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Abstract

We consider the problem of adjudicating conflicting claims. A
rule to solve such problems is consistent if the choice it makes for
each problem is always in agreement with the choice it makes for
each “reduced problem” obtained by imagining that some claimants
leave with their awards and reassessing the situation a that point. It
says that each remaining claimant should receive what he received
initially. We consider the version of the proportional rule that selects
for each problem, the awards vector that is proportional to the vector
of claims truncated at the amount to divide. We illustrate a geometric
technique developed by Thomson (2001) by showing that the two-
claimant truncated proportional rule has no consistent extension to
general populations (Dagan and Volij, 1997).
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1 Introduction

A group of agents have claims on a resource adding up to more than what
is available. How should the resource be divided? For instance, a firm goes
bankrupt and its liquidation value has to be allocated among its creditors.
How should it be done? A “rule” associates with each such “claims problem”
a division of the amount available, an “awards vector” for the problem. The
literature on the adjudication of conflicting claims, which originates in O’Neill
(1982), is concerned with the identification of well-behaved rules.1

A central test of good behavior is “consistency”. A rule is consistent if, for
each problem, the awards vector it recommends is “in agreement” with the
awards vector it recommends for each “reduced problem” obtained by imag-
ining some claimants leaving with their awards and reassessing the situation
at that point: in this lower-dimensionality problem, it should recommend for
each of the remaining claimants what it recommended initially.2

In the various fields of game theory and the theory of resource alloca-
tion in which the idea of consistency has been applied, it has provided an
appealing way of extending to arbitrary populations the choice of a rule for
the two-agent case. Our intuition is stronger if there are only two agents. In
particular, the difficult conceptual issue of how to treat coalitions does not
arise. Also, less sophisticated mathematics often suffice. Hence the interest
in so proceeding. Of course, not all two-agent rules have consistent exten-
sions to arbitrary populations. In each case, the question is whether such an
extension exists.

It is the question we ask here about an important variant of the propor-
tional rule. The answer is negative. Dagan and Volij (1997) obtain it as
follows. Given a two-claimant rule, they associate with each problem and
each awards vector for it, a certain binary relation, and they establish tran-
sitivity of the relation as necessary and sufficient for a two-claimant rule
satisfying some minor additional properties to have a consistent extension.
This transitivity requirement can be understood as an algebraic description
of the fact that the paths of awards of a consistent rules are related by pro-
jection. This fact is our point of departure. When no consistent extension
exists, our technique provides a constructive way of identifying situations
where the projection requirements implied by consistent are not met (and

1For as survey, see Thomson (2003).
2The idea of consistency has been the object of a considerable literature that now

counts several hundred items. For a survey, see Thomson (2005).
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equivalent, it helps identify awards vectors for which the Dagan and Volij
necessary conditions are violated). When an extension exists, it allows its
construction. When the point of departure is not a particular two-claimant
rule, but a family of such rules, it allows to identify the selections that have
to be made from that family so as to obtain consistency. The technique
mostly relies on understanding the geometric properties of paths of awards,
seen in their entirety (Thomson, 2001). (The path of awards of a rule for a
claims vector is the locus of the awards vector it chooses as the amount to
divide runs from 0 to the sum of the claims.)

The technique has been useful in other applications, not only in proving
or disproving the existence of consistent extensions, but also in constructing
these extensions when they exist. A first study identifies the generalizations
of the Talmud rule (Aumann and Maschler, 1985) that do not necessarily
satisfy “equal treatment of equals” (Hokari and Thomson, 2003a). A second
study (Thomson, 2002a) offers an alternative characterization of a class of
rules satisfying certain invariance properties, first obtained by Moulin (2000).
A third study concerns a family of rules, the “ICI family”, that provides a
simultaneous generalization of several rules that are central to the litera-
ture, the proportional, constrained equal awards, constrained equal losses,
and minimal overlap rules. The consistent members of this family can be
completely described (Thomson, 2002b).

2 Adjudicating conflicting claims

There is a set of “potential” claimants indexed by the natural numbers, N.
Let N be the class of nonempty and finite subsets of N. A claims problem,
or simply a problem, is a pair (c, E) ∈ RN

+ × R+, where N ∈ N , such that∑
N ci ≥ E.3 Let CN be the class of all problems with claimant set N . A

division rule, or simply a rule, is a function defined on
⋃

N∈N CN , which
associates with each N ∈ N and each (c, E) ∈ CN a point x of RN

+ such that
0 5 x 5 c and

∑
xi = E (this equality is the form taken by efficiency on this

domain). Any such point is an awards vector for (c, E). Let R be our
generic notation for rules. For each c ∈ RN

+ , the locus of R(c, E) as E varies
from 0 to

∑
ci is the path of awards of R for c. The most prominent rule

3By the notation RN we mean the Cartesian product of |N | copies of R indexed by the
members of N . Vector inequalities: x = y, x ≥ y, and x > y.
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in practice as well as in the theoretical literature is the proportional rule, P ,
which allocates the resource in proportion to claims.

A number of authors have argued that when a claim exceeds the amount
to divide, it can be legitimately replaced by this amount. The difference be-
tween the claim and the amount to divide cannot be compensated anyway, so
it can be judged irrelevant. Although one can certainly imagine counterargu-
ments to this position, many interesting rules are invariant under truncation
of claims at the amount to divide (constrained equal awards, Talmud, ran-
dom arrival, minimal overlap), and it is certainly worth exploring. The idea
leads naturally to associating to each rule R a new rule by truncating claims
at the amount to divide before applying R. Due to the central role played
by the proportional rule, its claims-truncated version is of particular interest
(Dagan and Volij, 1997; Curiel, Maschler and Tijs, 1987):

Claims-truncated proportional rule, P t: For each N ∈ N and each
(c, E) ∈ CN , P t(c, E) ≡ λ(min{ci, E})i∈N , where λ ∈ R+ is chosen so as to
achieve efficiency.

Many tests have been devised for the evaluation of rules. We focus on one
that has been important not only in our current context, but in virtually all
of the various models of game theory and the theory of resource allocation
that have been the object of axiomatic analysis. Here, it says the following.
Starting from some problem, apply the rule to obtain an awards vector for
it. Now, imagine some claimants leaving the scene with their awards, and at
that point, re-evaluate the situation. In the “reduced problem” involving the
remaining claimants, the amount to divide is what is was initially minus what
the claimants who left took with them. Apply the rule to this problem and
check whether the rule assigns to each remaining claimant what it assigned
to him initially. We require that this always be the case:4

Consistency: For each N ∈ N , each (c, E) ∈ CN , and each N ′ ⊂ N , if
x ≡ R(c, E), then xN ′ = R(cN ′ ,

∑
N ′ xi).

5

4The first applications of the consistency idea to claims resolution are due to Aumann
and Maschler (1985) and Young (1987). Young is the author of the most general theorems
on the subject.

5Note that since we require rules to be such that for each i ∈ N , 0 ≤ xi ≤ ci, then the
sum of the claims of the remaining claimants is still at most as large as the amount that
remains to divide, and therefore the problem (cN ′ ,

∑
N ′ xi) is well-defined.
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Many rules are consistent, the proportional rule being an obvious exam-
ple. However, the claims-truncated proportional rule is not.6 To see this,
let N ≡ {1, 2, 3} and (c, E) ∈ CN be defined by (c, E) ≡ (1, 1, 3; 3). Then
P t(c, E) ≡ x = (3

5
, 3

5
, 9

5
) (note that no truncation is actually needed here), but

after claimant 2 leaves with 3
5
, we obtain P t(c1, c3, x1 + x3) = P t(1, 3; 12

5
) =

P (1, 12
5
; 12

5
) 6= (3

5
, 9

5
).

If a rule is consistent and coincides with a given two-claimant rule, it is
its consistent extension. Suppose that a two-claimant rule is resource
monotonic, that is, such that for each claims vector, it assigns to each
claimant an amount that is a nowhere decreasing function of the amount to
divide. Then, it has at most one consistent extension (Aumann and Maschler,
1985). Now, given a resource monotonic two-claimant rule, can one prove
that it has a consistent extension if that is the case? Also, can one construct
the extension?

A general technique to answer such questions is developed in Thomson
(2001). It exploits the following projection property of the paths of awards of
a resource monotonic and consistent rule: for each N ∈ N , each c ∈ RN

+ , and
each N ′ ⊂ N , the path of awards of the rule for c, when projected onto RN ′

,
is its path of awards for cN ′ . Then, if a resource-monotonic two-claimant rule
has a consistent extension, one can deduce, for each claims vector involving
an arbitrary population, the path of awards of this extension from the paths
of awards of the two-claimant rule for the projection of that claims vector
onto two-dimensional subspaces. The result established here being negative,
the following simplified presentation of the technique will suffice.

Let N be a three-claimant group. If a choice has been made of a rule
R in the two-claimant case, the existence of a consistent extension of R
implies the existence, for each c ∈ RN

+ , of a path Π in RN whose projections
onto the two-dimensional subspaces of RN coincide with the paths of awards
of R for the projections of c onto these subspaces. In fact, if R is strictly
resource monotonic, two of the three paths in the two-dimensional subspaces
are sufficient to construct Π, as follows. To fix the ideas, let N ≡ {1, 2, 3}
and c ∈ RN . For each t ∈ [0, c1], let H(t) be the plane of equation x1 = t.
By strict monotonicity, the plane intersects the paths Π3 for c{1,2} and Π2

for c{1,3} at exactly two points, denoted x(t) and y(t). Consistency tells us
that Π contains the point z(t) ∈ RN whose projections onto R{1,2} and R{1,3}

6A study of which properties are preserved or not preserved by operators on the space
of rules, including the “claims truncation operator”, is due to Thomson and Yeh (2006).
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are x(t) and y(t), namely (t, x2(t), y3(t)). In fact, Π is the locus of z(t) as t
varies in [0, c1]. Once Π is constructed, we project it onto R{2,3} and check
whether this projection coincides with the path for c{2,3}. It should. In our
application, it does not.

3 The result

Theorem 1 The two-claimant claims-truncated proportional rule has no con-
sistent extension.

The notation seg[a, b] designates the segment connecting the points a and b.

Proof: We will derive a contradiction to the supposition that there exists
a consistent rule R that coincides with P t in the two-claimant case. Let
N ≡ {1, 2, 3} and c ≡ (2, 4, 6) ∈ RN

+ .

Step 1: Constructing the paths of awards of P t in the two-claimant
case (Figure 1a). Let i, j ∈ N and (ci, cj) ∈ R{i,j}+ . Without loss of generality,
suppose ci ≤ cj. Then, the path of awards of P t for (ci, cj) is as follows:

Case 1: E ≤ ci. Both claims are truncated. After truncation, they are
both equal to E, so P t(c, E) = (E

2
, E

2
). As E varies in [0, ci], P t(c, E) traces

out seg[(0, 0), ( ci

2
, ci

2
)].

Case 2: ci ≤ E ≤ cj. Only cj is truncated, and P t(c, E) is the vector

x ∈ R{i,j}+ defined by (i) xi + xj = E, and (ii) for some λ, xi = λci and
xj = λE. As E varies in [ci, cj], P t(c, E) traces out the part of the curve of

equation xj =
x2

i

ci−xi
(obtained by eliminating E and λ from (i) and (ii) above)

that lies between the lines of equation xi + xj = ci and xi + xj = cj. We call
C the curve just identified when ci = 2. In Figure 1a, it is the steep convex
curve emanating from (1, 1) and extending above the horizontal segment of
ordinate 6. We designate by (f(E), g(E)) the point of C that lies on the line
of equation x1 + x2 = E. The critical observation to make here is that C
does not depend on cj.

Case 3: cj ≤ E. No truncation takes place and P t(c, E) = P (c, E). As
E varies in [cj, ci + cj], P t(c, E) traces out seg[(f(cj), g(cj)), (ci, cj)].

Summarizing, for each cj ≥ ci = 2, the path of P t for (2, cj) consists of
the union of seg[(0, 0), (1, 1)] (Case 1), the part of C that lies between (1, 1)
and (f(cj), g(cj)) (Case 2), and seg[(f(cj), g(cj)), (2, cj)] (Case 3). Figure 1a
illustrates these conclusions for cj = 3, 4, and 6.
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Figure 1: Proof of Theorem 1. (a) Step 1: Generating the paths of awards of
P t for (2, 3), (2, 4), and (2, 6). (b) Step 4: Deriving the contradiction. The path
for c{2,3} in R{2,3}

+ consists of seg[(0, 0), q1], the curvi-linear segment from q1 to q2,

and seg[q2, c{2,3}]. The projection onto R{2,3}
+ of the path for c ≡ (2, 4, 6) of the

consistent extension of P t, if such an extension exists, contains seg[n1, n2].
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Step 2: Representing in RN the paths of awards of P t for (c1, c2) =
(2, 4), (c1, c3) = (2, 6), and (c2, c3) = (4, 6) (Figure 1b). We designate
these paths by Π3, Π2, and Π1 respectively.

• The path Π3 of panel (b) is a copy of the path for (2, 4) of panel (a),
with k1 corresponding to (1, 1) and k2 to (f(4), g(4)).

• The path Π2 of panel (b) is a copy of the path for (2, 6) of panel (a),
with `1 corresponding to (1, 1) and `3 to (f(6), g(6)).

• The path Π1 of panel (b) is obtained by a homothetic expansion of
factor 2 of the path for (2, 3) of panel (a). The points q1 and q2 correspond
to the points obtained from (1, 1) and (f(3), g(3)) by subjecting them to this
expansion.

Step 3: Constructing the projection onto R{2,3} of the path of
awards of R for (2, 4, 6), Π (Figure 1b). Since Π3 and Π2 are strictly
monotonic in R{1,2} and R{1,3}, Π can be uniquely deduced from them. It
has four parts, separated by the planes parallel to R{2,3} that contain either
a kink of Π3 or a kink of Π2. For each t ∈ [0, c1], let H(t) be the plane of
equation x1 = t. The critical values of t, those for which H(t) contains a
kink or an endpoint of Π3 and Π2, are 0, 1, f(4), f(6) and c1 (for t = 1, the
kink k1 in Π3 and the kink `1 in Π2 are reached simultaneously). To avoid
cluttering the figure, we do not represent Π itself and in fact, because this
suffices for our purposes, we only identify in the next paragraph the part of
Π that lies between H(1) and H(f(4)).

Let `2 be the point of Π2 whose first coordinate is f(4). The part of Π3

that lies between k1 and k2—let us call it C3—and the part of Π2 that lies
between `1 and `2—let us call it C2—are both copies of the part of C that
lies between (1, 1) and (f(4), g(4)), a strictly monotonic curvi-linear segment.
Thus, the part of Π whose projection onto R{1,2} is C3 and whose projection
onto R{1,3} is C2 is a strictly monotonic curvi-linear segment that lies in the
plane of equation x2 = x3. Its endpoints are (1, 1, 1) and (f(4), g(4), g(4)).
Its projection onto R{2,3} is a segment that lies in the 45◦ line of that space,
namely seg[n1, n2], where n1 ≡ (1, 1) and n2 ≡ (g(4), g(4)).

Step 4: Deriving the contradiction. We have just determined that the
projection of Π onto R{2,3} is a segment contained in the 45◦ line in R{2,3}

that extends beyond the line of equation x2 + x3 = c2. However, we had
already seen that this is not how Π1 extends beyond that line.7

¤
7The four parts of Π are as follows. First is the segment in RN whose projec-
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4 Conclusion

Another operation on rules has been suggested in the literature. Given any
problem, it consists in first assigning to each agent his “minimal right”,
namely the difference between the amount to divide and the sum of the claims
of the others (if this difference is non-negative), and then applying the rule
to divide the remainder, after revising claims down by the minimal rights.
This operation is dual to the claims truncation operation (for the notion of
duality, see Aumann and Maschler (1985), Herrero and Villar (2001), Moulin
(2000), and Thomson and Yeh (2000)). Consistency being preserved under
duality (this means that if a rule is consistent, so is its dual), a corollary of
our main result is that the two-claimant version of the rule obtained from
P by subjecting it to the “attribution of minimal rights” operator has no
consistent extension. Curiel, Maschler, and Tijs (1987) suggest that the
proportional rule be subjected to both operators. The rule they obtain is
not consistent but in the two-claimant case, it coincides with the so-called
contested-garment rule of the Talmud (Aumann and Maschler, 1985). The
contested-garment rule does have a (unique) consistent extension, namely
the Talmud rule, as Aumann and Maschler show. Thus, the two-claimant
version of the rule Curiel, Maschler, and Tijs propose also does, although it
is not the rule they suggest for more than two claimants. The technique we
used here can also be applied to determine this extension (Thomson, 2001).

An alternative approach to the problem we address here is proposed by
Dagan and Volij (1997). It involves calculating the “average consistent”
extension of the two-claimant rule whose consistent extension is sought after,
and if no such extension exists, showing that this extension is not consistent.
As the authors note, the required calculations of this indirect approach may
be prohibitive.

tion onto R{1,2} is seg[(0, 0), k1] and whose projection onto R{1,3} is seg[(0, 0), `1]. It
is seg[(0, 0, 0), (1, 1, 1)]. Its projection onto R{2,3} is seg[(0, 0), n1]. Second is the part de-
scribed in the body of the proof. Third is the curvi-linear segment whose projection onto
R{1,2} is seg[k2, (f(6), 2f(6)] and whose projection onto R{1,3} is the part of Π2 that lies
between `2 and `3 ≡ (f(6), g(6)). Its projection onto R{2,3} is a curvi-linear segment with
endpoints n2 and (2f(6), g(6)) (this segment is not represented). Fourth is the segment
whose projection onto R{1,2} is seg[(f(6), g(6)), c{1,2}] and whose projection onto R{1,3} is
seg[(f(6), 2f(6)), c{1,3}]. Its projection onto R{2,3} is seg[(2f(6), g(6)), c{2,3}].
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