
UNIVERSITY OF
ROCHESTER

A New Solution to the Problem of Adjudicating Conflicting Claims

Diego Dominguez and William Thomson

Working Paper No. 511
November 2004



A new solution to the problem of adjudicating
conflicting claims

Diego Dominguez and William Thomson∗

This version: September 2, 2004

∗University of Rochester, Rochester, New York, 14627. We thank Christopher Cham-
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Abstract

For the problem of adjudicating conflicting claims, we consider
the requirement that each agent should receive at least 1/n his claim
truncated at the amount to divide, where n is the number of claimants
(Moreno-Ternero and Villar, 2004a). We identify two families of rules
satisfying this bound. We then formulate the requirement that for
each problem, the awards vector should be obtainable in two equiv-
alent ways, (i) directly or (ii) in two steps, first assigning to each
claimant his lower bound and then applying the rule to the appropri-
ately revised problem. We show that there is only one rule satisfying
this requirement. We name it the “recursive rule”, as it is obtained
by a recursion. We then undertake a systematic investigation of the
properties of the rule.

JEL classification numbers: C79-D63-D74.
Key-words: claims problems, recursive rule.
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1 Introduction

When a group of agents have claims over a resource that add up to more than
is available, how should the resource be divided? A “rule” selects for each
situation of this kind a division among the claimants of what is available.
Much of the literature devoted to the study of rules has been axiomatic.1

A variety of tests of good behavior of rules have been formulated and the
existence of rules passing these tests, singly and in various combinations,
investigated. Among them are tests designed to guarantee agents certain
minimal amounts. A recent suggestion along these lines is that each agent
should receive at least the minimum of (i) his claim divided by the number of
claimants and (ii) the amount available divided by the number of claimants
(Moreno-Ternero and Villar, henceforth MTV, 2004a). This requirement is
not very demanding, being satisfied by many of the rules that have been
central in the literature. Yet, when combined with a dual lower bound on
the losses agents incur, and the requirement of consistency, which expresses
a form of robustness of the choice with respect to variations of populations,
only one rule remains admissible, the so-called Talmud rule (again, see MTV,
2004a).

This lower bound on awards is our point of departure. We first identify
two ways of finding out whether a rule respects it. These results cover all
examples previously known to do so, and infinitely many others.

Next, we formulate the following invariance requirement on a rule: for
each problem, suppose that we first award the lower bounds, revise claims
down accordingly, and apply the rule to divide what remains; the requirement
is that the resulting awards vector should be the same as when the rule is
applied directly to the problem. We show that there is a unique rule satisfying
it. As the rule is defined by means of a recursion, we call it the “recursive
rule”.

We then undertake a systematic evaluation of the rule. We first establish
a number of basic properties it satisfies. We then show that it is well behaved
from the viewpoint of monotonicity. In particular, when the amount available
increases, all agents receive at least as much as they did initially. Moreover,
when an agent’s claim increases, he receives at least as much as he did ini-
tially, and each of the others receives at most as much as he did initially.

1For surveys, see Herrero and Villar (2001), Moulin (2002), and Thomson (2003a,
2003b).
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Next, we show that the rule is invariant under truncation of claims at the
amount to divide. We finally turn to the behavior of the rule in the context
of variable populations. One central property here is replication invariance.
The rule violates this property, but asymptotically, as the order of replica-
tion increases, there is a sense in which it behaves “like” the proportional
rule, as we show next. Also, it fails the consistency requirement alluded to in
the opening paragraph of this introduction. So we ask whether there is any
consistent rule that coincides with it in the two-claimant case. Consistency
has indeed provided a very useful means of extending, to general popula-
tions, rules chosen in the conceptually and mathematically more transparent
two-claimant case. Here, the answer is unfortunately negative. Although
the bound itself is compatible with consistency since many consistent rules
satisfy it, pursuing its logic recursively is not.

2 The model of adjudication of conflicting

claims

There is a set N of claimants having claims over a resource, the amount
of the resource available being insufficient to honor all of these claims. For
each i ∈ N , let ci denote agent i’s claim and E the amount to divide. A
claims problem, or simply a problem, is a pair (c, E) ∈ RN

+ × R+ such
that

∑
N ci ≥ E.2 Let CN denote the domain of all problems. A division

rule, or simply a rule, is a function defined on CN , which associates with each
(c, E) ∈ CN a vector x ∈ RN

+ . This vector should satisfy the non-negativity
and claims boundedness inequalities 0 5 x 5 c, and its coordinates should
add up to E, a condition to which we refer as efficiency. Any such vector is
an awards vector for (c, E). Let X(c, E) denote the set of these vectors.
Let S be our generic notation for rules. For each c ∈ RN

+ , the locus of the
awards vector a rule selects as the amount to divide varies from 0 to

∑
ci is

its path of awards for c.
In the variable-population version of the model, there is an infinite popu-

lation of “potential” claimants indexed by the natural numbers, N. However,
at any given time, only a finite number of them are present. Let N be the
class of finite subsets of N. A claims problem is defined by first specifying

2By the notation RN we mean the Cartesian product of |N | copies of R indexed by the
members of N . Vector inequalities: x = y, x ≥ y, and x > y.
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some population N ∈ N , and then (c, E) ∈ CN . A rule is a function defined
on

⋃
N∈N CN , which associates with each N ∈ N and each (c, E) ∈ CN an

awards vector of (c, E).
The segment connecting a and b is denoted seg[a, b] and the broken seg-

ment connecting a, b, . . . , f is denoted bro.seg[a, b, . . . , f ]. Given a and b such
that a 5 b, the set of vectors x such that a 5 x 5 b is denoted box[a, b]. The
interval [a, b[⊂ R contains a but not b.

3 A lower bound on awards

The axiomatic study of any class of problems usually includes lower or upper
bound requirements on assignments, welfares, or utilities. These require-
ments are motivated by fairness, participation, or incentive considerations,
the desire to restrict inequalities in incomes or the range of welfare levels
agent reach, and often by combinations of the above. In the context of the
present model, several requirements of this type have been proposed, and
our starting point is one such requirement: for each problem in CN , each
agent should receive at least 1

|N | of his claim if his claim is at most as large

as the amount to divide, and 1
|N | of the amount to divide otherwise (MTV,

2004a).3 This lower bound on an agent’s award is nothing other than 1
|N | of

his claim truncated at the amount to divide. The idea of truncating claims
in this manner is central in the literature. It underlies the definition of sev-
eral rules (Aumann and Maschler, 1985), and the property of a rule that it
be invariant with respect to truncation appears in a number of axiomatic
characterizations of well-known rules (Dagan, 1996; Hokari and Thomson,
2003).

Also, if a rule “corresponds” to a solution defined on a domain of coali-
tional games, it satisfies this invariance requirement (Curiel, Maschler, and
Tijs, 1987).4

For a formal statement, for each i ∈ N , let ti(c, E) ≡ min{ci, E},
t(c, E) ≡ (ti(c, E))i∈N , and µ(c, E) ≡ 1

|N |t(c, E).

3They refer to it as “securement”. A further analysis is in Moreno-Ternero and Villar
(2004b).

4A rule corresponds to a solution for coalitional games if for each problem, the awards
vector it recommends is also the payoff vector obtained by first converting the problem
into a coalitional game, and then applying the solution to the game.

3



Reasonable lower bounds on awards: For each (c, E) ∈ CN , S(c, E) =
µ(c, E).

In classical models, agents’ individual endowments are often used in the
definition of lower bounds, underlying the commonly imposed condition of
“individual rationality”. In the theory of fairness, equal division is used
instead. Reference hypothetical situations in which all agents have the char-
acteristics of a particular agent (his endowment, his preferences, his pro-
ductivity) have also provided the basis for lower bounds and upper bounds
(depending upon whether goods are private or public). One can imagine
basing the bound(s) imposed on an agent’s welfare on the characteristics of
all agents, or basing them on his own characteristics and on the collective
variable. Here, individual characteristics are not endowments, but claims.
An agent’s claim is already used in the definition of a rule as an upper bound
on what he should receive. We are now proposing to use his truncated claim
as the basis for a lower bound: the bound is a pre-specified proportion, the
inverse of the number of agents, of his claim. One could think of using as
lower bound a pre-specified proportion of his claim itself, but that is not a
meaningful option. Indeed, the bounds so obtained are compatible for all
values of the parameters of the problem only if that proportion is 0, but
then all rules qualify. Using truncated claims is a natural and meaningful
alternative, and in fact, the proportion we choose is the highest that pre-
serves compatibility. Consider for example a problem in which all claims are
equal to the amount to divide. Then all truncated claims are equal to that
amount, and the requirement that each agent should receive a proportion
α of his truncated claim, when imposed on each agent, can be met only if
α ≤ 1

|N | .
Let N ≡ {1, 2}, and c ∈ RN

+ with c1 ≤ c2. Let E ≤ c1. Then, if S
satisfies reasonable lower bounds on awards, and since awarding each agent
at least half of the amount to divide is possible only at equal division, its
path of awards for c contains seg[(0, 0), ( c1

2
, c1

2
)]. The view is widely held that

if the amount to divide is small in relation to claims, equal division should
prevail.5 The path continues in a region in box[( c1

2
, c1

2
), c] whose boundary

is defined by the 45◦ line and the horizontal line of ordinate c2
2
. There are

two cases depending upon whether or not c1 ≤ c2
2
. They are illustrated in

5Carmen Bevia (oral communication) reported to us that, once presented to the subject
in class, her undergraduates have often spontaneously expressed it. It would be interesting
to conduct formal experiments to measure its prevalence.
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Figure 1: Guaranteeing a minimal amount to each claimant. This figure
illustrates reasonable lower bounds on awards for N ≡ {1, 2} and c ∈ RN

+ with
c1 < c2. A rule satisfies the requirement if its path of awards for c lies in the region
consisting of the thick segment from the origin to 1

2(min{ci}, min{ci}) = ( c1
2 , c1

2 )
and the shaded area. (a) Here, c1 < c2

2 and the constraint x2 ≥ c2
2 is binding for no

amount to divide. (b) Here, c1 > c2
2 . (c) The path of the constrained equal awards

rule is bro.seg[(0, 0), b, c], that of the Talmud rule is bro.seg[(0, 0), a, d, c], that of
Pineles’ rule is bro.seg[(0, 0), a, c

2 , e, c], and that of the constrained egalitarian rule
is bro.seg[(0, 0), a, c

2 , f, b, c]. All of these rules satisfy reasonable lower bounds on
awards for arbitrarily many claimants.

Figure 1. If c1 ≤ c2
2
, the constraint that agent 2 should get at least half of

his claim is binding for no amount to divide, in the sense that if an awards
vector x satisfies the bound for claimant 1, then x2 ≥ c2

2
whenever c2 ≤ E

(Figure 1a). If c1 > c2
2
, it is binding over the non-empty interval ]c2, 2c1[ of

amounts to divide (Figure 1b).
A number of important rules satisfy reasonable lower bounds on awards.

Here are the primary ones. Let (c, E) ∈ N . The constrained equal
awards rule selects x ∈ X(c, E) such that for some λ ∈ R+, x =
(min{ci, λ})i∈N (O’Neill, 1982; the rule also appears in Maimonides).
Piniles’ rule (Piniles, 1861) selects x ∈ X(c, E) such that for some λ ∈ R+,
x = (min{ ci

2
, λ})i∈N if E ≤ ∑

ci and x = c
2

+ (min{ ci

2
, λ})i∈N otherwise.

The Talmud rule (Aumann and Maschler, 1985) selects x ∈ X(c, E)

such that for some λ ∈ R+, x = (min{ ci

2
, λ})i∈N if E ≤

∑
ci

2
and

x = c
2

+ (max{ ci

2
− λ, 0})i∈N otherwise. Define the minimal right of

claimant i in (c, E) as the difference between E and the sum of the
claims of the other agents, or 0 if this difference is negative: mi(c, E) ≡
max{E − ∑

N\{i} cj, 0}.6 Now, the adjusted proportional rule selects

m(c, E)+P (t(c−m(c, E), E−∑
mj(c, E)), E−∑

mj(c, E)) (Curiel, Maschler

6This quantity, generalized to groups of claimants, underlies O’Neill’s proposal to asso-
ciate with each problem a coalitional form game, providing the ground for the application
of the solution concepts developed in that theory to solve claims problem
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and Tijs, 1987). All of these rules pass the test (MTV, 2004a).
Others do too. One is the random arrival rule (O’Neill, 1982), which

selects the average of the awards vectors obtained by imagining claimants
arriving one at a time and fully compensating them until money runs out,
under the assumption that all orders of arrival are equally likely. Indeed, since
the proportion of orders in which a given claimant is first is 1

|N | , and that for
each such order, he is either fully compensated or receives the entire amount
available, a lower bound on his award is the quantity specified by reasonable
lower bounds on awards. The minimal overlap rule (O’Neill, 1982) and
the constrained egalitarian rule (Chun, Schummer, and Thomson, 2001)
also satisfy reasonable lower bounds on awards.7 Since the only major rules
in the literature that violate the property are the proportional rule, which
selects x ∈ X(c, E) such that for some λ ∈ R+, x = λc, and the constrained
equal losses rule, which selects x ∈ X(c, E) such that for some λ ∈ R+,
x = (max{ci−λ, 0})i∈N , one can say that the property is not very restrictive.
The lower bounds it places on awards are indeed “reasonable”.

Next, we present two general ways of identifying rules satisfying reason-
able lower bounds on awards.

• First, consider the following variable-population invariance requirement.
Let N ∈ N , (c, E) ∈ CN , and x ≡ S(c, E). Now, imagine some claimants
leaving with their awards (their components of x), and reassess the situation
at that point. The requirement is that in the revised problem faced by the
remaining claimants, the rule should attribute to each of them the same
amount as initially. (A survey of the various applications that have been
made of the consistency principle is Thomson, 2003c.)

Consistency: For each N ∈ N , each (c, E) ∈ CN , and each N ′ ⊂ N , if
x ≡ S(c, E), then xN ′ = S(cN ′ ,

∑
N ′ xi).

Certain properties of a rule, if satisfied in the two-claimant case, are
automatically satisfied for more than two claimants if the rule is consistent.
We say that these properties are “lifted” by consistency (this expression
is proposed by Hokari and Thomson, 2003b). Our first lemma states that
“lifting” occurs for the property that interests us here:

Lemma 1 Reasonable lower bounds on awards is lifted from the two-
claimant case to the general case by consistency.

7We omit the proof for these rules, as their definitions are more involved.
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Proof: Let N ∈ N , (c, E) ∈ CN , and x ≡ S(c, E). Suppose by contradiction,
that there is i ∈ N such that xi < 1

|N | min{ci, E}, which implies that (i) xi <
ci

2
. By efficiency, there is j ∈ N such that xj > 1

|N |E, and thus (ii) xi <
xi+xj

2
.

Let N ′ ≡ {i, j}, and consider the problem (ci, cj, xi + xj). By consistency,
(xi, xj) = S(ci, cj, xi + xj). Since S satisfies reasonable lower bounds on
awards in the two-claimant case, xi ≥ 1

2
min{ci, xi+xj}. This is incompatible

with (i) and (ii). ¤

The constrained equal awards, Talmud, Piniles’, and constrained egali-
tarian rules all satisfy reasonable lower bounds on awards in the two-claimant
case: Figure 1c shows that their paths of awards indeed lie in the required
region. Also, they are consistent (see Aumann and Maschler, 1985; Chun,
Schummer and Thomson, 2001). It then follows from Lemma 1 that they
satisfy reasonable lower bounds on awards in general.

For an interesting family of rules, one can say more. First, a rule has a
parametric representation if there are [a, b] ⊂ R and a continuous and
nowhere decreasing function f : [a, b] × R → R such that for each (c, E) ∈
CN , it selects x ∈ X(c, E) such that for some λ ∈ [a, b], x = (f(ci, λ))i∈N .
(The class is characterized by Young, 1987, on the basis of continuity,
the requirement that small changes in problems should not be accompanied
by large changes in the recommended awards vector, equal treatment of
equals, the requirement that claimants with equal claims should receive
equal amounts, and consistency). We will consider the generalization of
this notion obtained by allowing the function f to depend on claimants, as
follows: there are [a, b] ⊂ R, and for each i ∈ N , a continuous and nowhere
decreasing function fi : [a, b] → R such that for each (c, E) ∈ CN , the rule
selects x ∈ X(c, E) such that for some λ ∈ [a, b], x = (fi(ci, λ))i∈N . We refer
to such a rule as “generalized parametric”. The following straightforward
lemma tells us when a rule of this type satisfies the reasonable lower bounds
on awards.

Lemma 2 Let S be a generalized parametric rule of representation
(fi)i∈N : [a, b] × R → R, where [a, b] ⊂ R. Then, S satisfies reasonable
lower bounds on awards if (∗) for each i ∈ N , the upper envelope Ci of the
schedules {fi(ci, .)}ci∈R+ is well-defined and independent of i, and (∗∗) for
each i ∈ N and each ci ∈ R+, the schedule fi(ci, .) follows Ci from (a, 0) up
to a point of ordinate at least ci

2
.
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Proof: Let (c, E) ∈ CN and λ ∈ [a, b] be such that
∑

fi(ci, λ) = E. Then,
for each i ∈ N , xi = fi(ci, λ). Now, for each i ∈ N , either xi = fi(ci, λ) <
supc0∈R+

fi(c0, λ), in which case xi ≥ ci

2
≥ ci

|N | , or fi(ci, λ) = maxj∈N xj, in

which case, xi ≥ E
|N | . Thus, the reasonable lower bounds on awards is met.

¤

Since the constrained equal awards, Talmud, Piniles’, and constrained
egalitarian rules are parametric rules whose representations all meet require-
ment (∗), they satisfy reasonable lower bounds on awards.

• A second way of identifying rules that satisfy reasonable lower bounds on
awards is obtained by exploiting the notion of an “operator” on the space of
rules, that is, a mapping from the space of rules into itself. Given any rule S,
consider the rule Sm that selects for each problem the awards vector obtained
by first assigning to each claimant his minimal right, revising claims down
by these amounts, and then applying S to divide the remainder: formally,
for each (c, E) ∈ CN , Sm(c, E) ≡ m(c, E) + S(c−m(c, E), E −∑

mj(c, E)).
We say that Sm is obtained from S by subjecting it to the attribution of
minimal rights operator. Also, given any rule S, consider the rule St

that associates with each problem (c, E) ∈ CN , the awards vector obtained
by first truncating claims at the amount to divide: St(c, E) ≡ S(t(c, E), E).
We call this operator the claims truncation operator. (A systematic
investigation of this operator and others is found in Thomson and Yeh, 2003.)
We now assert that if a rule S satisfies reasonable lower bounds on awards,
so do Sm and St.

Lemma 3 Reasonable lower bounds on awards is preserved under the attri-
bution of minimal rights operator and by the claims truncation operator.

Proof: We first consider the attribution of minimal rights operator. We
need to show that Sm(c, E) = 1

|N |t(c, E). Our hypothesis on S implies that

S(c−m(c, E), E −∑
mj(c, E)) = 1

|N |t(c−m(c, E), E −∑
mj(c, E)). Using

the relation t(c − m(c, E), E − ∑
mj(c, E)) = t(c, E) − m(c, E) (Thomson

and Yeh, 2003), this inequality can be simplified to Sm(c, E) = m(c, E) +
1
|N | [t(c, E)−m(c, E)] = 1

|N |t(c, E). After canceling 1
|N |t(c, E) from both sides,

it further simplifies to (1− 1
|N |)m(c, E) = 0, which trivially holds since |N | ≥ 1

and m(c, E) = 0.
Next, we consider the claims truncation operator. We have that

St(c, E) ≡ S(t(c, E), E) = 1
|N | min{t(c, E), E} = 1

|N | min{c, E}, where the

8



first inequality comes from the fact that S satisfies reasonable lower bounds
on awards, and the equality follows trivially from the definition of the trun-
cation. ¤

We use the first part of Lemma 3 to give a very simple proof that the
adjusted proportional rule satisfies reasonable lower bounds on awards (as es-
tablished directly by MTV, 2004a). Indeed, this rule can be described as the
result of subjecting the proportional rule to the attribution of minimal rights
operator and then to the claims truncation operator. Equivalently, it is ob-
tained by subjecting the proportional rule to these operators in reverse order
(Thomson and Yeh, 2003, show that they commute). Now, we assert that P t

satisfies reasonable lower bounds on awards. Indeed, to show that P t
i (c, E) =

t(ci, E), we write P t
i (c, E) ≡ Pi(t(c, E), E) = t(ci,E)∑

t(cj ,E)
E = 1

|N |t(ci, E), which

holds since for each i ∈ N , E ≥ t(ci, E) and thus |N |E ≥ ∑
t(ci, E).

Reasonable lower bounds on awards is defined by focusing on what
claimants receive. By switching attention to the losses they incur, we ob-
tain the requirement that if agent i’s claim is at most as large as the deficit∑

cj − E, he should receive at most ci − 1
|N |ci, and otherwise, he should re-

ceive at most ci − 1
|N |(

∑
cj −E). The formal statement is as follows (MTV,

2004a):

Reasonable lower bounds on losses: For each (c, E) ∈ CN and each
i ∈ N , ci − Si(c, E) ≥ 1

|N | min{ci,
∑

cj − E}.

Two rules S and Sd are dual if one of them divides what is available
in the same way as what the other divides what is missing: formally, for
each (c, E) ∈ CN , Sd(c, E) ≡ c− S(c,

∑
ci −E). Also, two properties are

dual if whenever a rule satisfies one of them, the dual of the rule satisfies
the other. Reasonable lower bounds on awards and reasonable lower bounds
on losses are dual properties (MTV, 2004a). Thus, two families of rules
satisfying reasonable lower bounds on losses can be identified by duality from
the families of rules satisfying reasonable lower bounds on awards.8

8Given the geometric interpretation of reasonable lower bounds on awards, it is easy
to see (for a formal proof see MTV, 2004a), that in the two-claimant case, the Talmud
rule is the only rule satisfying both of these properties. Indeed, in the two-claimant case,
for the path of awards of a rule to belong to the admissible area identified in Figure 1
as well as to the symmetric image of that area with respect to the half-claims vector,

9



-

6

x1

x2

c

45◦
1, 2

1’

2’

3

3’4

4’

5

5’, 6’, 7’6

7

E1

E2 E3

E4

E5

E6

E7

locus of
m(c, E)

-

-
locus of
µ(c, E)

¾

¾

Figure 2: Comparing two lower bounds. The loci of the vectors of minimal
rights and the vector of reasonable awards are plotted as a function of the amount
to divide, seven values being indicated explicitly. For each k = 1, . . . , 7, the for-
mer vector for (c, Ek), m(c, Ek), is labelled “k” whereas the latter, µ(c, Ek), is
denoted k′.

The reasonable lower bounds on awards should be compared to another
lower bound that has been extensively studied in the literature. We have
already defined the “minimal right” of an agent in a problem. This alternative
bound is the claimant’s minimal right (Curiel, Maschler and Tijs, 1987). It is
illustrated in the two-claimant case and compared to reasonable lower bounds
on awards in Figure 2 where the loci of the vectors m(c, E) and µ(c, E) are
plotted as a function of E. The range of the amount to divide can be divided
into three intervals. For E ∈ [0, c1 + c2

2
], if an awards vector x satisfies

x = µ(c, E), then it satisfies x = m(c, E); for E ∈]c1 + c2
2
, c1

2
+ c2[, the two

bounds are not comparable; and for E ∈ [ c1
2

+ c2,
∑

ci], if x = m(c, E), then
x = µ(c, E).

By contrast to the lower bound appearing in reasonable lower bounds on

as required by the dual property of reasonable lower bounds on losses, it has to be the
path of the Talmud rule. It then follows from the Elevator Lemma (Thomson, 2003c), as
MTV note, that the Talmud rule is the only rule to satisfy the two bounds together with
consistency. This is because the Talmud rule is consistent and conversely consistent. (The
Elevator Lemma asserts that if a consistent rule coincides in the two-claimant case with
a conversely consistent rule, then coincidence occurs in general.)

Note that the random arrival rule is self-dual, and so it too satisfies reasonable lower
bounds on losses. Since both of these properties are preserved under convex operations,
and the Talmud and adjusted proportional rules also satisfy both, we obtain a whole family
of rules satisfying self-duality, reasonable lower bounds on awards, and reasonable lower
bounds on losses.
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awards, the “minimal right lower bound” just defined on a claimant’s award
depends on all components of a problem.

The two bounds differ significantly in their implications. Indeed, it is a
consequence of the definition of a rule that it always selects a vector that
weakly dominates the vector of minimal rights, whereas we have seen that
a rule may or may not select an awards vector that dominates the vector of
reasonable awards. Characterizations involving reasonable lower bounds on
awards can be found in Yeh (2003).

4 An invariance requirement on rules

Next, we formulate an invariance requirement on rules based on the rea-
sonable lower bounds: for each problem, the awards vector chosen for it
should be obtainable in either one of the following two ways: directly or in
two steps, first assigning to each claimant his reasonable lower bound, and
second, dividing the remainder, after having revised claims down by these
amounts.

Reasonable awards first: For each (c, E) ∈ CN ,

S(c, E) = µ(c, E) + S(c− µ(c, E), E −
∑

µi(c, E)).

This requirement is inspired by one based on minimal rights that has
been important in the literature. It says that the awards vector should
be obtainable in two ways: directly or in two steps, first assigning to each
claimant his minimal right, and second dividing the remainder, after having
revised claims down by these amounts (Curiel, Maschler and Tijs, 1987).
Quite a few rules satisfy this property—let us call it minimal right first—
the Talmud and random arrival rules being examples, but as we now show,
only one satisfies reasonable awards first :

Theorem 1 There is a unique rule satisfying reasonable awards first.

Proof: Let (c, E) ∈ CN . The proof is based on the observation that in
the problem obtained from (c, E) by assigning reasonable awards, reasonable
awards may still be positive, justifying a second round of awards. Once these
second-round awards are made, a third problem is obtained in which once
again, reasonable awards may be positive. So, the process can continue. Let

11



(c1, E1) ≡ (c, E) and for each k ≥ 2, let (ck, Ek) be the problem obtained at
the k-th step, namely

(ck, Ek) ≡
(

ck−1 − µ(ck−1, Ek−1), Ek−1 −
∑
i∈N

µi(c
k−1, Ek−1)

)
.

Note that no agent’s claim ever increases from one step to the next and
that the same statement applies to the amount to divide. Since all claims
and amount to divide are bounded below by 0, they have limits. Let these
limits be denoted c̄ and Ē. We will show that Ē = 0. Suppose, by way of
contradiction, that Ē > 0. Let k ∈ N be such that Ek − Ē ≤ Ē

|N |2 . Since

(ck, Ek) is a well-defined problem, there is i ∈ N such that ck
i ≥ Ek

|N | . At

the (k + 1)-th step, agent i receives 1
|N | min{ck

i , E
k}, and since all agents

receive non-negative amounts, the amount to divide decreases by at least
this expression. Thus, Ek+1 < Ek − 1

|N | min{ck
i , E

k} < Ē, in contradiction

with the definition of Ē. ¤

Let µ1(c, E) ≡ µ(c, E), and for each k > 1,9

µk(c, E) ≡ µ

(
c−

k−1∑

l=1

µl(c, E), E −
∑
i∈N

k−1∑

l=1

µ`
i(c, E)

)
.

It follows from Theorem 1 that the unique rule satisfying reasonable
awards first—the name we choose for it reflects the construction—can be
defined as follows:

Recursive rule, R: For each (c, E) ∈ CN ,

R(c, E) ≡
∞∑

k=1

µk(c, E).

Alternatively, for each (c, E) ∈ CN , let (c̄, Ē) ≡ limk→∞(ck, Ek). Then,
R(c, E) = c− c̄.

If all claims are positive, there is k ∈ N at which there is nothing left to
divide, and conversely, finite convergence requires that all claims be positive.

9Note that µk
i (c, E) depends on the other agents’ claims (c−i) since the resources avail-

able at step k depend on the entire claims vector.
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Figure 3: Defining the recursive rule for c ∈ RN
+ with N ≡ {1, 2} and

c2 ≤ 2c1. (a) The first and second segments of its path of awards are obtained
by letting E vary in [0, c2]. They are seg[(0, 0), d1] and seg[d1, e1]. (b) Repeating
the construction when E varies in [c2,

c1
2 + c2]. (c) The next two segments are

seg[e1, d2] and seg[d2, e2].

One may wonder why the parallel property of minimal rights first does
not give us a unique rule. The reason is that for each problem, after minimal
rights are assigned, we obtain a revised problem in which minimal rights are
zero (Thomson, 2003b). Thus, there is no reason to repeat the process, and
the property cannot serve directly as the basis for the definition of a rule.

Incidentally, the order of claims is never reversed by the attribution of
reasonable awards. Let i, j ∈ N be such that ci < cj. If E ≤ ci, both claims
decrease by E

|N | . If ci < E ≤ cj, ci is replaced by c̃i ≡ ci − ci

|N | and cj by

c̃j ≡ cj − E
|N | , then c̃i ≤ c̃j. Thus, in the proof of Theorem 1, we could have

chosen agent i to be the agent with the largest claim.

In the next paragraphs, we give an explicit construction of the recursive
rule. In general, (for |N | = 2 and except if the larger claim is twice the smaller
claim), the path of awards of the rule is the concatenation of an infinite
number of segments. A graphical representation is possible for |N | = 2. The
shape of the path of awards depends on the relative values of the claims. We
distinguish two cases:

13



Case 1: c2 ≤ 2c1: If E ≤ c1, µ(c, E) = (E
2
, E

2
), so R(c, E) = (E

2
, E

2
)

(Figure 3a). If c1 < E ≤ c2, µ(c, E) = ( c1
2
, E

2
), and in (c − µ(c, E), E −∑

µi(c, E)), the amount to divide is no greater than the smaller claim, so
equal division prevails. Thus, x ≡ R(c, E) = ( c1

4
+ E

4
,− c1

4
+ 3E

4
). Note that

as E increases, x moves up along a line of slope 3 (Figure 3a). The point
reached when E = c2 is e1 ≡ ( c1

4
+ c2

4
,− c1

4
+ 3 c2

4
). If c2 < E, µ(c, E) = c

2
.

At first, equal division of any amount greater than c2 prevails. The process
described for E ≤ c2 is repeated for E ≤ c2

2
since this is the value of agent 2’s

revised claim (Figure 3b).
The path that results is as follows: divide box[(0, 0), c] into four equal

boxes by drawing a vertical line of abscissa c1
2

and a horizontal line of ordinate
c2
2
; divide the northeast box so defined into four equal boxes in a similar way;

repeat. Let d1 ≡ (0, 0) + ( c1
2
, c1

2
), d2 ≡ c

2
+ (3c1

4
, 3c1

4
), d3 ≡ 3c

4
+ (7c1

8
, 7c1

8
), and

so on. Let σ1 ≡ seg[(0, 0), d1], σ2 ≡ seg[ c
2
, d2], σ3 ≡ seg[3c

4
, d3], and so on.

Let e1 be the intersection of σ2 with the line of slope 3 emanating from d1,
e2 be the intersection of σ3 with the line of slope 3 emanating from d2, and
so on. Now, the path for c is bro.seg[(0, 0), d1, e1, d2, e2, . . .] (Figure 3c).

The equality c2 = 2c1 identifies the boundary between Case 1 and Case 2
examined next. Then, e1 = d2, e2 = d3, and so on. The segments of slope 1
vanish and we are left with a concatenation of segments of slope 3 from
( c1

2
, c1

2
) to c. Thus, the path for c is bro.seg[(0, 0), ( c1

2
, c1

2
), c] (Figure 4a).

Case 2: c2 > 2c1: The description of the path for this case is more
complex because the direction of the inequality between agent 2’s claim and
the amount to divide may not change until several iterations. The path
begins as in Case 1 with a segment of slope 1, and it continues with segments
of slope 3, slope 7,. . . 2k − 1, and so on, until E

2
= c2

2
, and c2 is revised down

to c2
2

instead of to E
2
. We refer to this sequence of steps as Stage 1. The

greater c2 is in relation to c1, the more steps in Stage 1. Stage 2 consists of a
parallel sequence of steps, and the path continues with a sequence of segments
of increasing slopes until once gain, the direction of the inequality between
agent 2’s claim and the amount to divide changes. Figure 4b illustrates the
construction for (c, E) such that c2 = 2.5c1 and up to E = 3c1.

5 Properties of the recursive rule

In this section, we undertake a systematic investigation of the properties of
the recursive rule. The properties we consider are standard in the literature,
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Figure 4: Path of awards for the recursive rule. (a) The case c1 = c2
2 .

(b) A configuration for which c1 < c2
2 . The path consists of parts, each of which

consists of sequences of increasing slopes, starting with a segment of slope 3. For
short, we write µk for µk(c, E).
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and we refer to Thomson (2003a, 2003b) for complete references.
By definition, the rule satisfies reasonable lower bounds on awards. It

obviously satisfies equal treatment of equals. In situations in which some
agents are deemed more deserving than others, this axiom is not desirable
however, but if needed, the rule can be redefined so as to accommodate an
asymmetric treatment of agents with equal claims. One introduces weights
α ∈ int∆N reflecting the extent to which certain agents are thought to be
more deserving than others.10 For each i ∈ N , let µα

i (c, E) ≡ αiti(c, E). We
now reformulate our lower bound as follows: the α-weighted reasonable
lower bound is S(c, E) = (αiti(c, E))i∈N . The α-weighted bound is satisfied
by the weighted constrained equal awards rule with weights α and by the
weighted versions of the Talmud rule with weights α (Hokari and Thomson,
2003a). However, the requirement S(c, E) = µα(c, E) + S(c− µα(c, E), E −∑

µα
i (c, E)) is met by only one rule, which is a weighted version of the

recursive rule. We omit the proof, which follows that of Theorem 1.
The recursive rule satisfies order preservation (Aumann and Maschler,

1985), the requirement that awards should be ordered as claims are, and that
so should losses. The proof relies on the fact that at each step of the recursion,
awards are ordered as claims are, as shown above, and that, after revision,
the order of claims is not reversed. Similarly, losses are ordered as claims are.
Indeed, note that if ci ≤ cj, then ci− 1

|N | min{ci, E} ≤ cj − 1
|N | min{ci, E}, as

can be seen by examining the three possible cases, E ≤ ci, ci < E ≤ cj, and
cj < E.

The rule satisfies anonymity, the requirement that the names of agents
should not matter, and homogeneity, the requirement that, starting from
any problem, if the data of the problem are multiplied by some positive
number, so should the recommended awards vector.

We now turn to two basic monotonicity properties. First is the require-
ment that when the amount available increases, each agent should receive at
least as much as he did initially. The idea of monotonicity is central to the
axiomatic literature on fair allocation (for a survey, see Thomson, 2003d).

Resource monotonicity: For each (c, E) ∈ CN and each E ′ > E, if
∑

ci ≥
E ′, then S(c, E ′) = S(c, E).

The following lemma relates the sequences of revised problems obtained
for two values of the amount available.

10The notation ∆N designates the simplex in RN .
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Lemma 4 For each (c, E) ∈ CN and each E ′ > E such that (c, E ′) ∈ CN , let
(ck, Ek) and (c′k, E ′k) be the revised problems of the k-th step, starting from
(c, E) and (c, E ′) respectively. Then, for each k > 1, c′k 5 ck and E ′k ≥ Ek.

We relegate the proof to the appendix.

Proposition 1 The recursive rule is resource monotonic.

Proof: Let (c, E) ∈ CN , and E ′ > E be such that (c, E ′) ∈ CN . Let i ∈ N .
By Lemma 4, and using the notation of the lemma, for each k > 1, c′i

k ≤ ci
k.

Then, c̄i ≡ limk→∞ ci
k ≥ limk→∞ c′i

k ≡ c̄′i. By definition of the recursive rule,
Ri(c, E

′) ≡ ci − c̄′i ≥ ci − c̄i ≡ Ri(c, E). ¤

Many models include the specification of individual parameters, repre-
senting initial ownership of assets, rights, obligations, and so on. Whenever
these parameters are valuable resources—as in the case of assets or rights—
it is natural to require that an increase in an individual’s parameter should
benefit him. If they are not valuable, what is natural to require is that an
increase should penalize him. Here, the parameter falls in the first category
and we require that if an agent’s claim increases, he should receive at least
as much as he did initially.

Claims monotonicity: For each (c, E) ∈ CN , each i ∈ N , and each c′i > ci,
we have Si(c

′
i, c−i, E) ≥ Si(c, E).11

We may also be interested in how the other agents are affected by an
increase in some agent’s claim. We require that each of them should receive
at most as much as he did initially.12

Others-oriented claims monotonicity: For each (c, E) ∈ CN , each i ∈ N ,
and each c′i > ci, we have SN\{i}(c′i, c−i, E) 5 SN\{i}(c, E).

Together with efficiency, (which is incorporated in the definition of a
rule,) this property implies claims monotonicity. In the two-claimant case,
the two properties are equivalent.

11The notation c−i designates the vector c from which the i-th coordinate has been
deleted, and the notation (c′i, c−i) the vector c in which the i-th coordinate has been
replaced by c′i.

12Thomson (1987) formulates a parallel for classical exchange economies.
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It will be convenient to first show that the recursive rule satisfies others-
oriented claims monotonicity, and deduce that it satisfies claims monotonic-
ity. We first prove a lemma which relates the revised problems after each
recursion when an agent’s claim increases.

Lemma 5 For each (c, E) ∈ CN , each i ∈ N , and each c′i > ci, let (ck, Ek)
and (c′i

k, c′k−i, E
′k) be the revised problems of the k-th step, starting from (c, E)

and (c′i, c−i, E) respectively. Then, for each k > 1, c′k = ck and E ′k ≤ Ek.

We relegate the proof to the appendix. It is by induction. We first show
that for each k > 1, c′k = ck. Then we show that at each step of the recursion,
the set of agents whose claim is smaller than the amount available for the
new problem is a subset of the corresponding set for the original problem.
Using these two facts we conclude that for each k > 1, E ′k ≤ Ek.

Our next result is an immediate consequence of Lemma 5 and the defini-
tion of the recursive rule.

Proposition 2 The recursive rule is others-oriented claims monotonic.

Proof: Let (c, E) ∈ CN , i ∈ N , and c′i > ci. By Lemma 5, for each j ∈ N\{i}
and each k > 1, c′j

k ≥ ck
j . Then, and using the notation of the lemma,

c̄′j ≡ limk→∞ c′j
k ≥ limk→∞ ck

j ≡ c̄j. By definition of the recursive rule,
Rj(c

′
i, c−i, E) ≡ cj − c̄′j ≤ cj − c̄j ≡ Rj(c, E). ¤

The following proposition is a direct corollary of Proposition 2:

Proposition 3 The recursive rule is claims monotonic.

Next we turn to an important invariance property. Since the part of an
agent’s claim that exceeds the amount available cannot be recovered anyway,
we might just as well ignore it: If an agent’s claim is truncated at the amount
available, the awards vector should not be affected. This property is satisfied
by several important rules,13 and as noted earlier, it is necessarily satisfied
by a rule that has a counterpart in the theory of coalitional games.14

Invariance under claims truncation: For each (c, E) ∈ CN , we have
S(c, E) = S(t(c, E), E).

13See Aumann and Maschler (1985) and Dagan and Volij (1993).
14This is proved by Curiel, Maschler and Tijs (1987).
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The proof of the next proposition is relegated to the appendix.

Proposition 4 The recursive rule is claims truncation invariant.

The recursive rule violates reasonable lower bounds on losses, self-
duality (Aumann and Maschler, 1985; the requirement that the rule should
coincide with its dual), and composition down (Moulin, 2000), which says
that if the amount to divide decreases from some initial value, the awards vec-
tor should be obtainable directly, or by using as claims vector the awards vec-
tor calculated for the initial amount, and composition up (Young, 1987),
which is an invariance property pertaining to the opposite possibility. It vi-
olates minimal rights first. To see this, let N ≡ {1, 2} and (c, E) ∈ CN be
given by (c, E) = (3, 6; 4). Since c2 = 2c1 and E > c1, R(c, E) is the point
of intersection of seg[( c1

2
, c1

2
), c] = seg[(1.5, 1.5), (3, 6)] with the budget line.

Thus, Ri(c, E) > 1.5. On the other hand, m(c, E) = (0, 1) and the revised
problem is (3, 5; 3). The amount to divide is equal to the smallest claim
and we obtain equal division in the second step, namely (1.5, 1.5). Thus,
R1(c, E) > 1.5 = 0 + 1.5 = m1(c, E) + R1(c−m(c, E), E −∑

mi(c, E)).

We continue with variable-population properties. First, the recursive rule
violates replication invariance, the requirement that for each problem,
the awards vector chosen for a replica of it should be the corresponding
replica of the awards vector chosen for the initial problem. This can be
seen as follows: let N ≡ {1, 2} and (c, E) ∈ CN be such (c, E) = (2, 4; 2).
Then, µ(c, E) = (1, 1) and R(c, E) = (1, 1). We replicate this problem once,
denoting by 2∗(c, E) the resulting problem and 2∗R(c, E) the corresponding
replica of R(c, E). We have µ(2 ∗ (c, E)) = µ(2, 4, 2, 4; 4) = (.5, 1, .5, 1), and
µ(c−µ(c, E)) = µ(1.5, 3, 1.5, 3; 1) = (.25, .25, .25, .25), so that R(2∗(c, E)) =
(.75, 1.25, .75, 1.25) 6= 2 ∗R(c, E), in violation of replication invariance.

Let r ∈ N denote the order of replication. When a problem (c, E) ∈ CN

is replicated r times, let r ∗ N be the population in the replica problem,
and r ∗ (c, E) the replica problem. In an r-replica of (c, E), we are led to
calculating the minimum of ci and rE, which for r large enough, is the
former quantity. Then, proportional division is the outcome. Note that for
each c ∈ RN

+ and each r ∈ N, the path of the recursive rule for cr∗N starts
with equal division.

Let N ∈ N and (c, E) ∈ CN . When a rule satisfies equal treatment of
equals, in an r-replica of (c, E), all clones of each member of N receive equal
amounts, so the awards vector the rule selects is the r-replica of some awards
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vector xr of (c, E). To say that the rule is replication invariant is to say
that xr is independent of r. If it is not replication invariant, it is natural to
enquire whether the sequence {xr} of awards vectors so defined has a limit,
and if yes, to identify the rule defined by associating to each problem this
limit. Questions of this type are addressed by Chun and Thomson (2003) who
obtain certain rules as limits of two rules that violate replication invariance.15

Here, we have convergence too, and interestingly, the rule towards which
convergence occurs is the proportional rule.

Theorem 2 The awards vector selected by the recursive rule for a replica
problem is the replica of an awards vector of the problem that is replicated
that, as the order of replication increases, converges to the proportional
awards vector of that problem.

Proof: Let N ∈ N and (c, E) ∈ CN be given. If E = 0, the answer is
straightforward, so let us assume that E > 0. Let r ∗ (c, E) be obtained by
replicating r-times the problem (c, E). For r large enough, for each i ∈ N ,
rE > ci, and at the first round, each agent i ∈ r∗N receives 1

r|N |ci. (The total

distributed is r
|N |

1
r

∑
j∈N cj = 1

|N |
∑

j∈N cj.) Revised claims are proportional
to original claims. At the second round, if the amount that remains to
divide is still larger than the largest revised claim, proportional division to
the revised claims prevails. Thus, total awards so far are still proportional
to original claims. This goes on until a stage k(r) at which the amount to
divide is smaller than the largest claim revised k(r) times. This remainder is
divided among r|N | claimants. Each copy of the original population receives
at most

max cj

r|N | , so the sum of the partial terms received by each member of
each copy is a quantity that goes to zero as r →∞. ¤

The recursive rule violates consistency. (The first application to claims
problems of the idea of consistency is due to Young, 1987). We could give
an example to make this point but we will instead derive it as a corollary
of a proposition that addresses the more general question whether the two-
claimant version of the rule has any consistent extension.16

15The random arrival and minimal overlap rules converge to the proportional and con-
strained equal losses rules respectively.

16In fact, the rule violates the weaker property of null claims consistency, the re-
quirement that if an agent’s claim is 0, removing him should not affect the awards recom-
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The answer is negative. The proof is based on a geometric technique
developed in Thomson (2001). This technique exploits the following simple
geometric implication of consistency of a rule: for each N ∈ N , each c ∈ RN

+ ,
and each N ′ ⊂ N , its path for c, when projected onto RN ′

, is a subset of
its path for cN ′ . Moreover, if the rule is resource monotonic, this projection
actually coincides with the path for cN ′ . Resource monotonicity holds here
since the recursive rule satisfies this property in the two-claimant case, and
this property is lifted (Dagan and Volij, 1997; Hokari and Thomson, 2003b).
So, if the recursive rule had a consistent extension, this extension would
be resource monotonic. The key to this sort of argument is to exploit the
projection implication of consistency for entire paths of awards, not just
point by point, and to understand which properties of paths are preserved
by projections and which are not.

Proposition 5 The two-claimant recursive rule has no bilaterally consistent
extension to general populations.

Proof: Let S be a consistent extension of the two-claimant recursive rule.
Let N ≡ {1, 2, 3} and c ∈ RN

+ be defined by c ≡ (10, 14, 20). Let Π3 be

the path of S for c{1,2} = (10, 14) ∈ R{1,2}
+ . Since c2 < 2c1, Case 1 of

the description of the rule given above applies. We will only need the first
two segments of Π3. Let Π2 be the path for c{1,3} = (10, 20) ∈ R{1,3}

+ .
Since c3 = 2c1, the boundary case covered under Case 1 applies, and
Π2 = bro.seg[(0, 0), ( c1

2
, c1

2
), c{1,3}] (the case illustrated in Figure 4a). Let

k1 ≡ ( c1
2
, c1

2
) and k2 ≡ k1 + c2−c1

4
(1, 3) = (− c1

4
+ c2

4
,− c1

4
+ 3 c2

4
) be the first

two kinks of Π3. Let `1 ≡ ( c1
2
, c1

2
) be the kink in Π2, and `2 be the point

of Π2 whose first coordinate is equal to k2
1. Since the first segment of Π3 is

seg[(0, 0), ( c1
2
, c1

2
)] ⊂ R{1,2}, and the first segment of Π2 is seg[(0, 0), ( c1

2
, c1

2
)] ⊂

R{1,3}, the path for c begins with seg[(0, 0, 0), ( c1
2
, c1

2
, c1

2
)] ⊂ RN . This segment

is contained in the plane of equation x2 = x3, and its projection onto R{2,3}
+

mended for the other claimants. To see this, let N ≡ {1, 2} and (c, E) ∈ CN be given by
(c, E) = (2, 4; 3). Then, µ(c, E) = (1, 1.5) and R(c, E) = (1, 1.5) + (.25, .25) = (1.25, 1.75).
Now, let N ′ ≡ {1, 2, 3} and (c′, E′) ∈ CN ′

be given by (c′, E′) = (2, 4, 0; 3). We have
µ(c′, E′) = (.666, 1, 0); revised claims are (1.33, 3, 0) and the revised amount to divide
1.33. In the new problem (c′′, E′′) we have µ(c′′, E′′) = 1

3 (1.33, 1.33, 0). From that point
on, the revised claims of agents 1 and 2, once truncated, are equal, so we obtain a sequence
of equal division steps, which when taken to the limit, give us an equal division of 1.33.
The final awards vector is (.666, 1, 0) + (.666, .666, 0) 6= (1.25, 1.75, 0).
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is seg[(0, 0), ( c1
2
, c1

2
)], (in the figure, ( c1

2
, c1

2
) ∈ R{2,3}

+ is the point m1). Since
the slope of the second segment of Π3 is equal to that of the second segment
of Π2 (both slopes are equal to 3), k2

2 = `2
3 = − c1

4
+ 3 c2

4
≡ a. A simple

calculation shows that a = 8. Thus, the point in RN whose projections onto
R{1,2} and R{1,3} are k2 and `2 has equal second and third coordinates, and
its projection onto R{2,3} belongs to the 45◦ line of that space. Thus, for S
to be consistent, the path for c{2,3} = (14, 20) ∈ R{2,3}

+ should also contain
seg[m1, (a, a)]. However, since c3 < 2c2, Case 1 applies to c{2,3}: the path
of the recursive rule for c{2,3} is also piece-wise linear, its first two segments
being seg[(0, 0), ( c2

2
, c2

2
)] and a segment of slope 3 with lower endpoint ( c2

2
, c2

2
):

it has a kink at ( c2
2
, c2

2
). Since 2a = − c1

2
+3 c2

2
> c2, the point (a, a) lies above

the line of equation t2 + t3 = c2. We have obtained a contradiction. ¤

6 A comparison with another lower bound

Other bounds have been proposed for rules than the one we studied here. A
simple one is that each agent should receive the minimum of his claim and
equal division (Moulin, 2002). This constrained equal division lower
bound on awards is more restrictive than the reasonable lower bounds on
awards (MTV, 2004a), and in fact, by itself, it characterizes the constrained
equal awards rule in the two-claimant case.

Let us base on it an invariance axiom parallel to the one we based on
reasonable awards: for each problem, the awards vector should be obtainable
in two ways, (i) directly, or (ii) in two steps, by first assigning to each claimant
his lower bound, and in a second step, assigning to him what the rule would
in the appropriately revised problem.17 It is straightforward to see that this
property, independently of the number of claimants, is satisfied only by the
constrained equal awards rule.

The constrained equal division lower bound is the largest anonymous
bound that one can impose on an agent’s award that depends only on the
agent’s own claim and the amount to divide. To see this, let b(ci, E) be
a bound of this type imposed on claimant i’s award in the problem (c, E).
(Anonymity is reflected in the fact that the function b is independent of i.)

17Let νi(c, E) ≡ min{ci,
E
|N |} and ν(c, E) ≡ (νi(c, E))i∈N . Then, x = ν(c, E) is the

constrained equal division lower bound and the invariance property is S(c, E) = ν(c, E) +
S(c− ν(c, E), E −∑

i∈N νi(c, E)).
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Figure 5: The two-claimant version of the recursive rule has no consis-
tent extension to general populations. This figure pertains to the claims
vector c ≡ (10, 14, 20). It shows the first two segments of the path Π3 of
the recursive rule for c{1,2} = (10, 14) ∈ R{1,2}

+ , and its entire path Π2 for

c{1,3} = (10, 20) ∈ R{1,3}
+ . The path for c of a consistent extension of R (this

path is not represented), if such an extension exists, can be constructed from these
projections, Π2 and Π3. Its projection onto R{2,3} contains seg[(0, 0),m2].
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By definition of a rule, we need b(ci, E) ≤ ci. Also, for there to exist an
awards vector meeting this bound for each agent, the profile (b(ci, E))i∈N

should be such that
∑

b(ci, E) ≤ E. Fix i ∈ N . If ci > E, in the well-
defined problem (c̄, E) ∈ CN in which for each j ∈ N , c̄j = ci, we obtain
|N |b(ci, E) ≤ E. Altogether, b(ci, E) ≤ min{ci,

E
|N |}, as claimed.

The property of a rule that it meets the constrained equal division lower
bound is of course lifted since (i) in the two-claimant case, only one rule
satisfies it, the two-claimant constrained equal awards rule, and (ii) the con-
strained equal awards rule, the only consistent rule that coincides with its
two-claimant version,18 also satisfies the bound. On the other hand, the
property is not preserved under the attribution of minimal rights operator.
Indeed, the rule obtained by subjecting the two-claimant constrained equal
awards rule to this operator is the Talmud rule, which does not meet the
bound.

The bound we have considered here is less demanding than the constrained
equal division lower bound, but the invariance axiom based on it also leads
to a unique rule.

7 Appendix

In this appendix we prove Lemmas 4 and 5.

Proof: (of Lemma 4) The proof is by induction.

Step 1 of the induction.

Part 1: c′2 5 c2.
Let i ∈ N . Using the hypothesis c1

i = c′i
1, we distinguish three cases:

Case 1: c1
i = c′i

1 > E ′1 > E1.
c′i

2 ≡ c′i
1 − 1

n
min{c′i1, E ′1}

= c′i
1 − 1

n
E ′1 (since c′i

1 > E ′1)
≤ c1

i − 1
n
E1 (since c1

i = c′i
1 and E ′1 > E1)

≤ c1
i − 1

n
min{c1

i , E
1}

≡ c2
i

Case 2: E ′1 ≥ c1
i = c′i

1 > E1.

18This is a consequence of the Elevator Lemma discussed in footnote 8.
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c′i
2 ≡ c′i

1 − 1
n

min{c′i1, E ′1}
= c′i

1 − 1
n
c′i

1 (since c′i
1 ≤ E ′1)

≤ c1
i − 1

n
E1 (since c1

i = c′i
1 and c′i

1 > E1)
≤ c1

i − 1
n

min{c1
i , E

1}
≡ c2

i

Case 3: E ′1 > E1 ≥ c1
i = c′i

1.
c′i

2 ≡ c′i
1 − 1

n
min{c′i1, E ′1}

= c′i
1 − 1

n
c′i

1 (since E ′1 ≥ c′i
1)

= c1
i − 1

n
c1
i (since c′i

1 = c1
i )

≤ c1
i − 1

n
min{c1

i , E
1}

≡ c2
i

Part 2: E′2 ≥ E2.
Let A ≡ {i ∈ N : c1

i ≤ E1} and A′ ≡ {i ∈ N : c′i
1 ≤ E ′1}. We claim

that that A′ ⊇ A (and therefore, A′C ⊆ AC). Indeed, let i ∈ A. Then,
c1
i ≤ E1. Since E1 < E ′1, then c′i

1 = c1
i ≤ E1 < E ′1, which implies i ∈ A′.

Second, by the definitions of A and A′,

E2 = E1 − 1

n

∑
i∈A

c1
i −

1

n
|AC |E1 =

n− |AC |
n

E1 − 1

n

∑
i∈A

c1
i ,

and

E ′2 = E ′1 − 1

n

∑

i∈A′
ci
′1 − 1

n
|A′C |E ′1.

Since A′ ⊇ A, then A′ = A ∪ (A′ \ A). Thus,

E ′2 = E ′1 − 1

n

∑
i∈A

c′i
1 − 1

n

∑

i∈A′\A
c′i

1 − 1

n
|A′C |E ′1.

For each i ∈ A′ \ A, we have c′i
1 ≤ E ′1. Thus,

E ′2 ≥ E ′1 − 1

n

∑
i∈A

ci
′1 − 1

n
|A′ \ A|E ′1 − 1

n
|A′C |E ′1.

By the definitions of A and A′, we have (A′ \ A) ∪ A′C = AC . Thus,

25



E ′2 ≥ E ′1 − 1

n

∑
i∈A

ci
′1 − 1

n
|AC |E ′1 =

n− |AC |
n

E ′1 − 1

n

∑
i∈A

ci
′1.

Since c1
i = ci

′1 and E
′1 > E1,

E ′2 ≥ n− |AC |
n

E1 − 1

n

∑
i∈A

c1
i = E2.

Step k of the induction. Let k ≥ 2, and suppose that for each ` ∈
{1, . . . , k − 1}, we have c′` 5 c` and E ′` ≥ E`.

Part 1: c′k 5 ck.
Let i ∈ N . Using the induction hypothesis, we distinguish four cases:

Case 1: ck−1
i ≥ c′i

k−1 ≥ E ′k−1 ≥ Ek−1.

c′i
k ≡ c′i

k−1 − 1
n

min{c′ik−1, E ′k−1}
= c′i

k−1 − 1
n
E ′k−1 (since c′i

k−1 ≥ E ′k−1)

≤ ck−1
i − 1

n
Ek−1 (since ck−1

i ≥ c′i
k−1 and Ek−1 ≤ E ′k−1)

≤ ck−1
i − 1

n
min{ck−1

i , Ek−1}
≡ ci

k

Case 2: ck−1
i ≥ E ′k−1 ≥ c′i

k−1 ≥ Ek−1, or E ′k−1 ≥ ck−1
i ≥ c′i

k−1 ≥ Ek−1.

c′i
k ≡ c′i

k−1 − 1
n

min{c′ik−1, E ′k−1}
= c′i

k−1 − 1
n
c′i

k−1 (since E ′k−1 ≥ c′i
k−1)

≤ ck−1
i − 1

n
Ek−1 (since ck−1

i ≥ c′i
k−1 and c′i

k−1 ≥ Ek−1)
≤ ck−1

i − 1
n

min{ci
k−1, Ek−1}

≡ ck
i

Case 3: ck−1
i ≥ E ′k−1 ≥ Ek−1 ≥ c′i

k−1, or E ′k−1 ≥ ck−1
i ≥ Ek−1 ≥ c′i

k−1.

c′i
k ≡ c′i

k−1 − 1
n

min{c′ik−1, E ′k−1}
= c′i

k−1 − 1
n
c′i

k−1 (since E ′k−1 ≥ c′i
k−1)

≤ ck−1
i − 1

n
ck−1
i (since ck−1

i ≥ c′i
k−1)

≤ ck−1
i − 1

n
min{ci

k−1, Ek−1}
≡ ck

i

Case 4: E ′k−1 ≥ Ek−1 ≥ ck−1
i ≥ c′i

k−1.
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c′i
k ≡ c′i

k−1 − 1
n

min{c′ik−1, E ′k−1}
= c′i

k−1 − 1
n
c′i

k−1 (since E ′k−1 ≥ c′i
k−1)

≤ ck−1
i − 1

n
ci

k−1 (since ci
k−1 ≥ c′i

k−1)
≤ ck−1

i − 1
n

min{ck−1
i , Ek−1}

≡ ck
i

Part 2: E′k ≥ Ek.
Let A ≡ {i ∈ N : ck−1

i ≤ Ek−1} and A′ ≡ {i ∈ N : c′i
k−1 ≤ E ′k−1}.

We claim that A′ ⊇ A (and therefore A′C ⊆ AC). Indeed, let i ∈ A. Then,
ck−1
i ≤ Ek−1. By the induction hypothesis, c′i

k−1 ≤ ck−1
i and E ′k−1 ≥ Ek−1.

Thus, c′i
k−1 ≤ E ′k−1, which implies i ∈ A′.

Second, by the definitions of A and A′,

Ek = Ek−1 − 1

n

∑
i∈A

ck−1
i − 1

n
|AC |Ek−1 =

n− |AC |
n

Ek−1 − 1

n

∑
i∈A

ck−1
i

and

E ′k = E ′k−1 − 1

n

∑

i∈A′
ci
′k−1 − 1

n
|A′C |E ′k−1.

Since A′ ⊇ A, then A′ = A ∪ (A′ \ A). Thus,

E ′k = E
′k−1 − 1

n

∑
i∈A

ci
′k−1 − 1

n

∑

i∈A′\A
ci
′k−1 − 1

n
|A′C |E ′k−1.

For each i ∈ A′ \ A, we have ci
′k−1 ≤ E

′k−1. Thus,

E ′k ≥ E ′k−1 − 1

n

∑
i∈A

c′i
k−1 − 1

n
|A′ \ A|E ′k−1 − 1

n
|A′C |E ′k−1.

By the definitions of A and A′, we have (A′ \ A) ∪ A′C = AC . Thus,

E ′k ≥ E ′k−1 − 1

n

∑
i∈A

c′i
k−1 − 1

n
|AC |E ′k−1

=
n− |AC |

n
E ′k−1 − 1

n

∑
i∈A

c′i
k−1

.

By the induction hypothesis, c′1
k−1 ≤ ck−1

i and E ′k−1 ≥ Ek−1. Thus,

E ′k ≥ n−|AC |
n

Ek−1 − 1
n

∑
i∈A ck−1

i = Ek.
¤
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The proof of Lemma 5 is parallel to that of Lemma 4.

Proof: (of Lemma 5) The proof is by induction. Without loss of generality
suppose that the agent whose claim increases is claimant 1; that is, c′1 > c1.

Step 1 of the induction.

Part 1: c′2 = c2.
For each i ∈ {2, . . . , n}, we have c1

i = c′i
1, which implies c′i

2 ≡ c′i
1 −

1
n

min{c′i1, E1} = c1
i − 1

n
min{c1

i , E
1} ≡ c2

i . Thus, for each i ∈ {2, . . . , n},
c′i

2 ≥ c2
i .

It remains to deal with claimant 1. Using the hypothesis c′1
1 > c1

1, we
distinguish three cases.

Case 1: c′1
1 > c1

1 ≥ E1 = E ′1.
c′1

2 ≡ c′1
1 − 1

n
min{c′11, E ′1}

≥ c′1
1 − 1

n
E ′1

≥ c1
1 − 1

n
E1 (since c′1

1 > c1
1 and E1 = E ′1)

= c1
1 − 1

n
min{c1

1, E
1} (since c1

1 ≥ E1)
≡ c2

1

Case 2: c′1
1 > E1 = E ′1 ≥ c1

1.
c′1

2 ≡ c′1
1 − 1

n
min{c′11, E ′1}

≥ c′1
1 − 1

n
c′1

1

≥ c1
1 − 1

n
c1
1 (since c′1

1 > c1
1)

= c1
1 − 1

n
min{c1

1, E
1} (since E1 ≥ c1

1)
≡ c2

1

Case 3: E1 = E ′1 ≥ c′1
1 > c1

1.
c′1

2 ≡ c′1
1 − 1

n
min{c′11, E ′1}

≥ c′1
1 − 1

n
c′1

1

≥ c1
1 − 1

n
c1
1 (since c′1

1 > c1
1)

= c1
1 − 1

n
min{c1

1, E
1} (since E1 ≥ c1

1)
≡ c2

1

Part 2: E′2 ≤ E2.
Since E2 ≡ E1− 1

n

∑
i∈N min{c1

i , E
1}, E ′2 ≡ E ′1− 1

n

∑
i∈N min{c′i1, E ′1},

E ′1 = E1, and for each i ∈ N , c′i
1 ≥ c1

i , then E ′2 ≤ E2.

Step k of the induction. Let k ≥ 2 and suppose that for each ` ∈
{1, . . . , k− 1}, we have c′` = c` and E ′` ≤ E`. We need to show that c′k = ck

and E ′k ≤ Ek.
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Part 1: c′k = ck.
Let i ∈ N . Using the induction hypothesis, we distinguish four cases:

Case 1: c′i
k−1 ≥ ck−1

i ≥ Ek−1 ≥ E ′k−1.

c′i
k ≡ c′i

k−1 − 1
n

min{c′ik−1, E ′k−1}
≥ c′i

k−1 − 1
n
E ′k−1

≥ ck−1
i − 1

n
Ek−1 (since c′i

k−1 ≥ ck−1
i and Ek−1 ≥ E ′k−1)

= ck−1
i − 1

n
min{ck−1

i , Ek−1} (since ck−1
i ≥ Ek−1)

≡ ck
i

Case 2: c′i
k−1 ≥ Ek−1 ≥ ck−1

i ≥ E ′k−1, or Ek−1 ≥ c′i
k−1 ≥ ck−1

i ≥ E ′k−1.

c′i
k ≡ c′i

k−1 − 1
n

min{c′ik−1, E ′k−1}
≥ c′i

k−1 − 1
n
E ′k−1

≥ ck−1
i − 1

n
ci

k−1 (since c′i
k−1 ≥ ck−1

i and ck−1
i ≥ E ′k−1)

= ck−1
i − 1

n
min{ck−1

i , Ek−1} (since Ek−1 ≥ ck−1
i )

≡ ck
i

Case 3: c′i
k−1 ≥ Ek−1 ≥ E ′k−1 ≥ ck−1

i , or Ek−1 ≥ c′i
k−1 ≥ E ′k−1 ≥ ck−1

i .

c′i
k ≡ c′i

k−1 − 1
n

min{c′ik−1, E ′k−1}
≥ c′i

k−1 − 1
n
E ′k−1

≥ E ′k−1 − 1
n
E ′k−1 (since c′i

k−1 ≥ E ′k−1)

≥ ck−1
i − 1

n
ck−1
i (since E ′k−1 ≥ ck−1

i )
= ck−1

i − 1
n

min{ck−1
i , Ek−1} (since Ek−1 ≥ ck−1

i )
≡ ck

i

Case 4: Ek−1 ≥ E ′k−1 ≥ c′i
k−1 ≥ ck−1

i .

c′i
k ≡ c′i

k−1 − 1
n

min{c′ik−1, E ′k−1}
≥ c′i

k−1 − 1
n
c′i

k−1

≥ ck−1
i − 1

n
ck−1
i (since c′i

k−1 ≥ ck−1
i )

= ck−1
i − 1

n
min{ci

k−1, Ek−1} (since Ek−1 ≥ ck−1
i )

≡ ck
i

Part 2: E′k ≤ Ek. Let A ≡ {i ∈ N : ck−1
i ≤ Ek−1} and A′ ≡ {i ∈

N : c′i
k−1 ≤ E ′k−1}.19 We claim that A′ ⊆ A (and therefore A

′C ⊇ AC).
Indeed, let i ∈ A′. Then, c′i

k−1 ≤ E ′k−1. By the induction hypothesis,
ck−1
i ≤ c′i

k−1 and E ′k−1 ≤ Ek−1. Thus, ck−1
i ≤ Ek−1, which implies i ∈ A′.

Next, by the definitions of A and A′,

19The dependence of A and A′ is not indicated, as this dependence is not relevant in
the proof.
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E ′k = E ′k−1 − 1

n

∑

i∈A′
c′i

k−1 − 1

n
|A′C |E ′k−1

=
n− |A′C |

n
E ′k−1 − 1

n

∑

i∈A′
c′i

k−1
(∗)

and

Ek = Ek−1 − 1

n

∑
i∈A

ck−1
i − 1

n
|AC |Ek−1.

Since A′ ⊆ A, then A = A′ ∪ (A \ A′). Thus,

Ek = Ek−1 − 1

n

∑

i∈A′
ck−1
i − 1

n

∑

i∈A\A′
ck−1
i − |AC |Ek−1.

For each i ∈ A \ A′, we have ck−1
i ≤ Ek−1. Thus,

Ek ≥ Ek−1 − 1

n

∑

i∈A′
ck−1
i − 1

n
|A \ A′|Ek−1 − 1

n
|AC |Ek−1.

By the definitions of A and A′, we have (A \ A′) ∪ AC = A
′C . Thus,

Ek ≥ Ek−1 − 1

n

∑

i∈A′
ck−1
i − 1

n
|A′C |Ek−1 =

n− |A′C |
n

Ek−1 − 1

n

∑

i∈A′
ck−1
i .

By the induction hypothesis, c′i
k−1 ≥ ck−1

i and E ′k−1 ≤ Ek−1. Thus, by
(∗),

E ′k =
n− |A′C |

n
E ′k−1 − 1

n

∑

i∈A′
c′i

k−1 ≤ Ek.

¤

To simplify notation, for each k ≥ 2, let us denote the sum of the vectors
of dividends up to Step k by

Mk(c, E) ≡
k−1∑

l=1

µl(c, E).
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Then, for each k ≥ 2, we can write the k-th revision of (c, E) as

(ck, Ek) =

(
c−Mk(c, E), E −

∑
i∈N

Mk
i (c, E)

)

and the k-th vector of dividends as

µk(c, E) = µ

(
c−Mk(c, E), E −

∑
i∈N

Mk
i (c, E)

)
.

Proof: (of Proposition 4)
Let (c, E) ∈ CN and consider (t(c, E), E) ∈ CN .
Let i ∈ N . By definition, µi(c, E) = 1

n
min{ci, E} = 1

n
ti(c, E) =

1
n

min{ti(c, E), E} = µi(t(c, E), E). Thus,

µ(c, E) = µ(t(c, E), E). (1)

Claim: For each k ∈ N, µk(c, E) = µk(t(c, E), E).
The proof is by induction. The case k = 1 is covered by (1). Now, let

k ≥ 2 and suppose that, for each l ∈ {1, . . . , k− 1}, µl(c, E) = µl(t(c, E), E).
Then

Mk(c, E) =
k−1∑

l=1

µl(c, E) =
k−1∑

l=1

µl(t(c, E), E) = Mk(t(c, E), E).

By definition of the dividends,

µk(c, E) = µ

(
c−Mk(c, E), E −

∑
i∈N

Mk
i (c, E)

)
.

Since, as just proved, Mk(c, E) = Mk(t(c, E), E), we have

µk(c, E) = µ

(
c−Mk(t(c, E), E), E −

∑
i∈N

Mk
i (t(c, E), E)

)
. (2)

Let i ∈ N . There are two cases:
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Case 1: ci ≤ E.
Then, ti(c, E) = ci and from (2), we have

µk
i (c, E) = µi

(
t(c, E)−Mk(t(c, E), E), E −

∑
j∈N

Mk
j (t(c, E), E)

)
= µk

i (t(c, E), E),

where the second equality is by definition of the dividends. The claim is
proved.

Case 2: ci > E.
Then, ci > ti(c, E) = E, and

ci −Mk
i (t(c, E), E) > ti(c, E)−Mk

i (t(c, E), E) ≥ E −
∑
j∈N

Mk
j (t(c, E), E),

which implies:

ti

(
c−Mk(t(c, E), E), E −

∑
j∈N

Mk
j (t(c, E), E)

)
= E −

∑
j∈N

Mk
j (t(c, E), E),

(3)
and

ti

(
t(c, E)−Mk(t(c, E), E), E −

∑
j∈N

Mk
j (t(c, E), E)

)
= E−

∑
j∈N

Mk
j (t(c, E), E).

(4)
From (1), (2) and (3),

µk
i (c, E) = µi

(
E −

∑
j∈N

Mk
j (t(c, E), E), E −

∑
j∈N

Mk
j (t(c, E), E)

)
,

and this equality, together with (1) and (4), yields µk
i (c, E) = µk

i (t(c, E), E).
The claim is proved.

Now, by definition of the recursive rule,

R(c, E) =
∞∑

k=1

µk(c, E) =
∞∑

k=1

µk(t(c, E), E) = R(t(c, E), E).

¤
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