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Abstract

We consider the problem of adjudicating conflicting claims, and
characterize the family of rules satisfying four standard invariance
requirements, homogeneity, two composition properties, and consis-
tency. It takes as point of departure the characterization of the fam-
ily of two-claimant rules satisfying the first three requirements, and
describes the restrictions imposed by consistency on this family and
the further implications of this requirement for problems with three
or more claimants. The proof, which is an alternative to Moulin’s
original proof (Econometrica, 2000), is based on a general method of
constructing consistent extensions of two-claimant rules (Thomson,
2001), which exploits geometric properties of paths of awards, seen in
their entirety.

Keywords: claims problems; consistent extensions; proportional
rule; constrained equal awards rule; constrained equal losses rule.

JEL classification number: C79; D63; D74
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1 Introduction

We consider the problem of allocating an infinitely divisible and homogeneous
resource among agents having claims on it that cannot be jointly honored.
A primary example is when the liquidation value of a bankrupt firm has to
be divided among its creditors. A “division rule” is a function that asso-
ciates with each situation of this kind, or “claims problem”, a division of the
amount available, an “awards vector” for the problem. This division is inter-
preted as the choice that a judge or an arbitrator could make. The literature
devoted to the analysis of this sort of situations originates in a path-breaking
paper by O’Neill (1982).1 We offer here a geometrically intuitive proof of a
characterization, due to Moulin (2000), of the family of rules satisfying four
standard invariance requirements. We aim to make this important theorem
more easily accessible and to illustrate a method of proof that has provided
answers to an entire class of similar questions. This method is presented in
a didactic way and applied to a series of examples in Thomson (2001), but a
compact presentation of it is in Subsection 3.3.

The requirements we impose on a rule are the following. First, multiplying
all the data of a problem by the same positive number results in a new
problem for which the chosen awards vector should be related by the same
operation to the awards vector initially chosen. Second, if the amount to
divide decreases from some initial value, the awards vector chosen for the final
problem should be equivalently obtainable in two ways: either the awards
vector initially chosen is ignored and the rule is reapplied to divide the final
amount; or this initial awards vector is used as claims vector when dividing
the final amount. Third is a counterpart of this condition pertaining to
possible increases in the amount to divide. The fourth requirement is a
variable-population condition: the awards vector chosen for each problem
should be in agreement with the awards vector chosen for each “reduced
problem” obtained by imagining that an arbitrary subpopulation of claimants
leave the scene with their awards, and re-evaluating the situation at that
point.

Note that no symmetry or anonymity requirement is imposed. Although
such requirements are often natural, in many situations it is desirable to
have the option of treating agents differently even when their claims are
equal. This allows taking into account characteristics they have other than

1For a survey, see Thomson (2003).
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their claims. An obvious example of such a characteristic is income. Others
are family responsibility, health status, record of service, and so on. Then,
fairness may require that agents with equal claims not receive equal amounts.

The main result is a characterization of the family of rules satisfying
the four axioms. Any such rule is obtained by first partitioning the set
of potential claimants into ordered “priority classes”. For each problem,
one calculates the ordered partition of the set of agents involved induced
by this “reference partition”. The components of the induced partition are
handled in succession: one fully satisfies the claims of all agents in a class
before giving anything to any class with a lower priority. This is common
practice (for instance, secured claims have priority over unsecured claims).
More interesting is how each class is handled. There are two cases. For a
class that coincides with a two-claimant member of the reference partition,
a rule in a rich family of rules that “link” the proportional, constrained
equal awards, and constrained equal losses rules, is applied (illustrations
are in Subsection 3.1). For a class with more than two claimants, one of
the following rules is applied: the proportional rule, a weighted constrained
equal awards rule, or a weighted constrained equal losses rule. In each of the
last two cases, the weights are proportional to a vector of positive weights
assigned once and for all to the members of the component of the reference
partition of which this induced class is a subset (Subsection 3.4).

The proof is in two parts. First, the family of two-claimant rules satisfying
the three fixed-population axioms is characterized. Second, the family of
rules defined over the entire domain and satisfying consistency is identified.
We focus on that second, more delicate step, exploiting a technique to pass
from two claimants to more than two claimants whose usefulness extends
much beyond the question addressed here; it can be used very generally to
demonstrate the existence of a “consistent extension” of an a priori given
two-claimant rule if such an extension exists, and to identity this extension,
or to show that none exists if that is the case.

Other applications of this technique are given in several papers. As al-
ready mentioned, a didactic presentation is in Thomson (2001), where the
technique is also used to determine whether there exists a consistent exten-
sion of the two-claimant weighted averages of the constrained equal awards
and constrained equal losses rules (the set of awards vectors of a problem is
a convex set, which makes this attractive operation possible). The result is
that consistency requires that in fact all the weight should always be placed
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on the constrained equal awards rule, or that all the weight should always
be placed on the constrained equal losses rule.

This paper also identifies the consistent extensions of a two-claimant fam-
ily defined as another kind of compromise between the proportional and con-
strained equal awards rules: for each claims vector, and as the amount to di-
vide increases, one begins with equal division and at some point, one switches
to proportional division. A symmetric proposal is a compromise between the
proportional and constrained equal losses rules. In each case, we show that
these rules have consistent extensions if the point where the switch occurs
between equality and proportionality satisfies certain conditions, which we
spell out, and we describe these extensions.

Next is a characterization of the family of weighted generalizations of the
so-called Talmud rule (Hokari and Thomson, 2003). The goal there was to
maintain the properties that make the Talmud rule attractive, in particular
its consistency, but as in the present contribution, not impose symmetry so
as to allow favoring claimants who are thought of as being more deserving.
The result is that skewing awards towards particular claimants can be done
only in some limited way.

Another study starts from a simple family that collects a number of di-
verse rules that have been central in the theory (Thomson, 2002), including
the constrained equal awards, constrained equal losses, Talmud, and minimal
overlap rule, the latter being a rule proposed by O’Neill (O’Neill, 1982) to
rationalize the resolution in a Medieval text for a particular example. The
technique can be used to identify its consistent members.

A final paper shows that the version of the proportional rule obtained
by truncating claims at the amount to divide has no consistent extension
(Thomson, 2006), as first proved by Dagan and Volij (1997).

In the concluding section, we relate our approach to two approaches pro-
posed by Dagan and Volij (1997) to solve extensions questions.

2 Preliminaries

There is a population of “potential” claimants indexed by N, the set of natu-
ral numbers. Alternatively, we could assume the population to be finite and
at least equal to 3. (If there are at most two agents, the variable population
axiom has no bite.) LetN be the class of finite subsets of N. A claims prob-
lem with agent set N ∈ N is a pair (c, E) ∈ RN

+ × R+ where c ≡ (ci)i∈N
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Figure 1: Three rules illustrated in the two-claimant case. (a) Propor-
tional rule. (b) Constrained equal awards rule. (c) Constrained equal losses rule.

and
∑

N ci ≥ E. Each agent i ∈ N has a claim ci over the amount to
divide E ∈ R+: this amount is insufficient to honor all the claims. Let CN

denote the class of all such problems. An awards vector for (c, E) is a
vector x ∈ RN

+ satisfying the claims boundedness inequalities x 5 c and the
efficiency equality

∑
xi = E.2 Let X(c, E) be the set of awards vectors for

(c, E). A rule is a mapping defined over
⋃

N∈N CN that associates with each
problem an awards vector for it. Let S be our generic notation for rules.

For the two-(or-three-)claimant case, a rule S is conveniently described
in a two-(or-three-)dimensional Euclidean space by fixing the claims vector c
and determining the path pS(c) followed by S(c, E) as E increases from 0 to∑

ci. We refer to this path as the path of awards of S for c. Our proofs
mainly consist in uncovering how these geometric objects should be related,
in particular as the claimant set changes.

The notation (c′i, c−i) designates the vector c with its i-th component
replaced by c′i. Given x ∈ RN

+ , B(0, x) ≡ {y ∈ RN
+ : 0 5 y 5 x}. Given

x1, . . . , xk ∈ RN , and ` ∈ {1, . . . , k−1}, seg[x`, x`+1] ≡ {y ∈ RN : there is λ ∈
[0, 1] with y = λx` + (1−λ)x`+1} and bro.seg[x1, . . . , xk] ≡ seg[x1, x2]∪ . . .∪
seg[xk−1, xk]. Given A ⊂ RN , int{A} is the relative interior of A.

Next, we introduce several important rules and illustrate three of them
in the two-claimant case by means of their paths of awards for a typical
claims vector (Figure 1). We give the definitions for a fixed N ∈ N . To
extend them to

⋃
N∈N CN , it suffices to add a universal quantification over

N ∈ N . For the last three, we need to specify a list of weight vectors indexed
by N ∈ N . In general, no special relation has to hold between the vectors
chosen for different N ’s, but our variable-population condition will generate
such relations.

2Conventions for vector inequalities: given x, y ∈ RN , x = y means xi ≥ yi for each
i ∈ N ; x ≥ y means x = y but x 6= y; x > y means xi > yi for each i ∈ N .
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Our first rule chooses awards proportional to claims. Our second rule
assigns equal amounts to all claimants subject to no one receiving more than
his claim. Our third rule assigns amounts such that the losses experienced
by all claimants are equal subject to no one receiving a negative amount.
(O’Neill, 1982, Aumann and Maschler, 1985, Young, 1987, and Dagan, 1996,
give references to ancient literature in which these rules are mentioned.) In
the formulas, (c, E) ∈ CN is arbitrary, i ∈ N is arbitrary, and λ ∈ R+ is cho-
sen so as to achieve efficiency. For the proportional rule, Pi(c, E) ≡ λci;
for the constrained equal awards rule, CEAi(c, E) ≡ min{ci, λ}; for the
constrained equal losses rule, CELi(c, E) ≡ max{ci − λ, 0}. Now, let
w ∈ int{∆N}. For the weighted proportional rule with weights w,
Pw

i (c, E) ≡ min{λwici, ci}; for the weighted constrained equal awards
rule with weights w, CEAw

i (c, E) ≡ min{ci, wiλ}; for the weighted con-
strained equal losses rule with weights w, CELw

i (c, E) ≡ max{ci −
λ
wi

, 0}.
We impose four requirements on rules. First, if claims and amount to

divide are multiplied by the same positive number, then so should awards:

Homogeneity: For each (c, E) ∈ CN and each λ > 0, S(λc, λE) = λS(c, E).

Consider the following situation: after an awards vector has been chosen
for a problem, the amount to divide is found to be smaller than originally
thought. In dealing with this change, we have two options. (i) We cancel the
initial division and recalculate the awards for the revised amount to divide.
(ii) We take the initial awards as claims in dividing the revised amount.
The next requirement is that both options should result in the same awards
vector:

Composition down: For each (c, E) ∈ CN and each E ′ < E, we have
S(c, E ′) = S(S(c, E), E ′).

The next requirement pertains to the symmetric situation, when an up-
wards revision of the amount to divide is needed. It states the equivalence
of two parallel options. (i) We ignore the initial division and recalculate the
awards for the revised amount to divide. (ii) We let agents keep their initial
awards and give them as second installments the awards obtained by solving
the problem of dividing the increment, after having revised their claims down
by the first installments:
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Composition up: For each (c, E) ∈ CN and each E ′ > E such that
∑

ci ≥
E ′, we have S(c, E ′) = S(c, E) + S(c− S(c, E), E ′ − E).3

Next is the variable-population requirement that is central to our analy-
sis. Consider some problem and solve it by applying the chosen rule. Now,
imagine that some claimants leave with their awards and address the prob-
lem of dividing what is left among the remaining claimants. The requirement
is that in this problem (by definition of a rule, it is well-defined), the same
awards should be recommended for them as initially (Aumann and Maschler,
1985; Young, 1987).4

Consistency: For each N ∈ N , each (c, E) ∈ CN , and each N ′ ⊂ N , if
x ≡ S(c, E), then xN ′ = S(cN ′ ,

∑
N ′ xi).

3 Characterizations

This section is devoted to the characterizations.

3.1 A family of two-claimant rules

Our starting point is the following family of rules defined for two-claimant
populations. They are axiomatized by Moulin (2000) on the basis of homo-
geneity, composition down, and composition up. Let N ∈ N be such that
|N | = 2. The definition involves “partitioning” RN

+ into closed cones. For
each claims vector in each cone, the path of awards looks like a “compressed”
version of the path of the constrained equal awards or constrained equal losses
rules (it consists of two segments whose directions are those of the boundary
rays of the cone). If the cone is a ray, the path is the segment from the origin
to the claims vector. Given two adjacent non-degenerate cones, we find it
convenient to also include these rays as cones in the partition. Thus, it is
indeed an abuse of language to speak of a “partition” of RN

+ into cones.

Family D: Let N ∈ N be such that |N | = 2. A rule S on CN in the family
D can be described as follows. Awards space RN

+ is partitioned into closed
cones. For each non-degenerate cone, a boundary ray is chosen as the first

3Note that the problems appearing in this equality are well-defined since by definition,
rules satisfy claims boundedness.

4For a survey of the literature on consistency and its converse, see Thomson (1999).
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ray; the other is the second ray. Now, let c ∈ RN
+ . If c belongs to a

degenerate cone, pS(c) is the segment from the origin to c. If c belongs to a
non-degenerate cone, pS(c) consists of a segment containing the origin and
contained in the first boundary ray of the cone, and a segment parallel to
the second boundary ray containing c.5,6

A cone with labelled boundary rays is an oriented cone. A ray in a
partition is interior if it is not an axis.7 A non-degenerate cone in a partition
is interior if neither of its boundary rays is interior.

A special case is when the partition contains the entire awards space as
a cone. Then, a typical path of awards consists of a segment containing
the origin and contained in one of the axes (the first ray of the cone) and a
segment parallel to the other axis (the second ray).

Figures 2 and 3 illustrate Definition D. The left panel of each row rep-
resents the partition of awards space into oriented cones defining a rule. Let
N ≡ {1, 2}. For each non-degenerate cone in the partition, the first bound-
ary ray is labelled “1” and the other one “2” (the labels are printed inside
the cone). The cone whose first boundary ray is in the direction a ∈ RN

+ \{0}
and second boundary ray in the direction b ∈ RN

+ \ {0} is denoted C(a, b).
The right panel of the row represents sample paths of awards. Row 1 of Fig-
ure 2 shows the constrained equal awards rule, Row 2 a weighted constrained
equal awards rule, and Row 3 the constrained equal losses rule. Note that
the partition of RN

+ for that rule is the same as that for the constrained
equal awards rule but the orientation of the cones is reversed. Row 4 shows
a general example.

The first two rules depicted in Figure 3 are anonymous (the paths of
awards of two claims vectors that are symmetric with respect to the 45◦ line

5If c belongs to a boundary ray, one of these segments reduces to a point.
6This description differs slightly from that given by Moulin (2000). Alternatively, we

could include in each non-degenerate cone its first ray, and add to the partition any ray
that is the common boundary ray of two adjacent non-degenerate cones, if it is second
for both cones. In any case, no description can be at the same time minimal and reflect
the anonymity of rules that are anonymous (a formal definition of this property is given
below). For instance, for a description of a rule such as the constrained equal awards
rule to reflects its anonymity, the 45◦ line would have to be included in both of the non-
degenerate cones that are needed (then, all claims vectors on the 45◦ line are covered
twice), or in neither (then, the description has to include the 45◦ line as cone and it is not
minimal), or in only one (then the anonymity of the rule is not shown). Our description
is not minimal but it shows anonymity.

7Here, we really mean the non-negative part of an axis.
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also have that symmetry), and they illustrate how the family under discussion
provides a way of “linking” the proportional rule to the constrained equal
awards and constrained equal losses rules. In Row 1, the orientation of each
cone favors the agent with the smaller claim. In Row 2, the partition is the
same but each cone is given the reverse orientation; the resulting rule favors
the agent with the larger claim. In Row 3, the partition is still the same
but the orientation of all of the cones favors claimant 1, independently of the
relative values of the claims. If in Row 1, we reversed the orientation of the
non-degenerate cone containing R{1}+ , we would obtain a rule that maximally
favors claimant 1 subject to the order preservation conditions being met,
namely that awards be ordered as claims are, and that so be losses (Aumann
and Maschler, 1985).

If the partition is fine, paths of awards are close to the paths of awards
of the proportional rule.

It may be surprising that the weighted proportional rules are not mem-
bers of the family, but in fact they satisfy neither composition down nor
composition up. To see this, consider the following examples:

Example 1 Let N ≡ {1, 2} and w ≡ (1
3
, 2

3
). Let c ≡ (6, 2) and note that

pP w
(c) = bro.seg[(0, 0), (3, 2), (6, 2)]. Let now c′ ≡ (4, 2) and observe that

pP w
(c′) = bro.seg[(0, 0), (2, 2), (4, 2)]. Since c′ ∈ pP w

(c) but pP w
(c′) is not a

subset of pP w
(c), we have a contradiction to composition down.

Example 2 Let N ≡ {1, 2} and w ≡ (1
3
, 2

3
). Let c ≡ (4, 2) and note that

pP w
(c) = bro.seg[(0, 0), (2, 2), (4, 2)]. Let now x ≡ (1, 1) ∈ pP w

(c). Note that
pP w

(c − x) = bro.seg[(0, 0), (1.5, 1), (3, 1)]. Since {x} + pP w
(c − x) is not a

subset of pP w
(c), we have a contradiction to composition up.

3.2 Adding consistency

At this point, variable-population considerations enter the scene. We impose
consistency and identify the restrictions on the partitions of two-dimensional
awards spaces associated with rules in D that are implied by this property.
We also show what the rules look like for more than 2 claimants.

It will be useful to relate the first step of the proof (Lemma 1), in which
a partition of the set of potential agents into priority classes is derived, to
similar constructions in other branches of the theory of resource allocation.
When no symmetry-type requirement is imposed, a standard way to obtain
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consistency is by means of so-called “dictatorial rules”. For such a rule, and
for each group of agents, there is an agent, the “dictator”, whose preferred
alternative is chosen for each problem this group may face (for the classical
problem of allocating privately appropriable and infinitely divisible goods
among agents with standard preferences, he receives the entire social endow-
ment). The dictator does not vary arbitrarily from group to group however.
Given two groups containing two given agents, the first agent cannot be the
dictator in one group and the other agent a dictator in the other group.
The required relations between the identities of the dictators are achieved by
specifying a strict “reference order” on the set of potential agents, and for
each group, selecting as dictator the agent who is first in the order induced
on that group by the reference order.

In certain situations, simply maximizing a dictator’s preferences may vi-
olate requirements of interest, a prime example being efficiency (for the clas-
sical problem, assigning the entire social endowment to one agent may result
in an inefficient allocation if his preferences are not monotonic). To prevent
this possibility, one designates, for each group, a “second-order” dictator, a
“third-order” dictator, and so on. If the first-order dictator’s preferences are
maximized at several alternatives, the second-order dictator is brought in to
break the tie, and if his preferences are maximized at several alternatives, the
third-order dictator is called upon to break this second-order tie, and so on.
For the resulting “lexicographic dictatorial” rules to be consistent, and given
two groups that overlap, the restrictions to their intersection of the orders
specified for them should coincide. Here too, this is achieved by specifying
a strict reference order on the set of potential agents, and for each group,
using the order induced on that group by the reference order.

More generally, one can partition each group into subgroups, choose a
strict order on the subgroups, and when solving any problem, not give any-
thing to any of the subgroups until the preferences of all agents in subgroups
with higher priorities have been maximized. Let us call these subgroups “pri-
ority classes”. Consistency is achieved by inducing the orders on subgroups
from a weak reference order on the set of potential agents (this order need
not be strict any more). To describe a rule, it suffices, for each priority class
separately, to describe the restriction of the rule to this class. Priority classes
are “insulated” from each other in the sense that, provided that each such
restriction is consistent, then consistency holds overall. The restrictions do
not have to be related in any particular way.

In the situation considered here, a constraint exists on how much an agent
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(or a group of agents) can receive, namely his claim (or the sum of the claims
of its members). If the amount to divide is greater than his claim (or the sum
of their claims), and this claimant has priority (or this group of claimants has
priority), one has to know what to do with the remainder once he has (they
have) been fully compensated. Let S be a rule that coincides with a member
of D for each two-claimant group and satisfies consistency. Lemma 1 states
that a partition of the set of potential claimants into priority classes can be
associated with S. Let Ñ be such a class. If |Ñ | = 1, then of course, the

restriction of S to CÑ is uniquely defined: there is only one awards vector for
a one-claimant problem. If |Ñ | = 2, consistency has no bite: Definition D
describes the kind of two-claimant rules with which S has to coincide on CÑ .
If |Ñ | ≥ 3, we will show that the following possibilities emerge:

(i) The awards space pertaining to each two-claimant subgroup of Ñ is

partitioned into rays. Then, S coincides on
⋃

N⊆Ñ CÑ with the proportional
rule (Lemma 3). (ii) The awards space pertaining to each two-claimant sub-
group of Ñ is partitioned into two non-degenerate cones (Lemma 4). More-
over, either (iia) the boundary ray shared by the two cones in the partition
of each such awards space is always first, or (iib) it is always second. In
either case, the directions of these shared boundary rays are “consistent”
(Lemma 5). (iia) amounts to saying that in each two-dimensional space, a
weighted constrained equal awards rule is applied, and (iib) to saying that
in each two-dimensional space, a weighted constrained equal losses rule is
applied. The direction of the central ray in the {i, j}-partition indicates the
relative “importance” the rule gives to claimants i and j. By “consistency”
of the directions of the central rays, we mean for example that if in C{i,j},
the rule gives to claimant j twice the importance it gives to claimant i, and
in C{j,k}, it gives to claimant k twice the importance it gives to claimant j,
then in C{k,i}, it gives to claimant k four times the importance it gives to
claimant i. Finally, these conclusions for two-claimant problems extend to
all populations: either for each N ⊂ Ñ , S coincides on CN with a weighted
constrained equal awards rule, or for each N ⊂ Ñ , S coincides on CN with
a weighted constrained equal losses rule; in each case, the weights used for
each N ⊂ Ñ are derived from a single set of weights for Ñ .

Family M (Moulin, 2000) A rule S belonging to the family can be described
as follows. There is an ordered “reference” partition of the set of potential
claimants into priority classes. Let Ñ be such a class. • If |Ñ | = 2, awards

space RÑ
+ is partitioned as in Definition D. • If |Ñ | ≥ 3, three possible labels
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are attached to Ñ :
(i) “P”,

(ii) “weighted CEA”, a vector w̃ ∈ RÑ
++ of weights being given,

(iii) “weighted CEL”, a vector w̃ ∈ RÑ
++ of weights being given.

For each N ∈ N and each (c, E) ∈ CN , the reference partition induces an
ordered partition of N , whose components are handled in succession. Let N̄ be
such a component and Ñ be the class from which N̄ is induced. • If |Ñ | = 1,
S selects the unique awards vector for each problem in CN̄ . • If |Ñ | = 2, S
coincides on CN̄ with the rule associated with the partition specified for Ñ .
• If |Ñ | ≥ 3, we distinguish three cases according to the labels attached to
Ñ :

(i) “P”: S coincides on CN̄ with P .
(ii) “weighted CEA”: S coincides on CN̄ with CEAw̃N̄ .
(iii) “weighted CEL”: S coincides on CN̄ with CELw̃N̄ .

Here is an example: using the left-to-right direction to indicate lower
and lower priorities, let the reference ordered partition be {{1, 2, 3}, {4, 6},
{8, 10, 12, . . .}, {5, 7, 9, . . .}}, the first class being labelled P , an ordered par-

tition of R{4,6}
+ as in Definition D being specified for the second class, the third

class being labelled CEA with weights (1, 1, 1, . . .), and the last class being
labelled CEL with weights (1, 2, 3, . . .). Let N ≡ {2, 3, 4, 6, 7, 8, 9, 10, 12}.
The ordered partition of N induced by the reference partition is {{2, 3},
{4, 6}, {8, 10, 12}, {7, 9}}. Thus, in succession: the proportional rule is ap-

plied for {2, 3}; the rule corresponding to the partition of R{4,6}
+ specified for

that space is applied for {4, 6}; the weighted constrained equal awards rule
with weights proportional to (1, 1, 1) is applied for {8, 10, 12}; the weighted
constrained equal losses rule with weights proportional to (2, 3) is applied for
{7, 9}.

Our goal is to present a proof of the following result (Moulin, 2000).

Theorem 1 A rule on
⋃

N∈N CN satisfies homogeneity, composition down,
composition up, and consistency, if and only if it belongs to the family M.

3.3 A tutorial on constructing consistent extensions

The strategy we follow to prove that only members of M satisfy the axioms
exploits the fact that consistency of a rule S implies that for each N ∈ N ,
each c ∈ RN , and each N ′ ⊂ N , pS(c), when projected on RN ′

, is a subset
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of pS(cN ′). Moreover, if S is resource monotonic, that is, assigns to each
claimant an award that is a nowhere decreasing function of the amount to di-
vide, coincidence actually occurs.8 Since the two-claimant rules for which we
investigate the existence of consistent extensions are indeed resource mono-
tonic, these extensions share this property (in the language of Hokari and
Thomson, 2002, resource monotonicity is “lifted” by consistency, as follows
from a result of Dagan and Volij, 1997). Thus, pS(c) is a continuous curve
from the origin to c, which implies that its projection on RN ′

is a continuous
curve from the origin to cN ′ .

Let N ∈ N with |N | = 3, say N ≡ {1, 2, 3} (the logic is the same for
more agents), and let c ∈ RN

+ . Then, pS(c) is such that its projections on
the three two-dimensional subspaces R{1,2}, R{1,3}, and R{2,3}, are pS(c{1,2}),
pS(c{1,3}), and pS(c{2,3}) respectively. Thus, the question is whether there is
indeed a path in RN that projects on these three paths. As the rule is kept
fixed and in each step of the proof, a claims vector is chosen once and for
all, we use the notation Π3 for pS(c{1,2}), Π2 for pS(c{1,3}), Π1 for pS(c{2,3}),
Π for pS(c), and Π′

1 for the projection of Π on R{2,3}. In most applications,
one is able to uniquely determine a path in RN by exploiting this projection
requirement on only two two-dimensional subspaces, say R{1,2} and R{1,3}.
This is the case if at least one of these two paths is strictly monotone. If
Π3 contains a segment parallel to R{2} and Π2 contains a segment parallel to
R{3}, the path for c can also be recovered, provided these segments do not lie
in a common plane parallel to R{2,3}. If either Π3 or Π2 contains a segment
parallel to the first axis, or if they both do, the recovery can also proceed.
Once Π is obtained, projecting it on R{2,3} should yield Π1. If violations of
strict monotonicity occur for both Π3 and Π2 in a common plane parallel
to R{2,3}, one recovers Π by invoking the requirement that its projection on
R{2,3} has to be Π1.

The method is illustrated in Figure 4 by means of four examples that are
representative of all of the configurations that we will encounter. To obtain Π
from Π3 and Π2, we intersect the cylinder spanned by Π3 whose generators
are parallel to R{3} with the cylinder spanned by Π2 whose generators are
parallel to R{2}. We construct this intersection “plane by plane”: for each
t ∈ [0, c1], we identify the intersections of the plane H(t) of equation x1 = t

8It is essentially this projection property that guarantees population monotonicity of
the monotone path solutions of bargaining theory, namely the property that the arrival of
additional agents unaccompanied by an expansion of opportunities should make all agents
initially present at most as well off as they were initially (Thomson, 1987).

14



with Π3 and Π2, and use the facts that (i) each point in either intersection
has to be the projection on R{1,2} and R{1,3} respectively of a point of Π, and
(ii) conversely, the projections of each point of Π ∩ H(t) has to be in these
intersections.

Each of the remaining figures should be scanned row by row: panel (a)
shows Π3 and Π2, panel (b) the construction of Π and panel (c) the projection
Π′

1 of Π on R{2,3}. We have shaded H(t) when it reaches critical positions:
when it contains a kink in either Π3 or Π2 or in both (because this produces a
kink in Π, and in turn and in most cases, a kink in Π′

1), and when it contains a
segment in either of these paths (because then, Π contains a segment parallel
to either R{2} or R{3}, and thus, so does Π′

1).
Row 1: both Π3 and Π2 are strictly monotone. Then, for each t ∈ [0, c1],

the plane H(t) intersects each of these paths at a single point; from these two
points, we deduce a point of Π. (In this row, the shaded plane is a generic
plane.) The whole of Π can be obtained.

Row 2: Π3 is piecewise linear in two pieces and Π2 is linear. Then, Π is
piecewise linear in two pieces and so is Π′

1.
Row 3: Π3 and Π2 are strictly monotone; they are piecewise linear in two

pieces, and the first coordinates of their kinks differ. Then, Π is piecewise
linear in three pieces and so is Π′

1.
Row 4: Π3 starts with a segment in R{2} (the vertical axis), and therefore

is not strictly monotone; however, the intersection of H(0) with Π2 is a
singleton. Thus, Π also starts with a segment in R{2}, and of course Π′

1 does
too.

In many applications—it is the case here—paths of awards are piece-
wise linear, and the issue is often whether kinks in a three-dimensional path
are lost in the projection on a two-dimensional space, contradictions being
derived by exhibiting configurations for which a projection has too many
kinks. Row 3 shows two two-dimensional paths, Π3 in R{1,2} and Π2 in R{1,3},
from which one can derive a path in R{2,3} that has two kinks. However, if
the second coordinate of the kink in Π3 were c2, and the first coordinate of
the kink in Π2 were c1, (or the first coordinates of both kinks were c1), Π
would still have two kinks, but Π′

1 would only have one. These situations
are important. It is precisely because kinks in their paths are located “in
the right place” that the two-claimant weighted constrained equal awards or
constrained equal losses rules can have consistent extensions: they do if their
weight vectors are appropriately related. The last step of our main theorem
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Figure 4: Four typical configurations. Row 1: Π3 and Π2 are strictly monotone.
Row 2: Π3 has a kink but Π2 does not. Row 3: Π3 has a kink and so does Π2;
these kinks have unequal first coordinates. Row 4: Π3 contains a segment in R{2}.
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relies crucially on this fact.

Note: Paths are color-coded according to the space to which they belong.
When a segment belongs to several paths, such as the segment in R{2} of
panel (a) of Row 4, it appears on a monitor as a series of dashes whose al-
ternating colors are those assigned to these paths. (On a black-and-white
printer, different colors come out as different shades of grey, which unfortu-
nately are not sufficiently distinct to show when two paths have a segment in
common, but common segments can of course be deduced from the fact that
a path has to be a continuous curve from the origin to the claims vector.)

3.4 Proof of the main result

We identify which of the partitions of awards space allowed by Definition D
are acceptable if a consistent extension is to exist. We eliminate unacceptable
partitions by forcing two kinds of contradiction. Let c ∈ R{1,2,3} say, and
let us refer to the partition of the awards space of a two-claimant group
N ⊂ {1, 2, 3} as the N -partition.

1. When the projection on R{2,3} of pS(c) consists of two segments, these
segments “reveal” the directions of the boundary rays of a non-degenerate
cone in the {2, 3}-partition (as in panels (c) of Rows 2 and 4 of Figure 4).
By performing the operation for c′ 6= c, one may obtain a second cone that
overlaps with the first cone. We then have an overlap contradiction.

2. The path for c may have two kinks, neither of which is lost in the
projection on R{2,3}. Since, by Definition D, paths in that space have at most
one kink, we have a two-kink contradiction (as in Row 3 of Figure 4).

In the figures, all paths are piecewise linear. To save space, we do not
explicitly indicate the coordinates of their kinks.

Proof: (of the main theorem) We omit the easy proof that the members of
M satisfy the four axioms listed in the theorem. Conversely, let S be a rule
satisfying the four axioms. The proof that S ∈M is in four lemmas (one of
which, Lemma 2, being a general model-free lemma).

Lemma 1 The set of potential claimants is partitioned into priority classes.

Proof: We defined a relation on the set of claimants. Given i, j ∈ N, i
has priority over j (for S), written as i ≺ j, if for each c ∈ R{i,j}+ ,
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pS(c) = bro.seg[(0, 0), (ci, 0), c]. If neither i ≺ j nor j ≺ i, we write i ∼ j. If
either i ≺ j or i ∼ j, we write i ¹ j.

Step 1: ¹ is complete and transitive. Completeness is trivial. For transitiv-
ity, it suffices to show that if i ≺ j and j ¹ k, then i ≺ k. To fix the ideas,
suppose that i = 2, j = 1, and k = 3: thus 2 ≺ 1 and 1 ¹ 3. We need to
show that 2 ≺ 3. Let (c2, c3) ∈ R{2,3}

+ . Let N ≡ {1, 2, 3}.
Case 1: 1 ≺ 3 (Row 1 of Figure 5). Let c1 > 0 and c ≡ (c1, c2, c3). Then,

Π3 = bro.seg[(0, 0), (0, c2), (c1, c2)] and Π2 = bro.seg[(0, 0), (c1, 0), (c1, c3)].
The only path in RN whose projections on R{1,2} and R{1,3} are Π3 and Π2

respectively is bro.seg[(0, 0, 0), (0, c2, 0), (c1, c2, 0), c]: by consistency, Π is this
path.

Case 2: 1 ∼ 3 (Row 2 of Figure 5). Then, the {1, 3}-partition con-
tains at least one interior ray λ. Let c1 ∈ R+ be such that (c1, c3) ∈ λ
and c ≡ (c1, c2, c3). Then, Π3 = bro.seg[(0, 0), (0, c2), (c1, c2)] and Π2 =
bro.seg[(0, 0), (c1, c3)]. The only path in RN whose projections on R{1,2} and
R{1,3} are Π3 and Π2 respectively is bro.seg[(0, 0, 0), (0, c2, 0), c]: by consis-
tency, Π is this path.

In either case, the projection Π′
1 of Π on R{2,3} is

bro.seg[(0, 0), (c2, 0), (c2, c3)]. By consistency, Π1 = Π′
1. This conclu-

sion holds for each (c2, c3) ∈ R{2,3}
+ . Thus, 2 ≺ 3.

Step 2: for each N ∈ N , the components of the ordered partition of N
induced by ¹ are handled in succession. Indeed, suppose that there are
i, j ∈ N, N ∈ N with {i, j} ⊆ N , and (c, E) ∈ CN such that (∗) xi < ci

and xj > 0, where x ≡ S(c, E). Let N ′ ≡ {i, j}. By consistency, xN ′ =
S(cN ′ ,

∑
N ′ xk). By (∗), it is not the case that i ≺ j. ¤

Having partitioned the population of potential claimants into priority
classes, we now study each class separately. There is only one way to solve
a one-claimant problem. For a two-claimant class, consistency has no bite;
then, an element of the family D has to be applied. Let then Ñ be a class with
more than two claimants. In fact, let us assume |Ñ | = 3; if |Ñ | > 3, our con-
clusion easily extends by induction. To simplify notation, set Ñ ≡ {1, 2, 3}.
We identify restrictions that the partitions for the two-claimant subsets of Ñ
have to satisfy. The proof of the theorem concludes by invoking the struc-
tural lemma9 below relating consistency and the following requirement on a

9It is stated in this form in Thomson (1999).
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Figure 5: Lemma 1 says that the set of potential claimants is partitioned into
priority classes. In each row, claimant 2 has priority over claimant 1. Row 1:
claimant 1 has priority over claimant 3. Row 2: neither one of claimant 1 or
claimant 3 has priority over the other.

rule: whenever an awards vector for some problem is such that its restriction
to each two-claimant group is the choice the rule makes for the associated
reduced problem, then it is the choice it makes for the initial problem:

Converse consistency: For each N ∈ N , each (c, E) ∈ CN , and each
x ∈ X(c, E), if for each two-claimant group N ′ ⊂ N , xN ′ = S(cN ′ ,

∑
N ′ xi),

then x = S(c, E).

Lemma 2 (Elevator Lemma) Given two rules on
⋃

N⊆N CN , if one is consis-
tent, the other conversely consistent, and they coincide for each two-claimant
group, then they coincide in general.

The lemma holds for rules defined on
⋃

N⊆Ñ CN for any Ñ ⊆ N. Thus,
the following is an immediate consequence of the Elevator Lemma and of the
fact that the proportional rule and, if the weights used for different groups
are consistent, all weighted constrained equal awards and constrained equal
losses rules, are both consistent and conversely consistent.
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Corollary 1 Let S be a rule on
⋃

N⊆Ñ CN that is consistent.
(i) If S coincides for each two-claimant group with the proportional rule,

then it is the proportional rule.
(ii) If there is w ∈ RÑ

++ such that for each {i, j} ⊂ Ñ , S coincides with

CEA{wi,wj}, then for each N ⊂ Ñ , it coincides on CN with CEAwN .
(iii) A statement parallel to (ii) holds for the constrained equal losses rule.

Given a ray ρ ∈ R{1,2}
+ of direction (α1, α2) and a ray λ ∈ R{1,3}

+ of
direction (β1, β3) such that α2β3 > 0 and α1β1 > 0, we designate by d(ρ, λ)

the ray in R{2,3}
+ of direction (α2β1, α1β3). Next, we return to the proof of

the main theorem. There are two possibilities, one covered by Lemma 3, and
the other by Lemmas 4-5.

Lemma 3 If the partition for each pair of claimants in Ñ consists entirely
of rays, then S = P .

Proof: This is part (i) of Corollary 1. ¤

Lemma 4 If there is a two-claimant group N̄ ⊂ Ñ such that the N̄-partition
contains a non-degenerate cone K, then, for each two-claimant group N ⊂ Ñ
(including N̄), the N-partition consists of exactly two non-degenerate cones
and their boundary rays (or equivalently, the N-partition has exactly one
interior ray).

Proof: Without loss of generality, suppose N̄ ≡ {1, 2}.
Step 1: K is not an interior cone. To show this, we suppose otherwise,
calling its boundary rays ρ and ρ′, ρ being its steeper ray.

Substep 1-1: the {2, 3}-partition contains an interior non-degenerate
cone. To prove the assertion, we use the fact that since 1 ∼ 3, the {1, 3}-
partition contains at least one interior ray λ. Let c ∈ RÑ

+ be such that
c{1,2} ∈ int{K} and c{1,3} ∈ λ (Row 1 of Figure 6). This choice of c produces
a configuration of the type illustrated by Row 2 of Figure 4. Panel (a) of
Row 1 of Figure 6 differs from panel (a) of that earlier row only in the labelling
that is added to show the oriented cone K from which the path for (c1, c2)
is derived. The cone in R{2,3} revealed by the path for c{2,3} that we obtain,
denoted M , is also indicated in panel (c). Its boundary rays are d(ρ, λ) and
d(ρ′, λ), written ρλ and ρ′λ in the figure (we use this more compact notation
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Figure 6: Lemma 4, Substeps 1-1 and 1-2. Row 1: the {2, 3}-partition contains
a non-degenerate interior. Rows 2 and 3: the {1, 2}- and {1, 3}-partitions cannot
both have non-degenerate interior cones K and L. In Row 2, the boundary rays
that are first for both cones are the furthest from the axis in common to the spaces
in which these cones lie, R{1}. In Row 3, the boundary rays that are first are the
closest to R{1} for both cones.
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in the remaining figures too). Since ρ, ρ′, and λ are interior rays, so are
d(ρ, λ) and d(ρ′, λ). Also, d(ρ, λ) is first in M if and only if ρ is first in K
(this is the case represented in Row 1 of Figure 6).

Substep 1-2: in fact, the {1, 2}- and {2, 3}-partitions cannot both con-
tain interior non-degenerate cones oriented as just discovered. For conve-
nience, we illustrate the proof using the {1, 2}- and {1, 3}-partitions instead,
calling L the cone in the {1, 3}-partition. (The reason for replacing {2, 3} by
{1, 3} is that in all of our other diagrams, we start from paths in R{1,2} and
R{1,3}.) Because the orientation of the two cones are related (last line of the
previous paragraph), there are only two cases to consider. In Row 2 of Fig-
ure 6, the first rays of K and L are both further from the axis shared by the
spaces in which these cones lie, R{1}, than their second rays. In Row 3, they
are both closer. In each case, we choose c ∈ RÑ

+ such that c{1,2} ∈ int{K},
c{1,3} ∈ int{L}, and the first coordinates of the kinks in the paths for c{1,2}
and c{1,3} differ. (This last restriction can be met precisely because K and L
are non-degenerate.) We obtain a configuration of the type illustrated by
Row 3 of Figure 4, namely a two-kink contradiction.10

This completes the proof of Step 1. It follows from this step that one
boundary ray of K is an axis.

Step 2: completing the proof of the lemma for the {1, 3}-partition, that
it has exactly one interior ray. We assume, by way of contradiction, that
the {1, 3}-partition contains at least two interior rays, say λ and λ′. Let

c ∈ RÑ
+ be such that c{1,2} ∈ int{K} and c{1,3} ∈ λ (Figure 7 only shows

the construction for λ). This choice of c produces a configuration of the
type illustrated by Row 4 of Figure 4. The path for c{2,3} that we obtain
reveals the existence in the {2, 3}-partition of a cone M having as boundary
ray one axis. Substituting λ′ for λ, the existence in the {2, 3}-partition of a
cone M ′ having that same axis as boundary ray is similarly revealed. Since
the direction of the second boundary rays of M and M ′ differ, these cones
overlap. There are four possibilities.

Case 1: the axis that is a boundary ray of K is R{2}+ . Then, d(ρ, λ) =

10Except that there, the boundary ray that is first for one cone (K) is closer to R{1}
than the boundary ray that is second, and the opposite holds for the other cone (L).
Together, Row 3 of Figure 4 and Rows 2 and 3 of Figure 6 show that, more generally,
the partitions of two adjacent two-dimensional spaces cannot both contain non-degenerate
interior cones, independently of the orientations of these cones.
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Figure 7: Lemma 4, Step 2. A non-degenerate cone K in the {1, 2}-partition
having an axis as boundary ray, and an interior ray λ in the {1, 3}-partition,
reveal the existence of a non-degenerate boundary cone in the {2, 3}-partition. In
Rows 1 and 2, R{2}+ is a boundary ray of K. Row 1: This ray is first. Row 2: this
ray is second. In Rows 3 and 4, R{1}+ is a boundary ray of K. Row 3: This ray is
first. Row 4: this ray is second.
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d(ρ, λ′) = R{2}+ and d(ρ′, λ) 6= d(ρ′, λ′).
(i) R{2}+ is first in K (Row 1 of Figure 7).

(ii) R{2}+ is second in K (Row 2 of Figure 7).

Case 2: the axis that is a boundary ray of K is R{1}+ . Then, d(ρ′, λ) =

d(ρ′, λ′) = R{1}+ and d(ρ, λ) 6= d(ρ, λ′).
(i) R{1}+ is second in K (Row 3 of Figure 7).

(ii) R{1}+ is first in K (Row 4 of Figure 7).

Thus, the {1, 3}-partition consists of exactly two non-degenerate cones
and their boundary rays.

We now exchange the roles played by {1, 2} and {1, 3} in the above proof.
Since the {1, 3}-partition contains at least one non-degenerate cone (an impli-
cation of the conclusion just reached), the {1, 2}-partition consists of exactly
two non-degenerate cones and their boundary rays.

The same conclusion can of course be obtained for the {2, 3}-partition.
¤

The two non-degenerate cones of the partition of a two-dimensional
awards space have a common boundary ray (this ray is an interior ray),
which we call the central direction of the space.

Lemma 5 Either (i) the central direction of each two-dimensional awards
space is first for both cones, or (ii) it is second for both. The central directions
are consistent (they are all defined by projection of a direction in the three-
dimensional space).

Proof: Case 1: there is a two-claimant group N̄ ⊂ Ñ and a non-degenerate
cone K in the N̄ -partition whose interior boundary ray is first.

Step 1: for each other two-claimant group N ′ ⊂ Ñ , the central direction
of the N ′-partition is first. Without loss of generality, set N̄ ≡ {1, 2}. Also,

suppose that R{2}+ is a boundary ray of K.

First, we show that for both non-degenerate cones in the {1, 3}-partition,
the first ray is the central direction of R{1,3}. Let L be one of these two cones,
and suppose by contradiction, that its interior boundary ray is second. Let
c ∈ RN

+ be such that c{1,2} ∈ int{K} and c{1,3} ∈ int{L}.
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Figure 8: Lemma 5 says that either the central directions all come first or that
they all come second. Row 1: R{1}+ is a boundary ray of neither K nor L. Row 2:
R{1}+ is a boundary ray of one of these two cones.

(i) R{3}+ is a boundary ray of L. Then, Π has two kinks and so does Π′
1,

resulting in a two-kink contradiction (Row 1 of Figure 8).

(ii) R{1}+ is a boundary ray of L. Here too, we obtain a two-kink contradiction
(Row 2 of Figure 8).

The lesson to be drawn from the argument just made is that if the interior
boundary ray of a non-degenerate cone K in the partition for some two-
claimant group N is first, and some other two-claimant group N ′ does not
contain the agent in N whose axis is a boundary ray of K, then the interior
boundary rays of both non-degenerate cones in the partition for N ′ are also
first. Thus, since the central direction of the non-degenerate cone in the
{1, 3}-partition that has R{3}+ as boundary ray is first, the interior boundary
rays of both non-degenerate cones in the {1, 2}-partition are first (K if one
of these cones, and the statement we reach for it was in fact our hypothesis).
Also, since the central direction of the non-degenerate cone in the {1, 3}-
partition that has R{1}+ as boundary ray is first, then the interior rays of both
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non-degenerate cones in the {2, 3}-partition are first.

Step 2: the central directions are consistent. This follows from the fact
that the central direction of the space associated with each two-claimant
group N ⊂ Ñ is a (degenerate) cone in the N -partition. From the existence
of interior rays ρ and λ in the {1, 2}- and {1, 3}-partitions, we deduce the
existence of an interior ray in the {2, 3}-partition whose direction is d(ρ, λ).

Case 2: The central direction of K is second. Then, it follows from Case 1
that the central direction of each other cone in each partition is second.
The proof of the consistency of the central directions also applies (Step 2).
Altogether, we obtain that for each two-claimant group N ⊂ Ñ , S coincides
on CN with a weighted constrained equal losses rule, and that the weights
assigned to these two-claimant groups are consistent.

¤

We return to the proof of the theorem. Case 1 of Lemma 5 amounts to
saying that for each two-claimant group N ⊂ Ñ , S coincides on CN with a
weighted constrained equal awards rule, and that the list of weight vectors
assigned to these two-claimant groups are consistent (they are all derived
from a single set of weights for the members of Ñ). The proof concludes by
(ii) of Corollary 1. Case 2 of the Lemma leads to weighted constrained equal
losses rules instead, invoking (iii) of Corollary 1. ¤

4 Concluding comments

Dagan and Volij (1997) give conditions on two-claimant rules guaranteeing
that they admit consistent extensions: to each awards vector, one should be
able to attach a binary relation having certain properties. (Kaminski, 2000;
2005, takes up this approach.) By contrast to Dagan and Volij’s approach,
which is existential, algebraic, and focused on awards vectors, our line of
reasoning is mainly constructive, geometric, and it deals with properties of
paths of awards seen in their entirety. For a more extensive discussion, we
refer to Thomson (2001).

As an alternative, Dagan and Volij suggest (i) calculating the “average
consistent” extension of the two-claimant rule that is the point of departure
(such an extension exists under very mild conditions on the two-claimant
rule), and (ii) determining whether this rule is in fact consistent. Our method
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is more direct as it does not pass through average consistency; mainly, it
avoids the difficult calculations required for the first step. When the issue is
not that of determining whether a particular rule chosen for all two-claimant
groups has a consistent extension, but rather whether, for each two-claimant
group, one can select one member of a family of admissible rules in such a way
that the resulting way of solving all two-claimant problems has a consistent
extension, a question of the type examined here, the calculations may be ever
more prohibitive. For further discussion, we also refer to Thomson (2001).
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Appendix

Figure 9 further illustrates Lemma 5. It shows that if the central direc-
tions are first in both K and L, no contradiction occurs, and it also shows
how the path of S for c can be constructed without invoking the Elevator
Lemma (Row 2 of Figure 9). This construction is one of the illustrations
developed in Thomson (2001).

The path Π can be constructed from Π3 and Π2 only up to the point
where it reaches H(c1). In that plane, it can continue from that point in any
monotone way up to c: the projection on R{1,2} of any curve in the darkly
shaded rectangle connecting the lowest corner to c would be the desired
vertical segment containing c{1,2} and the projection on R{1,2} of any such
curve would be the desired segment parallel to R{1,3} containing c{1,2}. It is
by exploiting the projection requirement on R{2,3} that one can deduce the
continuation of Π: this path has to have two kinks but its projection Π1 loses
one (the projections of its kinks on R{2,3} are lined up with the origin of that

space. In Row 1, R{1}+ is a boundary ray of neither K nor L. In Row 2, it is
the boundary ray of one of these cones.
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Figure 9: Lemma 5 says that the central directions are “consistent”. Row 1: R{1}+

is a boundary ray of neither K nor L. Row 2: it is the boundary ray of one of
these cones.
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