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Abstract

We study the behavior of rules for the adjudication of conflicting claims when
there are a large number of claimants with small claims. We model such sit-
uations by replicating some basic problem. We show that under replication,
the random arrival rule (O’Neill, 1982) behaves like the proportional rule, the
rule that is the most often recommended in this context. Also, under repli-
cation, the minimal overlap rule (O’Neill, 1982) behaves like the constrained
equal losses rule, the rule that selects a division at which all claimants expe-
rience equal losses subject to no-one receiving a negative amount.

Journal of Economic Literature classification numbers: D63, D70.

Keywords: Claims problems. Replication. Random arrival rule. Propor-
tional rule. Minimal overlap rule. Constrained equal losses rule.



1 Introduction

A “claims problem” consists of a group of agents having claims on a resource
that add up to more than is available. A “rule” associates with each problem
a division of the resource among the claimants. An important example is
when the liquidation value of a firm has to be divided among its creditors.
In his formulation and study of the model, O’Neill (1982) proposed a number
of rules and suggested a variety of ways of evaluating rules. This paper is a
contribution to the literature spawned by this pioneering work.1

Our purpose is to study the behavior of rules under “replication” of prob-
lems. Given a natural number k, in the k-replica of a problem, each of the
claimants initially present has k − 1 “clones”, that is, agents whose claims
are equal to his, and the amount to divide is k times what it was initially.
The replication exercise allows us to obtain insight into situations in which
there are a large number of claimants whose claims are small in relation to
the amount to divide (small investors in a local savings bank that has gone
bankrupt, say). Replicating economies is a standard technique of general
equilibrium theory to gain understanding of the behavior of the Walrasian
rules and other rules in situations where traders are negligible relative to the
entire market (Debreu and Scarf, 1963). In the recent fairness literature, it
has also become common to include a replication test in the battery of tests
to which allocation rules are subjected to evaluate them (Thomson, 1988).2

A rule is “invariant under replication” if what each claimant is awarded in
any problem is also what he and each of his clones is awarded in any replica of
the problem. Several important rules are invariant under replication. They
include the “proportional rule”, the rule that is the most often recommended
in this context, the “constrained equal awards rule”, which selects the division
at which all agents receive equal amounts subject to no-one receiving more
than his claim, the “constrained equal losses rule”, which selects the division
at which all claimants experience equal losses subject to no-one receiving a
negative amount, and the “Talmud rule”, a rule proposed by Aumann and
Maschler (1985) in order to rationalize certain numerical examples described
in the Talmud. Some rules are not replication invariant however. The two
main ones are the “random arrival” rule and the “minimal overlap” rule,
both introduced by O’Neill (1982): The random arrival rule is based on a

1For a survey of the literature devoted to this subject, see Thomson (2003).
2Replicating is not the only technique to model problems with a large number of agents

with small claims. In the conclusion, we suggest alternative ones.
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first-come first-serve scenario; for each possible order in which claimants may
arrive to be compensated, assign to each of them an amount equal to his claim
if that is possible, and whatever is left otherwise; then, take the average of
the resulting awards vectors, assuming that all orders of arrival occur with
equal probabilities. Informally speaking, the minimal overlap rule chooses
awards vectors that minimize “extent of conflict” over each unit available.
(The formal definition is given below.)

Although the random arrival and minimal overlap rules are not replica-
tion invariant, we ask whether anything interesting can be said about the
awards vectors they recommend for replicated problems. The answer is yes,
and our main findings relate the rules to two of the rules mentioned ear-
lier. As the order of replication increases, the random arrival rule “behaves
like” the proportional rule, and the minimal overlap rule “behaves like” the
constrained equal losses rule.

Of course these convergence results cannot be interpreted as the core
convergence results of general equilibrium theory, but they reveal connections
between rules that are helpful in understanding the subject. Of particular
relevance is that, to the extent that our interest in rules largely stems from
the properties they enjoy, one can deduce from the convergence of some
rule to another that in some approximate sense, the former will inherit the
properties of the latter when the number of claimants is large enough. The
proportional rule is known to satisfy a large number of desirable properties,
many of which are not satisfied by the random arrival rule (the reverse is true
for only a few properties). The random arrival rule will therefore satisfy these
properties approximately when the number of claimants is large. Similarly,
the constrained equal losses rule satisfies several properties that the minimal
overlap rule violates (and here too, the reverse is true in only a few cases).
One can deduce from our analysis that the minimal overlap rule satisfies these
properties in some approximate sense, once again, in situations in which the
number of claimants is large enough.

2 The model

There is an infinite set of “potential” claimants, indexed by the natural
numbers N. At any given time however, only a finite number of them are
present. Let N be the class of finite subsets of N. A claims problem is a
pair (c, E) ∈ RN

+ ×R+, where N ∈ N , such that
∑

N ci ≥ E. For each i ∈ N ,
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ci is the claim of agent i; c is the claims vector, and E is the amount
to divide. Let CN be the class of all such problems. A rule is a function
defined on the union of all CN ’s, where N ranges over N , which associates
with each N ∈ N and each (c, E) ∈ CN a point of RN

+ whose coordinates
add up to E—we refer to this property as “efficiency”—and at which no
agent receives more than his claim. A vector satisfying these conditions is an
awards vector for (c, E). Our generic notation for a rule is the letter S.
In a Euclidean space of dimension equal to the number of claimants, and for
each claims vector, we refer to the path followed by the awards vector chosen
by a rule as the amount to divide varies from 0 to the sum of the claims, as
the path of awards of the rule for the claims vector.

Next, we introduce the two rules whose behavior under replication we
will study. The first rule, defined by O’Neill (1982), is obtained by imagining
claimants arriving one after the other and being fully compensated until
money runs out; then, taking the average of the resulting awards vectors
when all orders of arrival are equally likely. Let ΠN designate the class of
bijections on N .

Random arrival rule, RA: For each (c, E) ∈ CN and each i ∈ N ,

RAi(c, E) ≡ 1

|N |!
∑

π∈ΠN

min{ci, max{E −
∑

j∈N,π(j)<π(i)

cj, 0}}.

The second rule, also defined by O’Neill (1982), generalizes a proposal
made by Rabad (12-th Century): imagine that the amount available consists
of distinct parts, and that each agent, instead of expressing his claim in some
abstract way, claims specific parts of total amount equal to his claim; now
arrange which parts agents claim so as to “minimize conflict” in the following
way: first, make the part of the amount to divide claimed by exactly one
agent as large as possible; this maximization may have many solutions, so
narrow them down by turning attention to the part that is claimed by exactly
two agents and rearrange claims so as to make it as large as possible; this
second maximization may still have several solutions, so perform a further
narrowing down by turning attention to the part that is claimed by exactly
three agents, and so on; finally divide each part equally among all agents
claiming it, and have each claimant collect the compensations he gets from
the various parts he claimed.
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Minimal overlap rule, MO: For each (c, E) ∈ CN , claims on specific
parts of E are arranged so that the part claimed by exactly one claimant
is maximized, and for each k = 2, . . . , |N | − 1 successively, subject to the
previous k maximizations being solved, the part claimed by exactly k + 1
claimants is maximized. Once claims are arranged in this way, for each part,
equal division prevails among all agents claiming it. Each agent receives the
sum of the compensations he gets from the various parts he claimed.

For the proof of Theorem 2 below, we rely on the following “computa-
tional” characterization of the rule (O’Neill, 1982).3

Proposition 1 Up to relabelling parts of the amount available, there is a
unique arrangement of claims achieving minimal overlap. It is obtained as
follows:

Case 1: There is j ∈ N such that cj ≥ E. Then, each claimant i ∈ N such that
ci ≥ E claims [0, E] and each other claimant i claims [0, ci] (claims are
nested).

Case 2: max cj < E. Then, there is t ∈ [0, E] such that

(a) each claimant i ∈ N such that ci ≥ t claims [0, t] as well as a part
of [t, E] of size ci − t, with no overlap between these claims;

(b) each other claimant i claims [0, ci].

It is convenient to picture the amount to divide as a horizontal segment of
length E, with each claimant “covering” part of it with his claim. Case 2-b of
Proposition 1 states that for some t ∈ R+, each part of the amount to divide
exceeding t is covered by only one claimant: thus, t should be such that∑

i∈N |ci>t ci − t = E − t. For instance, consider the problem with claimant

set N ≡ {1, 2, 3} and (c, E) ≡ ((2, 5, 6), 8). No claim is larger than E so
indeed Case 2-b applies. The “equilibrium” t lies between the smallest and
second smallest claim, and it is defined by the equation 5− t + 6− t = 8− t
(then t = 3). Claimant 1 receives x1 ≡ 2

3
because whatever he claims is also

claimed by the other two agents. Claimant 2 receives x1 + t−2
2

+5− t because
he also claims the interval t−2, an interval that is claimed by agent 3 as well,
the last term (5− t) coming from his claiming (alone) an interval of size 5− t.

3The notation [x, y] refers to the interval from x to y.
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Figure 1: Example illustrating the definition of the minimal overlap
rule.

Claimant 3 receives x1 + t−2
2

+ 6− t, the first two terms being calculated as
for claimant 2, and the last term (6− t) coming form his claiming (alone) an
interval of size 6− t. In Figure 1, the interval F (t) ≡ [t, E] = [3, 8] is covered
by parts of the claims of agents 2 and 3: agent 2 “covers” the subinterval
[6, 8] and agent 3 the subinterval [3, 6].

Next, we define the replication operation. Let N ∈ N and (c, E) ∈ CN .
Also, let k be a natural number. By a k-replica of (c, E) we mean a
problem in which each of the members of N has k−1 “clones”—these agents
have claims equal to his—and in which the amount available is k times what
it is initially. Formally, if N ′ designates the claimant set in the replicated
problem, we have N ′ ⊃ N , |N ′| = k|N |, and there is a partition of N ′ into
|N | groups of k agents indexed by i ∈ N , (N i)i∈N , such that for each i ∈ N
and each j ∈ N i, cj = ci. The property of a rule formulated next is that the
amount it assigns to each i ∈ N in (c, E) is also the amount it assigns to him
and to each of his clones in any k-replica of (c, E).

Replication invariance: For each N ∈ N , each (c, E) ∈ CN , each N ′ ⊃ N ,
and each (c′, E ′) ∈ CN ′

, if (c′, E ′) is a k-replica of (c, E) with associated
partition (N i)i∈N , then for each i ∈ N and each j ∈ N i, Sj(c

′, E ′) = Si(c, E).

The following two rules are replication invariant : for the proportional
rule, awards are proportional to claims. For the constrained equal losses
rule, the losses agents experience are equal subject to no-one receiving a
negative amount.

Proportional rule, P : For each (c, E) ∈ CN , P (c, E) ≡ λc, where λ ∈ R+

is chosen so as to achieve feasibility.4

4Then, λ = E/
∑

ci. For this expression to be well-defined, we exclude the degenerate
case

∑
ci = 0, for which, by definition of a claims problem E = 0, and the only choice is

(0, . . . , 0).
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Constrained equal losses rule, CEL: For each (c, E) ∈ CN and each
i ∈ N , CELi(c, E) ≡ max{0, ci − λ}, where λ ∈ R+ is chosen so as to
achieve feasibility.

On the other hand, neither the minimal overlap rule nor the random ar-
rival rule is replication invariant, as can be seen by means of simple examples.

3 The results

Our results are convergence results for the random arrival and minimal over-
lap rules. They are made possible by the fact that the rules satisfy equal
treatment of equals : two agents with equal claims should be awarded equal
amounts. Therefore, the awards vector of a replicated problem is the replica
of an awards vector for the problem that is replicated, and its behavior can
be studied in a space of dimension equal to the number of claimants involved
in the problem subject to the replication.

Our first result pertains to the random arrival rule. In its proof, we use
the notation k ∗N to indicate a k replica of the population N .

Theorem 1 As the order of replication increases, the random arrival awards
vector of a replicated problem is the replica of an awards vector for the problem
that is replicated that converges to the proportional awards vector of that
problem.

Proof: Without loss of generality, let N ≡ {1, . . . , n} and (c, E) ∈ CN . If for
some i ∈ N, ci = 0, then trivially RAi(c, E) = Pi(c, E) = 0. From now on,
we assume that c > 0. Let k ∈ N. To calculate the random arrival awards
vector of a k-replica of (c, E), we need to find out how much each agent is
awarded at each permutation. At each permutation, an agent receives either
his claim, or some positive amount stritly less than his claim, or nothing.
Given i ∈ k ∗ N , let n1(i, k) be the number of permutations at which he
receives ci, n2(i, k) the number of permutations at which he receives some
positive amount strictly less than ci, and n3(i, k) the number of permutations
at which he receives 0. For each ` = 1, 2, 3, let p`(i, k) be the corresponding
probability, that is, p`(i, k) = n`(i, k)/(kn)!.

At each permutation, in the k-replica of (c, E), agent i receives ci if the
sum of the claims of the agents coming before him plus ci is equal to, or
less than, kE. For each π ∈ Πk∗N , the class of bijections on k ∗ N , and
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each i ∈ k ∗ N, let bπ(i) be the set of agents who arrived before i. For each
{i, j} ⊂ k∗N and each π ∈ Πk∗N , let π′ ∈ Πk∗N be the permutation obtained
from π by exchanging i and j.

For each {i, j} ⊂ k ∗N ,

p1(i, k) = Pr[π ∈ Πk∗N |
∑

m∈bπ(i)

cm + ci ≤ kE]

= Pr[π ∈ Πk∗N |j ∈ bπ(i),
∑

m∈bπ(i)

cm + ci ≤ kE]

+Pr[π ∈ Πk∗N |j /∈ bπ(i),
∑

m∈bπ(i)

cm + ci ≤ kE]

= Pr[π ∈ Πk∗N |j ∈ bπ(i),
∑

m∈bπ(i),m6=j

cm ≤ kE − ci − cj]

+Pr[π ∈ Πk∗N |j /∈ bπ(i),
∑

m∈bπ(i)

cm ≤ kE − ci]

= Pr[π ∈ Πk∗N |j ∈ bπ(i),

∑
m∈bπ(i),m6=j cm

k
≤ E − ci

k
− cj

k
]

+Pr[π ∈ Πk∗N |j /∈ bπ(i),

∑
m∈bπ(i) cm

k
≤ E − ci

k
].

Similarly,

p1(j, k) = Pr[π ∈ Πk∗N |i ∈ bπ(j),

∑
m∈bπ(j),m6=i cm

k
≤ E − cj

k
− ci

k
]

+Pr[π ∈ Πk∗N |i /∈ bπ(j),

∑
m∈bπ(j) cm

k
≤ E − cj

k
].

Let us compare p1(i, k) and p1(j, k).

Pr[π ∈ Πk∗N |j ∈ bπ(i),

∑
m∈bπ(i),m6=j cm

k
≤ E − ci

k
− cj

k
]

= Pr[π′ ∈ Πk∗N |i ∈ bπ′(j),

∑
m∈bπ′ (j),m6=i cm

k
≤ E − cj

k
− ci

k
]

= Pr[π ∈ Πk∗N |i ∈ bπ(j),

∑
m∈bπ(j),m6=i cm

k
≤ E − cj

k
− ci

k
].
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Moreover, if ci ≤ cj,

Pr[π ∈ Πk∗N |j /∈ bπ(i),

∑
m∈bπ(i) cm

k
≤ E − ci

k
]

≥ Pr[π ∈ Πk∗N |i /∈ bπ(j),

∑
m∈bπ(j) cm

k
≤ E − cj

k
].

Therefore, if ci ≤ cj, then p1(i, k) ≥ p1(j, k).
Also, if ci ≤ cj, then

p3(i, k) = Pr[π ∈ Πk∗N |
∑

m∈bπ(i)

cm ≥ kE]

≥ Pr[π ∈ Πk∗N |
∑

m∈bπ(j)

cm ≥ kE] = p3(j, k).

At each permutation, at most one agent receives some positive amount
strictly less than his claim, so that

∑
j∈k∗N n2(j, k) ≤ (kn)!. Moreover, since

the random arrival rule satisfies equal treatment of equals, if i and i′ are of
the same type, then for each ` = 1, 2, 3, n`(i, k) = n`(i

′, k). Since there are
k agents of the same type,

∑
j∈k∗N n2(j, k) ≤ (kn)! implies that for each

i ∈ k ∗ N, n2(i, k) ≤ (kn)!
k

, or equivalently, 0 ≤ n2(i,k)
(kn)!

≤ 1
k
. As k → ∞,

n2(i,k)
(kn)!

→ 0. Consequently, as k →∞, for each i ∈ k ∗N, p2(i, k) → 0.

Let i, j ∈ k ∗N be such that ci ≤ cj. Since p1(i, k) + p2(i, k) + p3(i, k) =
p1(j, k) + p2(j, k) + p3(j, k) = 1, limk→∞ p2(i, k) = limk→∞ p2(j, k) implies
that limk→∞{p1(i, k) + p3(i, k)} = limk→∞{p1(j, k) + p3(j, k)}.

As discussed above, since the random arrival rule satisfies equal treat-
ment of equals,

∑
i∈N RAi(k ∗ (c, E)) = E. Since

∑
i∈N cip1(i, k) ≤ E ≤∑

i∈N cip1(i, k) +
∑

i∈N cip2(i, k), as k →∞, limk→∞
∑

i∈N cip1(i, k) = E. It
follows that for each ε > 0, there is K1(ε) > 0 such that for each k > K1(ε),
we have |E −∑

i∈N cip1(i, k)| < ε.

Also, for each {i, j} ⊂ k∗N , from {p1(i, k)−p1(j, k)}{p3(i, k)−p3(j, k)} ≥
0,

|p1(i, k)− p1(j, k)| ≤ |p1(i, k)− p1(j, k) + p3(i, k)− p3(j, k)|
≤ |p1(i, k) + p3(i, k)− 1|+ |p1(j, k) + p3(j, k)− 1|.
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Since limk→∞{p1(i, k)+p3(i, k)} = limk→∞{p1(j, k)+p3(j, k)} = 1, it follows
that for each ε > 0, there is K2(ε, i, j) > 0 such that for each k > K2(ε, i, j),
we have |p1(i, k)− p1(j, k)| < ε. Let K2(ε) ≡ maxi,j∈N K2(ε, i, j). Then, for
each ε > 0, each {i, j} ⊂ k ∗ N , and each k > K2(ε), we have |p1(i, k) −
p1(j, k)| < ε.

Now, we show that for each i ∈ N , limk→∞ p1(i, k) = E∑
j∈N cj

. Indeed,

| E∑
j∈N cj

− p1(i, k)| ≤ 1∑
j∈N cj

|E −
∑
j∈N

cjp1(i, k)|

≤ 1∑
j∈N cj

|E −
∑
j∈N

cjp1(j, k)|+ 1∑
j∈N cj

|
∑
j∈N

cjp1(j, k)−
∑
j∈N

cjp1(i, k)|

≤ 1∑
j∈N cj

|E −
∑
j∈N

cjp1(j, k)|+ 1∑
j∈N cj

∑
j∈N

{cj|p1(j, k)− p1(i, k)|}.

By setting K(ε) = max{K1(
∑

j∈N cjε

2
), K2(

ε
2
)}, we deduce that for each ε > 0,

and each k > K(ε), | E∑
j∈N cj

− p1(i, k)| < ε. Thus, as k → ∞, for each

i ∈ k ∗N , RAi(kc, kE) → ci∑
j∈N cj

E, as announced.

¤

Let us note that the convergence described in Theorem 1 will typically
not occur in a finite number of steps. For each claims vector, there are values
of E for which the awards vector is invariant under replication. For instance,
invariance holds when the amount to divide is equal to the half-sum of the
claims. The path of awards of the random arrival rule is piece-wise linear,
and an easy way to see that for each claims vector, and each k ∈ N, there
are values of the amount to divide for which convergence has not occurred in
k steps is that the path of awards of the proportional rule is a segment from
the origin to the claims vector whereas the path of the random arrival rule
always starts with a non-degenerate segment of slope 1. This is because, if
the amount to divide is smaller than the smallest claim, the rule recommends
equal division; indeed, whoever arrives first takes everything then, and all
agents arrive first with equal probabilities. The path ends with a segment of
slope 1, for “symmetric” reasons.5

5These properties can be deduced from the fact that the rule is self-dual (Aumann and
Maschler, 1985).

9



Our second result pertains to the minimal overlap rule. Its proof relies
on Proposition 1.

Theorem 2 As the order of replication increases, the minimal overlap awards
vector of a replicated problem is the replica of an awards vector for the prob-
lem that is replicated that converges to the constrained equal losses vector of
the problem.

Proof: Without loss of generality, let N ≡ {1, . . . , n} and (c, E) ∈ CN .
Let k ∈ N. In Proposition 1, two cases are distinguished depending upon
whether the largest claim is larger than the amount available. Since the
largest claim in any replica of (c, E) is equal to the largest claim in (c, E),
whereas the amount available increases without bound with the order of
replication (if E > 0, which we assume since otherwise the conclusion holds
trivially), it follows that for each k larger than some critical value, no claim
is larger than the amount available, kE, and Case 2 applies. Without loss
of generality, assume that this inequality holds for (c, E) itself, and that
c1 ≤ · · · ≤ cn. Then, as noted when we defined the rule, MO(c, E) is
obtained by identifying t ≥ 0 such that

∑
N max{ci− t, 0} = E− t. Let tk be

the solution to the corresponding equation in the k-replica of (c, E), namely
k

∑
N max{ci − tk, 0} = kE − tk.
We claim that {tk} is a decreasing sequence. Indeed, in the passage from

a k-replica of (c, E) to a (k + 1)-replica, the amount to be covered increases
by E but if we kept the same cut-off point (the same tk), the additional
parts of claims made available by the arrival of an additional copy of N to
cover it would be

∑
N max{ci − tk, 0} = E − tk

k
≤ E. Let t∗ ≡ lim tk and

i∗ ≡ max{i ∈ N : ci ≤ t∗}. For each i ∈ N , let N i(k) be the set of claimants
who are clones of claimant i in the k-replica of (c, E). Now, note that there
is ik ∈ N such that what each agent j ∈ k ∗N receives can be expressed as

xj ≡





c1
nk

if j ∈ N1(k)
c1
nk

+ c2−c1
(n−1)k

if j ∈ N2(k)
... +

...
...

c1
nk

+ c2−c1
(n−1)k

+ · · · +
c
ik
−c

ik−1

(n−ik+1)k
if j ∈ N ik(k)

c1
nk

+ c2−c1
(n−1)k

+ · · · +
c
ik
−c

ik−1

(n−ik+1)k
+

tk−c
ik

n−ik
+ ci − tk if j ∈ N i(k) for each i > ik

As k → ∞, each of the ratios goes to 0, so that at the limit, for each
i ≤ i∗ each j who is a clone of i, agent j receives 0, and for each i > i∗, and
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each j who is a clone of i, agent j receives cj − t∗. Thus, the limit awards
vector is the one chosen by the constrained equal losses rule. ¤

Here too, we ask whether convergence occurs in a finite number of steps.
The answer is no. For each problem in which at least two claims differ,
there is always an entire interval of values of the amount to divide for which
convergence has not occurred.

To see this, let us consider a generic two-claimant example. Let N ≡
{1, 2} and (c, E) ∈ CN with c1 ≤ c2. Then, since the minimal overlap rule
satisfies equal treatment of equals, we can represent the path of awards of the
rule in a Euclidean space of dimension 2 (an observation made earlier).

For each k ∈ N, there are values of E for which MO(k∗(c, E)) = CEL(k∗
(c, E)). For instance, if k = 1, for each E ∈ [c2,

∑
ci], this equality holds

(Figure 2a). Indeed, in the two-claimant case, the minimal overlap rule
coincides with the contested garment rule, the two-claimant version of the
“Talmud rule”.6 The path of awards of the contested garment rule coincides
with that of the constrained equal losses rule for amounts to divide in the
interval [c2,

∑
ci]. Under replication, the equality MO(k∗(c, E)) = CEL(k∗

(c, E)) is preserved.
As k increases, the interval of values of E for which coincidence occurs

enlarges. Figure 2b shows the projection onto the {1, 2}-space of the paths
of awards of the minimal overlap rule for k = 1, 2 and 3. In general, for the
k-th replica, this projection consists of a segment of slope 1 containing the
origin (the segment to the point ( c1

2k
, c1

2k
)), a vertical segment of length c2−c1,

and a segment of slope 1 to the claims vector.
The limit of the path of awards is [(0, 0), (0, c2 − c1)] ∪ [(0, c2 − c1), c],

namely the path of awards of the constrained equal losses rule (Figure 2c).
Figure 2 shows that for any value of the amount to divide in [0, c2−c1], there
is no finite k after which coincidence with the awards vector chosen by the
constrained equal losses occurs.

More can be said. Thomson (2001) defines a simple (parametric) family
of rules that connects a number of important rules (the constrained equal
awards, constrained equal losses, Talmud, and minimal overlap rules), the
“ICI family”. For each claims vector c ∈ RN

+ (not only for the two-claimant
case), for each natural number k, the path of awards of the minimal overlap

6The rule defined by Aumann and Maschler (1985) to rationalize some examples in the
Talmud.
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Figure 2: Convergence for the replica of a two-claimant example. (a) For
k = 1, the minimal overlap rule coincides with contested garment rule. (b) As
the order of replication increases, the vertical segment contained in the path slides
down the 45◦ line. (c) At the limit, we obtain the path of awards of the constrained
equal losses rule.

rule for the k replica of c, when projected onto the |N |-dimensional awards
space, is the path of awards of a member of the family for c. One can
calculate the break points in the schedules giving for each type of claimants
their common award as a function of the amount to divide, and show that
each of them converges to the corresponding breakpoint of the schedule for
the constrained equal losses rule.

4 Concluding comments

• We focused on two rules that are not replication invariant and studied
their behavior under replication, but we should note that many rules are
replication invariant. This is in particular the case for a large subclass of
the class of rules satisfying the following important property: a rule is “con-
sistent” if the recommendation it makes for each problem “agrees” with the
recommendation it makes for each of the associated “reduced problems” ob-
tained by imagining some agents leaving with their awards and reassessing
the situation faced by the remaining agents. A fundamental theorem due to
Young (1987) states that if a rule satisfies equal treatment of equals, and if it
is continuous and consistent, then it belongs to a certain family of “paramet-
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ric rules”. This family includes many of the rules that have been considered
in the literature. It is therefore of much interest that each member of this
family satisfies replication invariance, as this property is a consequence of
equal treatment of equals and consistency.

• A more general way of modeling problems with a large number of small
claimants is by drawing them at random from some distribution with a fi-
nite support. It is intuitively clear that parallel results would be obtained.7

Alternatively, one could model the set of claimants as a continuum. Such a
formulation was recently proposed by Chambers and Thomson (2002).

• One can associate to each rule S new ones by subjecting S to certain
operators.8 The “duality operator” associate to S the rule that treat losses
in the way S treats awards. The “claims truncation operator” associates to
S the rule defined for each problem by first truncating claims at the amount
available and then applying S. The “minimal rights operator” associates
with S the rule that calculates the awards vector of each problem in two
steps, as follows: first, each claimant is attributed the difference between
the amount to divide and the sum of the claims of the other agents (or 0
if this difference is negative); this difference, the agent’s “minimal right” is
an obvious minimum to which he is entitled; second, S is applied to allocate
what remains, the part that is truly contested, claims being adjusted down
by the “minimal rights” of the first step.

It is easy to see that for each rule S, each N ∈ N , and each problem
(c, E) ∈ CN , and under sufficient replication, the awards vector selected by S
for the replica problem is the same as the awards vector selected by the rules
obtained by subjecting S to the claims truncation operator, the attribution
of minimal rights operator, or their composition. This is obvious if E = 0 or
E =

∑
ci. If neither of these equalities hold, the statement follows from the

fact that under sufficient replication, the amount to divide is larger than any
claim, and that the minimal right of each agent is 0. Curiel, Maschler and
Tijs (1987) have proposed the rule obtained from the proportional rule by
subjecting it to the composition of these operators (Thomson and Yeh, 2003,
show that the order of composition does not matter). An application of the
argument just made is that under sufficient replication, this rule coincides
with the proportional rule.

7Some care would have to be exercised however so as to guarantee that the amount to
divide is no greater than the sum of the claims.

8For a study of such operators, see Thomson and Yeh (2003).
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As far as the duality operator is concerned, it is clear that the behavior
under replication of any rule is mirrored by the behavior of its dual under
that operation. If a rule S behaves like a certain rule R under replication, the
dual of S behaves likes the dual of R under replication. The random arrival
rule being invariant under the duality operator (it is self-dual), nothing
else needs to be said about it, but the minimal overlap rule is not self-dual.
Thus, one can say that its dual under replication behaves likes the dual of
the constrained equal losses rule, namely the constrained equal awards rule.
(This is the rule that makes awards as equal as possible subject to no one
receiving more than his claim.)

• Our final comment pertains to the connection between rules for the ad-
judication of conflicting claims and certain solutions developed in the theory
of “coalitional games with transferable utility”. Such a game is defined by
specifying for each set of agents, or “coalition”, a number that is usually in-
terpreted as the total utility the coalition can obtain without the assistance
of the members of the complementary coalition. This total utility is the
“worth” of the coalition. A “solution” associates with each game a payoff
vector whose coordinates add up to the worth of the grand coalition. Two
central solutions in this theory are the “core”, which selects the set of payoff
vectors such that the worth of no coalition is greater than the sum of the pay-
offs assigned to its members (Gillies, 1953), and the “Shapley value”, which
assigns to each player a payoff equal to the average of his contributions9 to
the coalition consisting of all the players who have arrived before him when
all orders of arrival are equally likely (Shapley, 1953). To be able to apply
these concepts to construct rules, one needs to convert each claims problem
into a game. O’Neill (1982) suggested the following definition, which has
been central in the subsequent literature (Aumann and Maschler, 1985): set
the worth of each coalition of claimants equal to whatever is left when all
other claimants have been fully compensated if that is possible, and nothing
otherwise. It turns out that for each claims problem, the random arrival rule
produces the same awards vector as the Shapley value applied to the associ-
ated transferable utility game (O’Neill, 1982). Our Theorem 1 can therefore
be understood as providing a convergence theorem for a Shapley-value-type
concept analogous to the convergence results known for this concept when
applied to allocation problems. In exchange economies, the Shapley value

9A player’s contribution to a coalition is the difference between the worth of the coali-
tion after he has joined and he worth of the coalition before he joins.
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allocations are known to converge to competitive allocations (Aumann and
Shapley, 1974), as the core does (Debreu and Scarf, 1963). One may think
that the convergence of the random arrival rule is due to a similar shrinking
of the core. This is not the case however. In our context, the core does not
shrink. In fact, the core is nothing else than the set of vectors satisfying
the non-negativity and claims boundedness requirements (the set of awards
vectors). Therefore (as a correspondence), it is invariant under replication.
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