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Abstract

Living with risk can lead to anticipatory feelings such as anxiety or
hopefulness. Such feelings can a¤ect the choice between lotteries that will
be played out in the future - choice may be motivated not only by the
(static) risks involved but also by the desire to reduce anxiety or to promote
savoring. This paper provides a model of preference in a three-period setting
that is axiomatic and includes a role for anticipatory feelings. It is shown
that the model of preference can accommodate intuitive patterns of demand
for information such as information seeking when a favorable outcome is
very likely and information aversion when it is more likely that the outcome
will be unfavorable. Behavioral meaning is given to statements such as
�individual 1 is anxious� and �2 is more anxious than 1�. Finally, the
model is di¤erentiated sharply from the classic model due to Kreps and
Porteus.
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1. INTRODUCTION

Living with risk can lead to anticipatory feelings such as anxiety that the eventual
outcome will be bad, or hopefulness that it will be good.1 Such feelings can a¤ect
the choice between lotteries that will be played out in the future - choice may
be motivated not only by the (static) risks involved but also by the desire to
reduce anxiety or to promote savoring. This paper provides a model of preference
in a three-period setting that is axiomatic and includes a role for anticipatory
feelings. It is intuitive that the latter a¤ect the demand for information. It
is shown that the model of preference can accommodate intuitive patterns of
demand for information such as information seeking when a favorable outcome is
very likely and information aversion when it is more likely that the outcome will
be unfavorable. Behavioral meaning is given to statements such as �individual 1
is anxious�and �2 is more anxious than 1�. Finally, the model is di¤erentiated
sharply from the classic model due to Kreps and Porteus [9].
Consider risky prospects that pay o¤ at a �xed time in the future. Standard

expected utility maximizers care about the riskiness of prospects but they are
indi¤erent to when risk is resolved. Thus it is not possible within the standard
framework to distinguish between individuals who prefer early resolution, perhaps
because they are anxious and cannot bear to live with risk, and those who prefer to
delay resolution, perhaps because they wish to savor the prospect (or illusion) of a
favorable outcome. Kreps and Porteus, henceforth KP, permit such a distinction.
A key to their model is expansion of the domain of objects of choice from the
set of lotteries (or lottery streams) to the domain of dynamic choice problems (p.
187). The latter includes in particular, the set of multi-stage or temporal lotteries
that distinguish between risks according to their temporal resolution.
We adopt the KP domain, though specialized to our setting of three periods

and terminal payo¤s.2 The common domain permits a sharp comparison of the
two models. The key di¤erence is that the KP model violates our central axiom,
called Expected Stationarity, the essence of which is the assumption that for
lotteries that resolve next period, the agent expects her future preference over
such lotteries to be the same as her current one, that is, the ranking of such
�one-step-ahead lotteries� is expected to be independent of the calendar date.
Given such an expectation of stationarity, we show that if the agent cares about

1See Caplin and Leahy [2] for references to psychological research on anticipatory emotions.
2Henceforth, when referring to the Kreps-Porteus model, the intention is to this specialization

of their model.
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the temporal resolution of risk, then she will be led to value commitment. In
contrast, commitment is never valuable within the KP model. This is due to their
implicit assumption, made explicit here, that risk preferences are expected to be
nonstationary. Since such nonstationarity is arguably unnatural in many settings,
our analysis raises questions about the suitability of the KP model as a model of
living with risk.3

Consider a concrete example - we focus on savoring, though examples high-
lighting anxiety can also be constructed (see Section 5.1). There are three time
periods, 0; 1; 2. Let p and q be two lotteries, where p represents a lotto ticket that
is resolved at time 2 and q is riskless. In choosing between them at time 0, the
agent is in�uenced not only by the riskiness of p, but also by the long time interval
during which she can savor the possibility of winning a large prize. The latter
may dominate and lead to the choice of p over q. (In the formal model, the choice
of p amounts to the commitment to receiving p at time 1. Thus, while she may
not physically hold the ticket at 0, she is certain then that the ticket will be her�s
at time 1, and thus it is intuitive that she may already begin to savor the pos-
sibility of a good outcome.) The in�uence of savoring on choice is demonstrated
by considering also the choice, still at time 0, between q and the hypothetical
lottery bp, where bp has the same probability distribution over outcomes as does p,
but di¤ers from p in that it is completely resolved at time 1. Since savoring with
regard to bp is limited to a shorter period, risk aversion may dominate and lead to
the time 0 strict preference for q over bp. Consider �nally the choice at 0 between
fpg and the menu fp; qg, where fpg represents commitment to p as above, and
fp; qg represents the option of deferring to period 1 the decision between p and q.
We argue that the preceding, including the strict preference for q over the hypo-
thetical lottery bp, plus �stationarity�, imply the value of commitment, speci�cally
the strict preference for fpg over fp; qg: the latter ranking hinges on what choice
the agent expects to make out of fp; qg at time 1 should she choose that menu
at 0. But the comparison at 1 between p and q is completely analogous to that
between bp and q at time 0 - in particular, in both cases, the agent compares the
deterministic prize q with a lotto ticket that is realized in the next period. Thus, if
there is no reason for the di¤erence in calendar dates to matter,4 the agent should

3There are other reasons for caring about the temporal resolution of risk - one is that early
resolution may facilitate planning - and KP are noncommital about which story they have in
mind. Our objection is only to the anxiety, or living-with-risk, story.

4Calendar dates may matter if savoring applies also to deterministic outcomes. Then the
choice between p and q at time 1 is di¤erent from the hypothetical choice problem at 0, because
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expect her time 1 ranking to agree with her time 0 preference for q over bp (this
is the expectation of stationarity referred to above). Therefore, she would expect
the menu fp; qg to lead ultimately to the choice of q. But, as described above, p is
the �correct�choice from the time 0 perspective which attaches a large weight to
savoring. Foreseeing all this, she would prefer to commit herself and choose fpg
over fp; qg. Note that commitment is valuable only because of a di¤erence in the
evaluations of p versus bp, that is, because the temporal resolution of a given risk
matters. Finally, commitment is not valuable in the KP model because they im-
plicitly assume that the agent expects her time 1 ranking of p versus q to coincide
with her ranking at time 0, even though the importance of savoring is presumably
di¤erent in those two situations.
Caplin and Leahy [2] emphasize that dynamic inconsistency arises naturally in

the presence of anticipation. They propose a model where preferences are de�ned
not only over temporal lotteries (of the sort considered by KP) but also over
�psychological lotteries.�Elsewhere [3], they acknowledge that such an expanded
domain poses challenges for gathering evidence, and they suggest that surveys,
physiological measures and brain scans might serve as sources of evidence. Here
we follow the more traditional revealed preference approach in which economic
choices alone constitute the relevant evidence.
Given �changing tastes�as above, behavior could be determined as in Strotz

[16], by assuming that the agent chooses the plan that is optimal amongst those
that will be implemented. We adapt instead the alternative approach put forth
by Gul and Pesendorfer in a series of papers, whereby a single preference, albeit
over choice problems rather than over lotteries, determines the choice of plans.5

A choice problem, which limits options for actions ex post, is selected ex ante.
The individual�s expectation is that later, when she decides on an action, she
may be tempted to deviate from the choice that would be optimal ex ante were
commitment possible. In the general model of [6], henceforth GP, self-control
might be exerted and the temptation resisted. A special case assumes no self-
control and this model is closest to ours. The GP analysis does not apply directly,
however, because they assume the Independence axiom and, for reasons that will
be evident later, we do not. Neither is the later paper [7] directly applicable. Here

in the former consumption occurs in the next period while in the latter consumption lies two
periods into the future. We focus on modeling �living with risk�and thus assume that savoring
and anxiety are limited to risky prospects.

5Gul and Pesendorfer [7] describe advantages of their approach, which apply also to our
setting.
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the authors deal exclusively with temptation in the absence of self-control, but
they restrict themselves to �nite choice problems (and thus Independence is not
meaningful). We deal with continuous choice problems without Independence.
However, we do not claim any technical novelty. In particular, the axiomatics
are simple in our setting, because the domain (including two-stage lotteries) and
our speci�c story of why temptation arises facilitate a straightforward axiomatic
characterization; this is because, under suitable assumptions, they allow us to
express the �temptation ranking�explicitly in terms of the given preference over
choice problems.
In spite of our results being simple from a technical point of view, we feel

they are useful for four (related) reasons. First, it has not been noted previously
that a GP-style temptation model can be applied to capture anticipatory feelings.
Second, the results demonstrate that anticipatory emotions can be accommodated
within a revealed preference framework. Third, they cast new light on the seminal
model of KP. Finally, the model suggests a positive answer to the question posed
by Eliaz and Spiegler [5] �can anticipatory feelings explain anomalous choices of
information sources?�In particular, the intuitive pattern of information demand
described in the opening paragraph above can be accommodated (see Section 5).

2. THE MODEL

2.1. Random Menus

There are three periods, t = 0; 1; 2. Let Z denote a space of outcomes. We
assume that Z is compact metric and connected. Elements of K (� (Z)) are called
menus.6 Objects of choice at time 0 are lotteries over menus, or random menus.
Thus preference � is de�ned on �(K (� (Z))).
For interpretation, see the time line below. At t = 0, the agent chooses a

random menu X. At t = 1�, X delivers a menu x 2 K (� (Z)). At t = 1, she
chooses p 2 x, and �nally, all risk is resolved and an outcome is realized at t = 2.
Note that the time line is intended as a description of the agent�s perception when
she evaluates random menus at time 0. Thus the time 1 choice of p from x is her
time 0 expectation of what she will do if facing the menu x.

6For any compact metric space Y , �(Y ) denotes the space of Borel probability measures
endowed with the weak convergence topology, and K (Y ) denotes the space of compact subsets
of Y endowed with the Hausdor¤ metric. Both �(Y ) and K (Y ) are compact metric. Finally,
�y is the probability measure on Y that assigns probability 1 to y.
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_ �
choose X2�(K(�(Z)))

_________ �
choose p2x

_________ �
payoff

__

Think of any random menu X as modeling a physical action undertaken at
time 0. Such an action determines, along with stochastic factors described by the
probabilities prescribed by X, a set of options for further action at time 1; the
latter are modeled by lotteries over Z, the set of outcomes or payo¤s. A random
menu X that has support on singleton menus leaves room for only trivial choices
at time 1 and commits the agent to a two-stage lottery. In fact, the set �(� (Z))
of two-stage lotteries, can be identi�ed with the set of elements in �(K (� (Z)))
that provide commitment.
The choice of the set of random menus as our domain can be �rationalized�as

follows:7 the proper domain should include both the set �(� (Z)) of two-stage
lotteries, in order to address the attitude towards the temporal resolution of risk,
and also K (� (Z)), in order to model the demand for commitment. Indeed, our
central axioms and the principal content of our model concern only preference
restricted to their union D,

D = �(� (Z)) [ K (� (Z)) . (2.1)

We could have adopted D as the domain of preference. We chose instead to adopt
the larger domain �(K (� (Z))) because: (i) it is unifying and more elegant; (ii)
preference can be extended uniquely fromD to�(K (� (Z))) under relatively mild
assumptions (as explained below); (iii) KP also use �(K (� (Z))) as their domain
(specializing their model to our simpler setting of three periods and terminal
payo¤s), and having a common domain facilitates comparison of the two models,
which is a principal objective; and (iv) the larger domain broadens the range of
applicability of the model to include the (arguably typical) case where the set of
options available at time 1 is not entirely within the agent�s control, but depends
also on stochastic factors.
The adoption of a three-period horizon is not innocuous. It is well-known that

Strotz-like representations may not be well-de�ned given longer horizons (see Peleg
and Yaari [11], for example). To accommodate an arbitrary �nite horizon, Gul
and Pesendorfer [7] adopt two alternative strategies. In one, they limit the agent
to �nite choice problems; in the second, they show in a setting with in�nitely

7A di¤erent domain is called for if one wishes to admit subjective beliefs. For that purpose,
one could take as domain �(K (H)), where H is the set of Anscombe-Aumann acts over a state
space S. The analysis to follow can be adapted to this domain.
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many choices that Strotz-like behavior can be approximated arbitrarily well by a
well-de�ned representation. We suspect that both strategies could be adapted to
our setting, but we have chosen instead to focus on the simplest framework that
permits modeling the notion of living with risk.

2.2. Axioms

We adopt several axioms for the binary relation � on �(K (� (Z))).

Axiom 1 (Order). � is complete and transitive.

Identify K (� (Z)) with a subset of �(K (� (Z))), where x is identi�ed with
�x. Then � induces a ranking of menus, also denoted by �. Thus we often write
x0 � x rather than �x0 � �x.
In the standard model, a menu is as good as the best alternative that it

contains, a property that is captured by the following axiom:

Strategic Rationality (SR): For all menus x and y, x � y =) x � x [ y.

Strategic Rationality is not intuitive in our setting, as illustrated by the ex-
ample in the introduction. To see the intuition in slightly more general terms,
consider the agent at time 0 evaluating the menu x � �(Z) from which a choice
p is to be made at time 1. Her ex ante view of these lotteries includes not only
the risk associated with each p, but also the fact that she will have to live with
this risk for two periods - anticipatory feelings or anxiety a¤ect her evaluation of
each lottery and therefore also of x. But these are less relevant at time 1 and thus
she may view lotteries di¤erently then. Being forward-looking, she foresees this
consequence of the passage of time when evaluating x, or when choosing between
any two menus. As a result, she may value commitment and thus violate SR.
For example, suppose that fpg � fqg, re�ecting the fact that at 0, when she

must live with risk for 2 periods, she would prefer to commit to p rather than to q.
SR would require that fp; qg � fpg. This is possible here if p is preferable also at
1. But suppose that at 1, when savoring and anxiety are less important, that q is
more attractive. Then she will choose q if it is feasible, that is, if fp; qg is chosen
at 0. Thus both fp; qg and fqg lead to the ex post choice of q. All this is foreseen.
Therefore, fp; qg � fqg. This is the intuition for the following weakening of SR:

Axiom 2 (No Self-Control (NSC)). For all x and y ,

x [ y � x or x [ y � y. (2.2)
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The axiom strengthens GP�s central axiom Set-Betweenness so as to express a
lack of self-control. In our case, if at time 1, when anticipatory emotions are not
as important as they were ex ante, the agent is tempted to choose a lottery that
was not optimal ex ante under commitment, there is no reason for her to resist.
That is, she does not exert self-control in the face of such temptations.
According to NSC, for every pair of menus with x � y, either there is no

temptation (x � x[ y), or ex post choice is from the tempting menu (x[ y � y).
We now go further and specify circumstances when each case obtains. Consider
lotteries over Z that are resolved at time 2. The noted circumstances center on
how such lotteries are evaluated from the perspectives of times 0 and 1. Usually
it is assumed that the ranking of lotteries that are resolved and paid at a �xed
time T is the same regardless of when this ranking is done. This is decidedly not
the case here - anticipatory feelings depend on the temporal distance from T ; in
the present three-period setting, they are presumably more important at time 0.
Thus we consider both perspectives t = 0 and t = 1 explicitly.
Consider the ranking of lotteries �(Z) at time 0 when the agent can commit.

Such rankings take the form �fp0g � �fpg, or given the notational convention
introduced above, fp0g � fpg. Since the above lotteries are not resolved until time
2, they constitute delayed risks from the perspective of time 0. To emphasize this,
we introduce special notation, and we de�ne the order �del on �(Z) by

p0 �del p i¤ fp0g � fpg.

Given any lottery over Z, we can imagine it alternatively playing out earlier,
at time 1. Thus, for any lottery p in �(Z) having �nite support, p = �zp (z) �z,
de�ne the random menu Xp 2 �(� (Z)) by

Xp = �zp (z) �f�zg.

Thus Xp yields the terminal payo¤ z with probability p (z), just as does p, but for
Xp the outcome will be known at time 1.8 Therefore, from the perspective of time
0, any such Xp constitutes an immediate risk. More generally, for any p 2 �(Z),
the immediate risk corresponding to p is the two-stage lottery Xp 2 �(� (Z))
de�ned by:

Xp (B) = p
�
e�1 (B)

�
,

for any measurable B � �(Z), where e : Z ! �(Z) is the natural embedding,
e (z) = �z. We introduce notation also for the ranking of immediate risks: let

8In the introductory example, Xp was denoted by bp.
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�imm be the ranking on �(Z) be de�ned by

p0 �imm p if Xp0 � Xp.

Then p0 �imm p indicates the time 0 preference for the risk or lottery p0 over
p when these are to be resolved next period, while p0 �del p indicates the same
ranking when the two lotteries are to be resolved only at time 2.
Next consider the perspective of time 1. Though we are given only the time 0

preference�, it suggests a time 1 perspective as we now show. At the intermediate
time, objects of choice are lotteries that are resolved one period later, that is, risks
that are immediate from the time 1 perspective. At time 0, immediate risks are
ranked via �imm. It follows that in a �stationary�environment, where the calendar
date alone is not important, the time 1 ranking of lotteries should also be given
by �imm. Suppose that the agent foresees these time 1 preferences. Then she
foresees choosing lotteries out of menus so as to maximize �imm. But at time
0, those lotteries constitute delayed risks and thus are ranked according to �del.
Thus where these orders disagree, she will prefer to limit options for future choice.
Speci�cally, we adopt:

Axiom 3 (Expected Stationarity). For all lotteries p0 and p in �(Z),
fp0g � fp0; pg if and only if p0 �del p and p0 �imm p.

Above we gave intuition for the �if�part of the axiom. The converse ensures
that the di¤erence between �del and �imm, and hence the e¤ects of di¤ering
temporal distance from the time of resolution, are the only reason for commitment.
(There is an implicit tie-breaking rule: when p0 �imm p, she assumes that she will
make the choice that is best according to �del.) In its absence, the remainder
of the axiom (�if�) could, for example, be satis�ed vacuously if �del and �imm
are identical, and commitment could be valuable for reasons having nothing to
do with savoring or anxiety. (See the example in Section 4 labeled �Time-varying
risk aversion�.)
We o¤er three more remarks on the axiom. First, though its interpretation

refers to expectations about future behavior, the axiom is exclusively an assump-
tion about the time 0 ranking of random menus. Second, note that the demand
for commitment expressed in Expected Stationarity could be due either to anxiety
or to savoring. Finally, if our model is truly about living with risk, then there
should not be any demand for commitment when the prospects involved are de-
terministic; in other words, it should be that �del and �imm agree on Z. But
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that is easily seen to be true:

�z0 �imm �z () �f�z0g � �f�zg () �z0 �del �z: (2.3)

Some form of continuity is needed. GP observe that continuity of preference
(closed weakly better-than and weakly worse-than sets) is not to be expected in a
model of temptation without self-control, and they use a weaker form of continuity
(Axioms 2a-2c). The following adapts their axioms to our setting.

Axiom 4 (Limited Continuity). (a) Upper Semi-Continuity: The sets
fy 2 K (� (Z)) : y � xg are closed.
(b) Lower Singleton Continuity: The sets fp0 2 �(Z) : p0 �del pg and

fp0 2 �(Z) : p0 �imm pg are closed.
(c) For every x 2 K (� (Z)), there exists p 2 �(Z) such that x � fpg.

Parts (a) and (b) imply that both �del and �imm are continuous. We use con-
dition (c) to prove that � has a utility function representing it on �(K (� (Z))),
which is otherwise not guaranteed in the absence of continuity. (GP exploit in-
stead the Independence axiom to prove existence of a representation.)
Let Y be any (compact metric) space and v an order on �(Y ). Say that v

is FSD-increasing if, for all lotteries p0 and p in �(Y ), p0 v p whenever

p0 (fy : �y v �y�g) � p (fy : �y v �y�g) for every y� in Y , (2.4)

that is, if, for every y�, the set of outcomes better than y� according tov has larger
probability under p0 than under p; refer also to any representing utility function
as FSD-increasing. If (2.4) is satis�ed, write p0 vFSD p, which is to be read as
�p0 �rst-order stochastically dominates p with respect to the order on Y induced
by v�. The preceding applies in particular to �, an order on �(K (� (Z))), and
to �imm and �del, both of which are orders on �(Z). In all of these cases, the
indicated sets fy : �y v �y�g are closed, hence measurable, by Limited Continuity.
The assumption that preference on a space of lotteries is FSD-increasing is

common and is not especially problematic for our setting. Therefore, we assume:

Axiom 5 (Monotonicity). Both � and �del are FSD-increasing.
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Given the other axioms, if � is FSD-increasing, then so is �imm.9 However,
that�del is FSD-increasing is not implied, and the axiom imposes this requirement
separately.
Recall the discussion of domain surrounding (2.1). Apart from Order, the

preceding axiom is the �rst to restrict preference outside of D = �(� (Z)) [
K (� (Z)). In fact, as the proof of our representation result makes clear, a char-
acterization of utility on D alone, rather than on all of �(K (� (Z))), can be
obtained under the weaker assumption that � is FSD-increasing when restricted
to �(� (Z)). Thus the �cost�paid for employing the entire domain of random
menus rather than the subdomain D is the di¤erence between assuming that � is
FSD-increasing on �(K (� (Z))) rather than only on �(� (Z)).
To understand the role of the stronger FSD assumption, note that it implies:

two random menus X 0 and X must be indi¤erent if they induce the same dis-
tribution, that is, if there is equality in the appropriate form of (2.4) for every
menu y� in K (� (Z)). If we denote the latter condition by X 0 �FSD X, then this
implication can be written in the form

X 0 �FSD X =) X 0 � X: (2.5)

Now suppose that �0 is de�ned only on D = �(� (Z)) [ K (� (Z)), and that
it is complete and transitive and satis�es Limited Continuity. Then �0 can be
extended uniquely to a binary relation � on all of �(K (� (Z))) that is complete
and transitive and that satis�es (2.5):10 let X = �xX (x) �x and suppose that
x �0 fpxg. Observe that �xX (x) �fpxg is a two-stage lottery, hence an element
of D, and that �xX (x) �fpxg �FSD X. Then de�ne � by: for any two random
menus X 0 and X,

X 0 � X if �xX 0 (x) �fpxg �0 �xX (x) �fpxg. (2.6)

It follows from (2.5) that � is well de�ned (and the other claims above are readily
proven). Since � is determined uniquely by �0, the model�s content lies primarily
in the latter, that is, in the nature of preference on D.

9Given a menu x�, Limited Continuity and connectedness of Z imply that there exists z� in
Z such that f�z�g � x�. Then fz : f�zg � x�g = fz : f�zg � f�z�gg. It follows, using also
(2.3), that p0 �FSDimm p =) Xp0 �FSD Xp =) Xp0 � Xp =) p0 �imm p.
10We give a proof only for �nite-support lotteries. That is, denote by �s (�) � �(�) the subset

of �nite-support, or simple, lotteries. Then�0 is assumed to be de�ned on�s (� (Z))[K (� (Z))
and it is extended to a binary relation � on �s (K (� (Z))).
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3. UTILITY

The two primitive components of the functional form are utility functions U; V :
� (Z) ! R; they will represent �del and �imm respectively. We assume that
they are continuous, FSD-increasing and that they are ordinally equivalent on Z.
Refer to any pair of utility functions (or corresponding orders) satisfying these
properties as compatible. Then it is wlog, by taking a monotonic transformation
of U or V , to assume that

V (�z) = U (�z) for every z in Z. (3.1)

(To see why, ordinal equivalence on Z implies that V (�z) = �(U (�z)) for some
strictly increasing and continuous

� : U (Z) � fU (�z) : z 2 Zg ! R:

Since Z is connected, U (Z) = U (� (Z)), that is, for every p there exists z
such that U(p) = U (�z). Therefore, � is strictly increasing and continuous on
U (� (Z)), and �(U) is ordinally equivalent to U on �(Z). Then (3.1) is satis�ed
if we use �(U) in place of U .)
To describe how U and V determine a utility function on the entire domain

�(K (� (Z))), we proceed in stages. Since the formulae for �nite support lotteries
are more transparent, we de�ne utility �rst for �s (K (� (Z))), the set of simple
random menus. We do this by describing �rst how utility is de�ned on menus
(K (� (Z))), then how it is de�ned on the set �s (� (Z)) of (simple) two-stage
lotteries, and �nally, how it is extended to all simple random menus. Finally, we
extend the de�nition of utility to all random menus.
Consider the agent at time 0 evaluating a menu x � �(Z) from which a

choice p is to be made at time 1. Think of U as describing the time 0 valuation
of lotteries to be played out beginning at time 1 (delayed risks), and suppose that
she expects V to describe risk preferences at time 1. Suppose further that the
agent anticipates that she will not exert self-control at time 1. Therefore, she
expects the time 1 choice out of any menu x to maximize V ; maximization of U
enters only when there is indi¤erence according to V . This leads to the Strotz-like
utility for any menu given by

U (x) = max
�
U (p) : p 2 argmax

p02x
V (p0)

�
. (3.2)
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In particular,
U (fpg) = U (p) , (3.3)

so that U (�) ranks delayed risks, and hence represents �del. Note also that strate-
gic rationality is satis�ed if and only if U and V describe the same risk preferences
(that is, they are ordinally equivalent on �(Z)).
Next de�ne utility on �s (� (Z)). Let X = �pX (fpg) �fpg be a two-stage

lottery. Since X provides perfect commitment, its evaluation is based on the time
0 perspective alone - there is no con�ict with later preferences and thus no reason
to violate recursivity. Therefore, utility is computed by backward induction: for
each p that is realized at the �rst stage, replace it by a certainty equivalent zp 2 Z.
In this way, X is transformed into the single-stage lottery bX = �pX (fpg) �f�zpg,
which is assigned a suitable utility level. The question is how to compute certainty
equivalents at the second stage and utility levels at the �rst stage. The function
U is used to compute certainty equivalents, that is, zp is de�ned as any outcome
in Z satisfying

U (p) = U
�
�zp
�
. (3.4)

(There exists such a zp because U is continuous and Z is connected.) We use U
because each p is a delayed risk (it is resolved only at time 2) and because, as just
shown, U gives the utility of delayed risks. On the other hand, the single stage
lottery bX constructed above has all risk resolved by time 1 - at that point, the
agent will receive some �zp and thus she will be certain that zp will be forthcoming
at time 2. The utility function V is used to evaluate immediate risks. Putting the
two steps together yields the following expression for the utility of X:

U
�
�pX (fpg) �fpg

�
= V

�
�pX (fpg) �zp

�
, (3.5)

where zp is any solution to (3.4).11

The preceding expression applies in particular to a two-stage lottery X =
�pX (fpg) �fpg that is an immediate risk. Then each p is degenerate, X =
�zX (z) �f�zg, and, taking z to be a certainty equivalent for �z,

U (X) = U
�
�zX (z) �f�zg

�
= V (�zX (z) �z) , (3.6)

that is, V represents �imm.
11We show in the theorem below, using (3.1), that utility is well-de�ned on �s (� (Z)), that

is, (i) the right side of (3.5) is invariant to the choice of zp�s, and (ii) the utility values de�ned
by (3.5) and (3.2) agree on the intersection �s (� (Z)) \ K (� (Z)).
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On the surface, there may appear to be a contradiction between the way we
arrived at (3.2) versus the way in which we implemented the recursive calculation
(3.5). In the context of the former, we referred to V as describing expected risk
preferences at time 1, while in the latter, V was used to evaluate an immediate
risk from the perspective of time 0. These dual roles for V are perfectly consistent
and re�ect our axiom Expected Stationarity - the expectation that �one-step-ahead
risks�will be evaluated in the same way regardless of the calendar date.
Finally, with regard to (simple) two-stage lotteries, there is indi¤erence to the

temporal resolution of risk if and only if U and V are ordinally equivalent on
�(Z), which, in turn, is equivalent to strategic rationality.

Thus far we have de�ned utility U on �s (� (Z)) [ K (� (Z)). But it follows
from the discussion at the end of the previous section that U can be extended
uniquely to �s (K (� (Z))) in such a way as to be FSD-increasing. Translating
the argument there, speci�cally (2.6), into utility terms, we can write the utility
of any �nite-support random menu X = �xX (x) �x in the form

U (�xX (x) �x) = U
�
�xX (x) �fpxg

�
, (3.7)

for any px 2 �(Z) such that U (x) = U (fpxg) for all x.12

Example (Linear model): Let U and V be continuous and linear. In order that
they be ordinally equivalent on Z (and satisfy the normalization (3.1)), let13

V (p) = ��1 (Ep�(u)) ,

for some � : U (�(Z)) ! R strictly increasing and continuous. Then U and V
are compatible (any linear utility function is FSD-increasing).
Denote by u the vNM index of U . The utility of a (nonrandom) menu x is

U lin (x) = max
�
Epu : p 2 argmax

p02x
Ep0�(u)

�
.

12The utilities of �xX (x) �fpxg, a two-stage lottery, of every menu x and of every delayed risk
px have already been de�ned. In addition, any lottery px that is maximizing in (3.2) satis�es
U (x) = U (px) = U (fpxg).
13Ep denotes expectation with respect to p.
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Evidently, preference is strategically rational if and only if � is linear (U and V
represent the same risk preferences). The utility of any two-stage lottery X 2
�s (� (Z)) is

U lin (X) = ��1 (�xX (fpg)� (Epu)) .
There is indi¤erence to the temporal resolution of risk if and only if � is linear,
thus tying together violations of strategic rationality and the nonreduction of
two-stage lotteries.
The unifying expression that describes the utility of any random menu X 2

�s (K (� (Z))) is

�
�
U lin (X)

�
= �xX (x)�

�
max

�
Epu : p 2 argmax

p02x
Ep0�(u)

��
.

This completes the example.

The preceding example has an obvious extension to nonsimple random menus.
The same is true of our general model as we now describe. Speci�cally, we extend
the utility speci�cation (3.5) and (3.7); the speci�cation (3.2) is unaltered and
de�nes utility U on K (� (Z)).
Let � : � (Z)! Z be any measurable map such that U (p) = U

�
��(p)

�
for all

p.14 Then any X 2 �(� (Z)) induces the measure X � ��1 on Z de�ned in the
usual way by15 �

X � ��1
�
(B) = X

�
��1 (B)

�
, B � Z measurable.

De�ne U on �(� (Z)) by

U (X) = V
�
X � ��1

�
: (3.8)

For the generalization of (3.7), let � : K (� (Z))! �(Z) be any measurable map
such that U(x) = U

�
��(x)

�
. Then X 2 �(K (� (Z))) implies that X � ��1 2

�(� (Z)), where utility is de�ned above. De�ne U on �(K (� (Z))) by:

U (X) = U
�
X � ��1

�
: (3.9)

14Existence of such a measurable map follows from Filipov�s Implicit Function Lemma
[1, p. 507]. Similarly, for � below.
15More generally, adopt the following notation: Let (Si;�i) be measurable spaces for i = 1; 2,

m1 a measure on �1, and � : (S1;�1)! (S2;�2) a measurable map (S2-valued random variable).
Then m1 � ��1 denotes the measure on �2 induced by m1 and the random variable �, that is,�
m1 � ��1

�
(B2) = m1

�
��1 (B2)

�
for all B2 in �2.
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This completes the utility speci�cation.

We can now state our main result.

Theorem 3.1. (a) Utility is well-de�ned on �(K (� (Z))) by (3.2), (3.8) and
(3.9). The corresponding preference � satis�es Order, No Self-Control, Expected
Stationarity, Limited Continuity and Monotonicity. Finally, U and V represent
�del and �imm respectively.
(b) Let � be a binary relation on �(K (� (Z))) satisfying the axioms in (a).

Then there exists a compatible pair of utility functions U; V : � (Z) �! R such
that � admits a representation of the form (3.2), (3.8) and (3.9). Moreover,
preference is represented in this way also by U 0; V 0 : � (Z) �! R if and only if
they are ordinally equivalent to U and V respectively.

The bulk of the proof is provided in the appendix, but the uniqueness property
asserted in (b) is easily understood. First, if U 0 and V 0 also represent the preference
� via (3.2), (3.8) and (3.9), then, by (a), they represent �del and �imm , as do
U and V - hence the asserted ordinal equivalences. Conversely, it is easily seen
that the de�nition of (ordinal) utility U on �(K (� (Z))) uses only the ordinal
properties of U and V .
It is noteworthy, at both conceptual and practical levels, that the model de-

scribed in the theorem is completely speci�ed by a compatible pair of (ordinal)
utility functions on �(Z), or equivalently, by the corresponding orders. Modeling
anticipatory feelings does not require consideration of �psychological lotteries�-
it is su¢ cient to specify two preferences over ordinary lotteries, interpreted as the
rankings of delayed and immediate risks. Moreover, the model is rich in that any
compatible pair of orders can be taken as primitives. The large literature, both
theoretical and empirical, concerning the ranking of lotteries, makes this starting
point convenient. In particular, any speci�c model of risk preference (satisfying
suitable FSD-monotonicity) can be integrated into our model of anxiety axiomati-
cally - one need only assume, in addition to compatibility, that each order satis�es
the axioms that characterize the speci�c model of risk preference that is of inter-
est. Here we presume that both induced orders conform to the same model of
risk preference, which we view as the natural speci�cation. In the example above
(linear model), the relevant model of risk preference is expected utility; below we
provide an example where risk preferences are nonlinear.
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4. EXAMPLES

Example: (Kreps-Porteus): This is the classic model of preference where the
temporal resolution of risk matters. As we will see, it violates our axioms.
Preference on �s (K (� (Z))) is represented by16

�
�
UKP (X)

�
= �xX (x)�

�
max
p2x

Epu

�
,

where u and � are as in the previous example (u : Z ! R is continuous and
� : u(Z) ! R is strictly increasing and continuous). Kreps and Porteus [9]
formulate utility not only for two-stage lotteries, which is how their model is often
described, but also for all random menus. They model agents who care about
how risk resolves over time, but who are also dynamically consistent in the usual
sense that commitment is never valuable. In particular, and in contrast with our
general model,

UKP (x) � UKP (x [ y) , for all menus x and y.

More formally, the order �del is represented by U , where U is linear with vNM
utility index u, and �imm is represented by V , V (p) = ��1 (Ep�(u)). Apart from
the extreme case where � is linear, �del and �imm are distinct and thus Expected
Stationarity is violated: even though the agent�s time 0 ranking of delayed risks
di¤ers from her ranking of immediate risks, she does not value commitment. The
reason is that when evaluating a menu at time 0, the agent expects her choice
out of the menu at time 1 to be guided by �del which also describes her time 0
ranking of delayed risks. She holds this expectation even though (i) the time 1
choice is between immediate risks, and (ii) her current ranking of immediate risks
is given by by �imm.
It is readily veri�ed that all other axioms are satis�ed; indeed, Kreps-Porteus

preference satis�es Strategic Rationality, which is stronger than NSC.
Note �nally that UKP is distinguishable from U lin only if we can observe

rankings of menus. In particular, in both cases the utility of two-stage lotteries is
given by

U (X) = ��1 (�pX (fpg�(Epu))) .
This merits emphasis: a recursive structure for utility on the domain of two-stage
lotteries does not imply that commitment has no value.

16Throughout this section, we describe utility only for �nite-support lotteries.
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Example (RDEU): Here we describe a special case of our general model where the
induced orders �del and �imm both conform to rank-dependent-expected utility
(RDEU), a model of risk preferences that has played a large role in attempts to
accommodate evidence, such as the Allais Paradox, contradicting the vNMmodel.
See the survey by Starmer [15], for example.
Let g; h : [0; 1] ! [0; 1] be increasing and surjective; since they are used to

transform (or distort) probabilities, they are sometimes referred to as distortion
functions. Let u : Z �! R be continuous and de�ne U , for p = �ipi�zi, by

U (p) = �i [g(�j�ipj)� g(�j�i+1pj)]u (zi) , (4.1)

where outcomes are ordered so that u (zi) � u (zi+1) for all i. De�ne V similarly
using the distortion function h and the vNM index v = �(u), where � : u(Z)! R
is strictly increasing and continuous. In order to satisfy the normalization (3.1),
let

V (p) = ��1 (�i [h(�j�ipj)� h(�j�i+1pj)] � (u (zi))) .
Then U and V constitute a compatible pair and thus they determine a utility
function, denoted U rdeu, consistent with our axioms.
This example generalizes the linear model (our �rst example), to which it

reduces if both g and h are identity functions. We show below that nonlinear
distortion functions are useful for modeling intuitive patterns of the demand for
information.
Axiomatic foundations for RDEU preferences over lotteries can be found in

[12, 14, 15]. As described in the last section, axiomatic foundations for U rdeu
follow by adding these RDEU axioms, applied to �del and �imm, to those in
Theorem 3.1. The cited axiomatic studies and the survey by Starmer [15] can be
brought to bear on the plausibility or appeal of U rdeu. The only di¤erence here
from the literature on risk preferences is that the orders �del and �imm deal with
lotteries that are resolved only with the delay of at least �one period,�and where
the length of a period should be signi�cant (on the scale of days or weeks rather
than minutes) in order that anticipatory feelings be relevant. However, the axioms
characterizing RDEU seem as appealing intuitively (or no more problematic) in
our setting; and while we are not aware of any experimental evidence on the
descriptive validity of RDEU when resolution is delayed signi�cantly, there is no
reason to expect the axioms to perform less well for such risks. Thus we view U rdeu,
which we will use in the next section to model the attitude towards information,
as being well-founded.
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Segal [13] models preference over two-stage lotteries where preference at each
stage conforms to RDEU. His model, extended to the domain of random menus
by assuming Strategic Rationality, is related to U rdeu in the same way that UKP
is related to U lin.

Example (Time-varying risk aversion): Time-varying risk aversion is another pos-
sible reason for commitment. Consider the utility function

U tvra (X) = �xX (x)max
�
U (p) : p 2 argmax

p02x
U 0 (p0)

�
, X 2 �(K (� (Z))) ,

where U and U 0 are (ordinally distinct) continuous linear functions on �(Z).
Then �del and �imm are both represented by U , yet commitment is valuable, thus
violating Expected Stationarity.17 The reason for commitment di¤ers here. In
particular, an individual with utility function U tvra does not care when risk is
resolved: any two-stage lottery X = �pX (fpg) �fpg has utility

U tvra
�
�pX (fpg) �fpg

�
= �pX (fpg)U (p) = U (�pX (fpg) p) ,

which depends only on the induced distribution over outcomes �pX (fpg) p. Yet
she values commitment because she expects her risk preferences to change, and
therefore, to choose out of menus at time 1 according to U 0, while her time 0
utility function over lotteries is U .

Example (Self-control): De�ne U sc as in the linear example, except that (3.2) is
replaced by

w (x) = max
p2x

�
U (p) + ��1 (Ep� � u)

�
�max

p02x
��1 (Ep� � u) .

Then preference violates NSC, though it satis�es GP�s weaker axiom Set-Betweenness
(x � y =) x � x [ y � y). Our other axioms are satis�ed. In particular, Ex-
pected Stationarity is readily veri�ed because �imm has utility function V , where
V (p) = ��1 (Ep� � u).
17All the other axioms of our model are satis�ed.
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5. DEMAND FOR INFORMATION

5.1. Information, Anxiety/Savoring and Commitment

Consider the attitude towards information when it has only psychic, as opposed
to planning, consequences. This is re�ected in the ranking of random menus that
provide commitment, that is, in the ranking of two-stage lotteries.
For simplicity, restrict attention to two-stage lotteries with �nite support.

Given X = �pX (fpg) �fpg, de�ne EX 2 �(Z) by

EX = �pX (fpg) p.

Then EX describes the probability distribution over outcomes induced by X,
where the temporal resolution of this risk has been removed. Since EX describes
the prior risk, it is the counterpart of the Bayesian prior in a model with states
of the world and subjective uncertainty. We can modify the temporal resolution
prescribed by X and consider two extremes. No information (at the �rst stage)
corresponds to �fEXg. The other extreme, all risk being resolved at time 1, cor-
responds to the two-stage lottery �z (EX) (z) �f�zg; we refer to this as perfect
information. For brevity, we examine these extremes only, though intermediate
cases could be considered.
Say that the agent is information seeking at EX if she prefers perfect infor-

mation to no information, that is, if

�z (EX) (z) �f�zg � �fEXg;

if the reverse ranking holds, refer to her as information averse at EX. These
notions are weak - an agent can satisfy both, in which case we refer to her as
information neutral at EX.

Theorem 5.1. The agent with preference � satisfying our axioms is information
seeking (averse) at EX if and only if, for every z in Z,

�z �imm EX =) ((=) �z �del EX.

Proof. By the representation, information seeking at EX is equivalent to

V (EX) = V (�z (EX) (z) �z) = U
�
�z (EX) (z) �f�zg

�
� U

�
�fEXg

�
= U (EX) ,

or
V (EX) � U (EX) . (5.1)
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Since U and V represent�del and�imm and since they are equal on Z, the asserted
condition follows. Similarly for information aversion.

The condition in the theorem corresponding to information seeking asserts
that whenever �imm would reject the lottery EX in favor of a certain outcome,
then so would �del. In that standard sense, �del is more risk averse than �imm at
EX. Thus the agent is information seeking at EX if and only if �del is more
risk averse than �imm at EX. Information aversion corresponds to �imm being
more risk averse.18

In the linear model, the condition (5.1) becomes (writing p = EX)

��1 (Ep�(u)) � Epu, (5.2)

which is true if � is �convex at Epu�. This condition is familiar from the KP
model as the condition describing a preference for early resolution of risk. The
similarity with what we know from KP is not surprising since we have already
noted that their model coincides with our linear model (the example in Section
3) on the subdomain of two-stage lotteries; similarly, our general model coincides
there with a nonlinear version of KP. The distinctive feature of our model is
the connection it implies between the demand for information and the value of
commitment. We noted earlier that indi¤erence to the temporal resolution of risk
(or a zero demand for information) is equivalent in our model to commitment
having no value. Now we go further and relate information seeking (or aversion)
to the sort of commitments that are or are not valuable.

Theorem 5.2. The agent with preference � satisfying our axioms is information
seeking at p 2 �(Z) if and only if, for every z in Z,

fpg � f�zg =) fpg � fp; �zg; (5.3)

and she is information averse at p if and only if, for every z in Z,

f�zg � fpg =) f�zg � fp; �zg. (5.4)

Proof. Assume information seeking at p. Then, by (5.1), V (p) � U (p). If
also fpg � f�zg, then U (p) > U (�z) = V (�z) =) V (p) > V (�z). Therefore,

18We are not aware of much experimental evidence on how delayed resolution a¤ects risk
aversion. Some relevant experiments are reported in Liberman, Sagristano and Trope [10]. But
the stakes involved are too small to plausibly generate anxiety or savoring.
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p is better than �z according to both U and V . Conclude that fpg � fp; �zg.
Conversely, assume (5.3), which is equivalent to: for every z,

U (p) > U (�z) =) V (p) � V (�z) .

But then V (p) � U (p), which implies information seeking at p. If not, then
V (p) < U (p), and (because U and V are continuous and Z is connected), there
exists z such that V (p) < V (�z) = U (�z) < U (p), a contradiction.
The proof for information aversion is similar.

We interpret information seeking (aversion) as the behavioral manifestation of
anxiety (savoring). Therefore, both theorems above describe the revealed prefer-
ence implications of anxiety and of savoring. In fact, to highlight this identi�-
cation, below we use the terms anxiety, savoring and neutrality (at a lottery p)
interchangeably with information seeking, aversion and neutrality (at p).
The above characterizations are intuitive. Consider the characterization for

information seeking at p, and, for concreteness, interpret p as representing the
risk of a large loss due to a house �re or car accident. Living with this risk entails
anxiety, and thus leads to a preference for early resolution. Complete insurance is
available at a price that would leave the agent with the certain outcome z. Sup-
pose, however, that in spite of the anxiety, she strictly prefers at time 0 to remain
uninsured (fpg � f�zg). Then having the option to postpone the insurance deci-
sion to time 1 is a matter of indi¤erence (fpg � fp; �zg) - the agent is certain that
insurance will be declined because at time 1 the anxiety argument for insurance
is weaker. Conversely, suppose that for any price, if insurance is declined at time
0, then it would be declined also at time 1. Then the psychic cost of the risk p
is smaller at the later time, presumably because it can cause less anxiety at that
point. But if p is a source of anxiety, then its early resolution would be preferred.
The bottom line is that, given our axioms, an anxious individual is one who would
never strictly prefer to commit to not insuring.
It might appear surprising that anxiety and savoring are characterized by

conditions that express a limited form of strategic rationality. However, the qual-
i�cation �limited� is crucial - other commitments may be strictly valuable. For
example, for an anxious individual, the ranking

f�zg � fp; �zg � fpg (5.5)

is intuitive: insurance could be chosen at time 0 to provide peace-of-mind, while if
the decision is left for a later time, when anxiety is less important, the individual
might decide not to insure. Thus she may strictly prefer to commit to insurance.
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The indicated strict preference to commit re�ects a strict form of anxiety.
More generally, we use the terms information seeking (anxiety) and information
aversion (savoring) in the weak sense. Therefore, since every preference is either
information seeking or information averse at the given p, the way to express (weak)
information aversion (hence savoring) is to exclude strict information seeking,
that is, to exclude (5.5). This explains the characterization (5.4) of information
aversion.
The characterizations in the theorem are not valid in the KP model. Since

commitment is never valuable in their model, both conditions (5.3) and (5.4) are
satis�ed globally, without implications for the nature of information demand.

5.2. Comparative Anxiety

Above we provided behavioral characterizations of anxiety. Here we go further and
give behavioral meaning to statements about comparative anxiety across agents.
The obvious modi�cations corresponding to comparative savoring are left to the
reader.
For concreteness, think of the insurance example. We know from Theorem 5.2

and the ensuing discussion that (in the absence of neutrality) anxiety about the
possible loss is re�ected via the desire to commit to insurance, that is, through
rankings of the sort

f�zg � fp; �zg � fpg.
Let both �1 and �2 be anxious at p. Say that 2 is more anxious at p than 1 if
whenever 1 strictly prefers to commit to insurance, then so does 2; that is, if for
every z 2 Z,

f�zg �1 fp; �zg �1 fpg =) f�zg �2 fp; �zg �2 fpg. (5.6)

Theorem 5.3. Let �1 and �2 satisfy our axioms and let both be anxious at p.
Suppose in addition that �1 and �2 agree on Z. Then 2 is more anxious at p
than 1 i¤ either (i) 1 is neutral at p , or (ii) for every z,

�z �2imm p =) �z �1imm p ( �2imm is less risk averse than �1imm at p) (5.7)

and

�z �1del p =) �z �2del p ( �2del is more risk averse than �2del at p). (5.8)
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The proof is not particularly revealing and is relegated to the appendix.
To interpret the theorem, consider �rst the role of neutrality (condition (i)).

If 1 is neutral at p, then 1 is both anxious and savoring (and is neither in the
strict sense). Therefore, the antecedent in (5.6) is not satis�ed for any z, and
the de�ning condition is satis�ed vacuously. Since 2 is anxious by assumption, it
makes sense to refer to her as being weakly more anxious than 1.
Theorem 5.1 characterizes anxiety in terms of �imm being more risk averse

than �del. This makes conditions (5.7)-(5.8) intuitive: an agent becomes more
anxious if she becomes less averse to immediate risks and more averse to delayed
risks. Conversely, this is necessary for increased anxiety at p unless (5.6) is satis�ed
vacuously, that is, 1 is neutral at p.
These characterizing conditions are readily expressed in terms of the represen-

tations. Let (Ui; Vi) represent �i, i = 1; 2, as in Theorem 3.1. By construction,
Ui = Vi on Z. By the hypothesis that �1 and �2 agree on Z, it follows that U1 and
U2 are ordinally equivalent on Z. Therefore, by applying a common monotonic
transformation to U1 and V1, we can assume wlog that

U1 = U2 = V1 = V2 on Z. (5.9)

Using these utility functions, it is easily shown (see the proof) that 2 is more
anxious at p than 1 if and only if

V2 (p) � V1 (p) and U2 (p) � U1 (p) .
Finally, consider the assumption that the two agents have the same ranking

on Z. This restriction seems natural; for example, for preferences over lotteries
with vector outcomes, Kihlstrom and Mirman [8] have pointed out that �more
risk averse than�can be meaningfully de�ned only when the two agents agree on
the ranking of outcomes. However, we have not succeeded in �nding a similar
conceptual justi�cation for that restriction here - indeed, our de�nition of �more
anxious than�does not require it.

5.3. �Anomalous�Demand for Information

In the linear special case of our model, condition (5.2) shows that the attitude
towards information depends on properties of � at Epu rather than on the prior
p separately. Thus the linear model cannot accommodate information attitudes
that vary with the prior. Eliaz and Spiegler [5] emphasize that such dependence
on the prior is anomalous in an �expected-utility based�model.19

19Their model di¤ers from ours in details, but their point is still valid here.
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As an example of such an anomalous information attitude, they consider the
intuitive hypothesis that the agent is information seeking (averse) when the fa-
vorable (unfavorable) event is very likely. Though inconsistent with the linear
model, the hypothesis is not anomalous relative to our general model. For exam-
ple, consider binary lotteries with outcomes z1 and z2, where u (z1) < u (z2), and
take the RDEU model (with � linear and hence dispensable). Then, by (5.1), the
hypothesis is satis�ed if and only if

(1� h (p2))u (z1)+h (p2)u (z2) > (1� g (p2))u (z1)+g (p2)u (z2) , if p2 is near 1,

(1� h (p2))u (z1)+h (p2)u (z2) < (1� g (p2))u (z1)+g (p2)u (z2) , if p2 is near 0.
These conditions are satis�ed if (and only if) h lies above g for probabilities near
1 and below g for probabilities near 0. Refer to this pattern as �h is s-shaped
relative to g�.
As emphasized in the last section, the RDEU special case of our model is ax-

iomatically well-founded. Thus the preceding re�ects on Eliaz and Spiegler�s [5,
p.16] skepticism about the usefulness of non-expected utility theories for address-
ing anomalous attitudes towards information. Admittedly, they describe other
anomalies in addition to the one we have been considering. However, these seem
intuitively to be due to something other than anticipation or anxiety, (cognitive
dissonance or con�rmatory bias, for example) and thus are most naturally ad-
dressed by other models.
One might wonder also whether the hypothesis that h is s-shaped relative to

g is consistent with evidence. Note �rst that it is consistent with risk aversion
for both �del and �imm, for which it su¢ ces that u and �(u) be concave and
that both g and h be convex (see Chew, Karni and Safra [4]).20 Second, there
exists evidence about the shapes of distortion functions needed in order for the
RDEU risk preference model to accommodate Allais-type behavior; subject to the
quali�cation described in the discussion of the RDEU example, this evidence is
relevant here.21 However, even if both g and h have these shapes, their relative
shapes are not pinned down by available evidence. What is needed to determine
relative shapes is evidence on how individuals rank both immediate risks (risks

20Assume Z � Rn so that risk aversion can be de�ned.
21Starmer [15, p. 348] describes some support for an inverted s-shape (relative to the 45�

line) for distortions - concave and lying above the 45� line for small probabilities - those smaller
than some p� - and convex and above the 45� line for probabilities greater than p�; Quiggin
[12] proposed this form with p� = 1=2. See Tversky and Wakker [18] for a discussion of the
connection between the shape of the distortion function and theoretical properties of preference.
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that resolve within one period), and delayed risks (those that resolve within two
periods), where payment in both cases is received in period 2.
Other patterns of information attitudes can also be accommodated within the

RDEU model. For example, suppose that h (�)�g (�) is single-peaked with peak at
p1 = p2 =

1
2
. This speci�cation models an agent who is information seeking when

facing any risk, but �particularly so�when she is less certain about the outcome.
Alternatively, if h�g is positive except near p1 = p2 = 1

2
, then there is information

seeking only when the agent is nearly certain ex ante about which outcome will
be realized (resembling Eliaz and Spiegler�s Example 3).
Finally, we emphasize that the RDEU model is but one example of the general

framework characterized in Theorem 3.1, and that adopting other models of risk
preference will lead to alternative implications for the attitude to information. As
one illustration, consider the generalization of RDEU called cumulative prospect
theory (Tversky and Kahneman [17]), in which (real-valued, for example) out-
comes are measured relative to a reference point and there is risk aversion in
gains and risk loving in losses. By assuming that both �del and �imm conform to
cumulative prospect theory, one can model anxiety for lotteries that involve only
losses and savoring for those that involve only gains.

A. APPENDIX

Proof of Theorem 3.1. (a) Utility is well-de�ned: Show that utility on �(� (Z)) that is de�ned
in (3.8) is invariant to the choice of �. If �1 is another such map, then U (p) = U

�
��1(p)

�
=) U

�
��1(p)

�
= U

�
��(p)

�
=) V

�
��1(p)

�
= V

�
��(p)

�
(U and V ordinally equivalent on Z)

=) X � ��11 �FSD X � ��1, for any X 2 �(� (Z)) ,
=) V

�
X � ��11

�
= V

�
X � ��1

�
,

where: �FSD is de�ned as in (2.5), and the last equality follows from the assumption that V
is FSD-increasing. The second step in showing that utility is well-de�ned requires showing that
the utility values de�ned by (3.8) and (3.2) agree on the intersection �(� (Z)) \ K (� (Z)).
An element in the intersection must have the form fpg, for some delayed risk p 2 �(Z) that
resolves at time 2. Then p can also be viewed as the two-stage lottery that produces p with
certainty at the �rst stage. According to (3.8), the latter has utility V

�
�zp
�
where zp solves

(3.4), and according to (3.2), (see also (3.3)), the singleton menu fpg has utility U (p) = U (zp).
But V

�
�zp
�
= U

�
�zp
�
by (3.1).

The extension of utility to �(K (� (Z))) is well-de�ned by (3.7) because U is FSD-increasing
on �(� (Z)).
Necessity of axioms: Order is obvious. Monotonicity and Expected Stationarity are readily
veri�ed.
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NSC: Let U (x) = maxp2x U (p), U�1 (x) = argmaxp2x U (p), and similarly for V . In this
notation,

U (y) = maxfU (p) : p 2 V �1 (y)g.

(i) V (x0) > V (x) =) x0 � x0 [ x: Hypothesis implies that V �1 (x0 [ x) = V �1 (x0).
(ii) V (x0) < V (x) =) x � x0 [ x: Hypothesis implies that V �1 (x0 [ x) = V �1 (x).
(iii) V (x0) = V (x) =) x0 � x0 [ x if x0 � x: Hypothesis implies that V �1 (x0 [ x) = V �1 (x0)[
V �1 (x), and hence U (x0 [ x) = maxfU(x0);U (x)g.

Limited Continuity: (a) follows because U de�ned in (3.2) is usc on K (� (Z)) by a form of the
Maximum Theorem. Parts (b) and (c) are obvious.

(b) Su¢ ciency of the axioms:

Step 1. There exists a representation w of � on K (� (Z)): �(Z) is separable (because it
is compact metric) and connected. Hence �del has a continuous (and FSD-increasing) utility
function U : � (Z) �! R. For any menu x, de�ne

w (x) = U (p)

for any p such that x � fpg. Existence of p is ensured by Limited Continuity. If p and p0 are
two such measures, then p0 �del p and thus U (p0) = U (p); hence, w is well-de�ned. Moreover,

w (fpg) = U (p) for every p.

Step 2. Let V be a continuous utility function for �imm. It exists since �imm is continuous by
Limited Continuity and it is FSD-increasing by Monotonicity.

As observed in (2.3), �imm agrees with �del on Z. Therefore, it is wlog to assume (3.1) -
U and V are identical on Z.

Step 3. fp0g � fp0; pg if p0 �imm p and p0 �del p: Let p0 �imm p and p0 �del p. By de�nition,
the latter implies fp0g � fpg. By NSC, there are 2 cases. Case 1: fp0g � fp0; pg � fpg.
This is consistent with the desired conclusion. Case 2: fp0g � fp0; pg � fpg. Then Expected
Stationarity implies p0 �imm p, contradicting our hypothesis.

Step 4. fp0g � fp0; pg if p0 �imm p: Suppose p0 �imm p and fp0g 6� fp0; pg. Then Step 3
implies that p0 6�del p, that is, p0 �del p. Thus fpg � fp0; pg by Expected Stationarity. But this
contradicts NSC.

Step 5. Prove the representation for �nite nonrandom menus: Argue as in GP (p. 1429). Let x
be �nite and let p� 2 x satisfy

w (fp�g) = maxfw (fpg) : p 2 argmax
p02x

V (p0)g.

Note that x = [p02xfp�; p0g. Since w represents � and the latter satis�es NSC, then

w (x) = w (fp�; p0g) for some p0 2 x.
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Since V represents �imm, Steps 3-4 imply that

w (fp�; p0g) = w (fp�g) = U (p�) .

This yields the desired result

w (x) = w (fp�g) = maxfU (p) : p 2 argmax
p02x

V (p0)g.

Step 6. Extend the representation to K (� (Z)): GP�s Lemma 8 and the ensuing paragraph (p.
1430) deliver the extension. Limited Continuity provides the continuity properties needed by
their argument. It follows from the Maximum Theorem that w is usc.

Step 7. Prove the desired representation on �(� (Z)): De�ne utility via (3.8), that is, for any
X 2 �(� (Z)),

U (X) = V
�
X � ��1

�
,

where � : � (Z)! Z satis�es U (p) = U
�
��(p)

�
. Argue as in the proof of (a) to show that utility

is well-de�ned.
It follows from Monotonicity, speci�cally from � being FSD-increasing, that22

X �
�
(X � ��1) � e�1

�
:

Informally: If X has �nite support, then it assigns probability X (p) to each p in its support,
while (X � ��1) � e�1 assigns probability X (p) to ��(p), the certainty equivalent of p according
to U . �Therefore, they are indi¤erent by backward induction.�

Now, for any X 0; X 2 �(� (Z)), X 0 � X

()
�
(X 0 � ��1) � e�1

�
�
�
(X � ��1) � e�1

�
() (X 0 � ��1) �imm (X � ��1)
() V

�
X 0 � ��1

�
� V

�
X � ��1

�
(by Step 2)

() U (X 0) � U (X) .

Step 8: Extend the representation to all random menus: De�ne utility on �(K (� (Z))) by (3.9),
that is, for any X 2 �(K (� (Z))),

U (X) = U
�
X � ��1

�
,

where � : K (� (Z))! �(Z) satis�es U(x) = U
�
��(x)

�
; note that X ���1 is a two-stage lottery

and thus its utility was de�ned in the previous step. Argue as in the proof of (a) to show that
utility is well-de�ned.

It follows from � being FSD-increasing, that

X � X � ��1:
22Recall the de�nition of �imm and that e : Z �! �(Z) is the natural embedding.
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Since U represents preference on �(� (Z)), the extension de�ned here represents preference on
�(K (� (Z))).

Proof of Theorem 5.3: Let (Ui; Vi) represent �i, i = 1; 2, and satisfy (5.9).
If 1 is neutral at p, then (5.6) is satis�ed vacuously. Assume (5.7)-(5.8). Then, by the

representations,
V2 (�z) � V2 (p) =) V1 (�z) � V1 (p) and (A.1)

U1 (�z) � U1 (p) =) U2 (�z) � U2 (p) . (A.2)

It follows from continuity of the representing functions, connectedness of Z and from (5.9) that

V2 (p) � V1 (p) and U2 (p) � U1 (p) . (A.3)

This, in turn, implies, given (5.9), that

[U1 (�z) > U1 (p) , V1 (�z) < V1 (p)] =) [U2 (�z) > U2 (p) , V2 (�z) < V2 (p)], (A.4)

which is equivalent to (5.6).
Conversely, suppose that 1 is not neutral at p. Since 1 is anxious, U1 (p) < V1 (p). Then

(5.6) =) (A.4) =) (A.1)-(A.2) =) (5.7)-(5.8).
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