st+1)

+ t+1

�
�

X
st+1

` (st+1 j ��)
�
1� t+1

�
log
�
`(st+1j��)
mt(st+1)

�
=

�
1� t+1

�X
st+1

` (st+1 j ��) log
�
`(st+1j��)
mt(st+1)

�
� 0

as claimed, where both inequalities are due to concavity of log (�). (The second is
the well-known entropy inequality.)
Clearly log �t (�

�) is bounded above by zero. Therefore, by the martingale
convergence theorem, it converges P � � a:s: From (D.1),

log �t+1 (�
�)� log �t (��) = log

��
1� t+1

�
`(st+1j��)
mt(st+1)

+ t+1

�
�! 0

and hence `(st+1j��)
mt(st+1)

�! 1 P � � a:s:

(b) E�
h��

1� t+1
�
`(st+1j��)
mt(st+1)

+ t+1

�
j St
i
=
�
1� t+1

�
E�
h
`(st+1j��)
mt(st+1)

j St
i
+t+1 ��

1� t+1
�
+ t+1 = 1. (The last inequality is implied by the fact that

minX

n
E�
h

1
X(st+1)

j St
i
: E� [X (st+1) j St] = 1

o
= 1.

The minimization is over random variable X�s, X : St+1 �! R1++, and it is
achieved at X (�) = 1 because 1

x
is a convex function on (0;1).) Deduce that
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E�
h
�t+1(�

�)

�t(�
�) j St

i
� 1 and hence that �t (��) is a submartingale. By the martingale

convergence theorem,

�1 (�
�) � lim�t (�

�) exists P � � a:s:

Claim: �1 (�
�) > 0 on a set with positive P �-probability: By the bounded con-

vergence theorem,
E��t (�

�) �! E��1 (�
�) ;

and E��t (�
�) % because �t (�

�) is a submartingale. Thus �0 (�
�) > 0 implies

that E��1 (�
�) > 0, which proves the claim.

It su¢ ces now to show that if �1 (�
�) > 0 along a sample path s11 , then

forecasts are eventually correct along s11 . But along such a path,
�t+1(�

�)

�t(�
�) �! 1

and hence �
1� t+1

� �
`(st+1j��)
mt(st+1)

� 1
�
�! 0.

By assumption,
�
1� t+1

�
is bounded away from zero. Therefore,�
`(st+1j��)
mt(st+1)

� 1
�
�! 0.

Part (c) calls for two examples.

Example 1 : Convergence to wrong forecasts may occur with P �-positive proba-
bility when t+1 < 0, even where t+1 is St-measurable (overreaction); in fact, we
take (�t+1; �t+1) = (�; �) and hence also t+1 =  to be constant over time and
states.
Think of repeatedly tossing an unbiased coin that is viewed at time 0 as being

either unbiased or having probability of Heads equal to b, 0 < b < 1
2
. Thus take

S = fH;Tg and ` (H j �) = � for � 2 � = fb; 1
2
g. Assume also that

1 < � < b
1
2
� b

. (D.3)

The inequality  < �1 indicates a su¢ cient degree of overreaction.
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To explain the reason for the other inequality, note that the model requires
that (�t) solving (5.6) be a probability measure (hence non-negative valued). This
is trivially true if �t+1 � 0 but otherwise requires added restrictions: �t+1 � 0 if

` (st+1 j �)
mt (st+1)

=
dBU (�t; st+1) (�)

d�t
� � �t+1

1 + �t+1
.

In the present example mins;�
`(sj�)
mt(s)

� 2b, and thus it su¢ ces to have

� �

1 + �
� 2b. (D.4)

Because any non-negative value for � is admissible,  = ��
1+�

is consistent with
(D.4) if and only if � < b=

�
1
2
� b
�
.

We show that if (D.3), then

mt (�) �! ` (� j b) as t �!1,

with probability under P � at least 1
2
.

Abbreviate �t
�
1
2

�
by ��t .

Claim 1: ��1 � lim��t exists P �� a:s: and if ��1 > 0 for some sample realization
s11 , then mt (H) �! 1

2
and ��t �! 1 along s11 . (The proof is analogous to that

of part (b).) Deduce that

��1 2 f0; 1g P � � a:s:

Claim 2: f (z) �
h
(1� )

1
2

z
+ 
i h
(1� )

1� 1
2

(1�z) + 
i
� 1, for all z 2 [b; 1

2
]. Argue

that f (z) � 1() g (z) � [(1� ) + 2z] [(1� ) + 2(1� z)]� 4z (1� z) � 0.
Compute that g

�
1
2

�
= 0, g0

�
1
2

�
= 0 and g is concave because  < �1. Thus

g (z) � g (0) = 0.

Claim 3: E�
�
log

�
(1� )

`(st+1j 12)
mt(st+1)

+ 

�
j St
�
= 1

2
log

�
(1� )

1
2

b+( 12�b)��t
+ 

�
+

1
2
log

�
(1� )

1� 1
2

(1�b�( 12�b)��t )
+ 

�
= 1

2
log

�
f
�
b+

�
1
2
� b
�
�t
�
1
2

���
� 0, by Claim

2.

By Claim 1, it su¢ ces to prove that ��1 = 1 P ��a:s: is impossible. Compute
that

��t = ��0

"
�t�1k=0

 
(1� )

`
�
sk+1 j 12

�
mk (sk+1)

+ 

!#
,
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log��t = log��0 + �
t�1
k=0 log

 
(1� )

`
�
sk+1 j 12

�
mk (sk+1)

+ 

!
= log��0 + �

t�1
k=0 (logzk+1 � E [logzk+1 j Sk]) + �t�1k=0E [logzk+1 j Sk] ,

where zk+1 = (1� )
`(sk+1j 12)
mk(sk+1)

+ . Therefore, log��t � 1
2
log��0 i¤

�t�1k=0 (logzk+1 � E [logzk+1 j Sk]) � �1
2
log��0 � �t�1k=0E [logzk+1 j Sk] � ak.

By Claim 3, ak > 0. The random variable logzk+1 �E [logzk+1 j Sk] takes on two
possible values, corresponding to sk+1 = H or T , and under the truth they are
equally likely and average to zero. Thus

P � (logzk+1 � E [logzk+1 j Sk] � ak) � 1
2
.

Deduce that
P �
�
log��t � 1

2
log��0

�
� 1

2

and hence that
P � (log��t �! 0) � 1

2
.

Example 2 : Convergence to wrong forecasts may occur with P �-positive proba-
bility when t+1 > 0 (Positive Prior-Bias), if t+1 is only St+1-measurable.
The coin is as before - it is unbiased, but the agent does not know that and

is modeled via S = fH;Tg and ` (H j �) = � for � 2 � = fb; 1
2
g. Assume further

that �t+1 and �t+1 are such that

t+1 �
�t+1�t+1
1+�t+1

=

�
w if st+1 = H
0 if st+1 = T ,

where 0 < w < 1. Thus, from (5.9), the agent updates by Bayes�Rule when
observing T but attaches only the weight (1� w) to last period�s prior when
observing H. Assume that

w > 1� 2b.
Then

mt (�) �! ` (� j b) as t �!1,
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with probability under P � at least 1
2
.

The proof is similar to that of Example 1. The key is to observe that

E�
�
log

�
(1� )

`(st+1j 12)
mt(st+1)

+ 

�
j St
�
� 0 under the stated assumptions.

The proof of Theorem 5.2 requires the following lemmas:

Lemma D.1. (Freedman (1975)) Let fztg be a sequence of uniformly bounded
St-measurable random variables such that for every t > 1; E� (zt+1jSt) = 0: Let
V �
t � V AR (zt+1jSt) where V AR is the variance operator associated with P �.
Then,

nX
t=1

zt converges to a �nite limit as n!1, P �-a:s: on
( 1X

t=1

V �
t <1

)
and

sup
n

nX
t=1

zt =1 and inf
n

nX
t=1

zt = �1, P �-a:s: on
( 1X

t=1

V �
t =1

)
:

De�nition D.2. A sequence of fxtg of St-measurable random variables is even-
tually a submartingale if, P � � a:s:; E� (xt+1jSt)� xt is strictly negative at most
�nitely many times.

Lemma D.3. Let fxtg be uniformly bounded and eventually a submartingale.
Then, P � � a:s:; xt converges to a �nite limit as t goes to in�nity.

Proof. Write

xt =
tX

j=1

(rj � E� (rjjSj�1)) +
tX

j=1

E� (rjjSj�1) + x0; where rj � xj � xj�1:

By assumption, P � � a:s:; E� (rjjSj�1) is strictly negative at most �nitely many
times. Hence, P � � a:s:;

inf
t

tX
j=1

E� (rjjSj�1) > �1:
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Given that xt is uniformly bounded, P � � a:s:;

sup
t

tX
j=1

zj <1; where zj � rj � E� (rjjSj�1) :

It follows from Freedman�s result that P � � a:s:,

tX
j=1

zj converges to a �nite limit as t!1.

It now follows from xt uniformly bounded that sup
t

tX
j=1

E� (rjjSj�1) <1. Because

E� (rjjSj�1) is strictly negative at most �nitely many times,

tX
j=1

E� (rjjSj�1) converges to a �nite limit as t!1.

Therefore, P � � a:s:; xt converges to a �nite limit as t goes to in�nity.

Proof of Theorem 5.2:

Claim 1: De�ne f (�;m) =
P

k �
�
k
�k
mk

on the interior of the 2K-simplex. There
exists �0 2 RK++ such that

j �k � ��k j< �0k for all k =) f (�;m)� 1 � �K�1
X
k

j mk � �k j .

Proof: f (�; �) = 1, f (�; �) is convex and hence

f (�;m)� 1 �
X
k 6=K

�
@f (�;m)

@mk

� @f (�;m)

@mK

�
jm=� (mk � �k)

=
X
k 6=K

�
� ��k
�k
+

��K
�K

�
(mk � �k) .

But the latter sum vanishes at � = ��. Thus argue by continuity.

Given any � 2 RK++, � << �0, de�ne�� = (�� � �; �� + �) � �Kk=1 (��k � �k; �
�
k + �k)

and ��t = ��2���t (�).
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Claim 2: De�ne m�
t

�
sk
�
= ��2���k�t (�) = �

�
t (�). Then

j mt

�
sk
�
�m�

t

�
sk
�
j � 1� ��t .

Proof: mt

�
sk
�
�m�

t

�
sk
�
=

��2���k�t(�)
��t

(��t � 1) + ��=2���k�t (�) . Therefore,
(��t � 1) � m�

t

�
sk
�
(��t � 1) =

��2���k�t(�)
��t

(��t � 1) � mt

�
sk
�
�m�

t

�
sk
�
� ��=2���k�t (�) �

1� ��t .

Claim 3: For any � << �0 as above,X
k

��k
m�
t (sk)

mt(sk)
� 1 � � (1� ��t ) .

Proof: Because j m�
t

�
sk
�
� ��k j< �k < �

0

k, we have thatX
k

��k
m�
t (sk)

mt(sk)
� 1 � �K�1

X
k

j mt

�
sk
�
�m�

t

�
sk
�
j .

Now Claim 3 follows from Claim 2.

Compute that

E�
�
�t+1 (�) j St

�
=
�
1� t+1

� "X
k

��k
�k

mt(sk)

#
�t (�) + t+1E

� � t+1 (�) j St� ,
(D.5)

where use has been made of the assumption that t+1 is St-measurable. Therefore,

E�
�
��t+1 (�) j St

�
���t =

�
1� t+1

�X
k

�
��k

m�
t (sk)

mt(sk)

�
��t+t+1��2��E

� � t+1 (�) j St����t
=
�
1� t+1

� "X
k

�
��k

m�
t (sk)

mt(sk)

�
� 1
#
��t + t+1��2��E

� � t+1 (�) j St�� t+1�
�
t .

By the LLN, P �� a:s: for large enough t the frequency of sk will eventually be ��k
and

��2��E
� � t+1 (�) j St� = 1:

Eventually along any such path,

E�
�
��t+1 (�) j St

�
� ��t =

�
1� t+1

� "X
k

�
��k

m�
t (sk)

mt(sk)

�
� 1
#
��t + t+1 (1� ��t )
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�
�
�
�
1� t+1

�
��t + t+1

�
(1� ��t ) � 0,

where the last two inequalities follow from Claim 3 and the hypothesis � t+1.
Hence (��t ) is eventually a P

�-submartingale. By Lemma D.3, ��1 � lim��t
exists P � � a:s: Consequently, E�

�
��t+1 (�) j St

�
� ��t �! 0 P � � a:s: and from

the last displayed equation,
�
�
�
1� t+1

�
��t + t+1

�
(1� ��t ) �! 0 P � � a:s:

It follows that ��1 = 1. Finally, mt (�) =
R
` (� j �) d�t eventually remains in

�� = (�� � �; �� + �).
Above � is arbitrary. Apply the preceding to � = 1

n
to derive a set 
n such

that P �(
n) = 1 and such that for all paths in 
n; mt eventually remains in�
�� � 1

n
; �� + 1

n

�
: Let 
 �

1\
n=1


n: Then, P �(
) = 1 and for all paths in 
; mt

converges to ��.
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