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1 Introduction

The issue of whether the long-run purchasing power parity (PPP) relationship holds is
still largely unsettled'. The most widespread test for the long-run PPP consists in testing
for a unit root in the real exchange rate within a linear framework. So far, the conclusions
emerging from this approach are mixed?. Over the last decade, empirical and theoretical
analysis of the real exchange rate have shifted toward a nonlinear framework.

From a theoretical point of view, introducing shipping costs into two-country general
equilibrium models (e.g. Dumas [1992], Uppal [1993], Sercu, Uppal and Van Hulle [1995] or
Berka [2004]) generates two regimes for the real exchange rate process. The “outer” regime
corresponds to PPP departures, which are greater than the shipping costs in absolute
value. In this regime, shipping takes place to exploit the profit opportunities and the PPP
deviations are corrected by international trade. The “inner” regime is associated with
PPP differentials that are smaller than the transaction costs in absolute value. In this
regime, no shipping takes place and PPP deviations are not corrected for, and hence may
persist for quite some time. As pointed out by Taylor [2001], this theoretical outcome
could explain the failure of standard unit root tests to reject the null hypothesis. He
shows that the power of the Augmented Dickey-Fuller (ADF) test falls dramatically when
the fraction of observations lying in the “inner” regime increases, even if the process is
globally stationary.

From an empirical point of view, the nonlinear dynamics predicted by the theoretical
models with transaction costs have been accounted for by threshold models. More pre-
cisely, two kinds of threshold models have been, concurrently but independently, explored
to this end. The first one, namely the Self-Exciting Threshold Autoregressive (SETAR)
model, retains a discontinuous transition function between regimes (see e.g. Obstfeld and
Taylor [1997]). The second one is the Smooth Transition Autoregressions (STAR), which,
contrary to the SETAR, allow for smooth regime changes. So far, the Exponential Smooth
Transition Autoregression (ESTAR) has been retained to capture this kind of smooth ad-
justment (see e.g. Michael, Nobay and Peel [1997], Baum, Barkoulas and Caglayan [2001],
Taylor, Peel and Sarno [2001], O’Connell and Wei [2002] and Kilian and Taylor [2003]).
In order to test for long-run PPP, Enders and Granger [1998], Lo and Zivot [2001] and
Bec, Ben Salem and Carrasco [2004] among others have proposed unit root tests, which

are specifically devised to have power against a stationary SETAR alternative. Similarly,

!See Rogoff [1996] for a survey.
2See for instance the recent empirical studies by Papell [1997], Lothian and Taylor [2000], Murray and
Papell [2002a] or Murray and Papell [2002Db].



Kapetanios, Shin and Snell [2003] have developed tests to test unit-root against a station-
ary ESTAR alternative. All these tests were found to be more powerful than the ADF
test.

Our analysis departs from existing work in three dimensions. First, it relies on a gen-
eral model, the Multi-Regime Logistic Smooth Transition AutoRegression (MR-LSTAR),
allowing for both ESTAR-type and SETAR-type dynamics. Indeed, even though the ES-
TAR model is often considered as the smooth transition analogue of the SETAR model,
the former does not nest the latter. Yet, as will be stressed in the next section, nei-
ther the discontinuous nor the continuous adjustment cases can be ruled out a prior: on
theoretical grounds. Second, we develop two classes of unit-root tests against this MR-
LSTAR alternative, based respectively on the likelihood and on an auxiliary model. The
asymptotic distribution of each test is derived analytically and is shown to be nuisance
parameter free. A Monte Carlo experiment reveals that contrary to the ADF test, the
power of our tests remains high for large values of the threshold parameter. Third, we
apply our tests on monthly data from 11 countries leading to 28-real exchange rates for
the post-Bretton Woods period. The null of a unit root is rejected for eleven pairs of
currencies, while the ADF test rejects only for one series. The half-lives we obtain are
much smaller for large shocks than for small shocks, which supports the theory of PPP
in the presence of transaction costs. Another interesting result is that the shapes of the
estimated transition functions are only slightly smoother than the discontinuous transition
function characterizing the SETAR model.

The paper is organized as follows. In Section 2 we discuss the real exchange rate
nonlinear dynamics implied by existing theoretical models. This motivates the choice of
our MR-LSTAR model, which is then presented and compared to the ESTAR. Section
3 describes the unit root tests and their asymptotic distributions before reporting their
small sample properties. The data and the empirical results are presented in Section 4.

Section 5 concludes.

2 The Nonlinear Continuous Adjustment Specification
2.1 Theoretical backgrounds

Recent general equilibrium models with proportional transport costs — see e.g. Sercu
et al. [1995], Bec et al. [2004], Dumas [1992], Uppal [1993] and Berka [2004] — outline
multi-regime dynamics for the real exchange rate process. Assuming a symmetrical two-
country setup, these models predict the existence of a no-trade region within which the

real exchange rate adjustment toward the PPP equilibrium, if any, is expected to be slow.



Let y; denote the logarithm of the real exchange rate (the price of a unit of domestic
goods in units of foreign goods). The region of no trade, called the inner regime, is
defined by y; € (—A; ) where A € (0,1) is the proportional shipping cost. Outside this
region, international arbitrage forces the real exchange rate back toward the band. In these
models, the real exchange rate is a nonlinear monotone function of the physical imbalance,
w, as measured by the difference in endowments between home and abroad. Therefore, the
behavior of w determines the dynamics of ;. When w is exogenous, as in Sercu et al. [1995]
and Bec et al. [2004], the implied dynamics of the real exchange rate can be represented by
a discontinuous adjustment threshold model, namely the SETAR model. However, these
very simple models may be viewed as a crude version of the more sophisticated setups
proposed by Dumas [1992] or Berka [2004]. More particularly, Dumas’ model features
country-specific productivity shocks and the dynamics of w are endogenously determined
through the capital accumulation process.

Replicating Figure 5 of Dumas [1992], Figure 1, below, shows the conditional expected
change of the real exchange rate as a function of its lagged value in the inner regime.
From Figure 1, we see that the real exchange rate process is mean reverting, i.e. its
conditional expected change is negative (positive) for positive (negative) values, and the
mean reversion is strongest when the deviation from parity is largest3. Hence, from an
empirical point of view, these features point to a smooth transition autoregression. The

question is which STAR model to choose. As stressed by Dumas [1992], the shape of

the conditional expected change function depends crucially on the relative risk aversion
(RRA) parameter. The dotted line in Figure 1 represents the conditional expected change
associated with a low degree of risk aversion. As one approaches risk neutrality, the
function stays longer on the zero axis. Indeed, the lower the risk aversion, the less sensitive
the agents are to the ex ante benefits of diversification achieved by shipping. Consequently,
a low degree of risk aversion makes rebalancing of physical capital less desirable, which
in turn implies a slower mean reversion of the real exchange rate. In the limit case
of risk neutrality, the conditional expected change function lies on the zero axis, which
corresponds to a SETAR-type discontinuous adjustment. Note that the possibility of risk
neutrality cannot be ruled out according to the findings of, e.g., Hansen and Singleton
[1982], Hansen and Singleton [1984], and Epstein and Zin [1991].

®Even though the process for w is exogenous in Berka [2004], the same kind of dynamics for the real
exchange rate are obtained. This results from the multi-sector assumption, each type of good involving a
different loss-shipping factor. Aggregation over the different goods then provides a smooth adjustment of
the real exchange rate.



Figure 1: Conditional expected change of the real exchange rate in the inner regime
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2.2  Comparison between ESTAR and MR-LSTAR models

According to the discussion above, it seems highly desirable to empirically analyze the
nonlinear dynamics of the real exchange rate in a framework which encompasses both
discontinuous and continuous types of adjustments. As will be stressed below, the most
popular model, namely the Exponential STAR model, cannot account for the discontinuous
case. In this subsection, we compare the ESTAR and MR-LSTAR models in the simplest
setup, one that includes only one autoregressive lag.

Consider first the ESTAR model given by:

Y = Pr1ys—1G + payr—1(1 — G) + ¢4, (1)

where the transition function G is given by:

G = G(yt-1,7, k) = 1 —exp(—y(yr—1 — 'f)2)- (2)

~ denotes the parameter governing the speed of transition between regimes, i.e. the speed
parameter. Note that when y;_1 goes to 00, G goes to one so that the ESTAR model

becomes:
Yt = P1Ye—1 + €y, (3)

the parameter ¢1, hence, characterizing the “outer” regime dynamics. When y; | = &,



then G = 0 and the ESTAR model dynamics are now governed by ¢s:

Yt = Payr1 + &t

Hence, the weight of the “outer” regime parameter, ¢, decreases as y; 1 approaches k.
Finally, the dynamics generated by the transition function, (2), are symmetrical around
K.

An undesirable feature of model (1) is that it collapses to the linear process given in
(3) when the speed parameter, 7, goes to infinity. This should correspond to a sudden
shift between regimes. To overcome this issue, a natural candidate is the MR-LSTAR

model mentioned in van Dijk, Terasvirta and Franses [2002]:

Yt = P1Y1—1G1 + d2yr-1G2 + P3yr—1G3 + ey, (4)
where the transition functions are now defined by:

Gi = [L+exp(y(yi—1 + N7,
Gy, = 1-G—Gs,
Gy = [L+exp(—y(ye—1—N]",

and A\ is the threshold parameter. Note that when 1,1 goes to —oo, G goes to unity
while G5 goes to zero, so that the MR-LSTAR dynamics are governed by ¢;. On the
other hand, when y;_1 goes to 400, G goes to zero whereas G5 goes to one, so that the
MR-LSTAR dynamics are governed by ¢3. One reason which motivates the choice of this
MR-LSTAR model is that it becomes a SETAR model as the speed parameter, v, goes to
0o. In this case, note that Gy — I (y;—1 < —A) and G3 — I (y;—1 > A). Hence, when v
goes to 0o, Model (4) rewrites as the following 3-regime SETAR:

Y = P1yi—11 (yr—1 < =A) + doyr—1I (A < w1 < A) + Paye—i I (ye—1 > A) + &4

In order to compare this MR-LSTAR model with the ESTAR above, suppose that ¢; = ¢3,
i.e., the dynamics are assumed to be symmetrical in the ‘lower’ and ‘upper’ regimes, which
is a maintained assumption in the ESTAR model (1). Consequently, the MR-LSTAR
dynamics will be symmetrical around zero, which would correspond to x = 0 in model (1).
Model (4) then becomes:

Y = dr1ys—1 T + poye—1 (1 —T') + &4, (5)

where I' = G| + G3. Hence, Models (5) and (1) are quite similar to each other, except for

the definition of the transition function, which is logistic in the former and exponential



in the latter. To illustrate the properties of the transition functions I' and G of models
(5) and (1), we consider a sequence of y;—1 € [—0.4; +0.4], a threshold parameter A\ = 0.2
and various values of the speed parameter, v, ranging from 0.1 to 7500.* The ESTAR
and MR-LSTAR functions associated with the ‘inner’ regime, namely (1—G) and (1-T),

respectively, are reported in Figure 2. As the speed parameter approaches zero, both

Figure 2: MR-LSTAR and ESTAR transition functions
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functions tend to become flat, as shown at the top left panel of this figure. For medium
values, such as v = 30, these functions are quite similar and, hence, similarly mimic the
smooth transition adjustment. However, the shapes of (1—G) and (1—T") become different
as =y increases. The LSTAR function tends to become discontinuous, defining a central
area for y; 1 € (—\,+\) exactly as a 3-regime SETAR model would do. On the contrary,
the inner regime in the ESTAR model tends to shrink to a single point.

We now discuss how these properties translate in terms of conditional expected change
functions. As the functions (1 — G) and (1 — I') behave very similarly to each other
for small and medium values of 7, the conditional expected change functions will also
be very close to each other for ESTAR and LSTAR models. However their shapes will
differ dramatically for large values of . Figure 3 reports the conditional expected change

function obtained from the symmetrical ESTAR and MR-LSTAR models for the following

“The values for 3;_1 and X are chosen according to the model estimates for the Italian Lira real exchange
rate vis-a-vis the US Dollar.



parameters values: ¢ = 0.7, po =1, Kk = 0, A = 0.2 and v = 250. Figure 3 shows that the

Figure 3: Simulated conditional expected change functions
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MR-LSTAR model has the advantage of mimicking the behavior of the real exchange rate
predicted by Dumas’ model when the level of relative risk aversion is low. On the other

hand, the ESTAR is not able to capture these dynamics under any parametrization.

2.3 The proposed MR-LSTAR model

The general MR-LSTAR model we will study in the remainder of the paper writes:

Ay; = (—p1+p1ye—1) Gr + (p2 + p2yi—1) Go + (1 + prys—1) G3 (6)
+01Ayt71 + ...+ ap,lAyt,pH + &¢,

with Et ~ 11d (0,0’2), G1 = G(ytfl, —’)’,—A), G2 =1- G1 - G3, and G3 = G’(yt,l,’y, >\)
where

G (Wi—1,7A) =[1+exp(—y (g1 —A)] ", v>0, A>0. (7)

This symmetrical MR-LSTAR model generalizes model (5) by including lagged values of
Ay, to remove some of the autocorrelations in ¢, and by allowing for drifts in the outer and
inner regimes, denoted p; and us, respectively. Following the theoretical models discussed
above, we maintain the assumption that the autoregressive coefficients are the same in the

two outer regimes and we assume that pus = —puq, as in e.g. Obstfeld and Taylor [1997].



As the focus of the paper is on testing unit root versus a stationary LSTAR alternative,
we need to determine under which conditions the MR-LSTAR. process is stationary and
“well behaved”. We briefly discuss sufficient conditions for y;, defined in (6), to be 8 —
mizing with geometric decay. This property implies that (a) the stationary distribution
of y; exists, (b) starting from an arbitrary value yo the process y; becomes stationary
exponentially fast, and (c) y; is o — mizing with geometric decay which is a desirable
property to do inference.

Bec et al. [2004] study the mixing properties of a SETAR(p). We give here an intuitive
argument that shows that the mixing properties of SETAR and MR-LSTAR are essentially
the same. The mixing property (see e.g. Tjgstheim [1990]) of vy, is dictated by what
happens as y;—1 goes to infinity. As y;_1 goes to plus infinity, G; converges to 1 and G
to 0, as y;—1 goes to minus infinity, G5 goes to 1 and G, to 0, finally as |y;_1| goes to
infinity, 1 — G; — G35 goes to zero. Therefore, as y; 1 goes to %+ infinity, G; behaves as
I (yi—1 < —)), G3 behaves like T (y;—1 > A\) and G5 behaves like T (A > y;—1 > —)\). So
the conditions on the parameters that guarantee the mixing property of a MR-LSTAR are
the same as those for the mixing property of its SETAR counterpart. We refer the reader
to the mixing conditions for a SETAR(p) model given in Theorem 1 of Bec et al. [2004]
and do not reproduce them here. The more striking result is that the coefficient in the
middle regime, p2, may be equal to 0 (corresponding to a unit root) or positive (explosive
root) while the model remains globally stationary.

For the data at hand, the paper tries to answer the following questions: (7) Is Model
(6) stationary 7 (i) Is it linear ? The order in which these questions are addressed is

essential. The next section highlights this point.

2.4  Testing linearity

The order in which the unit root test and linearity test are performed is crucial. The
linearity tests proposed by, e.g., Hansen [1996] or Luukkonen, Saikkonen and Terasvirta
[1988] requires that the series be stationary. Consequently, one must establish stationarity
before turning to linearity tests. In this section, we illustrate the way a linearity test may
lead to fallacious inference in the presence of a unit root. Consider a simple LSTAR model

given by:
yo = ¢ye—1 [l — G (=137 )] + d2yi—1G (ye—1;7, A) + €, (8)
e ~ id(0,0%). (9)

The hypothesis of interest is Hy : ¢1 = ¢2. Under Hy, the model is linear and v and A
are not identified, therefore the usual properties of the Wald test no longer hold. As an



alternative, Luukkonen et al. [1988] suggest to use an auxiliary model,

yr = Bove—1 + Bryi_i + er, (10)

and to test H{) : 31 = 0. The Wald test of this hypothesis (denoted WL in the sequel) has
power against an alternative of type (8). Under the null hypothesis Hy : ¢1 = ¢p3 = ¢
where |¢| < 1, the Wald test statistic converges asymptotically to a chi-square with one
degree of freedom. But what is its limit if the process is a random walk, that is ¢ = 1,
under Hy? This is an important issue as the linearity is often tested on series for which
there is no strong evidence of stationarity, see for instance Michael et al. [1997]. In the

appendix, we show the following result.

Proposition 1 If y; is a random walk with yo = 0, then

wr L {%B (1)? folB (r)2 dr — % (B (1)2 - 1) folB (r)? dr}2
Jo B dr { [ B(r)?dr [} B () dr— [y B () dr)

where B(.) is a standard Brownian motion.

From Proposition 1, we see that the asymptotic distribution of WL is very different
from a chi-square distribution, when the DGP is non-stationary. Using 10,000 replications
from a sample of size 10,000, we computed the fractiles of the distribution of WL and
compared them with those of a chi-square with 1 degree of freedom. The results are
summarized in Table 1. The line labelled “p-value” gives the probability of rejecting Hy
obtained when using the critical values given by the chi-square when the data follow a
random walk. We see that the distribution of WL has a much thicker right tail than
the x2(1). Using the critical values of the chi-square might result in rejecting wrongly
the linear model. A 5% level for the chi-square corresponds to a 16.4% level for WL.
We illustrated our point on a simple model but we expect the same conclusions to hold
for more general models. This is the reason why one should test for stationarity prior to

testing for linearity and not the other way around.

3 Testing Unit Root versus MR-LSTAR
3.1 Likelihood-based unit-root tests

In model (6), we want to test Hy : g1 = po = p1 = p2 = 0 “random walk without drift”,
against the alternative H; : stationary MR-LSTAR model. Under the null hypothesis,

it is assumed that the roots of 1 — a2z — ... — apz? = 0 lie outside the unit circle. For
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Table 1: Fractiles of WL and x? (1)

1% 5% 10% 50% 90%  95% 99%

WL 0001 .0054 .0215 .8012 5.1344 6.8564 10.9005
x2 (1) - 004 .016 455  2.71 3.84 6.63
p-value WL | - 9573 9131 .5976 .2416  .1643  .0552

convenience, we reparametrize the model in terms of = Ay and A, so that G (y;—1,7,\) =
[1 + exp (—ng + ﬂ)} o . Note that under Hy, the nuisance parameters 3 (or ) and A
are not identified. It is therefore impossible to find consistent estimators of § and A under
the null hypothesis. For § and A given, we can estimate the unrestricted and restricted
regressions by OLS. The vector of unrestricted residuals obtained from (6) is denoted é.

The restricted regression is given by
Ayt = a(L) Ayt-i—st. (1].)

Denote the vector of restricted residuals by €. In absence of heteroskedasticity, the trilogy

of tests can be written in terms of the residual sum of squares:
ge—¢e
WT (/57 >‘) =T a2 |

LMy (B,2) = T[i

LRy (8)) = Th [5'5] .

Proposition 2 Let 8 > 0 and \ = )\/\/T > 0 be fixed. Suppose m = (ﬁ, 5\) belongs to 11
where I1 is a compact set of RF?. Under Hy, the Wald, Lagrange Multiplier and Likelihood
Ratio tests satisfy

WT (ﬁaA)aLMT (/Ba A)aLRT (ﬁa)‘) ﬁ)D(k) (12)

uniformly in w, where k = (ﬁ, X/é) , 0 =0/(1 —a1 —as... —ap) and D (k) is a compli-
cated function of Brownian motions giwven in Equation (22) in Appendiz A. Under the

alternative of a stationary MR-LSTAR model, the test statistics diverge.

Next, we discuss the assumptions on 3 (or ) and A. The assumption A\ = VT is
reminiscent of the assumption made in the structural change literature that the break-

point is supposed to be equal to T'r with = € (0,1) . This assumption is useful to derive
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the asymptotic results. Note that because v and A are not identified under Hy, we are free
to make any assumptions on them. Moreover under Hy, y;/ VT converges to a Brownian

motion, 0B (r), with r = t/T. First assume that v and X are fixed, then we obtain

G ynmA) = [1+exp (= — V)" :
— |:1+exp(_,yﬁ(%_%>>:|_

m[{5B(r)>0}.

This means that testing with v and A fixed is equivalent to testing in the context of a
two-regime SETAR model with A = 0. If moreover we assumed symmetry of the outer
regimes, the resulting model would actually be linear. This will result inevitably in a great

loss of power. On the other hand, assuming that (ﬁ, 5\) is fixed, we obtain

-1 1
G (yt,v,\) = |1+ exp (—@%—i—ﬁ) ﬁ [1+exp <—§(5B(7")+ﬁ>] )

(13)

Note that X is assumed to diverge with v/T' only under the null hypothesis. This assump-

tion is used to derive the distribution of the test statistics under Hy. Under Hy, X is of
course assumed to be fixed.

As 8 and A are not identified under the null hypothesis, the choice of § and A is

arbitrary. To select # and A, we use the same strategy as in testing linearity against a

SETAR model (see Tong [1990]), namely we take the supremum of the test statistics with

respect to the nuisance parameters. The tests under consideration are therefore:

SupW = sup  Wr (5,0,
(B,N)eBXT

SupLM = sup LMy (B,N),
(B,N)eBXT

SupLR = sup LRrp (B,A),
(B,A\)eBxT

where B = [l_), I_)] and I' = [A, 5\] . Since A plays the role of a threshold, we adopt the same
approach as in the SETAR literature. We order the absolute value of y; : [y[ ;) < [yl(5) <
- < |yl() and we discard 15% of the highest and smallest values. Hence, A = [y/f57/100))
and A = |y|([85T /100]) - For B, we choose any arbitrary fixed interval. The test will have
power even if a single value for 8 is used. However, the test will have more power if a
range of values is considered. The interval should not be too wide either because for large
B, G becomes flat. Note that (5,\) € B x ' implies that

_ A -
0<Q<ﬂ<b,0<£T<g<€T, (14)
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where £ = A/(VT6) and fy = \/(V/T6). Whereas b and b are fixed numbers, £, and £7

are random variables. Their limiting distributions are given by

|yl ([15T°/100])

L .
/=1 ——— = = Y15,
£ T;H;o \/Td 0.15
- L |y|([85T/100]) .

e Th_)rr;o o = Y35,

where £, is solution of
1
/ I[B(r) <{,)dr=p,pel0,1].
0
This choice of ' and B insures that the asymptotic distributions of the sup tests are

nuisance parameter free. This justifies the use of empirical critical values obtained by

simulations.

Proposition 3 Under Hy,

SupW, SupLM, SupLR LN sup D (k)
T—oo LeK

where K = [l_), I_)] X [ﬁ,ﬂ. Moreover, the limiting distributions of the sup tests are nuisance

parameter free.

The proofs of Propositions 2 and 3 are given in Appendix A.

3.2 Unit-root tests based on an auxiliary model

Luukkonen et al (1988) introduced a linearity test based on an approximation of the
function G by linearization. We propose to use the same approach to construct a unit-
root test. This idea has been exploited before by Kapetanios, Shin and Snell (2003) for
testing unit-root against a ESTAR model.

Using a ith order Taylor expansion of G around v = 0, we get the following auxiliary

model .
(3
Ayr = a1Ayi—1 + . + ap—1AY—p 11 + Zﬁjyijll + €t (15)
j=1
In this case, a Wald test of Hy : 81 = ... = 8; = 0 will have in general power against a

LSTAR (this test is referred to as Fj).

The question is which order ¢ to choose. As a test F; uses an auxiliary regression,
there may be LSTAR models against which this test has no power. This problem is
particularly serious for ¢ = 1. Consider a simple illustration. Assume, to simplify, that

ar = ... = ap—1 = 0, p1 = po = p3, p1 = p3, and p = 0. The OLS estimate, Bl, of 31 in

Ay = Byi_i + e (16)
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satisfies
5 P E(Aytth—l)

' E (93—1) ’
and
E (A1) = piE ((G1+ G3) yi_y) -

Remark that the function (Gy + G3)y;_; is a odd function of y;_;. Therefore, if the
density of y; is symmetric around 0°, we have E ((G1 + G3) yg’,l) = 0, and then 3, Zo.
Hence F; does not have much power against such a LSTAR. This is however a special
case, this lack of power is by no means the rule. F» would have power in this example.

The higher the order i of the Taylor expansion, the larger the range of possible alter-
natives against which the test will have power. For instance, F5 has, in general, power
not only against LSTAR but also against ESTAR models (cf. Kapetanios et al. 2003). As
estimating parameters is costly, we choose to adopt F5 which is more parsimonious than
F;.

Proposition 4 Under Hy, Fy has the nonstandard distribution given in (24) in Appendiz

A, which is nuisance parameter free.

It is expected that F5 will have less power than our sup test because Fy is not specif-
ically designed to test LSTAR. Note however that, because of the presence of nuisance

parameters that are not identified under the null, there is no uniformly most powerful test.

3.3 Empirical critical values of the unit-root tests

In this section, we compute the empirical critical values of tests described earlier, SupW,
SupLM, SupLR, F5, and another test, SupLRh. SupLRh is defined as

SupLRh= sup LRhr(B,N),
(B,\)eBXT

where LRhr is the heteroskedasticity-robust version of the likelihood ratio test, which the
exact expression of is given in Appendix B.
In the empirical study below, we have found that p = 2, so that model (6) may be

rewritten as follows :

Ay = alAy; 1+ p(Gs — Gi) + p2Ga
+p1Y1-1(G1 + G3) + p2ys—1G2 + oey, (17)

5This could be expected if the density of ¢; is itself symmetric around 0.
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with £; iidd M'(0,1). This is the model we choose to retain under H; in order to compute

the empirical power. Under Hj, we generate the model
Ay = aAy,_1 + oey, (18)

where the ¢}s are drawn from an iid N (0,1), a = 0.3, and o = 0.02. This choice of the
parameters is dictated by the data. When fitting (18) on the real exchange rates, we
obtain, for most of the series, a close to 0.3 with a range 0.13 < ¢ < 0.4 and ¢ around
0.02. In Table 2, we report the empirical critical values from 10,000 replications of samples
of size 325, which was the number of available observations. The two-dimensional search
grid in v and X\ was performed for the following sets of values : v € {1,1.5,2,2.5,3} and
A € [A A] with A and X such that 15% of the smallest and highest values of |y;_1| are
excluded from the grid.

Table 2: Empirical critical values of the unit-root test (a=0.3, o = 0.02)

1% 5% 10% 80 %  85% 90% 95% 99%
SupW | 1.490 2.523 3.123 9.547 10.418 11.648 13.685 18.152
SupLM | 1.502 2.534 3.131 9.389 10.220 11.384 13.295 17.409
SupLR | 1.487 2.513 3.108 9.408 10.255 11.444 13.404 17.667
SupLRh | 1.533 2.487 3.077 8.946 9.648 10.819 12.583 16.195
Fy 1.125 1.725 2171 7.108 7.829 8798 10.306 13.550

3.4 Size and power analysis of the unit-root tests

In order to examine the size and power of the proposed tests, we perform a small sample
study. For both Tables 3 and 4 and later when we analyze the data, we use the empirical
critical values obtained in Table 2. Hence, the power is actually a size-corrected power.
First, we generate the model under the null , i.e., model (18) for a = 0.3 and o = 0.02
and ¢; iid N(0,1) using a different seed for the random number generator from the one
used to compute the empirical critical values. In Table 3, we report the empirical rejection
frequencies from 5,000 Monte Carlo replications with n = 325. For comparison purpose,
the empirical size of the Augmented Dickey-Fuller statistics is also reported. Here and in
the rest of the paper, we do not report the SupW and SupLM tests because it is well-
known that the Wald test exhibits important size distortions and the LM test is usually
very close to the LR test.

From Table 3, we see that the empirical size of our tests is quite accurate. Nevertheless,

the SupLRh and the F5 tests appear slightly more conservative than the SupLR.
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Table 3: Empirical size of the unit-root tests

Theoretical size | ADF  SupLR  SupLRh  F
1% 0.011  0.012 0.005  0.011
5% 0.040  0.068 0.034  0.036
10% 0.093 0.131 0.092  0.068

Next, we explore the power of the tests by generating 1,000 series under the alternative,
(17), for various parameter values. In all the following experiments, we normalize o to
unity. We also set a = 0.3, ua = p2 = 0 and pu; = Ap1, which is consistent with our
MR-LSTAR estimates (see next section). In Table 4, we report the size-corrected power
of the sup tests described in Subsection 3.1, the test F5 described in Subsection 3.2, the
Adjusted Dickey Fuller test, and the test proposed by Kapetanios et al (denoted KSS).

The theoretical size of these tests is a = 5%. The power of the sup tests is increasing in A

Table 4: Size-corrected power of the unit root tests

(p1,\) | SupLR SupLRh F, KSS ADF
v =10
(-0.05,2) | 96.4 69.0 79.9 778 98.3
(-0.30,2) 100 100 100 100 100
(-0.50,2) 100 100 100 100 100
(-0.05,5) | 988 86.5  97.8 98.6 90.2
(-0.30,5) 100 100 100 100 100
(-0.50,5) 100 100 100 100 100
(-0.05,10) | 88.9 85.0  73.8 80.0 18.1
(-0.30,10) | 100 100 99.7 99.9 58.9
(-0.50,10) | 99.9 99.9  99.9 999 953
v = 200

(-0.05,2) | 96.3 69.0 80.6 774 985
(-0.30,2) 100 100 100 100 100
(-0.50,2) 100 100 100 100 100
(-0.05,5) | 98.8 86.6  97.8 985 90.6
(-0.30,5) 100 100 100 100 100
(-0.50,5) 100 100 100 100 100
(-0.05,10) | 90.0 87.1 759 816 183
(-0.30,10) | 100 100 99.9 99.9 76.6
(-0.50,10) | 99.9 100 99.9 99.9 99.3

and |p1]. In most of the MR-LSTAR estimates reported in the next section, the A\/o ratio
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is greater than eight, which is close to the case with A = 10 in Table 4. In those cases,
our sup tests clearly outperform the ADF one. As expected, SupLR clearly dominates the
tests based on auxiliary models: KSS and F5. Although the KSS test has been developed
to test against ESTAR alternative, it seems to have comparable power to F5. We also
performed some power simulations (not reported here) on the tests F; and F3 described
in Subsection 3.2. The performance of F} is very poor, while that of Fj is comparable
to that of F,. Motivated by these results, the unit root tests retained in the following
empirical study are the SupLR and SupLRh.

4 The empirical results

The data set comprises monthly observations® spanning 1973:09 to 2000:09 for eight coun-
tries : United-States, Germany, United-Kingdom, Italy, Canada, France, Belgium and
Finland. The corresponding currencies are denoted USD, DEM, GBP, ITL, CAD, FRF,
BEF, FIM. The nominal exchange rate data are monthly averages, and the nominal price
data are consumption price indices. Overall, we have twenty-eight real exchange rates.
For the pairs of countries belonging to the Euro zone, we used data up to December 1998,
since the Euro was introduced in January 1999. So, the sample size is only 304 for these

pairs, whereas it is 325 for the remainders.

4.1 Standard unit root tests

First, we check the order of integration of the real exchange rates in the linear autoregres-
sive model using three statistics, namely ADF (Dickey and Fuller [1981]), PP (Phillips
and Perron [1988]) and KPSS (Kwiatkowski, Phillips, Schmidt and Shin [1992])7. The
corresponding results are reported in Table 58. These tests fail to reject the unit root for
every pair, except for FRF/DEM. The BEF/DEM pair is the only one for which a determin-
istic time trend is significant in the ADF regression. When allowing for this trend, we find
that ADF and PP statistics are respectively -3.59 and -3.51, which are both significant at
the 5% level. Since the following analysis is not suited to handle that case, the further
results obtained from this pair must be cautiously interpreted. Since ADF and PP tests
were shown to have low power against nonlinear alternatives by Pippenger and Goering

[2000] among others, these results can not constitute evidence.

6The data were obtained from Datastream.

"We include at most a constant term in the deterministic component under the null.

8The lag length for the ADF (k) is chosen according to the Ljung-Box statistic. It is always equal to 1.
The size of the Bartlett windows for PP and KPSS tests (resp. ¢ and m) is obtained following Andrews
[1991].



Table 5: Tests of I(1) or I(0) for y;

currency | ADF(k) PP(¢) KPSS(m) | ADF(k) PP({) KPSS(m)

versus USD versus DEM
DEM -1.68 -1.33 0.58
GBP -2.60 -2.19 1.10 -2.12 -1.82 1.39
ITL -1.75 -1.28 0.76 -1.93 -1.66 1.75
CAD -0.48 -0.36 4.06 -1.99 -1.65 1.58
FRF -1.51 -1.14 0.48 -2.98%* -2.62 0.67
BEF -1.40 -1.20 0.70 -2.17 -2.07 2.64
FIM -1.24 -0.80 0.55 -2.04 -1.84 0.94
versus GBP versus ITL
ITL -2.19 -1.77 0.73
CAD -2.08 -1.84 3.13 -2.27 -1.83 3.22
FRF -2.06 -1.60 1.92 -1.85 -1.58 2.21
BEF -1.61 -1.22 2.05 -1.49 -1.24 2.31
FIM -0.84 -0.52 2.04 -2.44 -2.10 2.13
versus CAD versus FRF
FRF -2.07 -1.73 1.36
BEF -1.95 -1.58 0.90 -2.48 -2.03 1.51
FIM -2.57 -2.19 1.32 -2.23 -1.77 0.81
versus BEF
FIM -1.69 -1.29 1.12

The critical values at the 5 % level are -2.88 for ADF and PP, and 0.463
for KPSS.
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4.2 Testing for unit-root and for linearity against MR-LSTAR

Before proceeding to the supLR test, we test the homoskedasticity of the residuals in the
linear model. This is a necessary step since the test statistics have to be adjusted for
heteroskedasticity?. According to the tests of homoskedasticity proposed by White, En-
gle and Pagan'?, the null of homoskedasticity is rejected for the following pairs : GBP/USD,
GBP/DEM, CAD/GBP, ITL/GBP, BEF/GBP, FRF/DEM, ITL/DEM, BEF/DEM, FRF/ITL, FIM/ITL,
BEF/ITL and BEF/FRF. We use a heteroskedasticity-robust version of the LR tests for these
series (see definition in Appendix B).

Table 6 reports the results of unit-root and linearity tests calculated from the MR-
LSTAR models, (17), for which the unit root hypothesis can be rejected. The real exchange
rate data used for the MR-LSTAR estimation are demeaned because model (17) implies
symmetrical behavior around zero.

According to the unit-root tests’ statistics given in the first two columns of Table 6,
eleven real exchange rates reject the null of random walk against our MR-LSTAR alter-
native, namely GBP/USD, GBP/DEM, CAD/GBP, FRF/DEM, ITL/DEM, BEF/DEM, FRF/ITL,
FIM/ITL, BEF/FRF, ITL/USD and FIM/DEM!!. In this table, exponents —, * and **, respec-

tively, denote the 15, 10 and 5 percent significance levels. The conclusions arising from

Table 6: SupLR Unit-root, and LM linearity tests

SupLR  SupLRh LML

GBP/USD  10.207  47.48* 9.87**
GBP/DEM 13.79"*  26.33** 7.90**
CAD/GBP 11.117 21.24* 0.89
FRF/DEM 25.45" 221.76**  74.87*
ITL/DEM  27.26™ 327.27**  73.16™*
BEF/DEM 12.32*  (see text) 8.84**
FRF/ITL  19.07** 179.91**  91.62*
FIM/ITL 16.56**  106.27** 12.94**
BEF/FRF  16.02** 140.32**  95.10**
ITL/USD  12.09*  55.76** 5.32*
FIM/DEM 11.75%  22.93** 5.47*

Note : Data are centered.

When the residuals are found to be heteroskedastic, the standard-errors are corrected using White
[1980]’s consistent estimator of the covariance matrix.

10Tn order to save space, these results are not reported but are available upon request.

""Remember that heteroskedasticity has been detected in the first nine pairs, and therefore, the relevant
test statistics are the heteroskedastic consistent versions.
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both the SupLR and SupLRh statistics are quite similar. Likely due to the presence of
a deterministic trend in the BEF/DEM pair, the SupLRh test statistics failed to converge.
Hence, one should be particularly careful with the analysis of this real exchange rate.
Before performing the corresponding MR-LSTAR maximum likelihood estimations, it
is necessary to test linearity against the MR-LSTAR representation. To this end, we pro-
ceed along the lines suggested by Luukkonen et al. [1988], which consist in approximating
the transition function G(.) by a suitable Taylor series expansion. Accordingly, Model (6)
is rewritten by replacing the transition functions by their second-order approximations,
which are preferred to the first-order ones in order to capture the possible nonlinearity

arising from the intercepts :

Ay = aly, 1+ Bo + Bryi—1 + Boyiy + Bayi_y + e,

where the 8;’s, + = 0,1,2,3 are functions of the parameters ¢, ¢2, v and A\. We use
a Lagrange Multiplier test (denoted LML) to test Hy : B2 = (3 = 0 in the regression
above. This test follows a x2(2) distribution under Hy and diverges under the MR-LSTAR
alternative. We report the values of this statistic in the third column of Table 6. For the
pairs displaying heteroskedasticity, the LM statistic is corrected along the lines described
in Appendix B. The null of linearity is rather strongly rejected for all these pairs, except

for the CAD/GBP one.

4.3 The constrained maximum likelihood estimation

The estimation of the MR-LSTAR representation given in (17) was performed using the
constrained maximum likelihood method'?. We imposed the constraints v > 0 and X\ €
[A, A], with A and X such that 10% of the observations, in absolute value, are below A and
10% are above X. Following van Dijk et al. [2002], we simplify the estimation problem
by concentrating the sum of squares function to be minimized. Indeed, for known and
fixed v and A, our MR-LSTAR model is linear in the other parameters. So, conditional
upon vy and A, the other parameters’ estimates may be simply obtained by ordinary least
squares. This property allows us to reduce the nonlinear estimation problem, since the
sum of squared residuals has to be minimized with respect to v and A only. The starting
values are then obtained from a two-dimensional grid over these two parameters. The set
of grid values for the threshold X is [\, A] as defined above. The choice of a grid for v is less

obvious. Once again, we follow the advice given by van Dijk et al. [2002] which consists

12We used the CML library of Gauss, with the Newton-Raphson optimization algorithm.
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in reparameterizing the transition function as follows:

-1
1+ exp (—&;l (st—>\)>] ,
Yt—1

is the sample standard deviation of the switching variable, so as to make

G (Sta 7Y, >‘) =

T
Yt—1

approximately scale-free. Then, the grid for v was arbitrarily set to {2.5,5,7.5, 10, ...,25}.
The MR-LSTAR estimates for these eleven pairs are reported in Table 7. The standard

where ¢

error estimates of 4 are not reported. Indeed, due to an identification problem, this
parameter estimate does not have a standard asymptotic distribution. Moreover, this
parameter cannot be accurately estimated when it is large, since in that case, the transition
function is close to a stepwise function, and one would need many observations in the
neighborhood of = to estimate it accurately. In fact, in this area, large changes in 7y have

only small effects on the shape of the transition function.

Table 7: MR-STAR estimates

a 1 ) p1 P2 FT% A O
Yt—1

GBP/USD  0.351 0.006  -0.004 -0.056 -0.087 476.7 0.069 0.025

(n=325) (0.068) (0.006) (0.002) (0.042) (0.070) (0.02)  [0.30,0.40]
GBP/DEM 0.358 0.123 -0.001 -0.535 -0.011 15348 0.215 0.020
(n=325) (0.058) (0.031) (0.001) (0.126) (0.009) (0.032)  [0.05,0.89]
CAD/GBP  0.345 0.043 0.001 -0.156 -0.030 240.9 0.226 0.025
(n=325) (0.059) (0.019) (0.002) (0.066) (0.016) (0.008)  [0.14,0.72]
FRF/DEM  0.345 0.045 0000 -0.549 -0.025 4884.2 0.071 0.010
(n=304) (0.075) (0.015) (0.001) (0.163) (0.017) (0.001)  [0.06,0.89])
ITL/DEM  0.374 0.076 0.000 -0.438 -0.019 42431 0.142 0.015
(n=304) (0.104) (0.023) (0.001) (0.127) (0.014) (0.11)  [0.14,0.69]
BEF/DEM  0.152  0.003 0.001 -0.060 -0.209 10350 0.028 0.008
(n=304) (0.102) (0.002) (0.001) (0.029) (0.062) (0.005)  [0.27,0.37]
FRF/ITL  0.294 0.076 0.000 -0.466 -0.004 517.1  0.152 0.015
(n=2304) (0.105) (0.044) (0.001) (0.257) (0.011) (0.010)  [0.03,0.90]
FIM/ITL  0.307 0.075 -0.001 -0.447 -0.027 2056.4 0.138 0.017
(n=304) (0.079) (0.038) (0.001) (0.206) (0.015) (0.004)  [0.06,0.87]
BEF/FRF  0.341  0.020 0.000 -0.187 -0.02  698.6 0.085 0.010
(n=2304) (0.081) (0.020) (0.001) (0.159) (0.025) (0.009)  [0.11,0.87]
ITL/USD  0.365 0.094 0.001 -0.330 -0.014 41.1  0.258 0.024
(n=2304) (0.052) (0.063) (0.001) (0.195) (0.025) (0.064)  [0.05,0.90]
FIM/DEM  0.351 0.165 0.000 -0.773 -0.012 1255 0.201 0.016
(n=304) (0.054) (0.087) (0.001) (0.387) (0.011) (0.019)  [0.07,0.90]

Notes: Data are centered. The numbers in parentheses are the standard errors. The
figures in brackets in the last column are the percentages of observations below —\ and
between —\ and A, respectively.
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The estimated parameters for these eleven pairs share a lot of common features. Firstly,

the estimates of &Tﬁ are very large, ranging from 41.1 for ITL/USD to 4884.2 for FRF/DEM,
Yt—1

thus providing support for a SETAR. specification. This is confirmed by the plots of the

transition functions: in Appendix C, we report the G5 function of model (17) correspond-

ing to the smallest ratio &Tﬁ
Yt—1
is obtained for the FRF/DEM pair. Actually, most of the series exhibit an almost discon-

obtained for the ITL/USD pair, and to the largest one which

tinuous adjustment. Secondly, the parameter estimates always have the expected sign,
and relative size. Indeed, in every case u; is positive while po is negative or null, and
p1 is rather strongly negative — ranging from -0.056 for the GBP/USD pair to -0.773 for
the FIM/DEM pair — while po is never significantly different from zero, except for the
BEF/DEM pair which is suspected to be trend-stationary.

The results obtained for the CAD/GBP pair are amazingly similar to the other ones,
although we were not able to reject the linearity hypothesis in that case. Its parameter
estimates appear to be significantly different across regimes, the threshold estimate is
significantly different from zero and the smoothness parameter is not close to zero. Finally,
the only striking results are those obtained for the GBP/USD and BEF/FRF pairs for which
no other parameter than ¢ and A seems to be significantly different from zero, even at the
10% level. Moreover, A reaches the upper bound of its interval [A, A] for FRF/ITL, ITL/USD

and FIM/DEM.

4.4 Half-lives

One of the PPP puzzle is the high degree of persistence in the real exchange rate (Rogoff
[1996]). In this subsection, we compute the half-lives resulting from the MR-LSTAR model
in order to compare them with existing results.

First we compute the impulse response function following the Monte Carlo method
described in Gallant, Rossi and Tauchen [1993] and Taylor et al. [2001]. We set the initial
values of y;_1, and y; o to the value given in the column labelled “starting value”. Then,
we generate two series of length 7" = 100 with identical errors except that the first series
has an extra additive shock at time ¢ of the form In (1 + k£/100) with k& = 40,20,5, and
1. This corresponds to shocks of k& percent. Then, we compute the difference between
the two series and repeat this procedure 5000 times. We average out the differences to
obtain an estimate of the impulse response function. This function is used to compute the
half-lives reported below.

As the model is nonlinear, the impulse response function and hence the half-lives

depend crucially on the amplitude of the shock and on the starting values. We consider
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a set of four starting values. One corresponds to the sample mean of the data, 0, as
suggested by Gallant et al. [1993]. The other ones have been chosen to get some insights
on the impact of a shock if the starting values are on the edge of the band. As we consider
only positive shocks, we also investigate a starting value far below the left boundary,
namely -2\. Table 8 reports half-lives (in months) for three representative real exchange

rates: GBP/USD, ITL/USD, and FRF/DEM.

Table 8: Half-lives

shock size (%)

starting value 40 20 ) 1

GBP/USD

-2\ 21.0000 26.0000 34.0000 34.0000

- 17.0000 20.0000 30.0000 34.0000

0 15.0000 17.0000 20.0000 22.0000

A 15.0000 15.0000 18.0000 19.0000
ITL/USD

-2\ 55.0000 40.0000  3.0000  3.0000

—-A 65.0000 72.0000 68.0000 48.0000

0 26.0000 54.0000 65.0000 66.0000

A 3.0000  3.0000  5.0000 14.0000
FRF/DEM

—2A 5.0000  27.0000  5.0000  1.0000

- 4.0000  27.0000 34.0000 33.0000

0 2.0000  4.0000  33.0000 33.0000

A 1.0000  1.0000  2.0000  14.0000

It is also informative to compute the half-lives associated with the outside regime.
They are obtained from the formula given by Hamilton (1994, page 10) by doing as if the
model were an AR(2) with autoregressive coefficients ¢; = 1 + a + p1 and ¢ = —a. We
find the following half lives: 14, 3, and 1 months for GBP/USD, ITL/USD, and FRF/DEM
respectively. These values provide a lower bound for the half-lives. Such values will result
either from a very large shock that brings the real exchange rate into the outside regime
(see ITL/USD, cell (A,40)), or from a small shock in the outside regime so that the real

exchange rate remains in this regime (see ITL/USD, cell (—2),1)).

'3GBP/USD has been selected because it also appears in Taylor et al. [2001]. ITL/USD, and FRF/DEM
correspond to the series exhibiting the smoothest and most discountinuous adjustments, respectively.
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Note that the dissymmetry of the results between the case where the starting value is
A and the case where it is -\ is due to the fact that the shock is positive. Starting from A,
the shock pushes toward the outside regime and hence dies out faster than starting from
-A. For the same reason, a large shock may be very persistent if it occurs below the left
boundary and it pushes the real exchange rate into the middle regime (see cell (—2A, 40)
of ITL/USD).

When the starting value is set at the mean (0), we see clearly that the mean reversion
for large shocks is much larger than for small shocks. This is consistent with the presence
of transaction costs. The half-lives we obtain for GBP/USD range from 15 to 22 months,
which are comparable to those obtained by Taylor et al. [2001] using a ESTAR model.
While most empirical studies based on a linear model agree on a half life for GBP/USD
of about 4.6 years (see Rogoff [1996]), our results suggest a much smaller half-life. In a
recent paper, Taylor [2002] finds half-lives equal to 1.7 years for GBP/USD and 2.3 years for
ITL/USD using an AR(2) model. These different results can be reconciled in the following
manner. In a linear model, the half life is computed for a shock of size 1 and is independent
of the starting values. This half-life can be thought of as a weighted average of the half-lives

obtained for various starting values.

5 Conclusion

This paper explores the possibility that, in presence of transaction costs, a nonlinear
MR-LSTAR representation is more relevant for the real exchange rate than a linear speci-
fication. While most linear models predict a half-life for PPP deviations ranging from 3 to
5 years, our model shows that large shocks adjust much faster than small shocks, resulting
in a half-life as short as two months for FRF/DEM.

Whereas the classical tests (PP, ADF) fail to reject the null of a unit-root for all of
the real exchange rates but FRF/DEM, our SupLR unit-root test rejects the null of a unit-
root in favor of a three-regime MR-LSTAR model for eleven pairs. For these series, the
estimation results support the PPP hypothesis by exhibiting strong mean reversion for
large PPP departures. Seven out of these eleven pairs involve currencies of the European
Monetary System member states. This finding may indeed be related to the close trade
links developed by the European Economic Community. The European build up has
probably made international arbitrage in goods markets easier inside the EEC.

Another contribution of the paper lies in the modeling of the real exchange rate.
While former empirical studies focused on either the SETAR or ESTAR models, our paper
uses a MR-LSTAR specification, which is able to mimic both the abrupt adjustments of
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the SETAR and the smooth adjustments of the ESTAR. It is worth noting that in the
case of FRF/DEM, the shape of the estimated transition functions is very close to the
shape of the indicator function characterizing the SETAR model. Consequently, this more
parsimonious model may be considered for this particular series as a good approximation

of the more general MR-LSTAR model we have studied in this paper.
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Appendix A: Proofs

Proof of Proposition 1. Denote X the T x 2 matrix with rows (y;_1,y? ;) and A the
1 x 2 vector [0 1]. Let 3; and 62 be the OLS estimators of 3; and o2 in (10). The Wald

test is equal to
i
62A (X'X) T A
{(Zotae) (Cvi ) ~ (Swae) (Toi )}
& (L) {(To7) (o) - (Cwi)’)

The result follows from the following limits (see Hamilton [1994]):

WL =

2 1
Zy;_l L 02/ B (7")2 dr,
T 0
3 1
2 i1 L 03/ B (7")3 dr,
T2/T 0
4 1
Zy§_1 L 04/ B (7“)4 dr,
T 0
2
Zuse 2 (nay )
2 3
Zytflgt i) U—B (1)3,
TVT 3
&2 £> a’.

Proof of Proposition 2.

Denote 6 = (a1, ..., ap, pt1, 2, p1, p2) = (a1, ...,ap,a’)'. We want to test Hy : p1 = po =
p1 = pz = 0. We will denote [1 + exp (—fBy;_q/A — #)] " as Gz and [1 + exp (By—a/A + B)] '
as (G1, in the following. The dependence on ¢t is omitted for ease of notation. We are in a
case close to Case 2 of Hamilton [1994, page 518]. Using his notation, Model (6) can be
rewritten as

up = 740 + &4, (19)

where uy = y; — yi—1, Tt = (Up—1, .o, Us—p, Gz — G1, G2, y1—1 (G1 + G3) ,y1—1G2)'. We have

0— 0y = [Z xtxq - Z TiE. (20)
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M, M,
e = 21 :| ,
2. iy [Mm Moo

I Z u%fl Z Ut—1Ut—2 ... Eut_lut_p
Supoup1 Y ul Cee DU Uy
My = | . : : )
L Zut_put_l Zut_put_Q e Zu%_p
i Z(Gg - Gl) Ut—1 Z(Gg - Gl) Ut—p
M. L= Z GQUt_l [N E Ggut_p
2 Yoy (Gi+G3)u—r ... Dy (G + G3)usy
L > yi—1Gaugy e 2 Yi—1Gouy—p
and Moo is the symmetric matrix such that
> (G3 —G1)°
My — > G2 (G — Gh) >G5 ,
Do Yi-1 (G§ - G%) Y y1G2 (GL+Gs) Yyi (G +Gs) ’
Y yi—1Ga (G3 = G1) Y yi-1G3 Yyi1Ge (G +Gs) Yy Gy
[ Eutq&t i
Zutq&t
S age = | 2 Ui-pet
> (Gs—Gi)e
> Gogy
Yyi-1 (G +G3) gy
| > yi—1Gagy

We use as the scaling matrix the following (p + 4)x(p + 4) diagonal matrix I'r with
diagonal elements (\/T, o VT, T, T). Premultiplying (20) by I'7, we obtain:

. -1
P (6-60) = 07" [Y w7t {00t [ e} (21)
We have
~ P
T Z Up—iUt—j —> V|i—j|
by the Law of Large Numbers where v,_;| = E [uy—;us—s]. Under Ho, yp = > u—j is a
random walk and y;/v/T converges to §B(r), r = t/T, where B(.) is a standard Brownian

motion on [0,1]. On the other hand ﬁ Zgl g; converges to o B(r). Denote

Gi(r) = [1+eXp (§5B(r)+6>]_1,

Gs(r) = [1+exp (—§5B(r)—ﬂ>]_1,
Go(r) = 1—Gy(r)—Gs(r).
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- -1
The continuous transformations of F' (x, 0, A) = [1 + exp (—%’E + ﬁ)} are themselves
continuous in z and in (ﬁ, 5\) € II and therefore regular, we can apply Theorem 3.1. of

Park and Phillips [2001]:

= (G- D /01 (G- Gr )"

1
%ZG% LR /0 Go (r)? dr,
2 1
% 3 % (Gs—G)* D 52/ B(r) (G (r) - G (r)>2 dr,

1 yr P
thlGQ 52/ B2 GQ()d,

—Zyt1G2—>5/ dr,

uniformly in 7 = (ﬁ, X) € II. We have also

%Z(Gg—Gl)stinf/ol (ég(r)—él(r)>dB(r),
1
Lzyt_ﬁl(aﬁag)gt 505/0 (G1 () + @3 (1) B(r)aB ).,

similar results hold for the other terms of My, and ) z;;. These limits are also uniform

in 7, see Bec, Guay and Guerre [2002].
Using again Park and Phillips, it can be shown that

7! Z Grug—; i 0,
TN Gaupj 550,
T3/2 Z Yi—1G1U—j Lo,
T-3/2 Z Y- 1G3upj £> 0.

Therefore, we have
V 0 ]

Iy [Seal] ] 5 [ V0
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with
Yo 4! Yp—1
! Yo Yp—2
vV o= . R
| Tp—-1 Vp-2 Y0
Q = AQA,
1 0 0 0
01 00
A= 0046 0]’
00 0 ¢
@ — Qll Q,21
Q21 Q2 |’

)

Qu = [ fol <63 (n -G (T)>2 dr fol G5 (r) (éB (r) = G1 (7’)> dr
s
(

[/ (61 (r) + G (7"))2 B2(r)dr Gy (r) (63 (r) — Gy (7")) B2(r)dr
Q2 = 1 ~ ~ 2 15 2 2 ’

| [y G () (G (1) = Gy (7)) B2()dr [, G (r)” B2(r)dr

o (G =Gi?) By [y G () (Gi () +Ga(r) B(r)d(r) ] |

Q21 = I Iy G (r) (53 (r) — G, (r)) B(r)dr [ G, () B(r)dr

One can decompose F;l [>" x4e¢] into two pieces. By Hamilton (page 520), the top

part has the following asymptotic distribution

# > Ut 1€t
ﬁ > uL—2€t I
' = by ~ N (0,0%V).
ﬁ > Ui—pEt
And the second part follows asymptotically
772 (Gs = Gi)e
)

77 2 Gaer Ly hy

72 Yt-1(G1+G3) e

2 yi1Gagy

hQ = UAEQ.

with N N
Jy (Gs(r) = G1 () dB ()
Jy G (r) dB(r)
I8 (01 (r) + Gs (7")) B (r)dB(r)
[} Ga () B(r)dB(r)

P
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Substituting into (21), we get

A L V71h1
I'r (9—90) — |: Q_lhg :| .
Hj can be rewritten as A8 = o = 0 where A is the appropriate selection matrix and

a = (p1, pa2, p1,p2) . The Wald test is given by

e = (40) [a[Sewt] ] i-w[pr [San] ] s

where @ is the estimator of «, Z; are the regressors associated with o, and 2 is a consistent

estimator of o?. Hence the asymptotic distribution of Wr is given by
- ~ \-1 . e
'Q LRy /0 = 2RLA (AQA) Ahofo? = O he = D (k). (22)

Note that this distribution is nuisance parameter free. By equivalence between the test
statistics, the limiting distribution of LMp and LRr is the same as that of Wr.

Under the alternative of a stationary LSTAR model, & converges at the v/T—rate of
convergence to a pseudo true value o, which is in general not equal to the true o (unless
B and X are the right values). However o, will be different from 0 and the test statistics

diverge. H

Proof of Proposition.3.
Let us define £7 = \/(v/T4). Note that k = (43, ¢7) . Now define

Wi (k) = Wi (ﬁ, Aﬁa) :

Hence we have

supW = sup  Wr (k).
k€Bx [ty 7]

We have shown before

1) Wr (k) & D (k)

2) [er.0r] 5 [

where the distribution of (ﬁ, E) does not depend on any parameter.

We need to show

sup Wy (k) L sup D (k).
kEBx[Lp,lr] keBx[L,1]

We can not apply the continuous mapping theorem directly because [ﬁ, ﬂ is random and
its support is not bounded. This result can be established using a similar proof to that of
Theorem 3 in Bec et al. [2004].
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Then , it is easy to see that the distribution is nuisance parameter free because D (.)

does not depend on unknown parameters and neither does B x [ﬁ,ﬂ i |

Proof of Proposition 4.

We adopt the same reparametrization as in Kapetanios and al. (2003). Let Ay_; =
(Ayl,j,...,AyT,j)'. Define the T' x (p — 1) matrix Z = (Ay_1,...,Ay_p41), the T x
T—idempotent matrix My = Ip—Z (Z'Z)"" Z', and e = (e, ...,e7)". Let yj_1 = (yg, ...,y%_1>l ,
j = 2,3. Model (15) can be rewritten as

p—1

Ay = Z ajAy,j + Blygl + ﬁzyil + ¢, (23)
7=1

which itself is equivalent to
M7Ay =4 Mry?, + Mry’; + Mre.

Let 0 = (81, 52)". Let X be the T x 2—matrix, X = [y%; y>,] and

T3/2 ]

FT:[ 0 T2

We have
I'r0 = (T (X'MrX) T7!) T X Mye.

To establish the limiting distribution, we apply Theorem 3.1 of Park and Phillips [2001]:

y% Mrpe v e
—1
Ly X'Mre = ( yi{?i\//IQTs ) - ( ;?;3’125 ) +0p (1)
T2 T2
1 2
L 52 fOIW(T)?)dW (r) _ . 52 % b
53 Jo W (r)” dW (r) 0§ ’
where § =0/ (1 —ay... —ap1).
ygllMTyzl y2,'1MTy:i1
-1 ! -1 _ 3 772
FT (X X) FT - < y:ill]-\]/}Tyzl y?illj];d:Ty:il )
T7/2 T4
y2_,1y2_1 y2_,1y?il
_ T3 7/2
- ( y¥iy2y yglyil >+OP(1)
T7/2 T?

X &t fol W (r)*dr 6° fol W (r)° dr
R fol W (r)° dr 68 fol W (r)° dr

)
(2 3Je[5 2]



34

with

(r)
(r)
1
o _ (R
(r)
Let £ be the least-squares estimate of ¢ in (23), the least-square estimate of o satisfies
~ ~ al A
o EMré €€ P
0" = —x :?—i-op(l)—)rf.
The Wald test statistic is given by

~ 111 4
B o= 00 (x'Mrx)']
1 .
= eMrXT [ (XMrX) 7] T X My
5 WQ 1h. (24)

Note that A'Q~'h does not depend on o or any other nuisance parameter.l

Appendix B: Expressions of the test statistics

Below, we detail the expression of the heteroskedasticity-robust test statistic LRh. For vy
and A fixed, Model (6) can be rewritten as

Ay, = 70 + ¢
using the notation of Appendix A. It can be estimated by OLS. Denote by £ the T x 1
vector of restricted residuals, sc the T x (p + 4) matrix of the scores where 6 has been
replaced by the restricted OLS estimator, sc the 1 x (p 4+ 4) vector of the average (over t)

of the scores, and set 52 = &'¢/T, the empirical standard deviation. The estimator of the

information matrix is given by

Vi = <§c— §c>l <§c— §c> /T

and the estimator of the Hessian matrix is given by

_ T

Mt T

We call LRh the statistic
_ !
LRA =T s¢ (M7 VrMz") s / (%),
This statistic along with others was suggested by Newey and West [1987], it is also a LM

type test statistic because when the model is exactly identified, heteroskedastic-robust

versions of LM and LR tests are identical (Newey and West [1987], Section 3).
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Appendix C: Estimated G5 transition functions

I1L/USD ()=0.256)

° =04 -0.3 -0.2 =0.1 =-0.0 0.1 0.2 0.3 0.4
y(t=1)

FRE/DEM (1=0.071)

©-04 -0.3 -0.2 -0.1 -0.0 0.1 0.2 03 04



