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1. INTRODUCTION

Consider an agent who must choose an action today under uncertainty about
the consequence of any chosen action but without having in mind a complete
list of all the contingencies that could in�uence outcomes. She conceives of some
relevant (subjective) contingencies or states of the world but she is aware that these
contingencies are coarse - they leave out some details that may a¤ect outcomes.
Though she may not be able to describe these �ner details, she is aware that they
exist and this may a¤ect her behavior. How does one model such an agent?
The standard Savage framework, based on a primitive state space, is inap-

propriate for two reasons. First, in the Savage model each state is a complete
description of the world - it determines a unique outcome for any chosen action.
Second, even if we knew how to model a �coarse or incomplete state� and we
rede�ned the Savage state space accordingly, the resulting approach would still
be unsatisfactory if, as in Savage, the state space were adopted as a primitive.
In that case, the state space is presumed observable by the modeler, an assump-
tion that is all the more problematic when states are coarse. Ideally, the agent�s
conceptualization of the future should be subjective - it should be derived from
preference, that is, from in principle observable behavior.
Kreps [8, 9], and Dekel, Lipman and Rustichini [1] have rendered the state

space subjective by positing preference over menus of alternatives, thus addressing
the second concern. However, we argue in this paper that their models do not
capture coarse perceptions. We focus primarily on the model of Dekel, Lipman
and Rustichini (henceforth DLR). They describe (p. 893) the agent they are
modeling: �... she sees some relevant considerations, but knows there may be
others that she cannot specify. For simplicity, we assume henceforth that the
agent conceives of only one situation, �something happens,�but knows that her
conceptualization is incomplete.� Though they frequently refer to �unforeseen
contingencies�, it seems that, at least in part, they have in mind what we prefer
to call �coarse contingencies.�Later (pp. 919-20), they describe what is needed
for a critique of their model: �... just as Ellsberg identi�ed the role of the sure-
thing-principle in precluding uncertainty-averse behavior, we believe that one must
�rst �nd a concrete example of behavior that is a sensible response to unforeseen
contingencies but that is precluded by our axioms. An important direction for
further research is to see if there is such an Ellsbergian example for this setting
and, if so, to explore relaxations of our axioms.�This is the direction we pursue
here.
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Speci�cally, we argue that the Independence axiom imposed by DLR in their
most restrictive model (the EU additive representation) rules out coarse contingen-
cies. We focus also on their weakest Independence-style axiom, called Indi¤erence
to Randomization (IR), which they adopt (either explicitly or implicitly) in all of
their representation theorems.1 We argue that the case for IR is not clear-cut,
at least given a particular conception of coarse perceptions. Thus we are led to
explore two alternative directions for relaxing the DLR axioms - one which con-
tinues to assume IR and a second which replaces IR with a new axiom (called
Coarseness) that captures our preferred conception of coarse perceptions. In the
latter direction, a new functional form for utility is proposed, but our exploration
of alternative axioms falls short of providing a complete characterization of the
functional form and hence a new axiomatic model.
Our analysis is more conclusive when IR is adopted: the corresponding set of

axioms characterizes a multiple-priors functional form for utility functions, par-
alleling the multiple-priors model of Gilboa and Schmeidler [5]. Their model was
developed in order to accommodate aversion to ambiguity such as typi�ed by
intuitive behavior in the Ellsberg Paradox. Thus this representation result high-
lights a feature of retaining IR in attempting to model coarse perceptions: the
agent modeled in this way is indistinguishable from one who foresees a complete
set of states but is not sure of their likelihoods. Alternatively, one can view our
multiple-priors representation result as a contribution to the literature on prefer-
ences under ambiguity because it extends the Gilboa and Schmeidler theorem by
rendering the state space subjective.
Finally, we mention other connections to the literature on ambiguity. Inspired

by Dempster [2] and Shafer [16], Mukerji [12] and Ghirardato [4] argue that an
agent who is aware that she has only a coarse perception of the state space can
be thought of as using a non-additive probability measure (or capacity). Their
approach is much di¤erent than ours in that they take the agent�s coarse percep-
tion as a primitive. However, our modeling approach has in common with theirs
the interconnection between coarse perceptions and ambiguity.
The �nding that coarse contingencies imply violations of Independence is rele-

vant to the search for theoretical foundations for models with incomplete contracts.
One reason for studying decision-making in the absence of Savage�s state space is
the idea that if some aspects of states are unforeseen or indescribable by the con-

1DLR (p. 911) mention the case where ex post utilities are not vNM in the context of
establishing a result regarding minimality of the subjective state space. But such violations are
not described as germane to the issue of coarse contingencies.
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tracting parties, then contractual incompleteness should follow. Maskin and Tirole
[11] have shown that this intuition is �awed if possible future payo¤s can be prob-
abilistically forecast and agents perform dynamic programming as expected utility
maximizers. However, if agents with coarse perceptions violate Independence, as
we suggest, then they do not have probabilistic beliefs or maximize expected util-
ity, which leaves open the possibility of the sought-after foundations. Indeed, we
know from Mukerji [13] that ine¢ cient incomplete contracts can emerge if agents
hold non-additive beliefs and maximize Choquet expected utility.
The paper proceeds as follows. Next we outline the DLR model and argue

that their axioms preclude coarse contingencies. Then we describe two alternative
relaxations of their axioms intended to capture coarseness. Proofs are relegated
to appendices.

2. THE DLR MODEL

The DLR model has the following primitives:

� B: �nite set of actions (these should not be thought of as �outcomes�);
let j B j= B

� �(B): set of probability measures over B, endowed with the weak conver-
gence topology; generic lotteries are �; 
; :::

� X : closed subsets of �(B)
generic elements are denoted x; y; ::: and are called menus2

� preference � is de�ned on X

The agent ranks menus at time 0 (ex ante) using � with the understanding
that at time 1 (ex post), she will choose a lottery from the previously chosen menu.
One can think of a menu as corresponding to an action to be taken ex ante, where
the signi�cance of an ex ante action is that it limits options for further action
ex post, that is, for the choice of � in �(B). There are no exogenous states of
the world, but the agent may envisage some scenarios for time 1. She anticipates
learning which scenario is realized before making her choice out of the menu.
Thus her subjective conceptualization of the future a¤ects her expected choices

2DLR do not restrict menus to be closed but this di¤erence from their model is unimportant
and we overlook it throughout.
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out of menus and hence also her ex ante evaluation of menus. In other words, her
subjective state space underlies the preference� and (under suitable assumptions)
is revealed by it.
For example, the ranking

f�; �0g � f�g � f�0g

reveals that the agent conceives of a circumstance in which she would strictly
prefer � over �0 and also another circumstance in which she would strictly prefer
�0 over �. Under DLR�s set of axioms, subjective contingencies concern only the
possible ex post preference over lotteries. This is natural - payo¤s rather than ex
post physical states per se are ultimately all that matter.
DLR assume throughout that preference is complete, transitive and suitably

continuous. They occasionally, though not universally, adopt also the next axiom.

Monotonicity: For all menus x0 and x, x0 � x =) x0 � x.

The axiom states that �exibility has non-negative value. For concreteness, we
restrict attention here to models satisfying this property.
The �rst problematic axiom that we consider is Independence.3 It refers to

mixtures of two menus as de�ned by

�x+ (1� �) y = f�� + (1� �) 
 : � 2 x; 
 2 yg .

Formally, the indicated mixture of x and y is another menu and thus when the
agent contemplates that menu ex ante, she anticipates choosing out of �x +
(1� �) y ex post. It follows that one should think of the randomization cor-
responding to the � and (1� �) weights as taking place at the end - after she has
chosen some mixed lottery �� + (1� �) 
 out of the menu.

Independence: For all menus x0; x and y and 0 < � < 1,

x0 � x () �x0 + (1� �) y � �x+ (1� �) y:

Consider the axiom for an agent who is aware of the incompleteness of her
subjective state space. For concreteness, suppose that her subjective conceptu-
alization, like the objective (exogenous) one, is trivial - �something happens�.

3DLR use the term Independence to refer to a weaker condition than what is stated below.
However, the two axioms are equivalent given their continuity axiom.
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Suppose further that she is indi¤erent between the menus f�g and f�0g. Inde-
pendence requires that

f��0 + (1� �) �g � f�0g � f�g.

Is this intuitive? She is aware ex ante that there are unforeseen (�ner, or back-of-
the-mind) contingencies that could a¤ect the desirability of any action. Though
she does not understand these �ner details and may not be able to describe them,
she is nevertheless aware that they exist, and she may feel that some may make
�0 more desirable ex post and some may make � more desirable. Randomization
may hedge this uncertainty and thus the mixture might be strictly preferable to
either lottery, that is,

f��0 + (1� �) �g � f�0g � f�g,

in contradiction to Independence.
DLR show that in conjunction with completeness, transitivity and continuity,

Independence implies the following axiom:4

Indi¤erence to Randomization (IR): For every menu x, x � co (x).

To evaluate this axiom, it is important to understand precisely the meaning
of the time line sketched above. It describes the agent�s ex ante expectations, for
example, that ex post she will be able to choose from the menu that is chosen
initially. The critical issue is what information she expects to have at that point.
In fact, it may very well be that the true complete (Savage-like) state will be
realized before she has to choose out of the menu. But since she does not conceive
of them ex ante, she cannot be thinking explicitly in terms of the complete states
that might be realized ex post. Rather, given her ex ante conceptualization in
terms of coarse contingencies, one natural assumption is that she expects only
to know which of these is true before choosing out of the menu. In that case,
she expects coarseness to persist even ex post. On the other hand, she need not
foresee all the complete states in order to believe that one of them will be realized
ex post.5 Thus an alternative assumption is that the agent anticipates that some

4co (x) = f�� + (1� �)�0 : �; �0 2 x; 0 � � � 1g denotes the convex hull of x. As in the
case of Independence, one should think of the randomization as occuring after choice is made
out of the menu.

5Nevertheless, it seems to us that this assumption presumes a higher degree of awareness of
the underlying �ne states than does the alternative.
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complete state will be realized ex post. The intuitive appeal of IR depends on
which of these assumptions is adopted.
If the agent anticipates that some complete state will be realized ex post, then

she can be certain that her ex post preference over lotteries will conform to vNM.
Thus she anticipates choosing out of the previously chosen menu x in order to
maximize a mixture linear utility over lotteries, which means that she will do as
well choosing out of x ex post as out of co (x). Being certain of this ex ante, she
will be indi¤erent between x and co (x). This is the justi�cation for Indi¤erence
to Randomization put forth by DLR.
Suppose, however, that coarseness is expected to persist ex post. Then the

agent expects to be concerned ex post not only with how any given lottery �
will play out, but also with how (payo¤-relevant) back-of-the-mind uncertainty
will be resolved eventually. This extra layer of uncertainty leads to non-vNM
utilities ex post and subsequently to a possibly positive value for randomization.
For example, suppose she chooses out of x = f�0; �g being aware that there are
details that she cannot specify and that could a¤ect the desirability of �0 and �.
Then she might feel that some may make �0 more desirable and some may make
� more desirable, and, as in the discussion of Independence, randomization could
hedge some of this uncertainty. Thus the ex ante ranking

co (x) � x,

is intuitive, but the indi¤erence assumed in IR is too strong.
Both hypotheses concerning the agent�s expectations seem to us to be descrip-

tively plausible. In particular, an example to follow shortly (Savage�s omelet) il-
lustrates a case where the hypothesis that coarseness is expected to persist seems
natural. Thus in the formal analysis below we consider two alternative sets of
axioms - one where IR is imposed and one where it is replaced by an axiom that
we feel captures coarse perceptions that are expected to persist.
There is an obvious question: if randomization is valuable, why can�t the agent

randomize on his own? For example, given the menu x = f�0; �g and if she so
wished, then she could toss a suitably biased coin ex post to decide on whether
�0 or � is chosen, thereby providing for herself any desired mixture between �0

and �. If ex ante she believes that she can commit to tossing such a coin and
also to choosing according to its realized outcome, then she would presumably
view herself as having not only x but indeed all of co (x). Since such beliefs are
not plausibly observable, we would be left not knowing how to interpret choices
between menus - for example, the choice of x over y might re�ect the preference for
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co (x) over co (y) rather than of x over y. To avoid this problem, we assume that
own-randomization is impossible and thus that each menu x indeed describes the
complete set of lotteries from which choice is possible ex post - this assumption
is at least implicit also in DLR. A possible justi�cation is that any incentive to
toss a coin ex post leads also to the incentive to toss it again, and again, thus
rendering problematic commitment to choosing according to the outcome of the
�rst toss.
Finally, for later reference, we describe the most restrictive utility functional

form characterized by DLR - the non-negative additive EU representation. To
express it, note that each mixture linear u : � (B) �! R1 can be identi�ed with
a (unique) vector in N � RB, where the role of the subset N is to normalize
vNM utilities so that each u corresponds to a unique ordering of lotteries. (DLR�s
speci�cation of N is not important here; later we adopt a di¤erent speci�cation.)
The utility of any menu has the form

W (x) =

Z
max�2x u (�) d� (u) , (2.1)

where � is a probability measure on N and u (�) = �b2B � (b)ub = u � �. The
interpretation is that ex post preference over lotteries, represented by u, conforms
to expected utility theory. Given u, then choice out of x will maximize u (�),
but ex ante, the agent does not know which preference will prevail ex post. The
support of �, corresponding to the set of ex post preferences that she views as
possible, constitutes her subjective state space. To evaluate x, she computes its
expected payo¤ assuming an optimal choice of lottery in each subjective state.

Savage�s Omelet-Maker : Savage (pp. 13-15) illustrates application of his model
through the example of a man who is preparing an omelet.6 The omelet-maker
must decide what to do with a sixth egg given that his wife has prepared a bowl
containing �ve good eggs. There are three possible actions - break the egg into
the bowl, break the egg into a saucer for inspection (which necessitates eventually
washing the saucer), and discard the egg without inspection. Savage suggests that
the choice problem �ts into his framework where the state of the world describes
the state of the sixth egg, S = fgood; rotteng, and outcomes are the natural ones
(see his Table 1). Of course, in Savage�s approach, states of the world constitute

6We borrow also from Shafer�s [17] discussion of Savage�s example.
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complete descriptions of the environment in that once a state is speci�ed, each
action leads to a unique outcome.
An obvious concern is that some omelet-makers in the above situation may

perceive things di¤erently. For example, as Savage remarks, some may be uncer-
tain also about whether one rotten egg will spoil a six-egg omelet. Savage proposes
that to model such a man, one simply expand the state space in the obvious way.
However, there may be other uncertainties in the man�s mind and the modeler
can only guess what they are. The solution that follows from (Kreps and) DLR is
to dispense with an exogenous state space and to infer all relevant uncertainties,
that is, the subjective state space, from suitable choice behavior.
To describe the requisite choice behavior, assume that when deciding what to

do with the sixth egg, which we term the choice of an ex ante action, the man
contemplates future decisions (the choice of ex post actions) that are permitted
by the ex ante decision. The set of conceivable ex post actions is �(B), where
B = fbh; b5; b05; b6; b06g and:

� bh = go hungry

� b5 = eat 5-egg omelet

� b05 = eat 5-egg omelet and wash saucer

� b6 and b06 are de�ned similarly for 6-eggs

Then �break into bowl�may be identi�ed with the menu fb6; bhg, �break into
saucer�corresponds to the menu fb05; b06; bhg and �discard�translates into fb5; bhg.
Other menus do not correspond to actions appearing in Savage�s description, but
they are arguably conceivable objects of choice, even when menus of lotteries
over B are included. For example, fb6g corresponds to an irrevocable promise to
eat the big omelet regardless of the state of the 6th egg, and fbhg corresponds to
discarding all the eggs. More interesting is fb5; b06g, which corresponds to breaking
the 6th egg into the saucer under the agreement that if the 5-egg omelet is eaten,
presumably because the 6th egg proves to be rotten, then the wife washes the
saucer, while if the 6th egg proves to be good and the 6-egg omelet is eaten, then
the man is responsible for washing the saucer. (Implicit is that the man does
not care about his wife�s dish-washing.) Similarly fb05; b6g represents the opposite
agreement about dish-washing.
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How can we tell if the two states proposed by Savage underlie (or can be
thought of as underlying) the man�s deliberations? Suppose that

fb6; bhg � fb6g � fbhg.

DLR would interpret this ranking as indicating that there are at least two subjec-
tive states - one in which he would strictly prefer b6 to bh (presumably where the
sixth egg is good) and one in which he would strictly prefer bh (where the sixth
egg is rotten). Thus the indicated ranking indicates that the two states �6th egg
is good or rotten�are relevant.
Other uncertainties may also be relevant. For example, if

fb05; b06; bhg � fb05; b06g,

then the omelet-maker anticipates the possibility that after breaking the 6th egg
into the saucer, he would prefer to go hungry. This may be due to uncertainty
about the condition of the �rst �ve eggs and the feeling that there may be a
connection between the condition of the 6th egg and the freshness of the �rst �ve.
Thus if he sees that the 6th egg is rotten, he may decide to go without an omelet
entirely.
However, one may wish to go further and to ask not only if a particular con-

tingency is relevant (in the man�s mind), but also if it is coarse. For example, to
this point we have referred to the man being uncertain about whether the 6th egg
is �good�or �rotten�, but he might view these as coarse descriptions: a �good�
egg includes a range of possibilities - the egg may be superlative, in which case the
6-egg omelet would surely be preferable to going hungry, but it may also be stale,
in which case, depending on how stale, going hungry may be preferable. Suppose
that the man has these �ner gradations of �good egg� in the back of his mind.
Suppose further that he expects the coarseness to persist even after breaking open
the 6th egg - after all, the only way to be certain about the exact quality of the
egg is to eat it. Thus he anticipates being aware of the existence of missing details
also after seeing the 6th egg and having to choose out of the previously chosen
menu. Further, he anticipates also that some of the �ner details (a superlative
egg) would support choice of b6 and that others (a very stale egg) would support
the choice of bh. Consequently, he prefers ex ante to have the option ex post of
using a coin, presumably biased towards the b6 outcome, to decide between b6 and
bh. Then he would exhibit the ranking

co (fb6; bhg) � fb6; bhg, (2.2)

10



in contradiction to IR.
Note that the ranking (2.2) is inconsistent with the alternative interpretation

whereby instead of using the coarse state �good�, the man conceives ex ante of the
�ner contingencies �stale but not rotten�and �superlative�and where he views
these as complete descriptions. In that case, he would presumably anticipate
knowing all relevant details after the 6th egg is broken, which would leave him
indi¤erent to randomization as in the DLR model.

3. TWO ALTERNATIVE MODELS

3.1. Relaxing Independence

Consider Independence once again. The typical rationale for Independence (DLR,
p. 905, for example) relies on the claim that the agent should be indi¤erent
between the mixture �x+(1� �)x0 and the two-stage object � � x+(1� �) � x0,
which represents a lottery over menus that delivers x with probability � and x0

with probability (1� �) and where the lottery is played out immediately, that is,
before any subjective uncertainty is resolved. But we argue that her being aware
of the incompleteness of her conceptualization renders it intuitive only that

�x0 + (1� �)x � � � x0 + (1� �) � x. (3.1)

The usual intuition for Independence suggests that

x0 � x =) � � x0 + (1� �) � x � x.

Hence we are led to the following weakening of Independence:

Preference Convexity: x0 � x =) �x0 + (1� �)x � x.

To illustrate, using the example in our earlier discussion of Independence,
where x0 = f�0g � f�g = x, then the preceding states that

f��0 + (1� �) �g � � � f�0g+ (1� �) � f�g � f�0g � f�g.

The reason for the indicated weak preference, rather than indi¤erence, is that
f��0 + (1� �) �g may hedge back-of-the-mind uncertainty, as suggested above,
while � � f�0g+(1� �) � f�g does not. For the latter, because the randomization
takes place immediately, one is left ultimately with either f�0g or f�g when facing
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the coarsely perceived future beyond time 0. Thus the prior randomization is
arguably of no value.
As another illustration, adapt DLR�s illustrative example where the subjec-

tive conceptualization is �something will happen�, and where x0 = f�1; �2g and
x = f�g. When facing x0, she conceives of two sets of circumstances (or two
events) ex post: those in which she would choose �1 (event E1) and those in which
she would choose �2 (event E2). Thus the two stage object � � x0 + (1� �) � x is
expected to lead to � with probability 1��, and to (�1 if E1;�2 if E2) with prob-
ability �. On the other hand, if facing �x0 + (1� �)x, then the randomization
corresponding to � is completed only after she observes her (incomplete) sub-
jective state. In particular, before randomization she will already know whether
E1 or E2 has been realized. Thus it will be feasible for her to choose ��1 +
(1� �) � given E1 and ��2 + (1� �) � given E2, and thus to receive ultimately�
��1 + (1� �) � if E1;��2 + (1� �) � if E2

�
. She may be able to do better but

she need not do worse.
How does she rank�

��1 + (1� �) � if E1;��2 + (1� �) � if E2
�
versus (3.2)�

(�1 if E1;�2 if E2) , prob = �;�, prob = (1� �)
�
?

For any assignment of (subjective) probabilities to E1 and E2, both prospects
imply the identical distribution over B. One is tempted therefore to argue that
they should be viewed as indi¤erent, which leads to a rationale for Independence.
However, given the coarseness of contingencies, there is a sense in which the former
involves less uncertainty and thus could be preferable ex ante. The agent knows
that her conceptualization of the future is incomplete and hence that each Ei
includes details, or �ner contingencies, that a¤ect the desirability of any action,
or lottery �i. Though she may not be able to specify or describe these �ner
contingencies, she is aware that they may exist and be relevant. This makes the
prospect of choosing even the single �i on Ei an uncertain prospect (even apart
from the randomization involved in the lottery) and creates an incentive to hedge
within Ei. Only the �rst prospect in (3.2) possibly a¤ords such hedging, through
mixing with �, and therefore may be preferable.

The intuition that �hedging�motives may render randomization valuable recalls
the intuition provided in Schmeidler [15] and in Gilboa and Schmeidler [5] for their
relaxations of Independence designed to accommodate ambiguity aversion such as
exhibited in the Ellsberg Paradox. In their settings, there is an exogenous set of
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complete states, objects of choice are acts over these states, and hedging variation
across states, which reduces ambiguity, is the rationale for randomization. In the
present setting, states or contingencies are subjective and coarse, objects of choice
are menus of actions rather than acts, and it is the hedging of variation across
�missing details�that is the rationale for randomization. But the basic intuition
is similar.
The corresponding axiom in Gilboa and Schmeidler [5] is called �uncertainty

(meaning ambiguity) aversion.�We have adopted a neutral name for our axiom
because it admits rationales other than �coarseness aversion.�Indeed, Preference
Convexity can be understood also as expressing the gains from hedging for a
Gilboa-Schmeidler-type agent who foresees a complete set of states but who is
not sure about their likelihoods. To see that Preference Convexity is implied
also by ambiguity, suppose the agent ex ante foresees each possible u, an ex post
utility function over lotteries. Then she presumably anticipates choosing out of
any given menu conditionally on the realization of each u. For example, given
x, she anticipates choosing the lottery �u if u is realized. Thus the menu x is
equivalent for her to the (lottery-valued) act given by u 7�! �u. Similarly, x

0

can be identi�ed with an act u 7�! �0u. Then x
0 � x translates into the weak

preference for the primed act over the unprimed one. If states are ambiguous
for her, then, as argued by Gilboa and Schmeidler, she may strictly prefer the
�-mixture of these two acts to (�u). But the mixed act is feasible for her by
choosing conditionally on each u if she has the menu �x0+(1� �)x, and thus she
can do at least as well with the latter menu as with x, which �proves�Preference
Convexity.
Given the two possible rationales for Preference Convexity, the question is

how we might distinguish between them. We suggest that the two stories can be
distinguished by the attitudes they imply towards randomization within menus
ex post.

3.2. Model 1: Coarseness or Ambiguity?

Assume as in DLR that preference is complete, transitive and suitably continuous,
and relax Independence to Preference Convexity. DLR (p. 892) argue that IR
is a weak requirement. Though there is room for disagreement on this view (see
Section 2 above), this section explores the implications of assuming also IR.
An immediate implication is that the model de�ned thereby can be interpreted

alternatively as the model of an agent who foresees a complete set of states but
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who �nds them to be ambiguous (in terms of likelihoods). As pointed out above,
such an agent satis�es Preference Convexity. She also satis�es IR: if she foresees
the complete state space, and anticipates choosing out of any given menu x con-
ditionally on seeing the true complete state, then there is no reason for her to
value randomization ex post, if also preference over lotteries (in the absence of
other background uncertainty) conforms to vNM utility. Thus ex ante she would
be indi¤erent between x and its convex hull, and so would satisfy IR.
We proceed to derive a representation result that will highlight the indistin-

guishability between coarseness and ambiguity. To do so, we adopt two additional
axioms that are admittedly �excess baggage" but are arguably mild - they express
ex ante certainty about the payo¤s to speci�c alternatives b� and b� in B and cer-
tainty also that they will be worst and best lotteries respectively ex post.
Thus �x two alternatives b� and b� in B. Any ex post vNM preference over

lotteries that ranks b� worst and b� best in B can be identi�ed with a unique
vector u in N ,

N =
�
u 2 [0; 1]B : u (b�) = 0; u (b�) = 1

	
. (3.3)

With this in mind, de�ne a dominance relation on lotteries by:7

�0 �D � if �0 � u � � � u for all u in N .

If �0 �D �, then an expected utility maximizer who ranks b� and b� as the worst
and best alternatives respectively would never choose � alone from the feasible
set f�0; �g. Extend the dominance relation to menus by saying that x0 dominates
x, written x0 �D x, if for every � in x there exists �0 in x0 such that �0 �D �.
If x0 �D x and if the agent is certain ex ante that ex post (her preferences will
conform to vNM theory and that) she will rank b� and b� as worst and best
respectively, then she can be certain of doing as well choosing out of x0 as out of
x0 [ x. This explains the next axiom.

Worst-Best: For all menus x0 and x, if x0 �D x then x0[x � x0; and fb�g � fb�g.

Though certain that b� and b� will be worst and best ex post, the agent may
nevertheless be uncertain about the cardinal payo¤ to one or both of these; more-
over, cardinal payo¤s are important when the agent evaluates menus ex ante and
must weigh payo¤s across all possible contingencies. We assume that, in fact,

7When B = fb�; b; b�g consists of only three alternatives, then every u inN� ranks b� � b � b�
and �D coincides with the �rst-order-stochastic dominance relation over lotteries induced by
this ranking of alternatives.
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expected cardinal payo¤s to both b� and b� are certain ex ante. To express this
certainty, let

C =
�
�p = (b

�; p; b�; 1� p) : 0 � p � 1
	
� �(B) .

If the cardinal payo¤s to b� and b� are certain (constant across all states), then
so are the payo¤s to all lotteries in C (for any p in the unit interval and u in
N , u

�
�p
�
= p). Therefore, mixing with such lotteries provides no hedging gains,

which suggests that the invariance required by Independence should be satis�ed
for such mixtures. This explains:

Certainty Independence: For all menus x0 and x, lotteries �p in C, and for all
0 < � < 1,

x0 � x () �x0 + (1� �) f�pg � �x+ (1� �) f�pg:

Our last condition is a continuity axiom à la Herstein and Milnor [7].

Continuity: For all menus x, the sets
�
p 2 [0; 1] : �p � x

	
and

�
p 2 [0; 1] : �p � x

	
are closed.

Denote by X c the set of all convex menus. Then we have:

Theorem 3.1. Preference � on X satis�es Completeness, Transitivity, Continu-
ity, Monotonicity, Preference Convexity, Worst-Best and Certainty Independence
only if it admits a representation by WMP : X c ! R of the form:

WMP (x) = min�2�

Z
max
�2x

u (�) d� (u) , (3.4)

where � is a convex and weak�-compact set of Borel probability measures on N .
Moreover, � satis�es all the above axioms and Indi¤erence to Randomization if
and only if the representation (3.4) holds for all x 2 X .
In either case, there exists � that is maximal amongst sets satisfying the above

and also the condition: if x 2 X c is such that, for all x0 2 X c and all 0 � � � 1,

x0 � x =) �x+ (1� �)x0 � x, (3.5)

then, for all � in �,

WMP (x) =

Z
max
�2x

u (�) d� (u) . (3.6)
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Given the focus of this Section, consider the IR case, where (3.6) holds for
all menus and condition (3.5) can be equivalently stated in terms of all menus
x and x0, not just convex ones.8 Any menu x consisting solely of lotteries over
b� and b� satis�es (3.5) - this is a consequence of Certainty Independence. The
intuition, given above, is that the agent is certain about the ex post evaluation of
such utility-constant lotteries, which renders them useless as a hedge against the
uncertainty associated with other menus. More generally, there may also be other
menus that cannot serve as hedges and these are captured by condition (3.5). All
measures in � agree on such menus x, in that they imply the same maximum
expected utility for x - this is speci�ed by (3.6). As a consequence, if preference
satis�es Independence, then every menu satis�es (3.5) and the noted agreement
of measures in � applies to every menu x, which yields (a slight variant of) the
DLR representation result for the non-negative additive EU representation (2.1).
Theorem 3.1 is a variation of the multiple-priors representation of Gilboa and

Schmeidler [5], though not a trivial one. In fact, our axioms deliver a (superlinear
and translation invariant) preference functional de�ned only on the convex cone
of support functions, a meagre subset of the set of all continuous functions on N ;
in particular, the cone has an empty interior under the supnorm topology. For
this reason we have to use di¤erent techniques than the ones used in [5], and we
exploit the notion of niveloid developed in [10]. The smallness of the domain on
which the preference functional is de�ned results in the non-uniqueness of the set
� of the representation (3.4), the domain not being big enough to pin down a
single set of priors, but only a maximal one.

3.3. A Second Model

Section 2 argued that IR is not intuitive if ex ante coarseness is expected to persist.
Here we describe an alternative axiom for this case, and then a functional form
for utility that seems to capture this conception of coarseness.
Suppose that, contrary to Independence, the lotteries �0 and � are such that

f��0 + (1� �) �g � f�0g � f�g, (3.7)

for a speci�c �. Suppose further that ex ante the agent has only one contingency

8To see the equivalence, recall that

co (�x+ (1� �)x0) = �co (x) + (1� �) co (x0) ; 8� 2 [0; 1] :
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in mind. Then presumably the indicated value of randomization reveals that she
views the contingency as coarse - there is no scope for ambiguity about likelihoods
because there is only one contingency. Since the individual anticipates no further
information before making her choice out of menus, it follows that she anticipates
strictly preferring ��0+(1� �) � to either of the component lotteries also ex post.
Thus she would exhibit the ranking

co (f�0; �g) � f�0; �g. (3.8)

However, such a sharp connection between (violations of) Independence and IR
is not to be expected more generally when the agent conceives of several possible
contingencies. For example, it could be that the mixture ��0 + (1� �) � lies
strictly between �0 and � in preference ex post for every contingency with �0

being best for some contingencies and � best for others. The mixed menu f��0+
(1� �) �g might still be best ex ante, as in (3.7), because it yields a higher
average payo¤s across all contingencies. In this case, neither ��0 + (1� �) �, nor
any other interior mixture, need be strictly better ex post conditionally on any
speci�c contingency, even if all contingencies are coarse. Hence there need not be
strict preference for co (f�0; �g).
Nevertheless, if ambiguity about likelihoods is not the cause, then violation of

Independence in (3.7) reveals the presence of coarse contingencies. Hence random-
ization should be of value for some lotteries, even if not for �0 and �. Further,
similar intuition applies if the violation of Independence occurs when any (not
necessarily singleton) menus are mixed. Thus we suggest the following weaker
connection:

Coarseness: For any convex menus x0 and x, if �x0+(1� �)x � x � x0 for some
0 < � < 1, then co (f
0; 
g) � f
0; 
g for some 
; 
0 2 �(B).

A Functional Form: Denote by K (N) the set of closed subsets of N ; U is a generic
element. (Endow K (N) with the Hausdor¤ metric, which renders it compact
metric, and with the corresponding Borel �-algebra � (N).) De�ne the utility of
a menu by

W (x) =

Z
max�2xminu2U u (�) d� (U) , for all x 2 X , (3.9)
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where � : � (N) ! [0; 1] is a Borel probability measure. For interpretation,
note �rst that when � has support on singleton sets U = fug, then one obtains
the DLR form (2.1). More generally, the functional form suggests the following
interpretation: the agent foresees coarse contingencies represented by sets U in the
support of �. Since she does not think explicitly in terms of �ner contingencies,
she anticipates choosing out of the menu x conditionally on each of these possible
coarse contingencies. But she is aware ex ante that each set U leaves out some
relevant missing details. Further, she anticipates that she will continue to be aware
of the presence of missing details also given the realization of any particular U .
This anticipation is captured by the fact that for any lottery �, its anticipated
utility conditional on U is given byminu2U u (�). (In particular, the ex post utility
function over lotteries, given by � 7�! minu2U u (�), is not a vNM functional.)
Thus, given U , it is anticipated that a lottery will be chosen from x so as to solve
max�2xminu2U u (�). This leads to the evaluation of x shown in (3.9).
Implicit in the interpretation of the sets U in the support of � as being coarse

contingencies, is the assumption that the support is meaningful, that is, unique
given preference. Next we show that such uniqueness obtains in a suitable sense,
at least for measures having �nite support.
Evidently,

min
u2U 0

� � u = min
u2U

� � u for all � in �(B) , (3.10)

if U 0 and U have identical convex hulls. De�ne the comprehensive hull of U by

comp (U) � fu0 2 N : u0 � u for some u 2 Ug .

Then (3.10) obtains also if U 0 and U have identical comprehensive hulls. Thus
uniqueness of the support can be expected only if one restricts attention to suitably
normalized sets U .
Say that U � N is comprehensive if U = comp (U) and denote by Kc (N) the

set of closed, convex and comprehensive subsets of N . Say that the probability
measure � on Kc (N) represents � if the latter has utility function given by (3.9).
Then we have:

Theorem 3.2. A preference � can be represented by at most a single �nitely
supported probability measure �.

A distinction: For perspective, consider the alternative functional form obtained
by reversing the order of the max and min appearing inside the integral in (3.9),
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that is, consider

Wrev (x) =

Z
minu2U max�2x u (�) d� (U) , for all x 2 X . (3.11)

In general, Wrev (�) is ordinally distinct from W (�). This is suggested by the fact
that the minimax theorem justifying such reversals of order requires that both sets
x and U be convex, and neither convexity need hold. More formal con�rmation
follows shortly.
The obvious interpretation is that the agent conceives ex ante of the �nely

detailed states u and anticipates choosing out of x after seeing which u is realized.
Thus, she anticipates maximizing u (�) ex post. At the same time, these states
are ambiguous for her - she is not su¢ ciently con�dent of their likelihood to
hold probabilistic beliefs, and this leads to the integrand appearing in (3.11). To
support the connection to ambiguity, note that preference represented byWrev (�)
satis�es all the assumptions of Theorem 3.1 and so it is a special case of that
model. In Appendix B we describe a �concrete" set � such that

Wrev (x) = min�2�

Z
max
�2x

u (�) d� (u) . (3.12)

The axioms IR and Coarseness distinguish (3.9) from our �rst model (3.4);
both models satisfy Completeness, Transitivity, Continuity, Monotonicity, Worst-
Best and Certainty Independence.

Theorem 3.3. (i) Preference represented byW (�) de�ned in (3.9) satis�es Pref-
erence Convexity and Coarseness. It satis�es IR i¤ it can be represented by a
utility function having the DLR form (2.1) and (3.3).
(ii) Preference represented by WMP (�) de�ned in (3.4) satis�es Preference

Convexity and IR. It satis�es Coarseness i¤ it can be represented by a utility
function having the DLR form (2.1) and (3.3).

In spite of the distinction provided by the theorem, the functional form (3.9)
nevertheless admits an interpretation in terms of ambiguity, albeit somewhat dif-
ferent from that provided for the previous model.9 The functional form might
describe an agent who conceives ex ante of the complete states in N , but does
not expect to see the true state ex post. Rather, she expects only a �signal�U to

9The alternative interpretation can be shown to be consistent also with the intuition for the
axioms Preference Convexity and Coarseness.
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be realized ex post. There is no prior ambiguity about the likelihoods of signals;
however, each signal is �ambiguous�- it will inform the agent that the true state
u lies in U , but leave her completely ignorant otherwise. This is a special case
of recursive multiple-priors utility studied by Epstein and Schneider [3] (though
the information structure is exogenous there and subjective here). In the omelet
example, the alternative story is that the man conceives ex ante of all gradations
of �good�for the 6th egg, but anticipates that when he breaks that egg he will be
able to see only whether or not it is totally rotten and not whether it is superlative
or stale.

Dempster-Shafer-style models: Finally, we relate the model (3.9) to the Dempster-
Shafer-style models of Mukerji [12] and Ghirardato [4] mentioned in the introduc-
tion. They suppose that while there exists a Savage-style state space S, the agent
does not conceive of all the complete states in S and has coarse perceptions.
These are modeled through an auxiliary epistemic state space 
 and a correspon-
dence � from 
 into S. (See the �gure below.) There is a probability measure p
representing beliefs on 
.

(
; p)
� (S; �)
&bf #f

X

(3.13)

Unlike a Savage agent who would view each physical action as an act from S
to the outcome set X, and who would evaluate it via its expected utility (using
a probability measure on S), the present agent views each action as a (possibly
multi-valued) act on 
.
Ghirardato assumes that each bf is multi-valued where the nonsingleton nature

of bf (!) re�ects her awareness that ! is a coarse contingency. Its utility is given
by

V G
� bf� = Z




 
min
x2 bf(!) u (x)

!
dp.

In this formulation, both 
 and the acts bf are taken to be objective and hence
observable to the analyst. One can view our model (3.9) as one possible way to
render them subjective: take X = R1, 
 = Supp (�) � K (N), and p = �, where
� is the measure appearing in our representation; and identify each lottery � in
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�(B) with the multi-valued act b�,b� : U �! fu (�) : u 2 Ug.

Then
V G
�b�� =W (f�g) :

Turn to the rest of the triangle (3.13). It is commutative if bf (!) = f (� (!)).
This is satis�ed in our model if we take S = N and �(U) = U � N .
Finally, we can write

V G
� bf� = Z

S

u (f) d� (s) ,

where � is the non-additive measure or capacity

� (Y ) = � (f! : � (!) � Y g) ;

and the integral on the right is in the sense of Choquet (see Schmeidler [15]).10

Since Schmeidler�s Choquet expected utility model was devised in order to ac-
commodate ambiguity, this demonstrates once again the close connection between
coarse perceptions and ambiguity.
Though there are di¤erences in detail, similar remarks apply to Mukerji [12];

in particular, our model can be viewed as a way to endogenize the state spaces

 and S, as well as the correspondence �, all of which are taken as primitives by
Mukerji.

A. Appendix: Proof of Theorem 3.2

Theorem 3.2 is a consequence of a more general uniqueness result on maxitive
functions de�ned on mixture lattices, which may be useful in other contexts. We
therefore �rst prove such a result (Theorem A.5), and then show how Theorem
3.2 follows.

A.1. Maxitive Functions

Say that M is a mixture lattice if it is a mixture space endowed with a binary
relation that makes it a lattice. Given x; y 2 W, denote by [x; y] the segment
f�x+ (1� �) y : � 2 (0; 1)g.
10More precisely, it corresponds to the special case where � is a belief function.
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The domain of additivity E (f) of a function f :M! R is the set

fy 2M : f (�x+ (1� �) y) = �f (x) + (1� �) f (y) 8x 2M;8� 2 [0; 1]g :

Given x�; x� 2 M, the segment [x�; x�] is a diagonal for f if [x�; x�] � E (f) and
f (x�) � f (x) � f (x�) for all x 2 M. Observe that this implies that, for each
x 2M,

f (�x+ (1� �) y) = �f (x) + (1� �) f (y) ; 8y 2 [x�; x�] ;8� 2 [0; 1] :

Two functions f; g :M! R are comonotonic if

[f (x)� f (y)] [g (x)� g (y)] � 0; 8x; y 2M:

A function f : M ! R is maxitive if f (x _ y) = max ff (x) ; f (y)g for all
x; y 2M.

Lemma A.1. Let ffigni=1 and fgig
m
j=1 be maxitive functions such that, for some

f�igni=1 � R+ and
�
�j
	m
j=1

� R+,

nX
i=1

�ifi (x) =
mX
j=1

�jgj (x) ; 8x 2M. (A.1)

Then there is a non-decreasing function W = (W1; :::;Wn) : � � Rm ! Rn such
that, for each x 2 X ,

(f1 (x) ; :::; fn (x)) = W (g1 (x) ; :::; gm (x)) ,

where � = f(g1 (x) ; :::; gm (x)) : x 2Mg.

Proof. Suppose x and y are such that gj (x) = gj (y) for each j = 1; :::;m. Then
gj (x) = max fgj (x) ; gj (y)g = gj (x _ y) for each j.
By (A.1), we can then write:

nX
i=1

�ifi (x) =
mX
j=1

�jgj (x) =
mX
j=1

�jgj (x _ y) =
nX
i=1

�ifi (x _ y) :

As fi (x) � fi (x _ y) for each i, conclude that fi (x) = fi (x _ y) for each i. A
similar argument shows that fi (y) = fi (x _ y) for each i, and so fi (x) = fi (y)
for each i, as desired.
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To show thatW is non-decreasing, suppose that x and y are such that gj (x) �
gj (y) for each j = 1; :::;m. Then, gj (x) = gj (x _ y) for each j, and so (A.1)
implies:

nX
i=1

�ifi (x) =

mX
j=1

�jgj (x) =

mX
j=1

�jgj (x _ y) =
nX
i=1

�ifi (x _ y) :

Hence fi (x) = fi (x _ y) for each i , so that fi (x) = fi (x _ y) � fi (y). �

Lemma A.2. Suppose that some Wi in Lemma A.1 is strictly increasing. Then
the functions fgigmj=1 are pairwise comonotonic.

Proof. Wlog supposeW1 is strictly increasing. Consider fx; yg 2 M and suppose
f1 (x) � f2 (y). Then,

f1 (x) = W1 (g1 (x) ; :::; gm (x)) ;

f1 (x _ y) = W1 (g1 (x _ y) ; :::; gm (x _ y)) :

As f1 is maxitive,

W1 (g1 (x) ; :::; gm (x)) = W1 (g1 (x _ y) ; :::; gm (x _ y)) :

As each gj is maxitive, we have gj (x) � gj (x _ y) for each j = 1; :::;m. Since W1

is strictly increasing, we then have gj (x) = gj (x _ y) for each j = 1; :::;m, which
in turn implies the desired result. �

Corollary A.3. Let fgigmj=1 be maxitive functions. Then the following conditions
are equivalent:

(i) there is a maxitive function f such that, for each x 2M,

f (x) =
mX
j=1

�jgj (x) ;

where �j � 0 for each j;

(ii) the sum function
Pm

j=1 gj is maxitive;

(iii) the functions fgigmj=1 are pairwise comonotonic.
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Proof. (i) implies (iii): Here W (x) =
Pm

j=1 xj for each x 2 �. As W is strictly
increasing, by Lemma A.2 the functions fgigmj=1 are pairwise comonotonic, and so
(iii) holds.
(iii) implies (ii): Given x; y 2 M, assume

Pm
j=1 gj (y) �

Pm
j=1 gj (x). Then

there is at least one j = 1; :::;m, say j = 1, such that g1 (y) � g1 (x). By (iii),
this implies gj (y) � gj (x) for all j = 2; :::;m, and so gj (x) = gj (x _ y) for all
j = 1; :::;m. Hence,

Pm
j=1 gj (x _ y) =

Pm
j=1 gj (x), and so

Pm
j=1 gj is maxitive.

As (ii) trivially implies (i), this completes the proof. �

Lemma A.4. Let f; g : M ! R be two functions sharing the same diagonal
[x�; x

�], with f (x�) = g (x�) and f (x�) = g (x�). Then f and g are comonotonic
if and only if they are equal.

Proof. Suppose f and g are comonotonic. If f 6= g, there exists x such that, say,
f (x) > g (x). Hence, there exists p 2 R such that f (x) > p > g (x), and there
exists � 2 [0; 1] such that

f (�x� + (1� �)x�) = g (�x� + (1� �)x�) = p:

Thus
f (x) > f (�x� + (1� �)x�) = g (�x� + (1� �)x�) > g (x) ;

which contradicts comonotonicity. Conclude that f = g. �

A.2. A Uniqueness Result

Theorem A.5. Let ffigni=1 and fgjg
n
j=1 be maxitive real-valued functions de�ned

on a mixture latticeM sharing the same diagonal [x�; x�], with fi (x�) = gj (x�) =
k� and fi (x�) = gj (x�) = k� for all i and j. Suppose that, for some f�igni=1 � R+
and

�
�j
	m
j=1

� R+,

nX
i=1

�ifi (x) =
nX
i=1

�ifi (y) =)
mX
j=1

�jgj (x) =
mX
j=1

�jgj (y) ; 8x; y 2M: (A.2)

Then
ff1; :::; fng = fg1; :::; gmg ;

and �i = �j whenever fi = gj.
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Proof. It is enough to prove

f�1f1; :::; �nfng = f�1g1; :::; �mgmg : (A.3)

In fact, if �ifi = �jgj, then �ifi (x) = �jgj (x) for all x 2 [x�; x�], and so �i = �j.
By (A.2), there exists � : [k�; k�]! R such that

nX
i=1

�ifi (x) = �

 
mX
j=1

�jgj (x)

!
; 8x 2M. (A.4)

Given p 2 [k�; k�], let xp 2 [x�; x�] be such that fi (xp) = gj (xp) = p for all i
and j. By considering for each p 2 [0; 1] the corresponding element xp 2 M, we
deduce that � (p) = p for all p 2 [0; 1]. Therefore, (A.4) reduces to:

nX
i=1

�ifi (x) =

mX
j=1

�jgj (x) ; 8x 2M; (A.5)

By Lemma A.1, there exists a non-decreasing functionW = (W1; :::;Wn) : [k�; k
�]m !

[k�; k
�]n such that

(f1 (x) ; :::; fn (x)) = W (g1 (x) ; :::; gm (x)) ; 8x 2 X . (A.6)

The proof is now divided into a few steps.

Step 1. We show that (A.3) holds when either n = 1 or m = 1. Consider the
former case; the other may be treated similarly. Hence (A.5) becomes

f (x) =
mX
j=1

�jgj (x) ,

and so Corollary A.3 implies that the functions fgigmj=1 are pairwise comonotonic.
By Lemma (A.4), they are all equal, and this proves (A.3).

Step 2. Given (n;m), suppose (A.3) holds for all (n0;m0) with n0 < n and m0 < m.
In view of Step 1, to complete the proof it is enough to show that (A.3) holds for
(n;m).
If all functions in the collection ffigni=1 are equal, then (A.3) holds since we

are back to Step 1. Suppose, therefore, that at least two such functions are
distinct, say f1 and f2. Then, there is x 2 X and p 2 (k�; k�) such that, say,
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f1 (x) > p > f2 (x). Wlog assume (if needed, replace x by �x + (1� �)x� for �
close to 1),

fi (x) 6= p; gj (x) 6= p for all i and j.

We now show that this implies

�i2I�ifi (x) = �j2J�jgj (x) , 8x 2 X ; (A.7)

where
I = fi : fi (x) > pg and J = fj : gj (x) > pg.

By hypothesis, 1 lies in I, and 2 lies in its complement; thus ; 6= I 6= f1; :::; ng.
By (A.6), ; 6= J 6= f1; :::; n0g. Therefore, (A.7) has fewer elements in the sums
than does (A.5), and so the proof of the theorem is complete once we prove that
(A.7) holds.
Take the menu x _ xp in (A.5), to deduce that

�i2I�ifi (x) + p�i=2I�i = �j2J�gj (x) + p�j =2J�j. (A.8)

Replace x by �x+(1� �)x� with 0 < � < 1 small enough so that all of the above
strict inequalities are preserved. Then

��i2I�ifi (x) + (1� �) �i2I�i + p�i=2I�i
= ��j2J�gj (x) + (1� �) �j2J�j + p�j =2J�j,

and therefore,
�i2I�i + p�i=2I�i = �j2J�j + p�j =2J�j (A.9)

For small changes in p, all of above is unchanged. Thus (A.9) holds for an open
set of p�s and we can conclude that

M1 = �i2I�i = �j2J�j =M
0
1 > 0, (A.10)

M2 = �i=2I�i = �j =2J�j =M
0
2 > 0. (A.11)

It is convenient to de�ne

mi =

�
�i=M1 i 2 I
�i=M2 i =2 I , m0

j =

�
�j=M

0
1 j 2 J

�j=M
0
2 j =2 J ;

and, for all x 2 X ,

H1 (x) = �i2Imifi (x) , H2 (x) = �i=2Imifi (x) ,
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H 0
1 (x) = �j2Jm

0
jgj (x) and H

0
2 (x) = �j =2Jm

0
jgj (x) .

Then, by (A.8), (A.10), and (A.11),

H1 (x) = H
0
1 (x) . (A.12)

In order to show that (A.7) holds we have to prove that H1 (x) = H 0
1 (x) for all

x 2 X . Consider two cases:
Case 1: There exists x 2M such that, for each n � 1,

H1

�
1

n
x+

�
1� 1

n

�
xp

�
6= H 0

1

�
1

n
x+

�
1� 1

n

�
xp

�
.

Set xn = 1
n
x+

�
1� 1

n

�
xp, for all n. Then

fi (xn) =
1

n
fi (x) +

�
1� 1

n

�
p; 8i = 1; :::; n;

gj (xn) =
1

n
gj (x) +

�
1� 1

n

�
p; 8j = 1; :::;m;

and so, for n large enough,

fi (x) > fi (xn) 8i 2 I, fi (x) < fi (xn) 8i =2 I;
gj (x) > gj (xn) 8j 2 J and gj (x) < gj (xn) 8j =2 J:

If we take x _ xn in (A.5), for all n large enough, then

M1H1 (x) +M2H2 (xn) =M
0
1H

0
1 (x) +M

0
2H

0
2 (xn) .

Since H1 (x) = H 0
1 (x), (A.10) and (A.11) imply that H2 (xn) = H 0

2 (xn). But
(A.5) applied to xn implies that

M1H1 (xn) +M2H2 (xn) =M
0
1H

0
1 (xn) +M

0
2H

0
2 (xn) .

Therefore, H1 (xn) = H 0
1 (xn), a contradiction.

Case 2: For each x 2M, there exists n � 1 such that H1 (xn) = H 0
1 (xn). Hence

1

n
H1 (x) +

�
1� 1

n

�
H1 (xp) =

1

n
H 0
1 (x) +

�
1� 1

n

�
H 0
1 (xp) ;

and so H1 (x) = H 0
1 (x), as desired. �
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A.3. Proof of Theorem 3.2

For each compact and convex U � N , de�ne hU : � (B)! R by

hU (�) = min
u2U

� � u, (A.13)

and de�ne EU : X ! R by EU (x) = max�2x hU (�). The function EU : X ! R is
maxitive over the mixture lattice X .

Lemma A.6. For any (closed and convex) comprehensive subsets U and U 0,

EU = EU 0 () hU = hU 0 () U = U 0.

Proof. The only non trivial implication is that hU = hU 0 ) U = U 0. Suppose
9u� 2 U 0nU . It is enough to show that any u� 2 NnU can be separated from U by
some � 2 �(B). Identify any u in N with a point v 2 RB�2, vb = ub, b 6= b�; b�.
Thus identify U with the set V � RB�2. Now take the comprehensive hull in
RB�2, that is, de�ne

bV = fv0 2 RB�2 : v0 � v; v 2 V g.
Then v�, the image of u�, does not lie in bV , and the latter is convex. Therefore,
they can be separated by some 0 6= p 2 RB�2:

p � v� < minv2bV p � v.
In the usual way, the comprehensiveness (and unboundedness) above of bV implies
that p � 0. Moreover, �b6=b�;b� pbu

�
b < minu2U �b6=b�;b� pbub. De�ne pb� and pb�

arbitrarily non-negative. Then, p � u� < minu2U p � u, because terms for b� and b�
cancel. Finally, normalize p to obtain the desired separating lottery �. �

To prove Theorem 3.2, suppose that � and �0 have �nite support and that
they both represent �. Then,

�ni=1�imax
�2x

hUi (�) = �

�
�mj=1�

0
j max
�2x

hU 0j (�)

�
; 8x 2 X ; (A.14)

for some strictly increasing � : [0; 1] ! R, where �i > 0 and �0j > 0 for all i and
j. Observe that the domain of � is [0; 1] because, for each p 2 [0; 1], we have
u � �p = p for all u 2 N .
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We can write (A.14) as

�ni=1�iEUi (x) = �
�
�mj=1�

0
jEU 0j (x)

�
; 8x 2 X ;

and so Theorem A.5 implies that

f�1EU1 ; :::; �nEUng =
�
�01EU 01 ; :::; �

0
mEU 0m

	
.

By Lemma A.6,

fU1; :::; Ung = fU 01; :::; U 0n0g and � = �0 as measures.

B. Appendix: Proof of Equation (3.12)

To derive (3.12), let
U = supp�; and

�x (u) = max
�2x

u (�) , for all u in N .

Say that the collection fpU (�) : U 2 Ug is a U-conditional probability system (U-
cps) if � � a:s:: (i) pU (�) 2 �(U), and (ii) A 7�! pU (A) is suitably measurable.
De�ne � by

� =

�
� : � (�) =

Z
pU (�) d� (U) for some U-cps fpU (�)g

�
. (B.1)

Then

min�2�

Z
�x(u) d� (u) = minfpUg

Z �Z
�x(u) dpU (u)

�
d� (U) =

Z �
minpU

Z
�x(u) dpU (u)

�
d� (U) =

Z
(minu2U �x(u)) d� (U) =Wrev (x) .

(B.2)
Roughly, the structure (B.1) for � permits the minimum appearing outside the
integral in (3.12) to be taken inside.
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C. Appendix: Proof of Theorem 3.3

C.1. Preliminaries

Let C be a convex subset of some normed vector space. A function h : C ! R
is quasi-convex if h (t�0 + (1� t) �00) � max fh (�0) ; h (�00)g for each �0; �00 2 C.
It is quasi-concave if �f is quasi-convex, and it is quasi-monotone if it is both
quasi-convex and quasi-concave.
The following result is due to [6, p. 1559].

Lemma C.1. Let h : C ! R be continuous. Then h is quasi-monotone if and
only if the sets f� : h (�) = cg are convex for all c 2 R.

Suppose K is a compact set in some topological space, and let h : C ! R be
given by

h (�) = min
y2K

T (�; y) ;

where T : C � K ! R is continuous on K and concave on C, i.e., for each
�0; �00 2 C,

T (t�0 + (1� t) �00; y) � tT (�0; y) + (1� t)T (�00; y) ; 8y 2 K: (C.1)

Lemma C.2. The function h : C ! R is concave.

De�ne
�(�) = argmin y2KT (�; y) , 8� 2 C.

Say that h is a¢ ne on some convex subset Q � C if h (��1 + (1� �) �2) =
�h (�1) + (1� �)h (�2) for all � 2 [0; 1] and all �1; �2 2 Q.

Lemma C.3. (i) For any �nite collection f�igi2I � C,

h

 
nX
i=1

�i�i

!
=

nX
i=1

�ih (�i) (C.2)

for some collection f�igi2I with �i 2 (0; 1) and
P

i2I �i = 1, if and only if\
i2I
�(�i) 6= ;. In this case,

\
i2I
�(�i) = � (

Pn
i=1 �i�i).

(ii) Let Q � C be a convex set. Then h is a¢ ne on Q if and only if\
�2Q

�(�) 6= ;:
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(iii) Given c 2 R, a nonempty set A � f� 2 C : h (�) = cg is convex if and
only if \

�2A
�(�) 6= ;:

Proof. In all points we prove the �only if�, the converse being trivial. (i) Letby 2 �(Pn
i=1 �i�i) and byi 2 �(�i) for i 2 I. By (C.1) and (C.2),

nX
i=1

�iT (�i; by) � T
 

nX
i=1

�i�i; by
!
=

nX
i=1

�iT (�i; byi) : (C.3)

On the other hand, byi 2 �(�i) implies:
T (�i; byi) � T (�i; by) , 8i 2 I.

Hence, by (C.3) we have
nX
i=1

�iT (�i; by) = nX
i=1

�iT (�i; byi) ;
which in turn implies T (�i; by) = T (�i; byi) for each i 2 I. This shows that
�(
Pn

i=1 �i�i) �
\

i2I
�(�i). The converse inclusion is trivial, and we conclude

that �(
Pn

i=1 �i�i) =
\

i2I
�(�i) 6= ;.

(ii) Suppose h is a¢ ne on Q. As Q is convex, this implies that h (
Pn

i=1 �i�i) =Pn
i=1 �ih (�i) for any �nite collection f�igi2I � Q, and any f�igi2I with �i 2 [0; 1]

and
P

i2I �i = 1. By the previous point,
\

i2I
�(�i) 6= ;. As all sets �(�) are

compact, the Finite Intersection Property implies that
\

�2Q
�(�) 6= ;.

(iii) Let �1; �2 2 A. As A is convex,
h (��1 + (1� �) �2) = �h (�1) + (1� �)h (�2) ; 8� 2 [0; 1] :

By the previous point,
\

�2A
�(�) 6= ;. �

Lemma C.4. Let Q � C be a convex set and suppose h is continuous. Then h
is a¢ ne on Q if and only if h is quasi-convex on Q and there exists 
 2 Q such
that, for all � 2 [0; 1] and all � 2 Q,

h (�) � h (
) and h (�� + (1� �) 
) = �h (�) + (1� �)h (
) :
In this case, there exists y 2 K such that

h (�) = T (�; y) ; 8� 2 Q. (C.4)
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Proof. For the �only if�part, just take 
 2 argmin�2�(B) h (�). Consider now
the �if� part. Set eQ = f� 2 Q : h (�) > h (
)g. Let �1; �2 2 eQ, and suppose
h (�1) � h (�2). If h (�1) = h (�2), then

h (��1 + (1� �) �2) = �h (�1) + (1� �)h (�2) ; 8� 2 [0; 1]

since h is quasi-monotone. Suppose h (�1) > h (�2). There exists � 2 (0; 1) such
that h (�2) = �h (�1) + (1� �)h (
) = h (��1 + (1� �) 
). By Lemma C.3(iii),
there is by 2 �(�2) such that

h (��1 + (1� �) 
) = T (��1 + (1� �) 
; by)
� �T (�1; by) + (1� �)T (
; by)
� �h (�1) + (1� �)h (
)
= h (��1 + (1� �) 
) ;

so that T (�1; by) = h (�1). Hence, by 2 �(�1), and we conclude that �(�1) \
�(�2) 6= ;, i.e., h (��1 + (1� �) �2) = �h (�1) + (1� �)h (�2) for all � 2 [0; 1].
The function h is therefore a¢ ne on eQ.
Let � 2 Q be such that h

�
�
�
= h (
). If �� 2 Q is also such that h (��) =

h (
), then h
�
t�� + (1� t) �

�
= th (��)+ (1� t)h

�
�
�
since h is quasi-monotone.

Suppose that �� 2 eQ. Given � 2 [0; 1] , set �� = ��� + (1� �) �. Since h is
concave and h (��) > h

�
�
�
, we have

h (��) � �h (��) + (1� �)h
�
�
�
> h

�
�
�
; 8� 2 (0; 1] :

and so �� 2 eQ for each � 2 (0; 1]. By the continuity of h, we then have:
th (��) + (1� t)h

�
�
�
= lim

�!0
th (��) + (1� t)h (��)

= lim
�!0

h (t�� + (1� t) ��)

= h
�
t�� + (1� t) �

�
;

and so we can conclude that h is a¢ ne on Q. By Lemma C.3(ii),
\

�2Q
�(�) 6= ;.

Any y 2
\

�2Q
�(�) satis�es (C.4). �

Given a subset D � C, say that h : C ! R is D-quasi-convex if, for all
�0; �00 2 D, h (t�0 + (1� t) �00) � max fh (�0) ; h (�00)g for all t 2 [0; 1].

Lemma C.5. Let Q � �(B) be a convex set and let D be a dense subset of Q.
Then h is D-quasi-convex i¤ it is convex.
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C.2. Proof of Theorem 3.3(i)

For each U 2 K (N), de�ne hU : � (B) �! R by

hU (�) = min
u2U

u � �, 8� 2 Rn:

It is easy to check that hU is continuous on � (B).

Preference Convexity: Using the non-negativity of �,

W (�x+ (1� �)x0) =
Z

max
�2x;�2x0

min
u2U

(�u (�) + (1� �)u (�0)) d� (U)

�
Z

max
�2x;�02x0

�
�min
u2U

u (�) + (1� �)min
u2U

u (�0)

�
d� (U)

=

Z �
� max

�2x
min
u2U

u (�) + (1� �)max �02x0 min
u2U

u (�0)

�
d� (U)

= �W (x) + (1� �)W (x0) .

Coarseness: suppose W does not satisfy it. Then there exists a violation of
Independence as in (3.7) and yet co (f
0; 
g) � f
0; 
g for all 
0; 
 2 �(B). Let
D be a countable dense subset of �(B) and eD = ff�0; �00g : �0; �00 2 Dg. For
each x 2 eD, there exists Ax 2 � (K (N)) with � (Ax) = 1 such that max
2x hU =
max
2co(x) hU for all U 2 Ax. The set eD is countable and so �

�T
x2 eD Ax� = 1.

Fix U 2
T
x2 eD Ax. Then max
2x hU = max
2co(x) hU for each x 2 eD, and so
max fhU (
0) ; hU (
00)g = max


2x
hU (
) = max


2co(x)
hU (
)

� thU (

0) + (1� t)hU (
00) ;

for all t 2 [0; 1] and 
; 
0 2 D. Hence, hU is D-quasi-convex on �(B). By Lemma
C.5, hU is convex on �(B). Finally, for each � 2 �(B),

hU
�
t� + (1� t) �b�

�
= thU (�) + (1� t)hU

�
�b�
�
and hU (�) � hU

�
�b�
�
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and so Lemma C.4 implies that hU is a¢ ne on �(B) whenever U 2
T
x2 eD Ax. As

�
�T

x2 eD Ax� = 1, for any x0; x00 2 X we have

W (tx0 + (1� t)x00) =

Z
T
x2 eD Ax

max
�2tx0+(1�t)x00

hU (�) d�

=

Z
T
x2 eD Ax

�
max

�02x0;�002x00
hU (t�

0 + (1� t) �00)
�
d�

=

Z
T
x2 eD Ax

�
tmax
�2x0

hU (�) + (1� t)max
�2x00

hU (�)

�
d�

= tW (x0) + (1� t)W (x00) :

Hence, W is a¢ ne, which contradicts the hypothesis (3.7).

IR: We show that W (x) = W (co (x)) for all x 2 X implies that W is a¢ ne.
For each � 2 �(B), we have hU

�
t� + (1� t) �p

�
= thU (�) + (1� t) p. Suppose

W (x) = W (co (x)) for all x 2 X , and let D be a countable dense subset of
�(B). For each x 2 X there exists Ax 2 � (K (N)) with � (Ax) = 1 such that
max�2x hU = max�2co(x) hU for all U 2 Ax. Let eD = ff�0; �00g : �0; �00 2 Dg. The
set eD is countable and so �

�T
x2 eD Ax� = 1.

Fix U 2
T
x2 eD Ax. We have max�2x hU = max�2co(x) hU for each x 2 eD, and

so

max fhU (�0) ; hU (�00)g = max
�2x

hU (�) = max
�2co(x)

hU (�)

� thU (�
0) + (1� t)hU (�00) ;

for all t 2 [0; 1] and �; �0 2 D. Hence hU is D-quasi-convex. By Lemma C.5, hU
is convex, and so it is a¢ ne by Lemma C.4.
We have therefore shown that hU is a¢ ne whenever U 2

T
x2 eD Ax. As

�
�T

x2 eD Ax� = 1, by proceeding as before this implies that W is a¢ ne. �

C.3. Proof of Theorem 3.3(ii)

(ii) Preference Convexity is as in (i). IR is obvious.
It remains only to derive the implications of Coarseness. Since IR is satis�ed,

then for all convex x0 and x,

x0 � x) �x0 + (1� �)x � x, 8� 2 (0; 1) .
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On the other hand, Preference Convexity implies

x0 � x) �x0 + (1� �)x � x, 8� 2 [0; 1].

Hence, for all convex x0 and x,

x0 � x) �x0 + (1� �)x � x; 8� 2 (0; 1) ;

and so every x 2 X c satis�es condition (3.5). The desired conclusion then follows
from (3.6) and IR. �

D. Appendix: Proof of Theorem 3.1

This appendix proves Theorem 3.1. Necessity is immediate; for example, IR is
satis�ed because

max
�2x

u � � = max
�2co(x)

u � �, for any x:

The proof of su¢ ciency is quite long. We provide the complete argument here,
including preliminary results on niveloids that are formulated for a more abstract
setting and that extend some results of [10].

D.1. Niveloids

Let (E;�; k�k) be a normed Riesz space and letH be a convex cone inE containing
an order unit e.11 Say that k�k is an e-norm if there exists k > 0 such that
jf j � k kfk e. Throughout we consider only e-norms.

Example D.1. Each normed Riesz space has a natural e-norm, called the e-
uniform Riesz norm, given by

kfke = inf fk � 0 : jf j � keg .

In this case, jf j � kfke e for all f 2 E. For example, if E is a function space and
e is 1
, then k�ke is the supnorm. N
11That is, E is a lattice under the order � and the norm k�k is such that, for all f; g 2 E,

kfk � kgk whenever jf j � jgj. Recall that

jf j = f+ + f� = f _ 0 + (�f) _ 0;

and that e 2 E+ is an order unit if for each f 2 E there is � > 0 such that jf j � �e.
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Lemma D.2. If h1; h2 2 H, then h1 + h2 2 H.

A functional I : H ! R with I (0) = 0 is an e-niveloid if it is monotone,
I (e) = 1, and satis�es

I (h+ �e) = I (h) + � for all h 2 H and � � 0:

If the preceding is true also for all � < 0 such that h + �e 2 H, say that I is
e-translation invariant.

Lemma D.3. Any e-niveloid I : H ! R is Lipschitz continuous and e-translation
invariant.

Remark. Observe that Lemma D.3 applies to any e-niveloid on a convex cone.

Given an e-niveloid I : H ! R, let

E = fh0 2 H : I (h+ h0) = I (h) + I (h0) 8h 2 Hg :

The set E is the domain of additivity of I. It contains both e and 0, and it is
closed under addition. When I is positively homogeneous, E is a convex cone and
E � E is the vector subspace that it generates.
For any functional I 0 : H 0 �! R1 where H 0 is a convex cone satisfying H +

E �E � H 0 � E, de�ne its domain of additivity in the obvious way paralleling the
de�nition given for I. We omit the proof of the next Theorem as it is a variation
on results in [10].

Theorem D.4. Let I : H ! R be an e-niveloid with domain of additivity E .
De�nebI (f) = sup

h2H and �1;�22E
fI (h) + I (�1)� I (�2) : h+ �1 � �2 � fg , f 2 E.

Then bI : E ! R is an e-niveloid that extends I and whose domain of additivity
includes E . Moreover, bI is the minimal such extension in that bI (�) � J (�) for
any other extension J having the preceding properties. Finally, bI is positively
homogeneous if I is, it is concave if I is quasi-concave, and it is additive if I is
additive and E = H �H.12
12I is quasi-concave if I (th1 + (1� t)h2) � min fI (h1) ; I (h2)g for all h1; h2 2 H and all

t 2 [0; 1]; it is additive if I (h1 + h2) = I (h1) + I (h2) for all h1; h2 2 H.
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Let (E;�; k�k) be a Banach lattice with topological dual E�. Denote by E�+
the set of all monotone elements in E� and let � =

�
L 2 E�+ : L (e) = 1

	
.

Theorem D.5. Let I : H ! R be a quasi-concave and positively homogeneous
e-niveloid. Then there exists a maximal convex and weak�-compact set � � �
such that

I (f) = min
L2�

L (f) for every f 2 H, and

L0 (�) = L (�) for every L0; L 2 � and � 2 E � E :

The set � is a singleton if I is additive and E = H �H.

Proof. Consider the extension bI : E ! R given by Theorem D.4. The superdif-
ferential @bI (f) at f 2 E is given by

@bI (f) = nL 2 E� : bI (g) � bI (f) + L (g � f) for every g 2 Eo : (D.1)

Since bI is concave and, by Lemma D.3, Lipschitz continuous, the set @bI (f) is
nonempty, convex and weak�-compact for each f 2 E.
Show that bI (f) = minL2@bI(0) L (f): Let L 2 @bI (f). If we take g = 0 in (D.1),

we get bI (f) � L (f), while if we take g = 2f , then we get bI (f) � L (f). Conclude
that bI (f) = L (f). This implies that @bI (f) = n

L 2 @bI (0) : L (f) = bI (f)o, and
so bI (f) = minL2@bI(0) L (f).
It remains to show that @bI (0) � �. We prove �rst that L (�) = bI (�) for all

L 2 @bI (0) and � 2 E � E . If not, then there exist L 2 @bI (0) and � 2 E � E such
that L (�) 6= bI (�). Fix f 2 E. We have bI (f + ��) � L (f + ��) for all � 2 R, and
so bI (f) � L (f) + ��L (�)� bI (�)� for all � 2 R, which contradicts bI (f) > �1.
Show now that @bI (0) � E�+. Otherwise, there exist L 2 @bI (0) and f 2 E+

such that L (f) < 0. Then bI (f) � L (f) < 0, which contradicts the monotonicity
of bI.
Let �0 � � be a convex and weak�-compact set such that I (h) = minL2�0 L (h)

and L0 (�) = L (�) for each L0; L 2 � and each � 2 E � E . Consider the functionalbJ : E ! R given by bJ (f) = minL2�0 L (f). Then bJ is well de�ned since �0
is weak�-compact. It is a concave and positively homogeneous e-niveloid that
extends I and whose domain of additivity includes E . By Theorem D.4, bJ � bI,
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and this in turn implies �0 � @bI (0). Conclude that @bI (0) is the subset of � we
are seeking.
Finally, suppose that I additive on H and that E = H �H. By Theorem

D.4, bI is a monotone linear functional on E, and so, by standard results, � is a
singleton. �

Let W : G ! R, where G is a convex subset of E containing both 0 and e.
Denote by G the subset of G consisting of all h0 2 G such that

W

�
h

2
+
h0

2

�
=
W (h)

2
+
W (h0)

2
(D.2)

for all t 2 [0; 1] and all h 2 G with W (h) =W (h0).

Corollary D.6. Let G be a convex subset of E containing both 0 and e. Let
W : G! R be quasi-concave and monotone, satisfying W (0) = 0 and

W (tf + (1� t) 
e) = tW (f) + (1� t) 
; 8f 2 G; 8t; 
 2 [0; 1] : (D.3)

Then there exists a maximal convex and weak�-compact set � � � such that

W (f) = min
L2�

L (f) , 8f 2 G; and

L0 (h) = L (h) 8L0; L 2 �;8h 2 G:
The set � is a singleton if W is a¢ ne and E = hGi.

Proof. Let H =
S
��0 �G be the cone generated by G. For each h 2 H, there

exists � > 0 such that h=� 2 H. De�ne I : H ! R by I (h) = �W (h=�).
The functional I is well de�ned: suppose that, for a given h 2 H, there exist

�; � > 0 such that h=�; h=� 2 G. Wlog suppose � � �. Then

W

�
h

�

�
= W

�
�

�

h

�

�
= W

�
�

�

h

�
+

�
1� �

�

�
0

�
=
�

�
W

�
h

�

�
;

as desired. Observe that h=� 2 G and � � � imply h=� 2 G. Hence, given any
h1; h2 2 H, there exists � � 1 such that hi=� 2 G and I (hi) = �W (hi=�) for
each i = 1; 2. This property will be tacitly used in the sequel.
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The functional I is clearly positively homogeneous, and its domain of additivity
E is given here by E = fh0 2 H : I (h+ h0) = I (h) + I (h0) 8h 2 Hg. It can be
shown that

E = fh0 2 H : I (h+ h0) = I (h) + I (h0) 8h 2 H s.t. I (h) = I (h0)g :

Now we show that E =
S
��1 �G. First show that

S
��1 �G � E . Given h0 2 G

and � � 1, we want to show that �h0 2 E . Let h 2 H and I (h) = I (�h0). There
exists � � 1 such that h0=�; h=�� 2 G, and

I (�h0 + h) = �I

�
h0 +

h

�

�
= �I

�
�
h0

�
+ �

h

��

�
= 2��W

�
1

2

h0

�
+
1

2

h

��

�
= ��W

�
h0

�

�
+ ��W

�
h

��

�
= I (�h0) + I (h) :

This proves that �h0 2 E , as desired.
Conversely, let h0 2 E . There is � � 1 such that h0=� 2 G. As E is a cone,

h0=2� 2 E . Hence, for each h 2 G we have:

W

�
h

2
+
h0

2�

�
= I

�
h

2
+
h0

2�

�
=

I

�
h

2

�
+ I

�
h0

2�

�
=
W (h)

2
+
1

2
W

�
h0

�

�
;

and so h0=� 2 G, h0 2 �G, and we conclude that E �
S
��1 �G.

In sum, we have proved that E =
S
��0 �G. As e 2 G, in particular this implies

that I is an e-niveloid.
For monotonicity, let h1; h2 2 H be such that h1 � h2. There exists � > 0 such

that h1=�; h2=� 2 G. Then

I (h1) = �W

�
h1
�

�
� �W

�
h2
�

�
= I (h2) ;

and we can conclude that I is an e-niveloid on H.
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Show that I is quasi-concave on H: given any h1; h2 2 H, there exist � >
0 such that h1=�; h2=� 2 G. For any t 2 [0; 1],

I (th1 + (1� t)h2) = I
�
t�
h1
�
+ (1� t)�h2

�

�
= �I

�
t
h1
�
+ (1� t) h2

�

�
= �W

�
t
h1
�
+ (1� t) h2

�

�
� �min

�
W

�
h1
�

�
;W

�
h2
�

��
= min fI (h1) ; I (h2)g .

Thus I is quasi-concave. Application of Theorem D.5 completes the proof. �

D.2. Application

De�ne �� on X as follows: x �� x0 i¤ co (x) � co (x0). Then �� satis�es Com-
pleteness, Transitivity, Continuity, Monotonicity, Worst-Best, and Indi¤erence to
Randomization. Moreover, since for all � 2 [0; 1] we have

co (�x+ (1� �)x0) = �co (x) + (1� �) co (x0) ;

then �� also satis�es Preference Convexity and Certainty Independence. The rest
of the proof is devoted to showing that �� admits the representation (3.4) on X c.
This is enough to complete the proof since (i) � and �� agree on X c, and (ii)
they agree on all of X i¤� satis�es IR.
De�ne B; �(B) ; b�; b� andN =

n
u 2 [0; 1]B : ub� = 0 and ub� = 1

o
as in the

text. Let �(N) be the set of all Borel probability measures on N and C (N) be
the set of all continuous functions on N . Endow C (N) with the supnorm k�ks and
de�ne an order � on C (N) by f � g if f (u) � g (u) for all u 2 N .
The triple (C (N) ;�; k�ks) forms a Banach lattice; its dual is given by the set

of all bounded Borel measures and the set � of Theorem D.5 is given by �(N).
Moreover, 1N is an order unit e that makes k�ks an e-norm, while the 0 is the
function on N that is identically zero.
Denote by � the set of all support functions �x : N ! R, given by �x (u) =

max�2x � � u for each u 2 N and x 2 X c. Then � is a convex subset of C (N)
containing both e and 0. For the latter, note that �fb�g = 1N and �fb�g = 0.
The next result is an immediate consequence of Corollary D.6. Observe that,

by standard results, a weak�-compact subsets of �(N) is weakly compact.
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Corollary D.7. LetW : �! R be monotone, quasi-concave, satisfyingW (0) =
0, W (e) = 1, and

W (��x + (1� �) 
e) = �W (�x) + (1� �) 
; 8�x 2 �;8�; 
 2 [0; 1] :

De�ne G as in (D.2). Then there exists a maximal convex and weakly compact
subset � � �(N) such that

I (�x) = min
�2�

Z
N

�x (u) d�, for all �x 2 �; andZ
N

�x (u) d�
0 =

Z
N

�x (u) d�, for every �0; � 2 � and �x 2 G:

The set � is a singleton if W is a¢ ne and E = H �H.

Turn �nally to the proof of Theorem 3.1. Adopt the hypotheses stated there.

Lemma D.8. There exists W : X c ! R that represents �� and such that, for
each x; x0 2 X c, � 2 [0; 1] and �p 2 C,

W
�
�x+ (1� �) �p

�
= �W (x) + p; and

W (�x+ (1� �)x0) � min fW (x) ;W (x0)g :

The functional W is unique up to positive a¢ ne transformations.

Proof. The set C =
�
�p � pb� + (1� p) b� : p 2 [0; 1]

	
is a convex subset of the

vector space f�b� + �b� : �; � 2 Rg. Because the preference �� satis�es the vNM
axioms on C, there exists an a¢ ne function u : C ! R, unique up to positive
a¢ ne transformations, such that c �� c0 i¤ u (c) � u (c0). Normalize u so that
u (b�) = 0 and u (b�) = 1. Hence,

u
�
�p
�
= u (pb� + (1� p) b�) = pu (b�) + (1� p)u (b�) = p.

For any x 2 X c, Worst-Best and Monotonicity imply

fb�g �� fb�g [ x �� x �� fb�g [ x �� fb�g.

By Continuity there exists a p 2 [0; 1] such that �p � pb� + (1� p) b� �� x.
Uniqueness obtains by Independence on C because fb�g � fb�g.
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Set W (x) = u
�
�p
�
= p. Clearly, x �� x0 i¤W (x) � W (x0), and W is the

unique functional on X c representing �� that reduces to u on C.
Consider x 2 X c and �p 2 C. There exists �q 2 C such that x �� �q. By

Certainty Independence,

x �� �q () �x+ (1� �) �p �� ��q + (1� �) �p,

for all � 2 [0; 1], and so

W
�
�x+ (1� �) �p

�
= W

�
��q + (1� �) �p

�
= �W

�
�q
�
+ (1� �)W

�
�p
�

= �W (x) + (1� �)W
�
�p
�
.

Finally, the quasi-concavity ofW is a direct consequence of Preference Convexity.
�
For any menu x, de�ne its �D-hull by

hull(x) = f� 2 �(B) : �0 �D � for some �0 2 xg.

If x is convex, then so is hull (x).

Lemma D.9. (i) For any x 2 X c and �0 =2 hull (x), there exists u in N such that

�x (u) < u
�
�0
�
. (D.4)

(ii) For any x and y in X c,

�y (�) = �x (�) =) y �� x,
�y � �x =) y �� x

Proof. (i) Let y = f� 2 �(B) : � �D �0g. Then y and hull (x) are disjoint
closed convex sets. Therefore, there exists v in RB such that

sup�2hull(x) v � � < v � �0 � v � �0

for all �0 in y. Note that b� 2 y and b� 2 hull (x). It follows that

v (b�) � v (b) � v (b�) for all b.

Thus we can renormalize v into u in N satisfying (D.4).
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(ii) We have
x �D hull (x) and y �D hull (y) .

By Worst-Best,
x �� hull (x) and y �� hull (y) . (D.5)

Thus it su¢ ces to show that

�x (�) = �y (�) =) hull (x) = hull (y) .

Suppose that �0 2 hull (x) nhull (y). Then by (i) there exists u in N such that

�y (u) < �
0 � u � �x (u) , (D.6)

a contradiction. Conclude that hull (x) = hull (y).
Finally, let �y � �x on N . By (D.5), it is enough to show that hull (x) �

hull (y). Otherwise, there exists �0 2 hull (x) nhull (y), which implies (D.6),
contradicting our hypothesis. �

De�ne W : �! R by

W (�x) =W (x) for each x 2 X c:

By Lemma D.9, W is well de�ned and monotone, with W (0) = 0 and W (e) = 1.
Moreover,

W
�
��x + (1� �) 
�f��g

�
= W

�
��x+(1��)�


�
=W

�
�x+ (1� �) �


�
= �W (x) + (1� �)W

�
�

�

= �W (�x) + (1� �) 
W
�
�fb�g

�
; and

W (��x + (1� �)�x0) = W
�
��x+(1��)x0

�
=W (�x+ (1� �)x0)

� min fW (x) ;W (x0)g = min fW (x) ;W (x0)g :

Hence W satis�es the hypotheses of Corollary D.7, and so there exists a maximal
convex and weakly compact subset � � �(N) such that, for each � 2 �,

W (x) =W (�x) = min
�2�

Z
N

�x (u) d� = min
�2�

Z
N

max
�2x

u (�) d�;
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and, for each �0; � 2 � and each �x 2 G,Z
N

�x (u) d�
0 =

Z
N

�x (u) d�: (D.7)

Here H =
S
��0 �� and G is the subset of � consisting of all �x0 such that

W

�
1

2
�x +

1

2
�x0

�
=
1

2
W (�x) +

1

2
W (�x0)

for all � 2 [0; 1] and all �x 2 � such that W (�x) =W (�x0).
Observe that �x0 2 G i¤ x0 2 G��, where

G�� =
�
x0 2 X c :

1

2
x+

1

2
x0 �� x; 8x 2 X c with x �� x0

�
.

Therefore (D.7) implies that

min
�2�

Z
N

max
�2x0

u (�) d�0 = min
�2�

Z
N

max
�2x0

u(�) d�

for all �0; � 2 � and for all x0 2 G��.
Finally, the desired result follows from Corollary D.7 because W satis�es the

hypotheses adopted there.
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