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Abstract

We consider the problem of dividing some amount of an infinitely
divisible and homogeneous resource among agents having claims on
this resource that cannot be jointly honored. A “rule” associates with
each such problem a feasible division. Our goal is to uncover the struc-
ture of the space of rules. For that purpose, we study “operators” on
the space, that is, mappings that associate to each rule another one.
Duality, claims truncation, attribution of minimal rights, and convex
combinations are the four operators we consider. We first establish a
number of results linking these operators, such as idempotence, com-
mutativity, and distributivity. Then, we determine which properties
of rules are preserved under each of these operators, and which are
not.

Key-words: Conflicting claims. Division rules. Operators. Minimal
rights. Maximal claims. Duality. Convexity.

JEL Classification numbers: C79-D63-D74.
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1 Introduction

We address the problem of dividing some amount of an infinitely divisible
and homogeneous resource among agents having claims on this resource that
cannot be jointly honored. A primary example is when the liquidation value
of a bankrupt firm has to be allocated among its creditors. A “division
rule” is a function that associates with each situation of this kind, which
we call a “claims problem”, a division of the amount available. We call this
division an “awards vector”. It is interpreted as the choice that a judge
or arbitrator could make. In the search for the most desirable rules, the
literature1, initiated by O’Neill (1982), has proceeded on several fronts, much
recent progress having been made on the axiomatic front.

We will consider the issue from a higher perspective than is standard
however, and examine the space of rules itself. Our goal is to uncover its
structure. When surveying the literature, one is struck by the richness of the
inventory of rules that have been proposed. This richness is also confusing
and one feels the need to put some order in the inventory, to organize it in
some fashion. Several approaches can be taken for this purpose. The first
approach simply consists in searching for resemblances between rules, in their
formulas and in the geometry of their graphs. Rules can be usefully organized
in families exploiting these resemblances. The parametric family introduced
by Young (1987), as well as certain families defined by Thomson (2000),
collect a number of important rules that can be described in a common way.
The identification of these families allows us to relate rules to one another
and also to understand what is unique to each of them. A second approach is
to organize rules by means of the properties they share. Axiomatic analysis is
the principal methodology here. Of course, these two approaches are related.
The general formulas that one writes down to gather rules among which one
has recognized patterns will often cause all members of the family to share
certain properties.

The approach we follow here is based on a third way of “connecting” rules.
It exploits and generalizes a phenomenon one quickly notices, namely that
one can often pass from a rule to another by means of a simple algebraic
or geometric operation. Let us define an “operator” on the space of rules
as a mapping that associates with each rule another one. We propose to
undertake a systematic study of such objects. We consider four of them. First

1For a survey, see Thomson (2003).
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is a duality operator. When looking at a claims problem, two perspectives
can be taken: we can think of the issue as dividing what is available; or,
as dividing this deficit (the difference between the sum of the claims and
the amount to divide). Let S be a rule. The rule associated with S by
the duality operator, its “dual”, treats what is available in the same way as
S treats what is missing. The second operator associates with S the rule
defined for each problem by first truncating claims at the amount to divide
and then applying S to the problem so revised. The rule associated with S
by the third operator calculates the awards vector for each problem in two
steps: first, each claimant is attributed the difference between the amount to
divide and the sum of the claims of the other agents (or 0 if this difference
is negative); this difference is an obvious minimum to which he is entitled;
second, S is applied to allocate what remains, the part that is truly contested,
claims being adjusted down by the “minimal rights” of the first step. The
last operator differs from the others as its arguments are lists of rules and
weights for the rules: it produces the weighted average of the rules.2

We establish a number of results linking the four operators. Obviously
the duality operator composed with itself is the identity; also the claims
truncation operator composed with itself is equivalent to itself; somewhat
less obvious is that a similar statement holds for the attribution of minimal
rights operator. We then show that if two rules are dual, then the version of
one obtained by subjecting it to the attribution of minimal rights operator
is dual to the version of the other obtained by subjecting it to the claims
truncation operator. Next, we study the composition of the claims truncation
and attribution of minimal rights operators (a composition on which a rule
suggested by Curiel, Maschler, and Tijs, 1987, is based). We show that the
order in which they are composed does not matter: the rule that results is
independent of the order. Second, in the two-claimant case, starting from
any two rules satisfying the basic property that claimants having equal claims
should receive equal amounts, subjecting them to the composition of the two
operators always produces the same rule. Third, this rule is not just any
rule, but it is one that has been central in the literature. We refer to it as
“concede-and-divide” because it emerges from the following natural two-step
scenario: each claimant first concedes to the other the difference between the
amount to divide and his own claim (or 0 if this difference is negative); what
remains, the part that we described earlier as being truly contested, is divided

2There is one operator for each choice of a weight vector.
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equally (Aumann and Maschler, 1985). Finally, we show that the convexity
operator is distributive with respect to each of the other three operators.

Given a property that a rule may have, a natural question is whether
the property is also enjoyed by the rule obtained by subjecting it to a cer-
tain operator. The fact that a property is preserved under an operator is an
interesting and very useful feature it may have. We show that, of the proper-
ties that have been frequently discussed in the literature, most are preserved
under the duality operator, but our main results concerning this operator
pertain to two basic monotonicity properties, which somewhat surprisingly,
are not. One is “claims monotonicity”: if an agent’s claim increases, his
award should be at least as large as it was initially. The other is “population
monotonicity”: upon the arrival of additional claimants, the award to each
claimant initially present should be at most as large as it was initially.

Next, we turn to the claims truncation and attribution of minimal rights
operators. These operators tend to be more disruptive, but they are disrup-
tive in “symmetric” ways. We also study their composition and find that the
central property of “self-duality”—invariance under the duality operator—
which is preserved by neither operator, is preserved under their composition.

The convexity operator preserves most properties, but not all, and we
give two important examples of properties that are not preserved. One is
“consistency”, which says that the choice made for each problem should
always be in agreement with the choice made for the problem derived from it
by imagining that some claimants leave with their awards, and reevaluating
the situation from the viewpoint of the remaining claimants. The second
property is “converse consistency”, which says that a certain awards vector
should be chosen for a problem if for each two-claimant subgroup of the
claimants it involves, its restriction to that subgroup is chosen for the problem
these claimants face when the complementary group of claimants leave with
their awards.

Our results have a number of benefits. First, as was our goal, they allow us
to structure the existing inventory of rules available to solve claims problems,
and to help ensure that no important rule has been missed. The structural
relations between the operators we uncover also allow us to provide easy
proofs that certain properties hold for particular rules (examples are the
properties established by Curiel, Maschler, and Tijs, 1987, for the rule they
define), and they should also be useful in identifying which properties each
newly constructed rule may or may not satisfy. Finally, the operators—
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the duality operator is particularly useful in this regard—allow us to derive
new characterizations from existing ones. (For an earlier example of such a
derivation, see Herrero and Villar, 2001). Altogether, we believe that they
help clarify the existing literature, and that they will provide useful tools to
keep it organized as it develops further.

2 Model

There is a finite set of claimants, N . Each agent i ∈ N has a claim ci ∈ R+

over an amount to divide E ∈ R+. This amount is insufficient to honor
all the claims. Altogether, a claims problem is a pair (c, E) ∈ RN

+ × R+

such that
∑

N ci ≥ E.3 Let CN denote the class of all claims problems.
An awards vector of (c, E) is a point of RN

+ bounded above by c and
whose coordinates add up to E, a condition we call “efficiency”. Let X(c, E)
be the set of awards vectors of (c, E). A rule is a function defined on CN

that associates with each (c, E) ∈ CN an awards vector of (c, E). Let S
be our generic notation for rules. For the two-claimant case, a rule can be
conveniently described in a two-dimensional space by representing, for each
claims vector, the path followed by the awards vector as the amount to divide
increases from 0 to the sum of the claims. We refer to this path as the path
of awards of the rule for this claims vector. We denote by p(S, c) the
path of awards of S for c.

We also consider a variable-population version of the model. There is a
population of “potential” claimants, either N, the set of natural numbers, or
some subset of it. However, only a finite number of claimants are present at
any given time. Let N be the class of finite subsets of the set of potential
claimants. To specify a claims problem, we first choose N ∈ N , then (c, E) ∈
CN . A rule is a function defined over ∪N∈NCN , which associates with each
N ∈ N and each (c, E) ∈ CN , an awards vector of (c, E).

3 Operators

Next, we define the four operators with which we are concerned. They are
the duality operator, Od, the claims truncation operator, Ot, the attribution

3By the notation RN we mean the Cartesian product of |N | copies of R indexed by the
members of N . Vector inequalities: x = y, x ≥ y, and x > y.
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of minimal rights operator, Om, and the convexity operator, Oc. Then, we
illustrate by means of several examples. Given any rule S, the rule obtained
by subjecting it to operator Op is denoted Sp.

1. Duality. The dual of a rule S treats what is available for division in
the same way as S treats what is missing. Formally, given (c, E) ∈ CN , we
replace E by

∑
ci−E; we use S to divide this difference, and then subtract

the result from c. The idea is suggested by Aumann and Maschler (1985),
who provide motivation for it, as well as note passages in the Talmud to
support their thesis that its seed was already there:

Dual of S, Sd: For each (c, E) ∈ CN , Sd(c, E) ≡ c− S(c,
∑

ci − E).

It is easy to check that the pair (c,
∑

ci−E) is a well-defined problem and
that Sd is a well-defined rule. The operator Od has a geometric interpretation
that is particularly convenient: for each c ∈ RN

+ , p(S, c) and p(Sd, c) are
symmetric of each other with respect to c

2
. Also, since, as formally stated

below (Theorem 1), (Sd)d = S, we can speak of rules being “dual” of each
other. Examples of dual rules are the constrained equal awards rule,
CEA, which equates the amounts received by all claimants subject to no
one receiving more than his claim, and the constrained equal losses rule,
CEL, which equates the losses experienced by all claimants subject to no
one receiving a negative amount: formally, CEA(c, E) ≡ (min{ci, α})i∈N ,
and CEL(c, E) ≡ (max{0, ci−α})i∈N , where in each case, α ∈ R+ is chosen
so as to achieve efficiency. Figure 1a illustrates the definitions, and this
duality, for |N | = 2.4

A rule is self-dual if it treats the problem of dividing what is avail-
able symmetrically to the problem of dividing what is missing (Aumann and
Maschler, 1985).5 To say that a rule is self-dual is to say that it is invariant
under Od. For such a rule S, and for each c ∈ RN

+ , p(S, c) is symmetric with
respect to c

2
. A number of rules are self-dual. An obvious example is the

proportional rule, P , which chooses awards proportional to claims: for-
mally, for each (c, E) ∈ CN , P (c, E) ≡ αc, where α ∈ R+ is chosen so as to
achieve efficiency. However, other important rules share this property. One
of them is the Talmud rule, Tal, (Aumann and Maschler, 1985), which can

4We write the formal definitions of rules for the fixed-population case. To obtain their
variable-population versions, it suffices to add a universal quantification over N .

5Aumann and Maschler (1985) note a number of passages in the Talmud where the
idea that the two perspectives should be equivalent is implicit.
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Figure 1: Illustrating the four operators. (a) The operator Od applied to
CEA produces CEL: for each c ∈ RN

+ , p(CEA, c) and p(CEL, c) are symmetric
of each other with respect to c

2 . (b) The operator Ot applied to P . (c) The
operator Om applied to P . (d) The operator Oc with equal weights, applied to
CEA and CEL, produces the simple average of these rules, Av.

be described as a hybrid of CEA and CEL. The former is used for E ≤
∑

ci

2
,

each claim being first divided by two; the latter is used for the remaining
cases, here too, c

2
being used in the formula. Another is the random arrival

rule, RA (O’Neill, 1982; see Thomson, 1998, for a proof), which assigns to
each claimant the expected value of what he would obtain on a first-come
first-serve basis, assuming that all orders of arrival of claimants occur with
equal probabilities.6

2. Claims truncation. The second operator truncates claims: given
(c, E) ∈ CN , each claim that is greater than E is replaced by E. The
operator Ot is critical for the study of claims problems as “games with
transferable utility” (O’Neill, 1982). Indeed, if a rule is such that for each
problem, the awards vector it recommends is the payoff vector chosen by a
solution to TU games for the game associated with the problem in the man-
ner first suggested by O’Neill (1982)7, then it is invariant under Ot (Curiel,

6For references to the relevant ancient literature, see O’Neill (1982), Aumann and
Maschler (1985), Young (1987), and Dagan (1996). Both CEA and CEL are discussed by
Maimonides. Proportionality is explicitly advocated by Aristotle as the basis for “just”
distribution. The Talmud rule is defined by Aumann and Maschler (1985) to rationalize
numerical examples given in the Talmud. We should also mention the “minimal overlap
rule”, MO, (O’Neill, 1982), which calculates awards by arranging claims over the amount
to divide so as to minimize in a lexicographic way the extent to which they conflict, and
then dividing each unit equally among all agents claiming it. Remarkably, RA, MO, and
Tal all coincide for |N | = 2; moreover, they coincide with “concede-and-divide”, defined
below. For further discussion of these relationships, see Thomson (2003). We will see
below that many other rules share this feature.

7Given (c, E) ∈ CN , and S ⊆ N , the “worth of S” is defined to be max{E −∑
i∈N\S ci, 0}. “Correspondences” between rules and solutions to coalitional games have

proved to be very useful tools in the literature on the problem of claims resolution.
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Maschler and Tijs, 1987). Formally, for each (c, E) ∈ CN and each i ∈ N , let
ti(c, E) ≡ min{ci, E} denote agent i’s truncated claim at the amount to
divide, and t(c, E) ≡ (ti(c, E))i∈N the vector of truncated claims. Figure 1b
illustrates Ot applied to P for |N | = 2.

Rule S operated from truncated claims, St: For each (c, E) ∈ CN ,
St(c, E) ≡ S (t(c, E), E).

The inequality between
∑

ci and E is not reversed by the truncation:
after carrying it out, we still have a well-defined claims problem.

If a rule is invariant under Ot, we say that it is invariant under claims
truncation: then, for each (c, E) ∈ CN , one can equivalently calculate the
awards vector (i) directly, or (ii) after truncating claims at E (Dagan, 1996).

3. Attribution of minimal rights. Given (c, E) ∈ CN and i ∈ N , it
is natural to think of the difference E − ∑

N\{i} cj, (or 0 if this difference

is negative), as a minimal amount that he can reasonably expect. There
should be no dispute about this payment. Given any rule S, a version of it
can be defined by first attributing to each claimant his minimal amount; then
after adjusting all claims down by these “first-round awards”, applying S to
divide the remainder. This remainder is what is truly disputed. Formally,
for each (c, E) ∈ CN and each i ∈ N , let mi(c, E) ≡ max{E −∑

N\{i} cj, 0}
denote claimant i’s minimal right and m(c, E) ≡ (mi(c, E))i∈N the vector
of minimal rights. Figure 1c illustrates the operator Om applied to P for
|N | = 2.

Rule S operated from minimal rights, Sm: For each (c, E) ∈ CN ,
Sm(c, E) ≡ m(c, E) + S (c−m(c, E), E −∑

mi(c, E)).

Since E−∑
mi(c, E) ≥ 0 (Curiel, Maschler and Tijs, 1987), and

∑
(ci−

mi(c, E)) ≥ E − ∑
mi(c, E), here too, at the second round, we obtain a

well-defined claims problem.
If a rule is invariant under Om, we say that it satisfies minimal rights

first: then, for each problem, one can equivalently calculate the awards
vector (i) directly, or (ii) in two steps, first attributing to each claimant his
“minimal right”, and after adjusting down each agent’s claim by his minimal
right, dividing what remains (Curiel, Maschler, and Tijs, 1987).

4. Convexity. Our final operator takes several arguments, but we will
refer to it in the singular. When two rules express opposite viewpoints on
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how to solve a claims problem, it is natural to compromise between them
by averaging. More generally, we consider a flexible formulation that allows
arbitrary convex combinations. Let K be a finite index set and ∆K the
unit simplex in the |K|-dimensional Euclidean space. Let (Sk)k∈K be a list
of rules, and (λk)k∈K a vector of weights in ∆K . Figure 1d illustrates the
operator Oc with equal weights applied to CEA and CEL for |N | = 2.

Weighted average of rules (Sk)k∈K with weights (λk)k∈K ∈ ∆K,
w((Sk)k∈K, (λk)k∈K): For each (c, E) ∈ CN , w((Sk)k∈K , (λk)k∈K)(c, E) ≡∑

k∈K λkSk(c, E).

That Oc is well-defined is a direct consequence of the fact that the set of
awards vectors is a convex set.

4 Relating the operators

The following theorem describes the result of composing each of the first
three operators with itself. It uses the following notation, which appears
repeatedly in the sections to follow. Given any rule S, the rule obtained
by subjecting it to the operator Op and then to the operator Op′ is denoted
Sp′◦p.8

Theorem 1 For each rule S, we have Sd◦d = S, St◦t = St, and Sm◦m = Sm.

Proof: The statement concerning Od is obtained by straightforward manip-
ulation of the definitions.9 We omit the obvious proof of the second state-
ment. To prove the last statement, let (c, E) ∈ CN . We need to show that,
in the problem obtained from (c, E) by attributing minimal rights, namely
(c−m(c, E), E −∑

mj(c, E)), minimal rights are all 0. Let i ∈ N , and note
that claimant i’s minimal right in this revised problem is equal to

max{E −
∑

mj(c, E)−
∑

N\{i}
(cj −mj(c, E)), 0}.

After canceling out terms, we obtain the expression

8We find this notation a little easier in formulas than Op′ ◦Op(S).
9The standard proof of this fact can be found in Herrero and Villar (2002).
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max{E −
∑

N\{i}
cj −mi(c, E), 0},

which is easily seen to be equal to 0, by using the definition of mi(c, E). ¤

For |N | = 2, straightforward calculations reveal that CEA subjected
to Om and CEL subjected to Ot are dual. Indeed, they both coincide
with concede-and-divide, CD. This rule is defined only for |N | = 2
but it is very important because a large number of ways of looking at the
problem of adjudicating conflicting claims lead to it.10 Formally, setting

N ≡ {i, j}, CD(c, E) ≡ (max{E−cj, 0}+ E−∑
N max{E−ck,0}

2
, max{E−ci, 0}+

E−∑
N max{E−ck,0}

2
). This duality result is not an accident. It is a consequence

of the following theorem:

Theorem 2 Let S and R be two dual rules. Then Sm and Rt are dual too.

Proof: We need to show that for each (c, E) ∈ CN , Sm(c, E) = c −
Rt(c,

∑
N ci − E), or equivalently that

(∗) m(c, E)+S(c−m(c, E), E−
∑
N

mi(c, E)) = c−R(t(c,
∑
N

ci−E),
∑
N

ci−E).

Since S is dual to R,

S(c−m(c, E), E −
∑
N

mi(c, E)) =

c−m(c, E)−R

(
c−m(c, E),

∑
N

(ci −mi(c, E))−
(

E −
∑
N

mi(c, E)

))
,

10The following scenario, which provided the reason for the name we chose for the rule, is
one of them (Aumann and Maschler, 1985): agent i, by claiming ci, is implicitly conceding
to claimant j the difference E−ci, or 0 if this difference is negative, namely max{E−ci, 0}.
Similarly, by claiming cj , agent j can be understood as conceding max{E− cj , 0} to agent
i. Let us first attribute to each claimant the amount conceded to him by the other (this
can be done because the sum of these concessions is at most as large as the amount to
divide), and in a second step let us divide the remainder, the “contested part”, equally
(no agent ends up with more than his claim).
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and substituting in (∗), we obtain

R(c−m(c, E),
∑
N

ci − E) = R(t(c,
∑
N

ci − E),
∑
N

ci − E).

We prove this equality by showing that for each i ∈ N , ci −mi(c, E) =
t(c,

∑
N ci − E), or equivalently that

(∗∗) ci −max{E −
∑

N\{i}
cj, 0} = min{ci,

∑
N

cj − E}.

If E ≤ ∑
N\{i} cj, then max{E −∑

N\{i} cj, 0} = 0 and the left-hand side

of (∗∗) is ci; the right-hand side is also ci. If
∑

N\{i} cj < E, the left-hand

side of (∗∗) is ci − E +
∑

N\{i} cj = −E +
∑

N cj, and so is the right-hand
side.

¤

We give two other illustrations of Theorem 2 for |N | = 2. First, an
implication of this theorem is that if a rule S is such that Sm is self-dual and
R ≡ Sd, then Rt = Sm. This is what occurs for Piniles’ rule, Pin, which is
defined, for each (c, E) ∈ CN , by applying CEA when E ≤

∑
ci

2
, but using in

the formula c
2

instead of c itself; then, doing so again when
∑

ci

2
< E ≤ ∑

ci.
Then, each award is in two “installments”.11 Formally, if ci

2
≥ E, Pin(c, E) ≡

(min{ ci

2
, α})i∈N , and otherwise, Pin(c, E) ≡ ( ci

2
+ min{ ci

2
, α})i∈N , where in

each case, α ∈ R+ is chosen so as to achieve efficiency. The rule is represented
for |N | = 2 in Figure 2b and its dual in Figure 2e. It is easy to calculate
that for |N | = 2, Pinm = CD (Figure 2a). Since CD is self-dual, Theorem 2
implies that Pint◦d = CD, as is also easily verified (Figure 2d).

As a final illustration of Theorem 2, once again we consider Pin for
|N | = 2, but this time we subject it to Ot. The resulting rule is shown in
Figure 2c. The rule obtained by subjecting Pind to Om is shown in Figure 2f.
For each c ∈ RN

+ the symmetry of p(Pint, c) and p(Pinm◦d, c) announced by
Theorem 2 can be verified on panels (c) and (f).

When a rule is subjected to both Ot and Om, the question arises whether
the order in which these operators are applied matters. It is an important

11Piniles’ (1861) rule, defined below, is an only partially successful attempt to explain
the recommendations made in the Talmud for the numerical examples given there. On the
other hand, the rule obtained from Pin by subjecting it to Ot is not self-dual. We return
to this example to illustrate a later theorem.
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Figure 2: Illustrating Theorem 2. (a) Piniles’ rule subjected to Om.
(b) Piniles’ rule. (c) Piniles’ rule subjected to Ot. (d) The dual of Piniles’ rule sub-
jected to Ot. (e) The dual of Piniles’ rule. (f) The dual of Piniles’ rule subjected
to Om. The dual of each rule represented in the top row is the rule represented
just underneath.
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question since neither order appears more compelling than the other. Fortu-
nately, the answer is no. We give the proof of this invariance first for |N | = 2,
as it is very transparent, and also because then, not only is the resulting rule
independent of the order, but it is also independent of which rule is taken
as a starting point, provided the rule assigns equal awards to agents with
equal claims. This is the property of equal treatment of equals: for each
(c, E) ∈ CN and each pair {i, j} ⊆ N , if ci = cj, then Si(c, E) = Sj(c, E).
Moreover, the end-result is CD. This feature of CD is in fact one of the
reasons why we feel that this rule is so important.

A preliminary observation is worth making: after being subjected to Ot,
any rule satisfying equal treatment of equals chooses equal division if the
amount to divide is at most as large as the smallest claim. Also, under Om,
for a rule satisfying equal treatment of equals, if the amount to divide is at
least as large as the sum of the n− 1 largest claims, all claimants experience
equal losses.

Theorem 3 For |N | = 2. For each rule S satisfying equal treatment of
equals, St◦m = Sm◦t = CD.

Proof: We assume, without loss of generality, that c1 ≤ c2.
Case 1: E ≤ c1. The amount conceded to each claimant (also his minimal
right) is 0. First-round awards are all 0, and no adjustment of claims is
needed. Truncation of claims at E yields revised claims both equal to E. By
equal treatment of equals, equal division prevails.

Case 2: c1 < E ≤ c2. Claimant 1 concedes to claimant 2 the amount E−c1,
and claimant 2 concedes nothing to claimant 1. Claims are adjusted down to
c1 and c2 − (E − c1). After these first-round awards, what remains to divide
is c1. Truncating claims at c1 yields new claims both equal to c1. In this
second round, by equal treatment of equals, each claimant receives half of the
amount that remains available, namely c1

2
. Altogether, claimant 1 receives

c1
2

and claimant 2 whatever is left.

Case 3: c2 < E. The amounts conceded are E − c2 and E − c1. Claims are
adjusted down to c1−(E−c2) and c2−(E−c1), and the amount that remains
available is E −∑

(E − ci). After truncation at this revised amount, claims
are equal (and in fact, equal to the revised amount to divide c1 + c2 − E).
Then, in this second round, by equal treatment of equals, equal division of
what remains prevails.

12



It is easy to see that the awards made in each of the three cases are those
specified by CD, and that reversing the order in which the two operators are
composed also yields CD. ¤

If in Theorem 3, equal treatment of equals is dropped, order indepen-
dence still holds but now a family of rules is obtained (defined in Hokari and
Thomson, 2003). If the rule is such that multiplying all data of a problem by
some positive number results in a problem whose awards vector is obtained
from the awards vector of the original problem by the same multiplication
(see below for a more formal statement of this property of “homogeneity”),
a one-parameter subfamily is obtained. In the general n-claimant case, we
lose uniqueness also, but not order independence.

Theorem 4 For each rule S, we have Sm◦t = St◦m.

Proof: The proof is in three steps. Let (c, E) ∈ CN be given.

Step 1: m (c, E) = m (t (c, E) , E).
Let i ∈ N . If there is j ∈ N\{i} such that cj ≥ E, then mi(c, E) = 0.

Also, tj(c, E) = E, so mi(t(c, E), E) = 0. Thus, mi(c, E) = mi(t(c, E), E). If
for each j ∈ N\{i}, cj < E, then for each j ∈ N\{i}, tj(c, E) = cj, and thus,
mi(t(c, E), E) ≡ max{E − ∑

N\{i} tj(c,E), 0} = max{E − ∑
N\{i} cj, 0} ≡

mi(c, E).

Step 2: t (c−m (c, E) , E −∑
mi (c, E)) = t (c, E)−m (t (c, E) , E).

By Step 1, we only need to show that for each i ∈ N ,

ti

(
c−m (c, E) , E −

∑
mk (c, E)

)
= ti (c, E)−mi (c, E) (Relation Ri.)

Using the definitions of t(·, ·) and m(·, ·), Relation Ri reads:
min{ci − max{E − ∑

N\{i} cj, 0}, E − ∑
h∈N max{E − ∑

N\{h} cj, 0}} =

min{ci, E} −max{E −∑
N\{i} cj, 0}.

Adding max{E −∑
N\{i} cj, 0} to both sides, we have to prove that

(∗) min{ci, E −
∑

h∈N\{i}
max{E −

∑

N\{h}
cj, 0}} = min{ci, E}.

13



If, for each h ∈ N \ {i}, E −∑
N\{h} cj ≤ 0, the desired conclusion follows

directly. Otherwise, there is h∗ ∈ N \ {i} such that E − ∑
N\{h∗} cj > 0.

Then, obviously ci < E and

E −
∑

h∈N\{i}
max{E −

∑

N\{h}
cj, 0} = E − (E −

∑

N\{h∗}
cj)−

∑

h∈N\{i,h∗}
max{E −

∑

N\{h}
cj, 0}

= ci +
∑

j∈N\{i,h∗}
cj −

∑

h∈N\{i,h∗}
max{E −

∑

N\{h}
cj, 0}

= ci +
∑

h∈N\{i,h∗}
min{

∑
N

cj − E, ch}

≥ ci.

Hence, both left and right hand sides of (∗) are equal to ci.

Step 3: Conclusion. Using Step 2 and Step 1 in turn, we obtain,

St◦m (c, E) ≡ m (c, E) + S
(
t
(
c−m (c, E) , E −

∑
mi (c, E)

)
, E −

∑
mi (c, E)

)

= m (c, E) + S
(
t (c, E)−m (t (c, E) , E) , E −

∑
mi (c, E)

)
.

= m (t (c, E) , E) + S
(
t (c, E)−m (t (c, E) , E) , E −

∑
mi (t (c, E) , E)

)

≡ Sm◦t (c, E) .

¤

It is natural to ask what would happen if the operators Ot and Om were
reapplied. The answer is: nothing. We have already noted that once minimal
rights are attributed, claims adjusted down by the minimal rights, and the
amount to divide adjusted down by the sum of the minimal rights, the mini-
mal rights of the problem that results are all 0. In other words, the minimal
rights in (c−m(c, E), E −∑

mj(c, E)) are all 0 (Theorem 1). But consider
the problem obtained from the above by truncating claims at the amount to
divide. In this new problem,

(c′, E ′) ≡
(
t
(
c−m (c, E) , E −

∑
mj (c, E)

)
, E −

∑
mj (c, E)

)
,

we assert that minimal rights are still all 0. Formally:

14



Proposition 1 For each (c, E) ∈ CN , consider the problem obtained from it
by attributing minimal rights, revising claims down by these minimal rights
and the amount to divide down by the sum of the minimal rights. Then, after
claims truncation, minimal rights are all 0.

Proof: We need to show that for each i ∈ N , mi(c
′, E ′) ≡ max{E ′ −∑

N\{i} c′j, 0} = max{E ′ −∑
N\{i} tj(c −m(c, E), E ′), 0} = 0. Replacing E ′

by its value, this is equivalent to showing that

E −
∑

mj(c, E) ≤
∑

N\{i}
tj(c−m(c, E), E −

∑
mk(c, E)),

and using the equality established in the proof of Theorem 4 (Relation Ri),

tj(c−m(c, E), E −
∑

mk(c, E)) = tj(c, E)−mj(c, E),

showing that E −mi(c, E) ≤ ∑
N\{i} tj(c, E), and equivalently that

(∗) E −
∑

N\{i}
tj(c, E) ≤ mi(c, E).

To prove (∗) , we distinguish two cases.

Case 1: there is j ∈ N\{i} such that cj ≥ E. Then the left-hand side of (∗)
is at most equal to 0, whereas the right-hand side is 0. The desired inequality
is satisfied.

Case 2: there is no such j. Then the left-hand side of (∗) is equal to
E−∑

N\{i} cj and the right-hand side is the maximum of that same expression
and 0. Once again, the desired inequality is satisfied.

¤

Thanks to Theorem 4, we conclude that parallel statements can be made
when Ot and Om are applied in reverse order.

Our final result in this section relates Oc to the other three operators.
We omit its proof, which follows directly from the definitions.

Theorem 5 The convexity operator is distributive with respect to each of the
claims truncation, attribution of minimal rights, and duality operators:

For each (Sk)k∈K and each (λk)k∈K,

15



t m d

t t (Thm 1) t ◦m (Thm 4) m ◦ d (Thm 2)
m m ◦ t (Thm 4) m (Thm 1) t ◦ d (Thm 2)
d d ◦m (Thm 2) d ◦ t (Thm 2) id (Thm 1)

Table 1: Summary table relating operators. The result of applying the
operator indexing a row and then the operator indexing a column is indicated at
the intersection of the row and the column. To illustrate, the composition m◦ t, in
the (t,m) cell, is shown in that cell to be the equivalent to the t ◦m composition.
The notation id refers to the identity operator.

[w((Sk)k∈K , (λk)k∈K)]t =
∑

k∈K

λk[Sk]t.

Similar formulas hold with either the minimal rights or duality operators
replacing the claims truncation operator.12

Table 1 here.

5 Preservation of properties under operators

In this section we undertake a systematic investigation of which properties are
preserved under the operators defined in the previous section. The properties
we consider have a straightforward interpretation, and to save space we refer
readers to earlier literature for motivation and formal definitions. For the
same reason, we do not consider properties that have been less frequently
discussed.13 We apologize for the enumeration, which nevertheless has the
advantage of gathering all the material we need. Formal definitions can be
found in Thomson (2003). The proofs are available from the authors upon
request.

Order preservation (Aumann and Maschler, 1985): if agent i’s claim
is at least as large as agent j’s claim, his award should be at least as large
as agent j’s award; also, his loss should be at least as large as agent j’s

12We use superscripts either to indicate an operator or a number, but the context always
makes it clear which is intended.

13Additional results are listed in Thomson (2005b).
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loss; group order preservation (Thomson, 1998; Chambers and Thomson,
2002): given two groups of claimants, if the aggregate claim of the first group
is at least as large as the aggregate claim of the second group, similar in-
equalities should hold between the aggregate award of the two groups, as well
as between the aggregate loss incurred by the two groups; anonymity: any
“renaming” of claimants should be accompanied by a parallel reassignment
of awards; homogeneity: if claims and amount to divide are multiplied by
the same positive number, so should all awards; and continuity: the awards
vector should be a continuous function of the data of the problem.

Next are monotonicity properties. They are claims monotonicity: if
an agent’s claim increases, his award should be at least as large as it was
initially; resource monotonicity: if the amount to divide increases, each
claimant’s award should be at least as large as it was initially.14

Our next group consists of invariance properties. First is no advanta-
geous transfer (Moulin, 1987; Ju, Miyagawa, and Sakai, 2004): no group
of claimants should receive more in the aggregate as a result of redistribut-
ing their claims among themselves. Two “composition” properties follow. If
the amount to divide decreases from some initial value, this decrease can be
dealt with in either one of two ways: (i) by canceling the initial division and
recalculating the awards for the final amount; (ii) by taking the awards calcu-
lated on the basis of the initial amount as claims in dividing the final amount.
Composition down (Moulin, 2000a) says that (i) and (ii) should result in
the same awards vector. Now, suppose that instead, the amount to divide
increases from some initial value. Here too, we can handle this increase in
either one of two ways: (i) by canceling the initial division and simply recal-
culating the awards for the final amount; (ii) by letting claimants keep their
initial awards, revising their claims down by these awards, and reapplying
the rule to divide the incremental amount (the difference between the final
and initial amounts). Composition up (Young, 1987) says that (i) and (ii)
should give the same awards vector.

We close with several properties pertaining to the variable-population
version of the model. Population monotonicity (Thomson, 1983): if new
claimants arrive, the award to each of the claimants initially present should be
at most as large as it was initially;15 replication invariance (for a study of

14For the “inequality conditions”, a “strict” version is obtained by requiring that the
conclusion should be strict if the inequality appearing in the hypothesis is strict.

15For a survey of the literature on population monotonicity, see Thomson (1995).
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the idea in this context, see Chun and Thomson, 2005): the awards vector of
a replica problem should be the replica of the awards vector of the problem
that is replicated (in the k-replica of a problem, each claimant has k − 1
clones with claims equal to his and the amount to divide is multiplied by
k); consistency (Young, 1987, is the author of the most general results on
the subject16): if some claimants leave with their awards and the problem
of dividing among the remaining claimants what is left is considered, these
claimants should receive the same awards as was decided initially; converse
consistency (see Chun, 1999, and Thomson, 2005a, for discussions of the
property in this context): suppose that an awards vector x is such that its
restriction to each two-claimant group is chosen for the problem of dividing
between them the sum of their components of x; then, x should be chosen.

We say that a property is preserved under an operator if whenever
a rule satisfies it, so does the rule obtained by subjecting to the operator.
In the following pages, we discuss which properties are preserved under our
operators, and which are not. The results are summarized in Table 2. We
omit most proofs. The appendix contains the proofs of those results that
are more difficult or from which a lesson can be drawn. For the remaining
properties, the proofs are available from the authors upon request.

1. Duality operator. The properties that are preserved under the duality
operator are numerous. We say that two properties are dual if whenever
a rule satisfies one of them, its dual satisfies the other. A simple example of
a pair of dual properties are the two parts of order preservation. This is most
easily seen for |N | = 2, thanks to the convenient geometric interpretation of
self-duality. Let N ≡ {1, 2} and c ∈ RN

+ be such that c1 ≤ c2, say. Then,
p(S, c) is above the 45◦ line (the first part of order preservation) if and only
if p(Sd, c) lies below the line of slope 1 emanating from c (the second part of
order preservation). A property is self-dual if it is preserved under Od.

Two basic monotonicity properties are not preserved under the duality
operator, and we state their duals, to show how one performs this operation.
First is claims monotonicity. Its dual says that if an agent’s claim and
the amount to divide increase by the same amount γ, this claimant’s award
should not increase by more than γ.17 Indeed, let i ∈ N , and note that Si(ci+
γ, c−i, E) ≥ Si(c, E) is equivalent to ci + γ − Sd

i (ci + γ, c−i,
∑

cj + γ −E) ≥
16For a survey of the literature on consistency and its converse, see Thomson (2005a).
17This property is independently formulated by Moulin (2000b) for a discrete version of

the model of claims resolution.
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ci−Sd
i (c,

∑
cj−E).18 After canceling out ci from both sides of this inequality

and replacing
∑

cj−E by E ′, we obtain γ ≥ Sd
i (ci+γ, c−i, E

′+γ)−Sd
i (c, E ′),

as announced.
Second is population monotonicity. Its dual says that if new claimants

arrive and the amount to divide increases by an amount equal to the sum
of their claims, then the award to none of the claimants initially present
should decrease. Indeed, for each N ′ ⊂ N , and each i ∈ N ′, the inequality
Si(cN ′ , E) ≥ Si(c, E) is equivalent to the inequality ci−Sd

i (cN ′ ,
∑

N ′ cj−E) ≥
ci−Sd

i (c,
∑

N cj−E). After canceling out ci from both sides of the inequality
sign and introducing E ′ ≡ ∑

N ′ cj − E, we obtain that for each i ∈ N ′,
Sd

i (cN ′ , E ′) ≤ Sd
i (c, E ′ +

∑
N\N ′ cj).

2. Claims truncation and minimal rights operators. Many properties
are preserved under Ot. Having at hand such a list, the concept of duality of
properties, together with the following theorem, allows us to easily determine
which properties are preserved under Om. The only properties whose case
cannot be settled by invoking these theorems are claims monotonicity and
population monotonicity, and direct proofs are needed (see the Appendix).

Theorem 6 A property is preserved under Ot if and only if its dual is pre-
served under Om.

Proof: Let A be a property that is preserved under Ot, Ad its dual, and let
S be a rule satisfying Ad. We need to show that Sm satisfies Ad. Since A is
dual to Ad, Sd satisfies A. Since A is preserved under Ot, St◦d satisfies A.
Since Ad is dual to A, Sd◦t◦d satisfies Ad. We will show that Sd◦t◦d = Sm.

Recall that Theorem 2 asserts that if R is the dual of S, then Rt is the
dual of Sm. Thus, Rd◦t = Sm. Since R = Sd, then Sd◦t◦d = Sm.

We have therefore shown that Sd◦t◦d = Sm, and since Sd◦t◦d was assumed
to satisfy Ad, so does Sm. This completes the proof of the theorem in one
direction.

We omit the “dual” proof for the other direction. ¤

Theorem 6 suggests an additional definition: two operators are dual
if whenever a property is preserved under the first one, the dual property is
preserved under the second one. According to this definition, Ot and Om are
dual.

18The notation c−i designates the vector c from which the i-th coordinate has been
deleted and (c′i, c−i) the vector c in which the i-th coordinate has been replaced by c′i.
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3. Composition of the claims truncation and attribution of minimal
rights operators. The next theorem says that the composition of Ot and
Om preserves duality of rules (according to Theorem 4, the operators can be
composed in either order):

Theorem 7 If two rules are dual, the versions of the rules obtained by trun-
cating claims first and then attributing minimal rights are also dual.

Proof: Let S and R be a pair of dual rules. By Theorem 2, St and Rm are
dual too. Applying Theorem 2 to this second pair, we deduce that Sm◦t and
Rt◦m are dual. By Theorem 4, Rt◦m = Rm◦t. Thus, Sm◦t and Rm◦t are dual
(and of course, so are St◦m and Rt◦m). ¤

If a property is preserved under both Ot and Om separately, then clearly
it is preserved under their composition. However, a property may be pre-
served under neither of these operators and yet be preserved under their
composition. An example is self-duality, for which we obtain the following
result, which is a corollary of Theorem 7.

Corollary 1 If a rule is self-dual, the version of the rule obtained by trun-
cating claims first and then attributing minimal rights is also self-dual.

Curiel, Maschler and Tijs (1987) take P as a starting point and define
a new rule from it by first attributing minimal rights and then truncating
claims. They show that their rule is self-dual by invoking a game-theoretic
argument. Since P is self-dual, this result can be obtained as an application
of Corollary 1.

Typically however, when a property is preserved by neither Ot nor Om, it
is not recovered by their composition. To illustrate, consider resource mono-
tonicity. The rule CEA is resource monotonic but CEAm is not. Neither is
CEAt◦m, which coincides with it: indeed, since this rule is invariant under
claims truncation, CEAm◦t = CEAm.

Consistency is another example of a property that is not preserved under
the composition of Ot and Om. To see this, recall that this property is not
preserved under Om (Table 2). This can be proved by means of P , but CEA
could have been used to make the point.

This reasoning can be applied more generally. Consider a property that
can be shown not to be preserved under Om by means of a rule that satisfies
invariance under claims truncation. Then the property is not preserved under
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the composition of Ot and Om. Also, consider a property that can be shown
not to be preserved under Ot by means of a rule that satisfies minimal rights
first. Then, the property is not preserved under the composition of Ot and
Om. These observations are direct consequences of Theorem 6.

4. Convexity operator. We conclude with the convexity operator, for
which no particular remarks need be made. It preserves quite a few prop-
erties, but not several important ones. We simply refer to Table 2 for the
complete list.

6 Conclusion

Concerning the extent to which the operators preserve properties, we can
offer no strict ranking, but only an informal observation that of the four op-
erators, the convexity operator tends to be the least disruptive. Also, due to
the duality between the claims truncation and attribution of minimal rights
operators, these two operators are equivalent in that regard. Switching our
focus from operators to properties, here no easy generalization can be made:
punctual properties (properties of rules that apply to each point in their
domain separately, such as order preservation) do not seem to be preserved
more frequently than relational properties (properties of rules that relate the
choices they make for problems that are related in some way, such as resource
monotonicity). A similar statement can be made about the fixed-population
properties as compared to the variable-population properties.
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Prop \operators convexity duality truncation min rights trunc ◦ min rights

Equal treat of equals + + + + +
Order pres + + + + +
Anonymity + + + + +

Group order pres + + − (P ) − (P ) − (P )
Continuity + + + + +
Claims mon + − (Prop 3) + − (Prop 4) − (Prop 7)

Resource mon + + − (CEL) (Prop 6) − (CEA) − (CEA)
Homogeneity + + + + +

Claims trunc inv + − (CEA) + + +
Min rights first + −(CEL) + + +

Comp down − (Av) − (ESu) (Prop 2) − (P ) − (P ) − (CEA)
Comp up − (Av) −(ESu) (Prop 2) − (P ) − (P ) − (CEA)

Self-duality + + − (P ) − (P ) + (Cor 1)
No adv trans + + − (P ) − (P ) − (P )

Pop mon + − (Prop 5) + − (CEA) − (CEA)
Repli inv + + − (P ) − (P ) − (P )

Consistency − (Av) + − (P ) − (P ) − (P )
Conv cons − (Av) + − (P ) − (P ) − (P )

Table 2: Showing which properties are preserved under the operators.
In each cell for which a negative result holds, we indicate in parenthesis a rule
allowing to prove the assertion. For instance, the notation (P ) at the intersection
of the row labelled “group order preservation” and column labelled “truncation”
means that P satisfies the property but that P t does not.
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APPENDIX

In this appendix, we provide the proofs of selected results presented in Ta-
ble 2. We use the following additional notation. Given x1, x2, . . . , xk ∈ RN ,
seg[x1, x2] denotes the segment connecting them and seg]x1, x2] ≡ seg[x1, x2]\
{x1}; also bro.seg[x1, x2, . . . , xk] ≡ seg[x1, x2]∪seg[x2, x3]∪ . . .∪seg[xk−1, xk].

Proposition 2 The following properties are not preserved under the duality
operator but they come in dual pairs: invariance under claims truncation and
minimal rights first; composition down and composition up.

For the proof of the second part of this proposition, we use the following
“equal sacrifice rule” (Young, 1988; Moulin, 2000a). Let u:R → R be the
function defined by u(x) ≡ −1

x
and ESu the rule that selects for each (c, E) ∈

CN the vector x ∈ X(c, E) such that for each pair {i, j} ⊆ N , u(ci)−u(xi) =
u(cj) − u(xj). (This is equivalent to setting xi = ci

1+βci
, where β ∈ R+ is

chosen so as to achieve efficiency.)

Proof: The duality between invariance under claims truncation and mini-
mal rights first is proved by Herrero (1998) (Dagan, 1996, proves a related
result).

Minimal rights first : CEL can be used to make the point. One can also
appeal to the example used to prove that invariance under claims truncation
is not preserved and to the fact that this property and minimal rights first
are dual properties.

Composition down: We assert first that ESu satisfies composition down.
To see this, let (c, E) ∈ CN be given and E ′ < E. Let x ≡ ESu(c, E),
x′ ≡ ESu(c, E ′), and y ≡ ESu(x,E ′). We show that x′ = y. Let i ∈ N . Let
βx ∈ R+ be such that

∑
ci

1+βxci
= E. Let βx′ and βy be similarly defined. By

definition of ESu, xi = ci

1+βxci
and yi = xi

1+βyxi
. Thus, yi = ci

1+(βy+βx)ci
. Since∑

yi =
∑

x′i = E ′ and βx′ is uniquely determined, βx′ = βy + βx. Thus,
x′i = yi, as announced.

Next, we assert that (ESu)d violates composition down. Let N ≡ {1, 2},
(c, E) ∈ CN be defined by (c, E) ≡ (1, 3; 68

21
), and E ′ = 11

4
. Then,

(ESu)d(c, E) = (2
3
, 18

7
) and (ESu)d(c, E ′) = (1

2
, 9

4
). Let c′ ≡ (2

3
, 18

7
) and

x ≡ (ESu)d(c′, E ′). We claim that x 6= (1
2
, 9

4
). Suppose that x = (1

2
, 9

4
).

Since x ≡ c′ − (ESu)(c′,
∑

c′i −E ′), then (ESu)(c′,
∑

c′i −E ′) = (1
6
, 9

28
). Let

β ∈ R+ be such that
∑

(ESu)i(c
′,

∑
c′i − E ′) =

∑ c′i
1+βc′i

=
∑

c′i − E ′. We

obtain β = 9
2

but also 49
18

. This is impossible since β is uniquely determined.
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Figure 3: Claims-monotonicity is not preserved under the duality op-
erator (Proposition 3). (a) Sample paths of awards of the rule S defined in the
proof. (b) Paths p(Sd, c∗) and p(Sd, c∗∗). If the amount to divide is E, as agent 1’s
claim increases from c∗1 = a

4 to c∗∗1 = a
2 , he receives less (follow the arrows).

The duality between the two composition properties is proved by Moulin
(2000a). ¤

Our next result concerns claims monotonicity, a property that is satisfied
by every rule encountered in the literature.19 Unfortunately we have:

Proposition 3 Claims monotonicity is not preserved under the duality op-
erator.

The proof is by means of an example. It is of interest that the example
is anonymous, order-preserving, homogeneous, and resource monotonic (and
therefore resource continuous ; it is in fact fully continuous, that is, jointly
continuous with respect to the claims and the amount to divide). This shows
that these properties do not help preserve claims monotonicity.

Proof: We define a rule S on CN , where N ≡ {1, 2}. The rule is depicted
in Figures 3 and 4. We show that S is claims monotonic whereas Sd is not.

Let a > 0, c ≡ (0, a), c∗ ≡ (a
4
, a), c∗∗ ≡ (a

2
, a), and c̄ ≡ (a, a). We

first specify p(S, c) for each c ∈ seg[c, c̄]. We then choose p(S, c) for each
c ∈ seg[(a, 0), c̄] as the symmetric image with respect to the 45◦ line of
p(S, (c2, c1)). Finally, we choose p(S, c) for each other c ∈ R2

+ by first calcu-
lating µ such that µc ∈ bro.seg[(a, 0), c̄, (0, a)] and subjecting p(S, µc) to a

19Here too, few of the standard rules satisfy the stronger requirement that an agent
whose claim increases should receive more, unless E = 0 of course (equality is not permit-
ted any more). The rule P is a rare example that does. However, it is easy to construct
rules that do. Most “parametric rules” (Young, 1987) do.
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Figure 4: The rule S of Proposition 3 is claims monotonic. Sample paths
p(S, c) for c ≡ (c1, a) when c1 ∈ [0,∞[. The path p(S, c) for each c ∈ seg[(a, 0), c̄],
where c̄ ≡ (a, a), is obtained by symmetry from the path for the symmetric image
of c with respect to the 45◦ line. The paths for two critical claims vectors, c̄∗ and
c̄∗∗, the symmetric images of c∗ and c∗∗, are represented. The path p(S, c) for each
c ∈ J3∪J2∪J1 is obtained by homothetic expansion of the path for the homothetic
image of c that belongs to seg[(a, 0), c̄]. For each amount to divide, as agent 1’s
claim increases, he receives at least as much as he did initially.

homothetic transformation of ratio 1
µ
. This construction guarantees that S

is anonymous and homogeneous.
For each c ∈ I1 ≡ seg[c, c∗] (see Figure 3a for illustrations of I1 and I2 and

I3 defined below), p(S, c) = p(CEL, c). For each c ∈ I2 ≡ seg]c∗, c∗∗], p(S, c)
is piecewise linear in two pieces: given 0 ≤ λ ≤ 1, p(S, λc∗ + (1 − λ)c∗∗) =
bro.seg[(0, 0), λ(0, 3

4
a), λc∗ + (1 − λ)c∗∗]. (Note that for λ = 0, the path is

that of P .) For each c ∈ I3 ≡ seg]c∗∗, c̄], p(S, c) = p(P, c).
Figure 4 illustrates that when agent 2’s claim is fixed at a, and as agent 1’s

claim increases from 0 to ∞, agent 1’s award does not decrease. The claims
monotonicity of S is a consequence of this fact and of its being anonymous
and homogeneous. The figure indicates some paths p(S, c) for c ∈ RN

+ with
c2 = a. We show that these paths never cross. Given any claims vector c of
the form c ≡ (c1, a) for c1 ∈ [a,∞[, there is a claims vector on seg[(a, 0), c̄]
that is proportional to it. We call µ ≥ 1 the expansion factor required to
pass from the latter to the former, using the same superscript to keep track
of this pairing, c̄∗ and µ∗c̄∗ being an example of a pair so defined.

1. For each c ∈ J3 ≡ seg]c̄, µ∗∗c̄∗∗] (again, see Figure 4), where c̄∗∗ is
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the symmetric image of c∗∗, p(S, c) = p(P, c) (examples are p(S, µ1c1) and
p(S, µ2c2)).

2. For each c ∈ J2 ≡ seg]µ∗∗c̄∗∗, µ∗c̄∗], p(S, c) is obtained by a homothetic
expansion of the path for the reduced image of c that belongs to seg[(a, 0), c̄].
For example, consider two points in J2, such as µ3c3 and µ4c4 in the figure,
where µ4c4 is to the right of µ3c3. Then, the paths for these points are
obtained by homothetic expansions of the paths for c3 and c4, with c4 below
c3. The slope of the oblique segment in p(S, c4) is greater than the slope of
the oblique segment in p(S, c3). Therefore the same statement can be made
about the slopes of the oblique segments in p(S, µ4c4) and p(S, µ3c3), which
imply that they do not cross.

3. Finally, for each c ∈ J1 ≡ {(c1, a): c1 ∈ ]4a,∞[} (J1 is the open half-line
{µ∗c̄∗ + t(1, 0): t > 0} in the figure), p(S, c) consists of a horizontal segment
from the origin and a segment of slope 1.

The fact that Sd violates claims monotonicity can be seen by considering
p(Sd, c∗) and p(Sd, c∗∗). These paths are obtained by symmetry of p(S, c∗)
and p(S, c∗∗). Inspection of Figure 3b reveals that the paths cross: in fact,
for each amount to divide in the interval ]0, 3

4
a[, agent 1 loses as his claim

increases from c∗1 = a
4

to c∗∗1 = a
2
, agent 2’s claim being kept fixed at a. ¤

The strengthening of claims monotonicity obtained by requiring that if
an agent’s claim increases, he should receive more, is not preserved under the
duality operator either. To see this, it suffices to modify the example used
to prove Proposition 3. Informally, for each c ∈ I1 ∪ I2, replace the vertical
segment of p(S, c) by a very steep segment whose slope varies continuously
and monotonically between ∞ and 2 as c varies in I1 ∪ I2 from c to c∗∗.

Proposition 4 Claims monotonicity is not preserved under the attribution
of minimal rights operator.

We prove this result by exhibiting a rule that is claims monotonic, but
once subjected to Om, it is not. Although the assertion can be proved by
means of the example used to prove Proposition 7, we exhibit here a rule
that is order preserving, anonymous, resource monotonic, and continuous.

Proof: The proof is by means of an example of a rule S defined on CN where
N ≡ {1, 2}. It is depicted in Figure 5a.

Step 1: Construction of S. We first consider c ∈ RN
+ with c1 ≤ c2. If

c2 ≤ 2, then p(S, c) = p(P, c). If c2 ≥ 4, then p(S, c) = p(CEL, c). If
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Figure 5: Claims monotonicity is not preserved under the attribution
of minimal rights operator (Proposition 4.) (a) Sample paths of awards of
the rule S defined in the proof. The path for c in the shaded region is a linear
combination of p(P, c) and p(CEL, c). (b) Paths p(Sm, c) and p(Sm, c′). If E = 2,
as agent 1’s claim increases from 1 to 2, he receives less.

2 < c2 < 4 (the shaded region), then p(S, c) is a linear combination of
p(P, c) and p(CEL, c). The construction uses an arbitrary continuous and
monotone function g: [0, 1] → [0, 1] such that for each t ∈ [0, 1], g(t) ≤ t, and
g(0) = 0, g(1

2
) = 1

4
, and g(1) = 1. Now, let k(c) ≡ g( c2−2

2
)(c2 − c1), and

p(S, c) ≡ bro.seg[(0, 0), (0, k(c)), c].
We then choose p(S, c) for each c ∈ RN

+ with c1 > c2 as the symmetric
image with respect to the 45◦ line of p(S, (c2, c1)). This guarantees that S is
anonymous.

Step 2: S is claims monotonic. Since S is anonymous, it is enough to ex-
amine the rule in the region {c ∈ RN

+ : c1 ≤ c2}. First, let c2 > 0 and let
c1, c

′
1 ∈ [0, c2] be such that c′1 < c1. Let c′2 ≡ c2 and c′ ≡ (c′1, c

′
2). There are

three subcases. If c2 ≤ 2, then p(S, c) = p(P, c) and p(S, c′) = p(P, c′), and
since P satisfies claims monotonicity, we are done. If c2 ≥ 4, then p(S, c) =
p(CEL, c) and p(S, c′) = p(CEL, c′), and since CEL satisfies claims mono-
tonicity, we are done. If 2 < c2 < 4, then p(S, c) = bro.seg[(0, 0), (0, k(c)), c].
Also, p(S, c′) = bro.seg[(0, 0), (0, k(c′), c′]. The conclusion follows from the

fact that c2 − c1 < c′2 − c′1, and since c′2 = c2, g( c2−2
2

) = g(
c′2−2

2
), so that

altogether k(c) ≡ g( c2−2
2

)(c2 − c1) < g(
c′2−2

2
)(c′2 − c′1) ≡ k(c′).

Next, let c1 > 0 and let c2, c
′
2 ∈ [c1,∞[ be such that c2 < c′2. Let

c′1 ≡ c1 and c′ ≡ (c′1, c
′
2). We have p(S, c) = bro.seg[(0, 0), (0, k(c)), c]; also,

p(S, c′) = bro.seg[(0, 0), (0, k(c′)), c′]. The conclusion follows from the fact
that since c′2 > c2 and c′1 = c1, then c2 − c1 < c′2 − c′1, and since g is

increasing, g( c2−2
2

) ≤ g(
c′2−2

2
), so that altogether k(c) ≡ g( c2−2

2
)(c2 − c1) <

g(
c′2−2

2
)(c′2 − c′1) ≡ k(c′).
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Step 3: Sm is not claims monotonic (Figure 5b). To see this, let c ≡ (1, 4),
c′ ≡ (2, 4), and E = 2. Note that m(c, E) = (0, 1) and m(c′, E) = (0, 0).
We have Sm(c, E) = m(c, E) + S(c − m(c, E), E − ∑

mi(c, E)). Let c∗ ≡
c−m(c, E). To calculate the second term in this sum, we note that c∗ = (1, 3)
and E−∑

mi(c, E) = 1. Then, p(S, c∗) is seg[(0, 0), k(c∗), c∗], where k(c∗) ≡
g(

c∗2−2

2
)(c∗2 − c∗1). Since g(

c∗2−2

2
) = g(1

2
) = 1

4
, we have k(c∗) = 1

4
(c∗2 − c∗1) =

1
2

< 1 = E − ∑
mi(c, E). So, S1(c

∗, E − ∑
mi(c, E)) > 0. This implies

Sm
1 (c, E) > 0. Also, Sm

1 (c′, E) = S1(c
′, E) = CEL1(c

′, E) = 0. Thus, as
agent 1’s claim increases from c1 = 1 to c′1 = 2, he receives less, in violation
of claims monotonicity. ¤

Next, we turn to population monotonicity for which a negative result
also holds. We prove this fact by exhibiting a rule S that is anonymous,
homogeneous, and resource monotonic, and population monotonic but Sd is
not population monotonic. (Since resource monotonicity implies resource
continuity, S is also resource continuous):

Proposition 5 Population monotonicity is not preserved under the duality
operator.

Proof: The proof is by means of an example of a rule S defined on
⋃

N ′⊆N CN ′

where N ≡ {1, 2, 3}. Sample paths of awards of S are plotted in Figures 6a
and 6b. We show that S is population monotonic but Sd is not.

Step 1: Construction of S. On the subdomain of two-claimant problems,
S ≡ P . Let Q be the unit cube in RN

+ , and for each t ∈ {1, 2, 3}, let Ft

be the face of Q consisting of all c ∈ RN
+ such that ct = 1. Given c ≡

(c1, 1, c3) 6= (1, 1, 1), a typical claims vector in F2, let L be the line passing
through c and e ≡ (1, 1, 1). Also, let x ≡ L ∩ seg[(2

3
, 1, 1), (1, 1, 2

3
)] and

y ≡ L ∩ seg[(0, 1, 1), (1, 1, 0)] (we use the notation L′, x′, y′ for the claims
vector c′). If 0 < c1 + c3 ≤ 1, then p(S, c) = p(P, c) (c in Figure 6a). If 1 <
c1+c3 ≤ 1+ 2

3
, then p(S, c) = bro.seg[(0, 0, 0), y, c] (c′ in Figure 6a). If 1+ 2

3
<

c1 + c3 ≤ 2, then p(S, c) is piecewise linear in two pieces defined as follows:
let 0 ≤ λ ≤ 1 be such that c = λx+(1−λ)e. Then p(S, c) = seg[(0, 0, 0), d, c]
where d ≡ λy+(1−λ)2

3
e (Figure 6b). Finally, if c = e, then p(S, c) = p(P, c).

We deduce p(S, c) for each c ∈ F1 by symmetry with respect to the plane of
equation x1 = x2 of p(S, c′) where c′ is symmetric image of c with respect
to that plane; similarly we deduce p(S, c) for each c ∈ F3 by symmetry with
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respect to the plane of equation x2 = x3 of p(S, c′) where c′ is the symmetric
image of c with respect to that plane. If c is not in any of the faces F1, F2,
and F3, let µ ∈ R+ be such that µc does belong to such a face. Then, p(S, c)
is obtained from p(S, µc) by the homothetic transformation of ratio 1

µ
. This

construction guarantees that S is anonymous and homogeneous.

Step 2: S is population monotonic. Let E > 0 and c ≡ (c1, 1, c3) be an
arbitrary point in F2. We distinguish three cases.

Case 1: 0 < c1 + c3 ≤ 1. Then, S(c, E) ≡ P (c, E). Since S(cN ′ , E) ≡
P (cN ′ , E) for each N ′ with |N ′| = 2 and P is population monotonic, the
population-monotonicity inequalities hold.

Case 2: 1 < c1 + c3 ≤ 1 + 2
3
. We imagine the departure of each agent in

turn (Figure 6c).
Subcase 2.1: Claimant 1 leaves. We have to compare z ≡ S(c, E) and
z′ ≡ S

(
c{2,3}, E

)
. We assume that E ≤ 1 + c3 since otherwise there is

nothing to check. Since y = L ∩ seg[(0, 1, 1), (1, 1, 0)], then y1 + 1 + y3 = 2.
Note that y belongs to the simplex in the plane of equation

∑
vi = 2. Thus

z =
(

y1E
2

, E
2
, y3E

2

)
. Also z′ =

(
E

1+c3
, c3E

1+c3

)
. Then z′3 − z3 = c3E

1+c3
− y3E

2
. Since

c3 ≥ y3 and 1 + c3 ≤ 2, then z′3 − z3 ≥ 0.
Also z′2 − z2 = E

1+c3
− E

2
. Since 1 + c3 ≤ 2, then z′2 − z2 ≥ 0.

Subcase 2.2: Claimant 2 leaves. We have to compare z ≡ S (c, E) and
z′ ≡ S

(
c{1,3}, E

)
. We assume that E ≤ c1 + c3 since otherwise there is

nothing to check. Since y = L ∩ seg[(0, 1, 1), (1, 1, 0)], as already calculated,

y1 + 1 + y3 = 2. Thus z =
(

y1E
2

, E
2
, y3E

2

)
. Also z′ =

(
c1E

c1+c3
, c3E

c1+c3

)
. Thus

z′1 − z1 = c1E
c1+c3

− y1E
2

. Since c1 ≥ y1 and c1 + c3 ≤ 2, then z′1 − z1 ≥ 0.

Also, z′3−z3 = c3E
c1+c3

− y3E
2

. Since c3 ≥ y3 and c1+c3 ≤ 2, then z′3−z3 ≥ 0.
Subcase 2.3: Claimant 3 leaves. We apply the same argument as in Sub-
case 2.1.

Case 3: 1 + 2
3

< c1 + c3 ≤ 2. Let λ be such that c = λx + (1 − λ)e and
d ≡ λy + (1− λ)2

3
e. Since x ≥ y and e > 2

3
e, then c ≥ d.

Subcase 3.1: Claimant 1 leaves. We have to compare z ≡ S (c, E) and
z′ ≡ S

(
c{2,3}, E

)
. We assume that E ≤ 1 + c3 since otherwise there is

nothing to check. Note that d1 + d2 + d3 = 2 and E ≤ 1 + c3 ≤ d1 + d2 + d3,

so z =
(

d1E
2

, d2E
2

, d3E
2

)
and z′ =

(
E

1+c3
, c3E

1+c3

)
. Thus z′3 − z3 = c3E

1+c3
− d3E

2
.

Since c3 ≥ d3 and 1 + c3 ≤ 2, then z′3 − z3 ≥ 0.
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Figure 6: Population monotonicity is not preserved under the duality
operator (Proposition 5). (a) Construction of p(S, c) for c such that c2 = 1 and
0 ≤ c1+c3 ≤ 1, and for c′ such that c′2 = 1 and 1 < c′1+c′3 ≤ 1+ 2

3 . (b) Construction
of p(S, c) for c such that c2 = 1 and 1+ 2

3 < c1+c3 ≤ 2. (c) The rule S is population
monotonic. Given c in F2, we determine p(S, c) (it consists of two line segments),
and the paths of awards of S for each of the projections of c onto the three two-
dimensional coordinates subspaces (these paths are segments connecting the origin
to these projections). Then, given E, we calculate the awards vectors selected by
S for the resulting problems. (d) The rule Sd is not population monotonic. For
(c, E) ≡ (1, 1, 1

2 ; 1
2), it selects (0, 0, 1

2), but for the problem that results from the
departure of claimant 2, it selects (1

3 , 1
6). Claimant 3 loses.

30



Also, z′2 − z2 = E
1+c3

− d2E
2

. Since 1 ≥ d2 and 1 + c3 ≤ 2, z′2 − z2 ≥ 0.
Subcase 3.2: Claimant 2 leaves. We have to compare z ≡ S (c, E) and
z′ ≡ S

(
c{1,3}, E

)
. We assume that E ≤ c1 + c3 since otherwise there is

nothing to check. Note that d1 + d2 + d3 = 2 and E ≤ c1 + c3 ≤ d1 + d2 + d3,

so z =
(

d1E
2

, d2E
2

, d3E
2

)
and z′ =

(
c1E

c1+c3
, c3E

c1+c3

)
. Thus z′1 − z1 = c1E

c1+c3
− d1E

2
.

Since c1 ≥ d1 and c1 + c3 ≤ 2, then z′1 − z1 ≥ 0.
Also, z′3−z3 = c3E

c1+c3
− d3E

2
. Since c3 ≥ d3 and c1+c3 ≤ 2, then z′3−z3 ≥ 0.

Subcase 3.3: Claimant 3 leaves. We apply the same argument as in Sub-
case 3.1.

Step 3: Sd is not population monotonic (Figure 6d). Let (c, E) ≡ (
1, 1, 1

2
; 1

2

)
.

We have p(S, c) = bro.seg[(0, 0, 0), (1, 1, 0), (1, 1, 1
2
)]. The path p(Sd, c) is

obtained from p(S, c) by symmetry with respect to c
2
. Thus, p(Sd, c) =

bro.seg[(0, 0, 0), (0, 0, 1
2
), (1, 1, 1

2
)]. Then, Sd

(
1, 1, 1

2
; 1

2

)
= (0, 0, 1

2
).

Let claimant 2 leave. Then c{1,3} ≡ (
1, 1

2

)
. By definition of S,

S
(
1, 1

2
; 1

2

)
= P

(
1, 1

2
; 1

2

)
=

(
1
3
, 1

6

)
. Since P is self-dual, Sd

(
1, 1

2
; 1

2

)
=

(
1
3
, 1

6

)
.

Since claimant 3 receives less in the two-claimant problem than in the three-
claimant problem, Sd violates population monotonicity. ¤

Proposition 6 Resource monotonicity is not preserved under the claims
truncation operator.

Proof: The rule CEL satisfies the property but CELt does not. To see this,
let N ≡ {1, 2, 3} and (c, E) ∈ CN be defined by (c, E) ≡ (10, 20, 30; 10). Then
CELt(c, E) = (10

3
, 10

3
, 10

3
). However, for E ′ ≡ 20, we obtain CELt(c, E ′) =

(0, 10, 10). Claimant 1 loses when the amount to divide increases from E
to E ′.

Since for |N | = 2, CELt coincides with CD, which is resource monotonic,
this negative result can be proved by means of CEL only with an example
involving at least three claimants. However, rules can be constructed to make
the point that the property is not preserved under the claims truncation
operator for |N | = 2. Any such rule has to fail claims monotonicity, a
property that CEL satisfies. The proof is by means of an example S. Let
c ≡ (4, 7), c′ ≡ (4, 6), p(S, c) ≡ bro.seg[(0, 0), (3.5, 3.5), c], and p(S, c′) ≡
bro.seg[(0, 0), (2, 4), c′]. Both of these paths are monotone, and to obtain a
resource monotonic rule it suffices to choose p(S, c̃) to be a monotone path
for any other c̃. Let E = 7 and E ′ = 6. Now, note that St(c, E) = (3.5, 3.5)
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Figure 7: Claims monotonicity is not preserved under the composi-
tion of the claims truncation and attribution of minimal rights operator
(Proposition 7). (a) Sample paths of awards of the rule S defined in the proof.
(b) Showing that S is claims monotonic.

but St(c, E ′) = S(t(c, E ′), E ′) = S(c′, E ′) = (2, 4). Claimant 2 loses when
the amount to divide increases from E ′ to E.

¤

Proposition 7 Claims monotonicity is not preserved under the composition
of the claims truncation and attribution of minimal rights operators.

The proof is by means of an example of a rule, called S. The rule is
claims continuous and resource monotonic. It violates both equal treatment
of equals and homogeneity but this is unavoidable. Indeed, as shown in The-
orem 3, if a rule R defined on CN for |N | = 2 satisfies equal treatment of
equals, then Rt◦m = Rm◦t = CD. Since CD is claims monotonic, then S vi-
olates equal treatment of equals. In addition, still for |N | = 2, the “weighted
concede-and-divide rules” are the only rules satisfying homogeneity, invari-
ance under claims truncation, and minimal rights first (Hokari and Thomson,
2003). Since these rules are claims monotonic, then S violates homogeneity.
However, we design S to be claims continuous and resource monotonic. An
ingredient of our construction is the “sequential priority rule associated with
the order 2 ≺ 1,” denoted D2≺1, which, as the amount to divide increases
from 0, assigns all of it to claimant 2 until he is fully compensated, and only
then starts compensating claimant 1. Claims monotonicity of S means that
the paths of awards associated with two claims vectors that differ in only one
coordinate do not cross.

Proof: We define a rule S on CN , where N ≡ {1, 2}. We show that S is
claims monotonic whereas St◦m is not.
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Step 1: Construction of S (Figure 7a). Let c ∈ RN
+ . If c2 ≤ 1, then

p(S, c) = p(P, c). If c2 ≥ 2, p(S, c) = p(D2≺1, c). If 1 < c2 < 2, then
p(S, c) = bro.seg[(0, 0), (0, 2(c2 − 1)), c]. (Thus, for each c1 ∈ R+, and as
c2 increases from 1 to 2, p(S, c) changes continuously from p(P, (c1, 1)) to
p(D2≺1, (c1, 2)).) The first case is illustrated by c1 and c2, the second case by
c5, c6, and c7, and the third case by c3 and c4.

Step 2: S is claims monotonic (Figure 7b). Let c, c′ ∈ RN
+ be such that

c′2, c2 ≤ 1. Then the paths of awards of S for c and c′ are that of the
proportional rule, and since this rule satisfies claims monotonicity, we are
done. If c′2, c2 ≥ 2, then the paths of awards of S for c and c′ are that
of D2≺1, and since this rule satisfies claims monotonicity, we are done. If
c′1 > c1, c′2 = c2, and 1 < c2 < 2, then p(S, c) = bro.seg[(0, 0), (0, 2(c2−1)), c].
Also, p(S, c′) = bro.seg[(0, 0), (0, 2(c′2 − 1)), c′]. Since c′1 > c1 and c′2 = c2,
the two paths begin with the same vertical segment. The second segment of
p(S, c′) is flatter than the second segment of p(S, c). Thus, the paths do not
cross.

Next, let c, c′ ∈ RN
+ be such that c′1 = c1 and c′2 > c2. When 1 ≤

c2 < c′2 ≤ 2, then p(S, c) = bro.seg[(0, 0), (0, 2(c2 − 1)), c] and p(S, c′) =
bro.seg[(0, 0), (0, 2(c′2 − 1)), c′]. Since 2(c2 − 1) < 2(c′2 − 1), these paths do
not cross. The desired conclusion for the other cases follows directly from
the facts that the proportional and constrained equal losses rules are claims
monotonic, and that S is continuous.

Step 3: Sm◦t is not claims monotonic. To see this, let c ≡ (1, 4), c′ ≡ (3, 4),
and E = 2. By Step 1 in Theorem 4, m(t(c, E), E) = m(c, E). Thus,
Sm◦t(c, E) = m(c, E) + S(t(c, E) −m(c, E), E −∑

i∈N mi(c, E)). Note that
m(c, E) = (0, 1), t(c, E) = (1, 2), m(c′, E) = (0, 0), and t(c′, E) = (2, 2). It
follows that Sm◦t(c, E) = (1

2
, 3

2
) and Sm◦t(c′, E) = (0, 2). Thus, as agent 1’s

claim increases from c1 = 1 to c′1 = 3, he receives less, in violation of claims
monotonicity. ¤

The rule defined in this proof can also be used to show that claims mono-
tonicity is not preserved under Om (to see this, set c ≡ (1, 4), E ≡ 4, and
c′ ≡ (2, 4)), but examples can be constructed to prove this fact that are
anonymous.
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