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Abstract

We consider the problem of dividing the cost of a facility when
agents can be ordered in terms of the need they have for it, and ac-
commodating an agent with a certain need allows accommodating all
agents with lower needs at no extra cost. This problem is known
as the “airport problem”, the facility being the runway. We review
the literature devoted to its study, and formulate a number of open
questions.

Key words: airport problem; monotonicity; consistency; core; Shapley
value; nucleolus.
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1 Introduction

Our goal is to present the state of the arts concerning the resolution of a very
simple class of cost allocation problems, illustrated by the following example.
Several airlines are jointly using an airstrip, different airlines having different
needs for it. The larger the planes an airline flies, the longer the airstrip
it needs. An airstrip that accommodates a given plane accommodates any
smaller airplane at no extra cost. The airstrip is large enough to accommo-
date the largest plane any airline flies. How should its cost be divided among
the airlines? We refer to this situation as an “airport problem”, and we use
this expression to designate all problems with that structure.

Here is another illustration. Ranchers are distributed along an irrigation
ditch. The rancher closest to the headgate only needs that the segment from
the headgate to his field, the “first segment”, be maintained, the second
closest rancher needs that the first two segments be maintained, and so on.
The cost of maintaining a segment used by several ranchers is incurred only
once, independently of how many ranchers use it. How should the total cost
of maintaining the ditch be shared?

In general, agents in a group are linearly ordered by their needs for a
facility, and accommodating an agent implies accommodating at no extra
cost all agents who “come before him”. Thus, the facility has the character
of a public good.

Our search is for ways of associating with each problem of this type an
allocation of the cost among the agents involved. Such a mapping is called
a “rule”.

Three approaches can be followed to obtain rules. A rule can be defined
“directly”, by means of a formula, a system of equations, or an algorithm.
One makes a case for it on the basis of the attractiveness of the definition,
the intuitive appeal of the formula or process leading to it.

The “game-theoretic approach” consists in first associating with each
problem a “cooperative game”, either a bargaining game or a coalitional
game.1 Then, the game is “solved”, that is, a payoff vector is identified
that appropriately reflects the “power”, “opportunities”, or “rights” of each
player. Finally, the allocation corresponding to this payoff vector is deter-
mined; it is the choice made for the problem under consideration.

For the “axiomatic approach”, the point of departure are the properties

1A game is a mathematical representation of a conflict situation.
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of rules. These properties are the mathematical expressions of intuitive ideas
about how certain situations might be handled by agents on their own, or by
an impartial arbitrator. They are formally stated as axioms. Properties are
used to compare rules. Mainly, one inquires about the implications of the
properties, when imposed singly and in various combinations. The goal of the
axiomatic program is to trace out the boundary between those combinations
that are compatible and those that are not, and when compatible, to give as
explicit as possible a description of the family of rules satisfying them.

This survey of the airport problem may also serve as an introduction to
these methodologies, all of which have proved useful in handling a variety of
other classes of allocation problems.2

2 The model

There is a set N of agents for whom a facility they will jointly use is to be
built. Agents have different needs for it. The facility should be built so as
to accommodate all agents. Each agent i ∈ N is characterized by the cost ci

of the facility he needs, which we call his “cost parameter”. Serving agent i
implies serving any other agent j whose cost parameter cj is at most as large
as ci. The cost of accommodating everyone is maxN cj. How much should
each agent contribute? In our primary application, agents are airlines (or
rather plane movements), and ci is the cost of the airstrip airline i needs.

In summary, an airport problem, or simply a problem (Littlechild and
Owen, 1973), is a vector c ∈ RN

+ .3 Let CN denote the domain of all problems.
We impose the natural requirement that each agent should bear some of the
cost, and should contribute at most what he would have to pay if alone.
Thus, a cost allocation for c ∈ CN , or simply an allocation for c, is a vector
x ∈ RN such that 0 5 x 5 c and

∑
xi = max ci.

4 Let X(c) be the set of
allocations for c. The difference ci−xi between agent i’s cost parameter and
his contribution is the benefit he experiences at the allocation x.

Numbering agents in the order of increasing costs, and in the absence of
ties, we refer to them as the first, second, . . . , and last agents. We say of

2For an introduction to cost allocation theory, see Young (1985).
3By this notation, we mean the cross-product of |N | copies of R indexed by the members

of N . The superscript N is also used to denoted any object pertaining to the set N , but
it will always be clear which usage is intended.

4Vector inequalities: x 5 y, x ≤ y, x < y.

2



an agent whose cost parameter is greater than some other agent’s that “he
comes after that agent”, or, referring to the irrigation application, that he
is “downstream” of that agent. We call the differences c1, c2 − c1, c3 − c2,
and so on, segmental costs. (A number of authors take these segmental
costs as primitives and we urge readers of the primary literature to keep that
distinction in mind.)

An allocation rule, or simply a rule, is a mapping defined on the domain
of all problems, which associates with each c ∈ CN a vector in X(c). Let S
be our generic notation for rules. Note that rules are single-valued. This
property is greatly desirable since it implies that the issue of who should pay
what has been completely resolved.

The set of allocations of each problem being a convex set, a convex com-
bination of rules is a rule.5

Another interpretation of the model is possible, when the intervals of use
refer to time. Think of agents who start using a facility at the same time,
but each agent stops using it when his needs are satisfied.

What is common to all of these situations is their linear structure and the
public good character of the facility.6 The model can also be interpreted as
depicting simple networks, and its analysis may provide principles and tech-
niques helpful in handling general networks. Section 6 shows the relevance of
the concepts we first describe in the context of linear networks to the analysis
of tree-like networks. This extension requires some adjustments but poses
no fundamental conceptual difficulties. Not covered are networks containing
cycles. Cycles alter the nature of the problem in ways that require significant
changes in techniques.

We close this section of preliminaries by noting the mathematical similar-
ities between an airport problem and a claims problem.7 Such a problem is
defined by specifying for each agent a non-negative number interpreted as his
claim on some resource, and specifying how much of the resource is available,
this amount being smaller than the sum of the claims. An airport problem

5Given a family of rules and a list of non-negative weights adding up to one, the “convex
combination of these rules with these weights” is the rule that selects for each problem,
the weighted average of the contribution vectors chosen by the rules in the family.

6It is not a standard public good, as such a good is consumed by everyone at the level
at which it is produced, nor an excludable public good, since for such a good, differences
in the agents’ consumptions of the good are determined endogenously.

7See Thomson (2003) for a survey of the literature.
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can be seen as a claims problem in which the amount to divide is equal to the
largest claim. In the development of the axiomatic theory concerning claims
problems, a variety of relational properties involving the amount to divide
have played an important role.8 This amount is not an independent variable
here, so there are no counterparts to these properties.9 Another difference
is that the set of allocations from which it is natural to choose when solving
an airport problem is a subset of the corresponding set when the problem is
interpreted as a claims problem (see below).

In spite of these important differences, we will find that the theory con-
cerning the adjudication of conflicting claims is quite useful in developing a
theory of cost allocation for airport problems.

3 Direct approach to defining rules

Here we define a number of rules. They all have intuitive definitions and
most of them will come up when we turn to axioms. For simplicity, we set
N ≡ {1, 2, . . . , n} and c1 ≤ c2 ≤ · · · ≤ cn.

1. We start with a basic requirement that we will always impose: at
the allocation chosen by a rule for a problem, no group N ′ of agents should
contribute more than what it would have to pay on its own, maxN ′ ci. Other-
wise, the members of the group would unfairly “subsidize” the other agents.
The group could make all of its members better off by setting up its own
facility. In practice, secession is not always an option, but it may still serve
as a relevant reference situation in evaluating a proposed allocation.

We require single-valuedness of rules, so the mapping that associates with
each airport problem its set of allocations satisfying these no-subsidy require-
ments is not a rule. We refer to it instead as a “correspondence”. As we will
see, all of the rules that have been discussed in the literature are selections
from it.

No-subsidy correspondence, NoSub: For each c ∈ CN , NoSub(c) ≡
{x ∈ X(c): for each N ′ ⊆ N ,

∑
N ′ xj ≤ maxN ′ cj}.

8A “relational” property connects the choices made by a rule for two problems that
are related in a certain way. This is in contrast with “punctual” properties, which apply
separately to each element in the domain.

9Examples of such properties are monotonicity with respect to this amount and “com-
position” properties.
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Since allocations are non-negative vectors, it suffices to write the con-
straints for all groups of consecutive agents that contain the agent with
the lowest cost parameter, (NoSub(c) = {x ∈ X(c): for each i ∈ N ,∑

j∈N :cj≤ci
xj ≤ ci}). This significantly reduces the number of constraints.10

If there are ties, a further reduction is possible. For instance, let c ∈ C{1,2,3,4}.
Then, the constraints simplify to x1 ≤ c1, x1 +x2 ≤ c2, x1 +x2 +x3 ≤ c3, the
fourth one, x1 + x2 + x3 + x4 ≤ c4 being of course implied by the feasibility
requirement x1 +x2 +x3 +x4 = c4. If c2 = c3, we can also skip the constraint
x1 + x2 ≤ c2, which is implied by the constraint x1 + x2 + x3 ≤ c3 (= c2).

2. The no-subsidy correspondence places an upper bound on each agent’s
contribution. The next solution places a lower bound: each agent should
contribute at least 1

n
of his cost parameter. For each agent, imagine a situa-

tion in which all agents had his cost parameter. Then, equal division appears
as a most reasonable choice:11

Identical-cost lower bound solution, Iclb: For each c ∈ CN , Iclb(c) ≡
{x ∈ X(c): for each i ∈ N , xi ≥ 1

n
ci}.

This solution is well-defined, and it has a non-empty intersection with
the no-subsidy correspondence, as the solution defined next belongs to both.

3. In much of the literature on fair allocation, equality stands as a focal
point, but what should be equated is not always clear. Sometimes, more than
one choice are available. This is the case here. Several of the rules defined
below can indeed be understood as attempts at giving meaning to the goal of
equality. Equality of contributions itself is of course not an option given the
no-subsidy constraints. Adjustments have to be made to respect them. Our
first proposal is to apply equal division to each segment separately, “locally”
so to speak: all agents using a given segment contribute equally to its cost.
Then, each agent’s contribution is a sum of terms, one for each segment he
uses. The rule so defined is very natural, and when first exposed to the
problem, people often spontaneously come up with it. It has also been used
in the real world for many years.12

10From 2n − 1 to n.
11This correspondence is defined by Chun, Kayı, and Yeh (2006).
12The rule is discussed by Baker and Associates (1965) and Littlechild and Owen (1973).

It underlies the “serial” idea that has been the subject of a number of studies by Moulin
and various coauthors in several other contexts. See for instance, Moulin and Shenker
(1992). Aadland and Kolpin (1998) refer to it as the “serial rule”, and explain that it is
standard in allocating the cost of irrigation ditches.
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Sequential equal contributions rule, SEC: For each c ∈ CN and each
i ∈ N , SECi(c) ≡ c1

n
+ c2−c1

n−1
+ · · ·+ ci−ci−1

n−i+1
.

For each i ∈ N , the group N ′ ≡ {1, . . . , i} pays the sum i c1
n

+ (i −
1) c2−c1

n−1
+ · · · + 1 ci−ci−1

n−i+1
. Since each of the coefficients of the segmental cost

terms appearing in this expression is at most one, the sum c1 + (c2 − c1) +
· · · + (ci − ci−1) = ci is an upper bound on what N ′ contributes in total.
Thus, the no-subsidy constraints are met at SEC(c).

4. Our next rule offers a different, this time “global”, implementation of
the goal of equality. Contributions are chosen equal subject to the no-subsidy
constraints being met.13 Like for several of the other rules defined below, it is
convenient to give it an algorithmic definition, collecting progressively more
and more from agents until the cost of the project is entirely covered.

Constrained equal contributions rule, CEC: Let c ∈ CN . Start by
requiring equal contributions from all agents in N until there are a quantity
γ1 ∈ R+ and and agent k1 ∈ N such that k1γ1 = ck1 (if there are several such
agents, select the one with the largest index).14 Then, each i ∈ {1, . . . , k1}
pays γ1. Continue by requiring equal contributions from the members of
{k1 +1, . . . , n} until there are an amount γ2 ∈ R+ and an agent k2 ∈ N such
that k1γ1 + (k2− k1)γ2 = ck2 (if there are several such agents, select the one
with the largest index). Then, each i ∈ {k1 + 1, . . . , k2} pays γ2. Continue
until the total amount collected is cn.

The algorithm just defined is equivalent to finding k ∈ N for which the
ratio ck

k
is the lowest and, denoting by k1 the largest such k and by γ1

the corresponding ratio, having each i ∈ {1, . . . , k1} pay γ1; then finding
k ∈ {k1 + 1, . . . , n} for which the ratio

ck−ck1

k−k1 is the lowest and, denoting
by k2 the largest such k and by γ2 the corresponding ratio, having each
i ∈ {k1 + 1, . . . , k2} pay γ2; proceeding in this way until the total amount
collected is cn.

Here is a numerical example: let c ≡ (2, 3, 6, 7) ∈ C{1,2,3,4}. Then γ1 = 1.5
(the minimum of 2

1
, 3

2
, 6

3
, and 7

4
), and k1 ≡ 2; γ2 = 2 (the minimum of 6−3

1
and

13This rule is the counterpart of the “constrained equal awards rule” for the adjudication
of conflicting claims. Aadland and Kolpin (1998) refer to it as the “restricted average cost
share” rule. They also discuss an equal-contribution rule.

14This is actually not needed, but it reduces the number of steps of the algorithm. If
we do not, at the next step, we obtain the same γ term.
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7−3
2

) and k2 = 4. Altogether, CEC(c) = (1.5, 1.5, 2, 2). For c′ ≡ (2, 4, 6, 9),
γ1 = 2, and three no-subsidy constraints are reached simultaneously, for
k = 1, k = 2, and k = 3, so k1 = 3. One agent is left, who pays what remains
of the total cost, so k2 = 4 and γ2 = 3. Altogether, CEC(c′) = (2, 2, 2, 3).

One can also calculate contributions one at a time, the following being
an alternative way of presenting the rule:

x1 = min{ c1
1

, c2
2

, c3
3

, . . . , cn−1

n−1
, cn

n
}

x2 = min{ c2−x1

1
, c3−x1

2
, . . . , cn−1−x1

n−2
, cn−x1

n−1
}

x3 = min{ c3−x1−x2

1
, . . . , cn−1−x1−x2

n−3
, cn−x1−x2

n−2
}

. . . = min{ , . . . , . . . , . . . }
It is a direct consequence of its definition that this rule is a selection from

the no-subsidy correspondence.15

5. Next, we apply an idea that is central to much of the literature on
fair allocation, namely proportionality. As for the constrained equal contri-
butions rule, an algorithmic definition is most convenient.16

Constrained proportional rule, CP : Let c ∈ CN . Start by requiring
the contributions of all agents in N to be proportional to their components
of c until there are a quantity ρ1 ∈ R+ and and an agent k1 ∈ N such that
ρ1

∑
1,...,k1 ci = ck1 (if there are several such agents, select the one with the

largest index). Then, each i ∈ {1, . . . , k1} pays ρ1ci. Continue by requiring
the contributions of the members of {k1 + 1, . . . , n} to be proportional to
their components of c until there are a quantity ρ2 ∈ R+ and an agent
k2 ∈ {k1 + 1, . . . , n} such that ρ1

∑
1,...,k1 ci + ρ2

∑
k1+1,...,k2 ci = ck2 (if there

are several such agents, select the one with the largest index). Then, each
i ∈ {k1 + 1, . . . , k2} pays ρ2ci. Continue until the total amount collected
is cn.

15The rule is equivalent to identifying agent k1 ∈ N for whom the average of the
first k1 segmental costs c1, c2 − c1, . . . , c` − c`−1, . . ., is the lowest; then, identifying k2 ∈
{k1+1, . . . , n} for whom the average of the k2−k1 next segmental costs ck1+1−ck1 , . . . , c`−
c`−1, . . . is the lowest, and so on. This description is given by Aadland and Kolpin (1998).

16Somewhat surprisingly, given the central role played by the idea of proportionality in
the theory of fair allocation and the prominent role it enjoys for the closely related class
of claims problems, we are not aware of any previous attempts at applying it to airport
problems.
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This algorithm is equivalent to finding k ∈ N such that the ratio ck∑
1,...,k c`

is the lowest and, denoting by k1 the largest such k and by ρ1 the correspond-
ing ratio, having each i ∈ {1, . . . , k1} pay ρ1ci; then finding k ∈ {k1+1, . . . , n}
such that the ratio

ck−ck1∑
k1+1,...,k c`

is the lowest and, denoting by k2 the largest

such k and by ρ2 the corresponding ratio, having each i ∈ {k1 + 1, . . . , k2}
pay ρ2ci; proceeding in this way until the total amount collected is cn.

For c ≡ (2, 3, 6, 7) ∈ C{1,2,3,4}, if contributions are set proportional to cost
parameters with the constant of proportionality chosen so that their sum is
equal to c4, the no-subsidy constraints are all met and we are done in one
step. However, for c ≡ (2, 3, 3, 7), the proportional allocation is 7

15
(2, 3, 3, 7).

Since 7
15

(2 + 3 + 3) > 3 = c3, the no-subsidy constraint is violated for the
group {1, 2, 3}, so we proceed in steps. We need two steps. At the first step,
we obtain the contributions of the first three agents (ρ1 = 3

8
and k1 = 3);

since only one agent is left, he has to cover what remains of the total cost,
so ρ2 = 1 and k2 = 4. Altogether, the allocation is (3

8
2, 3

8
3, 3

8
3, 4

4
(7− 3)).

6. Instead of focusing on the contribution required of an agent, we could
focus on the benefit he achieves for not having to take care of his needs on
his own, and equate these benefits subject to no one receiving a transfer.17

Constrained equal benefits rule, CEB: For each c ∈ CN and each
i ∈ N , let CEBi(c) ≡ max{ci − β, 0}, where β ∈ R+ is chosen so that∑

max{ci − β, 0} = cn.

For our earlier example with c ≡ (2, 3, 6, 7) ∈ C{1,2,3,4}, we have β = 3
and CEB(c) = (0, 0, 3, 4).

This rule is a selection from the no-subsidy correspondence, even though
the no-subsidy requirement does not appear in the definition (in contrast with
the two previous rules). To see this, let x ≡ CEB(c) and note that for each
i ∈ N such that ci ≤ β, we have

∑
j∈N\{i}:cj≤ci

xj = 0, and for each i ∈ N

such that ci ≥ β, we have
∑

j∈N\{i}:cj≤ci
xj ≤

∑
j∈N\{n} xj = cn−xn = β ≤ ci.

7. Imagine agents arriving in the order of increasing cost parameters and
hold each of them responsible for the segment he needs beyond the ones that
are already covered when he arrives. For this rule, an agent never helps out
agents with needs smaller than his, even though he uses the segments they

17This rule is the counterpart of the “constrained equal losses rule” for the adjudication
of conflicting claims. It is discussed by Potters and Sudhölter (1999).
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use, (and of course, he never gets any help in covering his segmental cost
from agents with greater needs than his, even though these agents use his
segment). If several agents have equal cost parameters, we require that they
should share equally their common segmental cost.

Sequential full contributions rule, SFC: For each c ∈ CN and each
i ∈ N , let N i(c) ⊆ N be defined by N i(c) ≡ {j ∈ N : cj = ci}. Then, if

ci = min cj, SFCi(c) ≡ ci

|N i(c)| , and otherwise SFCi(c) ≡ ci−maxj∈N :cj<ci
cj

|N i(c)| .

8. Next, we define a family of rules that are also based on a simple
first-come first-pay scenario, but this time the order of arrival is exogenously
given. Given an order on the set of agents, we imagine them arriving in this
order, and assign to each one the cost of the extension needed to serve him
when he arrives. Let ON be the set of orders on N , with generic element ≺.18

Priority rule relative to ≺∈ ON , D≺: For each c ∈ CN and each i ∈ N ,
D≺

i (c) ≡ max{ci −maxj∈N :j≺i cj, 0}.

For instance, if c ∈ C{1,2,3} and agents arrive in the order 2 ≺ 1 ≺ 3,
agent 2 pays c2. Agent 1 pays nothing because when he arrives, the segment
needed to serve him is already covered. Agent 3 pays the difference c3 − c2.
If they arrive in the order 3 ≺ 2 ≺ 1, agent 3 pays c3 and none of the others
pays anything. We also use the notation D3≺2≺1 for this rule, and similar
notation for the other rules in the family. By construction, each of them
satisfies the no-subsidy constraints.

9. Here, we still imagine, as in the previous definition, that agents arrive
one at a time, but we assume all orders of arrival to be equally likely and
take the average of the allocations associated with all orders. This produces
a well-defined rule since the set of allocations is convex:19

Random arrival rule, RA: For each c ∈ CN and each i ∈ N , RAi(c) ≡
1
|N |!

∑
≺∈ON max{ci −maxj∈N :j≺i cj, 0}.

18These rules are the counterparts of the rules of the same name in the theory of ad-
judication of conflicting claims. An important difference is that here the earlier an agent
arrives the more he pays, whereas in that theory, the more he receives.

19This rule is the counterpart of the rule of the same name in the theory of adjudication
of conflicting claims.
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This rule is an average of rules satisfying the no-subsidy constraints (the
priority rules), and since the set of allocations satisfying these constraints is
convex too, it also satisfies them. This property is also a consequence of the
fact, established earlier, that the sequential equal contributions rule satisfies
the constraints, and of the following equivalence (implicit in Littlechild and
Owen, 1973):

Lemma 1 The random arrival rule coincides with the sequential equal con-
tributions rule.

10. Our next rule is based on an idea that is familiar to social choice and
game theory. When certain constraints have to be met in choosing a payoff
vector, a natural objective is to keep as far as possible from violating them.
An allocation that is equally far from violating all constraints usually does
not exist, and a next best choice is an allocation that is at a greater distance
in the lexicographic maximin order from violating the constraints than any
other allocation. Given x ∈ X(c) and i ∈ N , we measure how close x is to
violate the non-negativity and no-subsidy constraints. Let us call the i-th
slack at x the difference ci −

∑
{1,...,i} xj.

20

Slack maximizer rule, SM : For each c ∈ CN , SM(c) is the allocation
x ∈ NoSub(c) such that for each y ∈ NoSub(c), the 2n-dimensional vec-
tor consisting of x itself and the slacks at x is greater in the lexicographic
maximin order than the vector associated with y in a similar way.

An explicit recursive formula can be given for the rule. It is surprisingly
similar to the one for the constrained equal contributions rule. There are
two differences however. First, the denominator of each term is equal to the
corresponding denominator of that earlier rule incremented by one. Second
is the absence of a term associated with the last segment:

Lemma 2 (Sönmez, 1994) Let c ∈ CN . The slack maximizer allocation x of
c ∈ CN is given by the following formula:

20The term nucleolus is commonly used and the reason will be clear soon. At this point,
we prefer not invoking concepts of game theory.
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x1 = min{ c1
2

, c2
3

, c3
4

, . . . , cn−1

n
}

x2 = min{ c2−x1

2
, c3−x1

3
, . . . , cn−1−x1

n−1
}

x3 = min{ c3−x1−x2

2
, . . . , cn−1−x1−x2

n−2
}

. . . = min{ , . . . , . . . }
xn−1 = min{ cn−1−x1−···−xn−2

2
}

Agent n pays what remains.

For the two-agent case, we obtain ( c1
2
, c2− c1

2
), which is also what the se-

quential equal contributions and constrained equal benefits rules recommend.
For the three- (or more-) agent case, this coincidence does not hold anymore.
Let c ≡ (1, 2, 3) ∈ C{1,2,3}. Then, CEB(c) = (0, 1, 2), but if x ≡ SM(c), then

x1 ≡ min{1
2
, 2

3
} = 1

2
, x2 ≡ min{2− 1

2

2
} = 3

4
, and x3 ≡ 3− (x1 + x2) = 1.75.

When agents are grouped into types having equal cost parameters, with
nj being the number of agents of type j, and Mi ≡

∑i
j=1 nj, we obtain the

following formula:

Lemma 3 (Littlechild, 1974) The slack maximizer allocation x of c ∈ CN is
given by the following recursive formula:21

xi = γk, ik−1 < i < ik, k = 1, . . . , k′,

where γk and ik are defined by:

γk = min

[
min

ik−1+1,...,n−1
{ci − cik−1

+ γk−1

Mi −Mik−1
+ 1

}, cn − cik−1
+ γk−1

Mn −Mik−1

]
;

21Littlechild also notes that as the number of agents of each type increases without
bound, the term “+1” in the denominator of the expression below becomes negligible.
Moreover, γk−1/(Mi−Mik−1) involves the multiplication of 1/ni and ci. Hence, under the
same assumption, this term can also be ignored. Thus, in this case, the following simpler
approximate formula for the slack maximizer rule is available:

x̃i = γ̃k, ik−1 < i ≤ ik, k = 1, . . . , k′,

γ̃ = min
ik−1+1,...,n

[
ci − cik−1

Mi −Mik−1

]

where ik is defined as above.

11



and ik is maximal among all indices solving the above minimization problem
(that is, first g0 = i0 = c0 = 0, proceed until k = 1, · · · , k′, and finally,
ik′ = n).

The similarity between the formulas for the constrained equal contri-
butions rule and the slack maximizer rule suggests that they are mem-
bers of a single and simple family. Such a family can indeed be de-
fined (Gellekom and Potters, 1997): let α ∈ [0, 1] and set x1 ≡
min{ c1

1+α
, c2

2+α
, . . . , cn−1

n−1+α
, cn

n
}, x2 ≡ min{ c2−x1

1+α
, . . . , cn−1−x1

n−2+α
, cn−x1

n−1
}, . . . ,

xn−1 ≡ min{ cn−1−x1−···−xn−2

1+α
, cn−x1−···−xn−2

2
}, and xn ≡ cn − x1 − · · · − xn−1.

(Note how the denominators have been modified as compared to the formulae
for the constrained equal contributions and slack maximizer rules.)

11. Finally, we introduce a new family of rules. It is inspired by a concept
that has been central for the adjudication of conflicting claims (Young, 1987).
Let F be the family of continuous functions f :R+ × [a, b] → R+, where
[a, b] ⊆ R (the extended real line), such that for each c̄ ∈ R+, f(c̄, ·) is
nowhere decreasing, f(c̄, a) = 0 and f(c̄, b) = c̄.

Parametric rule associated with f ∈ F , Sf : Let c ∈ CN . Start by
requiring the contribution of each i ∈ N to be equal to f(ci, λ) until for
some λ1 ∈ [a, b], there is k1 ∈ N such that

∑
1,...,k1 f(ci, λ

1) = ck1 . (If there

are several such k1, select the largest.) Then, each i ∈ {1, . . . , k1} pays
f(ci, λ

1). Continue by requiring the contribution of each i ∈ {k1 + 1, . . . , n}
to be equal to f(ci, λ) until for some λ2 ∈ [a, b], there is k2 ∈ N such that
ck1 +

∑
k1+1,...,k2 f(ci, λ

2) = ck2 . (If there are several such k2, select the

largest.) Then, each i ∈ {k1 + 1, . . . , k2} pays f(ci, λ
2). Continue until the

total collected is cn.

The constrained equal contributions, constrained proportional, and con-
strained equal benefits rules are members of the family.

4 Game-theoretic approach to defining rules

A standard way of coming up with a recommendation for an allocation prob-
lem is to map it into a game; apply the tools of game theory to solve the
game, thereby obtaining a payoff vector for the game; then, selecting the
allocations whose image is this payoff vector.
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Several classes of games have been considered in the literature and allo-
cation problems can meaningfully be mapped into different kinds of games.
We will consider two main classes, bargaining games and coalitional games
with transferable utility.

4.1 Bargaining games

Let N be a set of “players”. A bargaining game (Nash, 1950) is a pair
(B, d), where B is a subset of RN and d is a point of B. The set B, the
feasible set, is interpreted as the set of utility vectors available to the group
N by unanimous agreement, and d, the disagreement point, is interpreted
as the utility vector that the group obtains if its members fail to reach an
agreement. The point chosen by a solution for a specific game is the solution
outcome of the game. The set B is commonly assumed to be a convex and
compact subset of RN , and to be such that there is x ∈ B with x > d. Let
GN be a domain of bargaining games. A bargaining solution on GN is a
function that associates with each game in GN a unique point in the feasible
set of the game.22

The following are central solutions in the theory of bargaining: The lex-
icographic egalitarian solution outcome of (B, d), EL(B, d), is the pay-
off vector at which utility gains from d are maximized in a lexicographic
way, starting with the smallest one.23 Its Kalai-Smorodinsky solution
outcome (Kalai and Smorodinsky, 1975), KS(B, d), is the maximal payoff
vector on the segment from the disagreement point to the “ideal point”,
a(B, d), where for each i ∈ N , ai(B, d) is the maximal utility gain achiev-
able by agent i among the feasible points dominating the disagreement point.
The lexicographic Kalai-Smorodinsky solution outcome of (B, d) (Imai,
1983), KSL(B, d), is constructed so as to recover efficiency when this prop-
erty would not be met otherwise (there is no feasible outcome that semi-
strictly dominates the chosen vector). It is obtained by first normalizing
the problem so that its ideal point has equal coordinates, then applying the
lexicographic egalitarian solution, and finally returning to the initial non-
normalized problem. The extended equal loss solution outcome of (B, d)

22For an exposition of the theory of bargaining, see Thomson (1999).
23Given x, y ∈ R`, x is greater than y in the lexicographic (maximin) order if,

designating by x̃ and ỹ the vectors obtained from x and y by rewriting their coordinates
in increasing order, we have either x̃1 > ỹ1 or [x̃1 = ỹ1 and x̃2 > ỹ2], or [x̃1 = ỹ1, x̃2 = ỹ2,
and x̃3 > ỹ3, and so on.
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(Bossert, 1993, in a contribution building on the equal loss solution of Chun,
1988), XEL(B, d), is the maximal point at which the utility losses from the
ideal point of all agents whose utility gains are positive are equal and the
utilities of the others are equal to their disagreement utilities. Finally, the
lexicographic dictatorial solution outcome of (B, d) associated with
the order ≺, Dic≺(B, d), is the payoff vector at which the utility gain of
the player who comes first in that order is maximal if this vector is unique.
If not, among all such vectors, it is the vector at which the utility gain of the
player who comes second is maximal if this vector is unique; and so on.

Given an airport problem c ∈ CN , its associated bargaining game is
the game whose feasible set is B(c) ≡ {y ∈ RN

+ : for some x ∈ NoSub(c), y 5
x} and whose disagreement point is the origin. As the disagreement point
is independent of c, we ignore it from the notation.24 A rule matches
a bargaining solution if for each problem, the allocation it recommends
coincides with the payoff vector assigned by the solution to the bargaining
game associated with the problem. Our first theorem describes a number of
such correspondences.

Theorem 1 The following matches between rules and bargaining solutions
exist:

(i) The constrained equal contributions rule and the lexicographic egali-
tarian solution.

(ii) The constrained equal benefits rule and the extended equal loss solu-
tion.

(iii) The constrained proportional rule and the lexicographic Kalai-
Smorodinsky solution.

(iv) The priority rule associated with order ≺ and the lexicographic dic-
tatorial solution associated with order ≺.

4.2 Coalitional games

We next turn to a class of games that is richer than the class of bargaining
games in that what each group of agents—in this context, they are called
coalitions—can achieve is specified. Let N be a (finite) set of “players”. A

(transferable utility) coalitional game is a list v ≡ (v(N ′))N ′⊆N ∈ R2|N|−1,
where for each ∅ 6= N ′ ⊆ N , v(N ′) is the worth of coalition N ′. This

24Other choices of disagreement point are plausible.
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number is interpreted as whatN ′ can achieve on its own, although this is by
no means the only possible interpretation. Let VN be a domain of coalitional
games. A solution on VN is a correspondence that associates with each
v ∈ VN a payoff vector in RN whose coordinates add up to v(N). One of the
most important solutions is the one that selects all the efficient payoff vectors
such that no coalition can simultaneously provide a higher payoff to each of its
members. Formally, the core of v ∈ VN , C(v), is the set of payoff vectors
x ∈ RN such that

∑
xi = v(N) and for each ∅ 6= N ′ ⊆ N ,

∑
N ′ xi ≥ v(N ′).

The core is multi-valued but the next examples are single-valued. First, we
imagine agents arriving one at a time and we calculate for each of them the
contribution25 he makes to the coalition of agents who arrived before him,
that is, the difference between the worth of the coalition after he joins it and
before he does so. We calculate the average of these contributions assuming
that all orders of arrival are equally likely, thereby obtaining for each i ∈ N ,
the payoff 1

|N |!
∑

≺∈ON [v({j ∈ N |j ≺ i} ∪ i) − v({j ∈ N |j ≺ i})]. Collecting
terms, the following is an alternative and more familiar expression for the
Shapley value payoff of player i in the game v ∈ VN (Shapley, 1953):

Shi(v) ≡
∑

N ′⊆N,i∈N ′

(|N ′| − 1)!(|N | − |N ′|)!
|N |! [v(N ′)− v(N ′\{i})].

The next solution is defined by a lexicographic operation analogous to
the one underlying the lexicographic egalitarian solution of bargaining the-
ory. Given N ′ ⊂ N and x ∈ RN , the difference v(N ′) − ∑

N ′ xi is the
dissatisfaction of N ′ at x. This number indicates how well or how badly
a given coalition is treated at x.26 Now, the nucleolus of v ∈ VN , Nu(v)
(Schmeidler , 1969) is the set of payoff vectors x ∈ RN at which the vector of
dissatisfactions (v(N ′) −∑

N ′ xi)N ′⊆N is minimized in the lexicographic or-
der among all efficient payoff vectors, starting with the largest dissatisfaction.
The nucleolus is single-valued.

For the modified nucleolus (Sudhölter, 1997), we perform a parallel ex-
ercise using the vector of differences of dissatisfactions between two arbitrary
coalitions. The modified nucleolus is also single-valued.

25Note that here this term has a different meaning from the one we have given it up to
this point, but which is intended should be clear from the context.

26Note that a payoff vector belongs to the core if all of these differences are non-positive.
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Our next definition is based on the Lorenz order.27 We state the spe-
cial form it takes for an important class of games, namely games exhibit-
ing strongly decreasing “returns to size”: a game is concave if for each
i ∈ N and each pair {N ′, N ′′} ⊆ N such that N ′′ ⊂ N ′ and i /∈ N ′,
v(N ′ ∪ {i}) − v(N ′) ≤ v(N ′′ ∪ {i}) − v(N ′′). The Dutta-Ray solution
outcome of a concave game v ∈ VN , DR(v) (Dutta and Ray, 1989)
is the payoff vector in the core of v that Lorenz-dominates every other core
payoff vector.

Given an airport problem c ∈ CN , its associated coalitional game is
the game v(c) ∈ VN defined by setting, for each ∅ 6= N ′ ⊆ N , v(c)(N ′) ≡
maxN ′ ci. (Other proposals have been made. One is to set, for each N ′ ⊂ N ,
v′(c)(N ′) ≡ −maxN ′ ci. Another is to set v′′(c)(N ′) ≡ ∑

N ′ ci −maxN ′ ci.)
The no-blocking idea underlying the definition of the core remains mean-

ingful but the inequalities have to be reversed. We still refer to the set of
allocations satisfying them as the core. The core is non-empty and it can
be easily described:

Lemma 4 Given any airport problem, the core of the coalitional game as-
sociated with it is its set of contribution vectors satisfying the no-subsidy
constraints.

Clearly, if x ∈ X(c) satisfies the core constraints, it satisfies the no-
subsidy constraints, which are a subset of them. Conversely, given N ′ ⊂ N ,
let N̄ ′ be the coalition consisting of all the agents in N whose cost parameter
is at most maxN ′ ci. Then, since x ∈ X(c) implies x = 0, if

∑
N̄ ′ xi ≤

maxN ′ ci, it follows that
∑

N ′ xi ≤ maxN ′ ci.

Our next observation is that the game v(c) is concave.

Lemma 5 Given any airport problem, the coalitional game associated with
it is concave.

When a game is concave, its Shapley value payoff vector belongs to its
core. In fact, the vertices of the core (the core is a polyhedron, being defined

27Given x ∈ RN , we denote by x̃ the vector obtained from x by rewriting its coordinates
in increasing order. Given x and y ∈ RN with

∑
xi =

∑
yi, we say that x is greater than

y in the Lorenz order if x̃1 ≥ ỹ1 and x̃1 + x̃2 ≥ ỹ1 + ỹ2, and x̃1 + x̃2 + x̃3 ≥ ỹ1 + ỹ2 + ỹ3,
and so on, with at least one strict inequality.
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by a system of inequalities), are the payoff vectors whose average defines the
Shapley value payoff vector.28

A rule matches a solution to TU games if for each problem, the
allocation it recommends coincides with the payoff vector assigned by the
solution to the coalitional game associated with the problem.

Theorem 2 The following matches between rules and solutions to TU games
exist:

(i) The sequential equal contributions rule (equivalently, according to
Lemma 1, the random arrival rule) and the Shapley value.

(ii) The constrained equal contributions rule and the Dutta-Ray solution.
(iii) The constrained equal benefits rule and the modified nucleolus.
(iv) The slack maximizer rule and the nucleolus.

Assertion (i) is due to Littlechild and Owen (1973), assertion (ii) to Aad-
land and Kolpin (1998), and assertion (iii) to Potters and Sudhölter (1999).
Assertion (iv) is a direct consequence of the fact that for each x ∈ X(c) and
each N ′ ⊂ N , the slack of N ′ at x is always at least as large as the slack of
{1, . . . , maxN ′ i} at x (this is the smallest set of consecutive agents starting
with agent 1 that contains N ′), and therefore can be ignored in the maxi-
mization defining the nucleolus (recall that each x ∈ X(c) is non-negative).
The nucleolus is in general difficult to calculate as it involves a sequence of
nested maximizations. However, in the present context, it can be given an
explicit recursive definition, as we have seen (appealing to (iv)). (If instead
of the game v(c), we consider the game v′(c) or the game v′′(c), then some
of these matches are affected.)

5 Axiomatic approach

We now turn to axioms. We distinguish between fixed-population axioms and
variable-population ones (for which we will need to generalize the model). For
each axiom, Table 1 shows whether each of the rules introduced in Section 3
satisfies it or not. We also offer characterizations.

28Also, its kernel and nucleolus coincide. See Shapley (1971).

17



5.1 Fixed population

We have incorporated in the definition of a rule three requirements. Non-
negativity says that for each problem, the rule should only pick a non-
negative contribution vector; cost boundedness that this vector should be
bounded above by the cost vector; efficiency that its coordinates should add
up to the maximal cost. Here are the new properties:

• Agents with equal cost parameters should pay equal amounts:

Equal treatment of equals: For each c ∈ CN and each pair {i, j} ⊆ N , if
ci = cj, then Si(c) = Sj(c).

A stronger requirement is that what agents pay should be independent
of their names.

• If agent i’s cost parameter is at least as large as agent j’s cost parameter,
he should pay at least as much as agent j does.29 For a parametric rule, it
is satisfied if its schedules are ordered.

Order preservation for contributions: For each c ∈ CN and each pair
{i, j} ⊆ N , if ci ≥ cj, then Si(c) ≥ Sj(c).

The next property is a counterpart for benefits of the previous one (Lit-
tlechild and Thompson, 1977)30.

Order preservation for benefits: For each c ∈ CN and each pair {i, j} ⊆
N , if ci ≥ cj, then ci − Si(c) ≥ cj − Sj(c).

Properties such as equal treatment of equals and the generalizations just
stated are very natural in many applications, but not always. Indeed, there
may be good reasons not described in the model justifying that agents with
equal cost parameters not be treated equally. In the irrigation example,
different ranchers may use the ditch to irrigate unequal land areas, or the
crops they grow may differ in other respects (Aadland and Kolpin, 1998).
In general, the profits agents derive from the project may differ. In such

29Some form of the property appears in many domains studied in economics and game
theory. For claims problems, it is discussed by Aumann and Maschler (1985).

30This property appears in Aadland and Kolpin (1998) under the name of “semi-
marginalism”.
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circumstances, the question arises whether and how rules can be redefined so
as to accommodate a perceived need to favor certain agents at the expense of
others. One answer is to add to the model this extra information. Another
is to specify a vector of weights indexed by agents reflecting the greater or
lesser relative importance they should receive. If all weights are positive, it
is easy to use them to extend the definitions of our basic rules. We consider
this case first.

Let ∆N be the unit simplex in RN . For the weighted sequential equal
contributions rule with weights w ∈ int∆N (the notation “int” denotes
the interior of a set), divide the cost of each segment among all agents who
use it proportionally to their weights.

For the weighted constrained equal contributions rule with
weights w ∈ int∆N , set payments proportional to the weights and pro-
ceed in steps as before (this choice of weights affects the order in which the
no-subsidy constraints are reached). For the weighted constrained pro-
portional rule with weights w ∈ int∆N , set payments proportional
to the weights multiplied by the cost parameters, and here too, proceed in
steps. A similar definition of the weighted constrained equal benefits
rule with weights w ∈ int∆N is possible, but in contrast to the case
when all weights are equal, we now have to keep track of the no-subsidy
constraints. To see this, let c ≡ (1, 2, 3) ∈ C{1,2,3}. Also, let w ≡ (.1, .1, .8).
Then, the equations c1−x1

.1
= c2−x2

.1
= c3−x3

.8
and

∑
xi = 3 give x = ( 7

10
, 17

10
, 3

5
),

and since x1 + x2 > c2 = 2, the no-subsidy constraint for the group {1, 2} is
violated.

Let us now turn to the possibility that weights may have zero components.
To see the difficulty zero weights cause, we return to the sequential equal
contributions rule and note that the proposal described above cannot be used
because some segments may not be covered. For instance, let N ≡ {1, 2, 3, 4}
and w ≡ (1

4
, 3

8
, 3

8
, 0). Let c ≡ (1, 2, 3, 4) ∈ C{1,2,3,4}. Then c1 is divided

proportionally to the components of w among all four agents, c2−c1 is divided
among agents 2, 3, and 4 proportionally to the weights (3

8
, 3

8
, 0) (this means

that agents 2 and 3 together pay the entire cost of the second segment), and
c3− c2 is divided between agents 3 and 4 proportionally to the weights (3

8
, 0)

(this means that agent 3 pays the entire cost of the third segment). When
we get to the last segmental cost c4− c3, we are left with only one agent and
his weight is zero. This difficulty can be remedied by introducing a second
weight vector to be used on such occasions. This second vector can have
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zero components too, so we add a third weight vector and so on. Formally,
a hierarchy of weights is an ordered list {w1, w2, . . . , wL} ∈ ∆N , for some
positive integer L, such that for each ` ∈ {1, . . . , L}, and each i ∈ N , if w`

i >
0, then w`+1

i = 0. To illustrate, let N ≡ {1, 2, 3, 4, 5, 6}, w1 ≡ (1
4
, 3

8
, 3

8
, 0, 0, 0),

and w2 ≡ (0, 0, 0, 1
3
, 1

3
, 1

3
). Let c ∈ CN be such that c1 ≤ · · · ≤ c6. Then, c1 is

divided among the first three agents proportionally to their components of w1,
c2− c1 is divided between agents 2 and 3 proportionally to their components
of w1, and c3 − c2 is entirely covered by agent 3. Then, we switch to the
second weight vector. The fourth segmental cost, c4 − c3 is divided among
agents 4, 5, and 6 proportionally to their components of w2, c5−c4 is divided
between agents 5 and 6 proportionally to their components of w2, and c6−c5

is covered entirely by agent 6. If c is such that c5 < c1 < c2 < c3 < c6 < c4,
say, c5 is divided among agents 1, 2, and 3, according to their components of
w1 (they are the only agents using this segment who have positive weights in
w1), and so is c1−c5; c2−c1 is divided between agents 2 and 3 proportionally
to their components of w1 (they are the only agents using this segment who
have positive weights in w1); c3−c2 is paid entirely by agent 3 (he is the only
agent using this segment who has a positive weight in w1). The penultimate
segmental cost c6 − c3 is divided between agents 4 and 6 proportionally to
their weights in w2; the last segmental cost c4 − c6 is covered entirely by
agent 4, as he is only one left.31

Any such rule can alternatively be described in terms of an ordered parti-
tion of the set of agents, and a list of positive weights, one for each agent. For
each problem, we handle each segment in turn by choosing the contributions
of the members of the first component of the induced partition who use it
proportionally to their weights. If there is no one in the first component of
the induced partition, we divide the cost of the segment among the members
of the second component of the induced partition who use it proportionally
to their weights, and so on.

We now turn to relational requirements on rules.
• If the cost vector is multiplied by a positive scalar, so should the chosen

allocation:32

Homogeneity: For each c ∈ CN and each α ∈ R++, S(αc) = αS(c).

31Note that we switch to the second weight vector when we reach a segment that is used
by agents who are all assigned zero weights by the first weight vector.

32This is the first part of the property Potters and Sudhölter (1999) call “covariance”.
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• The chosen allocation should vary continuously with the data of the
problem.

Continuity: For each sequence {cν} of elements of CN and each c ∈ CN , if
cν → c, then S(cν) → S(c).

• Next is an independence property: what an agent pays should not
depend on the costs of the segments he does not use.

Independence of at-least-as-large costs: For each pair {c, c′} of elements
of CN and each i ∈ N , if (i) c′i = ci, (ii) for each j ∈ N\{i} such that cj < ci,
we have c′j = cj and (iii) for each j ∈ N\{i} such that cj ≥ ci, we have
c′j ≥ cj, then Si(c

′) = Si(c).

The sequential full contributions rule fails this condition but it satisfies
the slightly weaker version of the property obtained by only allowing those
cost parameters that were initially greater than agent i’s cost parameter to
vary, provided they remain greater than agent i’s cost parameter (a property
that could be called “independence of greater costs”).

We are now ready to present our first characterization:33

Theorem 3 (Moulin and Shenker, 1992) The sequential equal contributions
rule is the only rule satisfying equal treatment of equals and independence
of at-least-as-large costs.

• Next is a limited version of the above independence property: if the
cost parameter of the last agent increases (or if the cost parameter of any
one of the agents whose parameter is the largest increases, if there are several
of them), the contributions of the other agents should not be affected and
his contribution should increase by an equal amount:34

Last-agent cost additivity: For each pair {c, c′} of elements of CN , each
γ ∈ R+, and each i ∈ N with ci = maxN cj, if (i) c′N\{i} = cN\{i} and

(ii) c′i = ci + γ, then SN\{i}(c′) = SN\{i}(c) and Si(c
′) = Si(c) + γ.

33Efficiency does not appear in any of our characterizations as it is incorporated in
the definition of a rule. Remark 5.6 of Potters and Sudhölter (1999) essentially amounts
to Theorem 3. They impose an axiom of monotonicity, which implies our independence
axiom, and only exploit its independence content.

34This is the second part of a property Potters and Sudhölter (1999) call “covariance”.
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The sequential full contributions rule violates this property but only when
there are several agents whose cost parameters are the largest.

A weaker property says that, under the same hypotheses, the payment
required of the last agent should increase by an amount equal to the increase
in his cost parameter, nothing being said about the payments required of the
others. Let us refer to it as weak last-agent cost additivity.

• Here is our last property in the series: If two problems for which agents
are ordered in the same way are added—of course in the sum problem, their
order remains the same—the allocation chosen for the sum problem should be
the sum of the allocations chosen for each of them. This second vector may
be interpreted as representing cost overruns. Or the cost of each segment
may consist of several parts, land, material, maintenance, and the order
restriction appearing in the hypotheses means that these component costs
are all ordered in the same way, as is the case in many applications. In the
case of airports, we may think of two facilities being built at the same time,
and all airplanes will use both.

Conditional cost additivity: For each pair {c, c′} of elements of CN for
which agents are ordered in the same way, S(c + c′) = S(c) + S(c′).

This property implies last-agent cost additivity, since the problems c and c′

considered there is obtained from the problem c by adding the trivial problem
(0, . . . , 0, γ), for which, by definition of a rule, we have to select the allocation
(0, . . . , 0, γ).

Our next main result is another characterization of the sequential equal
contributions rule:

Theorem 4 (Dubey, 1982) The sequential equal contributions rule is the
only rule satisfying equal treatment of equals and conditional cost additivity.

An “unconditional” additivity requirement would not make sense, since
the amount to be collected is not an additive function of the problem. Indeed,
let c ≡ (1, 2) ∈ C{1,2} and c′ ≡ (2, 1) ∈ C{1,2}. Then, if x ≡ S(c), we have∑

Si(c) = 2. Similarly, if x′ ≡ S(c′), we have
∑

Si(c
′) = 2. Note that∑

(Si(c) + Si(c
′)) = 4. However, c + c′ = (3, 3). Thus,

∑
Si(c + c′) = 3.

• Our next requirements are monotonicity requirements. First, if the i-
th cost parameter increases, agent i should pay at least as much as he did
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initially. For the application to the airport problem, this increase may be
due to the i-th airline switching to larger planes.35

Individual cost monotonicity: For each pair {c, c′} of elements of CN and
each i ∈ N , if c′i ≥ ci and for each j ∈ N\{i}, c′j = cj, then Si(c

′) ≥ Si(c).

• Recalling the public good character of the facility, note that if agent i is
not the last agent, any increase in his contribution is beneficial to the other
agents as a group. Let us require that if an agent’s cost parameter increases,
each of the others should pay at most as much as what he did initially.

Others-oriented cost monotonicity: Under the hypotheses of individual
cost monotonicity, for each j ∈ N\{i}, c′j = cj, then Si(c

′) ≥ Si(c).

• Suppose the cost vector changes and consider some agent i. In the
irrigation application, where ci−ci−1 is interpreted as the cost of maintaining
the section of the ditch passing through rancher i’s property, an increase in
this cost will bring about an equal increase in the cost parameter of each
rancher who comes after him. Then, one could ask that he and each of these
ranchers should pay at least as much as they did initially.

Downstream cost monotonicity: For each pair {c, c′} of elements of CN ,
and each i ∈ N , if (i) for each j ∈ N such that cj < ci, c′j = cj and (ii) for
each j ∈ N such that cj ≥ ci, c′j − cj = c′i − ci ≥ 0, then for each j ∈ N such
that cj ≥ ci, Sj(c

′) ≥ Sj(c).

• Under the same hypotheses, we require that each agent who comes
before him should pay the same amount as he did initially.

Marginalism: Under the hypotheses of downstream cost monotonicity, for
each j ∈ N such that cj ≤ ci, Sj(c

′) = Sj(c).

• If the cost vector changes in such a way that each segmental cost ends
up at least as large as it was initially, each agent should pay at least as much
as he did initially.36 Such an increase in cost can be thought of as coming
from the addition of another problem for which agents are ordered in the
same way. Thus, the requirement can also be written in the following way:

35This property is called “monotonicity in costs” by Potters and Sudhölter (1999).
36This property appears in Aadland and Kolpin (1998) under the name of “cost mono-

tonicity”.
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Weak cost monotonicity: For each pair {c, c′} of elements of CN such that
c′ = c + c′′ for some c′′ ∈ CN , S(c′) ≥ S(c).

The next result focuses on the difference between the largest and smallest
contributions required of the agents.37

Theorem 5 (Combining Definition 3.2 and Theorem 3.1 of Aadland and
Kolpin, 1998) Among all selections from the no-subsidy correspondence sat-
isfying order preservation for contributions and weak cost monotonicity, the
constrained equal contributions rule is the only rule achieving the smallest
difference between largest and smallest contributions for each problem.

The strong solidarity requirement that if all cost parameters increase,
each agent should pay at least as much as he did initially is incompatible
with the no-subsidy constraints and equal treatment of equals. Indeed, let
c ∈ CN and x ≡ S(c). Let c′ ∈ CN be such that for each i ∈ N , c′i = max cj,
and x′ ≡ S(c′). Since the amount to be collected remains the same, the
monotonicity requirement implies x′ = x. By equal treatment of equals, all
components of x′ are equal. Thus, the same statement holds for x. However,
the agent with the smallest cost parameter in c may be required to pay more
than his cost parameter then.

• Still under the assumption that all cost parameters change in such a
way that each segmental cost ends up at least as large as it was initially, the
next property places an upper bound on increases in contributions: for each
agent, the sum of the increases in the contributions required of him and of
all agents who precede him should be no greater than the increase in his cost
parameter:38

Incremental no subsidy: For each pair {c, c′} of elements of CN such that
c′ = c+c′′ for some c′′ ∈ RN

+ , and for each i ∈ N ,
∑

j∈N :cj≤ci
(Sj(c

′)−Sj(c)) ≤
c′i − ci.

Theorem 6 (Theorem 3.4 of Aadland and Kolpin, 1998) The sequential
equal contributions rule is the only rule satisfying order preservation for con-
tributions, weak cost monotonicity, and incremental no-subsidy.39

37Theorem 5 bears some similarity to characterizations of the uniform rule offered by
Schummer and Thomson (1997).

38This property is introduced by Aadland and Kolpin (1998).
39Aadland and Kolpin (1998) also impose order preservation for benefits, as in their

formulation, this axiom is not implied by the others.
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Next, we examine another way of assessing how evenly the total cost is
collected from agents with different cost parameters. We focus on the smallest
contribution required from anyone, and then on the largest contribution.40

It is intuitive from their definitions that the constrained equal contributions
and sequential equal contributions rules favor agents at opposite ends of the
cost distribution. This intuition is confirmed by the following theorems:

Theorem 7 (Theorem 3.3 of Aadland and Kolpin, 1998) Among all selec-
tions from the no-subsidy correspondence satisfying order preservation for
contributions and weak cost monotonicity, the constrained equal contribu-
tions rule is the only rule minimizing the largest contribution for each prob-
lem.

Theorem 8 (Theorems 3.5 and 3.6 of Aadland and Kolpin, 1998)
(a) Among all rules satisfying order preservation for contributions, weak

cost monotonicity, and incremental no-subsidy, the sequential equal contri-
butions rule is the only rule minimizing the largest contribution for each
problem.

(b) Among all rules satisfying order preservation for contributions, order
preservation for benefits, and weak cost monotonicity, the sequential equal
contributions rule is the only rule maximizing the largest contribution for
each problem.

5.2 Variable population

In this section, we allow the population of agents to vary and we formulate
axioms designed to ensure the good behavior of rules in such circumstances.
For this purpose, we need to generalize the model. We imagine that there is
an infinite set of “potential” agents, indexed by the natural numbers N. In
each given problem, however, only a finite number of them are present. Let
N be the class of finite subsets of N. An airport problem is defined by first
specifying the population of agents involved, some N ∈ N , then a cost vector
c ∈ RN

+ . We still denote by CN the class of problems with agent set N . A
rule is a function defined over

⋃
N∈N CN , which associates with each N ∈ N

and each c ∈ CN a cost allocation for c. We denote the restriction of a rule
S to the subdomain of problems with agent set N ∈ N by S|CN .

40Aadland and Kolpin (1998) refer to this criterion as Rawlsian.
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• We will discuss two main ideas in the context of a variable population,
a monotonicity idea and an invariance idea. The first one is the expression
of the general objective of solidarity that has already provided the motiva-
tion for strong cost monotonicity, but this time it is applied to changes in
population. Solidarity says that when a change occurs, whether it is socially
desirable or not, if no one in particular bears any responsibility for it, the
welfares of all agents who are present before and after the change should be
affected in the same direction. In the present context, the arrival of a new
agent whose cost parameter is no greater than the cost parameter of any
agent already present can only be beneficial to them: one more potential
contributor to a project whose cost has not changed is good news. If the new
agent’s cost parameter is greater than the initial greatest cost parameter,
the amount to be collected increases, and solidarity implies that each agent
initially present should pay at least as much as he did initially, or that each
should pay at most as much as he did initially. However, in the presence
of the no-subsidy constraints, which imply that the agents initially present
should bear none of the additional cost that is incurred for the new agent to
be served, it makes sense to require, once again, that each of these agents
should pay at most as much as he did initially.41

Population monotonicity: For each N ∈ N , each c ∈ CN , and each N ′ ⊂
N , we have SN ′(c) 5 S(cN ′).

It follows directly from their definitions that most of the rules of Sec-
tion 3 are population monotonic. The slack maximizer rule is one of them
but this conclusion cannot be obtained by exploiting the known properties
of the nucleolus as a solution to TU games. Indeed, this solution is not pop-
ulation monotonic, even on the domain of concave games (Sönmez, 1994).
Nevertheless, the domain of airport problems is a subdomain of the domain
of concave games, and on it, this property holds (Sönmez, 1994).

For the priority rules, we cannot check the property unless they are prop-
erly redefined to accommodate variations in populations. What is needed
here is an order for each finite set of agents. It is of course natural that these
orders be related. Preferential treatment of an agent over some other agent
in some group should carry over to any group to which they both belong.
The most practical way to achieve this is to specify a “reference” order on the

41The property first appears, in the context of bargaining, in Thomson (1983a,b). For
a survey of the literature devoted to its study, see Thomson (1995).
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set of potential agents; then, for each problem, to work with the order that
the reference order induces on the set of agents who are actually present. If
this property is imposed, then population monotonicity does hold.

• Next, we turn to our invariance property. It says that the recom-
mendation made for any problem should always be in agreement with the
recommendation made for any problem obtained by imagining some agents
leaving with their payoffs, and “reassessing the situation” from the viewpoint
of the remaining agents.42 By this phrase, we mean defining a new problem
involving the remaining agents, and whose cost vector is recalculated so as to
take into consideration the fact that some payments have already been made.
In contrast to other models of fair allocation, for which a unique definition
usually stands out as most natural, there are several ways of defining this
reduced problem. Informally, this is because what has to be divided is not
a homogeneous whole (such as a social endowment), but it is composed of
segments used differently by different agents. When an agent leaves, instead
of thinking of his contribution as being an abstract part of the total cost, it
is appealing instead to impute it to these various segments. But how should
these imputations be defined? We propose several answers. In each of them,
the imputation is to the segments the agent uses, which seems very natural.
For the first proposal, we only consider the departure of the agent with the
lowest cost parameter, so there is nothing else to specify.

For each N ∈ N , each c ∈ CN , and each i ∈ N with ci = min cj, let x ≡
S(c) and rx

N\{i}(c) be the problem with agent set N\{i} defined by setting,

for each j ∈ N\{i}, agent j’s cost parameter equal to max{cj −xi, 0}, which
is equal to cj−xi since by definition of a rule, xi ≤ ci. Thus, rx

N\{i}(c) ∈ CN ′
.

First-agent consistency: For each N ∈ N , each c ∈ CN , and each i ∈ N
with ci = min cj, if x ≡ S(c), then xN\{i} = S(rx

N\{i}(c)).

First-agent consistency seems to be a very weak requirement, perhaps
too weak to be of much interest. However, if a rule satisfies first-agent con-
sistency, then by repeated application of the property, we find that the al-
location the rule chooses for any problem is invariant under the departure
of an arbitrary group of consecutive agents that includes the first agent.
Recall that one of the applications of the model is when the cost parame-
ters correspond to different temporal needs that agents have for a service.

42The idea has been the object of a large number of studies, reviewed in Thomson
(2005).
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In a temporal model, the departure of agents has a particularly appealing
interpretation. It means that the agents who are done first leave first.43,44

• Next, we consider the departure of an arbitrary agent. First, we think
of his contribution as being intended to help cover the part of the project
that he (and his successor(s) if any) use but his predecessors do not; unless
of course his contribution is larger than that segmental cost, in which case,
part of his contribution (the difference between these two numbers) would
have to be thought of as intended to help cover the part of the project that
he, (his successor(s) if any), and his immediate predecessor use; unless his
contribution is larger than these two preceding segmental costs, in which
case part of his contribution (the difference between his contribution and
the sum of the two preceding segmental costs) would have to be thought of
as intended to help cover the part of the project that he, (his successor(s)
if any), and his two immediate predecessors use; and so on. In defining
the reduced problem, this amounts to decreasing the cost parameters of all
agents coming after him by his contribution, and to possibly decrease in
succession the cost parameters of the agents coming just before him, starting
with the closest ones. Given N ∈ N , and c ∈ CN , let x ≡ S(c). Let i ∈ N .
The downstream-subtraction reduced problem of c with respect to
N ′ ≡ N\{i} and x, dx

N ′(c), is the problem with agent set N ′ and cost
vector c′ ∈ RN ′

+ defined by

1. For each j ∈ N ′ such that cj < ci, c′j ≡ min{cj, ci − xi},
2. For each j ∈ N ′ such that cj ≥ ci c′j ≡ cj − xi.

The requirement is that in the reduced problem, each agent should pay
what he was initially asked to pay:45

Downstream-subtraction consistency: For each N ∈ N , each c ∈ CN ,
and each N ′ ⊂ N , if x ≡ S(c), then xN ′ = S(dx

N ′(c)).

43The natural form taken by consistency in this context is discussed by Thomson (1992).
44All three properties are proposed by Potters and Sudhölter (1999).
45The amount to be collected is the largest cost parameter, so one should pay special

attention to the last agent leaving. By the no-subsidy constraints, the last agent pays at
least the last segmental cost, so if he is the one to leave, the sum of the payments required
of the remaining agents is equal to the new largest cost parameter. Thus, there is no
restriction as to who can leave, by contrast to the next definition.
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For our second definition of consistency, we take the opposite viewpoint,
and impute an agent’s contribution to the initial segments. Then, each agent
benefits from it. However, we do not consider the possibility that the agent
who leaves is the one whose cost parameter is the largest (unless he is not the
only one with the largest cost parameter), as this parameter determines the
cost that has to be covered, and the new cost to be covered would have no
reason to be related to the sum of the contributions required of the remaining
agents. Let i ∈ N \ {n}. The uniform-subtraction reduced problem
of c with respect to N ′ ≡ N\{i} and x, urx

N ′(c), is the problem with
agent set N ′ and cost vector c′ ∈ RN ′

+ defined by

1. For each j ∈ N ′ such that cj < ci, c′j ≡ max{cj − xi, 0},
2. For each j ∈ N ′ such that cj ≥ ci, c′j ≡ cj − xi.

Here too, the requirement is that in the reduced problem (which is indeed
well-defined), each agent should pay what he was initially asked to pay.

Uniform-subtraction consistency: For each N ∈ N , each c ∈ CN , and
each i ∈ N , if agent i is not the unique agent such that max cj = ci, if
x ≡ S(c), then xN\{i} = S(urx

N ′(c)).

Our next two results are characterizations of two of our central rules.
Remarkably, they differ mainly in which version of consistency is imposed:46

Theorem 9 (Potters and Sudhölter, 1999) The constrained equal benefits
rule is the only rule satisfying equal treatment of equals, homogeneity, last-
agent cost additivity, and uniform-subtraction consistency.

Theorem 10 (Potters and Sudhölter, 1999) The slack maximizer rule is the
only rule satisfying equal treatment of equals, homogeneity, last-agent cost
additivity, and downstream-subtraction consistency.

The proofs of these characterizations exploit correspondences between
airport problems and solutions to TU games but a version of Theorem 10
is available that is based on axioms that almost entirely focus on the last

46Potters and Sudhölter impose “covariance”, the conjunction of homogeneity and last-
agent cost additivity, but the former property is redundant.
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agent and whose proof involves no concept or technique of the theory of
TU games. Recall that weak last-agent cost additivity is obtained from last-
agent cost additivity by dropping from the conclusion the requirement that
the contributions made by the agents whose cost parameters remain the
same should not change. Now, call last-agent consistency the requirement
obtained from downstream-substraction consistency by applying it only to the
departure of the last agent.47

Theorem 11 (Yeh, 2003) The slack maximizer rule is the only rule satisfy-
ing equal treatment of equals, weak last-agent cost additivity, and last-agent
consistency.

The final result involve one additional property, which is the weakening
of independence of at least-as-large costs obtained by applying it only to the
first agent.

Theorem 12 (Chun, Kayı, and Yeh, 2006) (a) The sequential equal contri-
butions rule is the only rule satisfying equal treatment of equals, first-agent
independence of at least-as-large costs, and first-agent consistency.

(b) It is the only rule satisfying the identical-cost lower bound, others-
oriented cost monotonicity, and first-agent consistency.

• Based on notions of consistency for coalitional games, Albizuri and
Zarzuelo (2006) propose two alternative definitions of a reduced problem,
and state characterizations of the sequential equal contributions and slack
maximizer rules. The requirements on a rule are simply coincidence with
the two-agent version of these rules (recall that they agree in that case) and
either form of consistency.

•Another way of applying the idea of consistency involves generalizing the
class of problems under investigation. This generalization is an adaptation to
the present model of an idea developed in the context of the classical model
of exchange when agents have individual endowments. An airport problem
with transfer is a pair (c, E) ∈ RN

+ × R such that E ≤ max ci, interpreted
as follows: as before, N is the set of agents, and for each i ∈ N , ci is the
cost of the facility needed to satisfy agent i. In addition, E is a (positive
or negative) transfer from an outside source to the group intended to help

47We drop the reference to “downstream-subtraction” since no agent is downstream of
the last agent.
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them cover the cost of the project they choose if positive, and interpreted
as a tax if negative. Let T N be the domain of all such problems.48 An
allocation for (c, E) ∈ T N is a vector x ∈ RN such that 0 5 x 5 c and∑

xi + E = max ci.
When some agents leave with their payoffs, consistency now takes a very

simple form. In defining the reduced problem, the contribution made by
each agent who leaves is simply subtracted from the transfer parameter. Let
r̃x
N ′(c, E) ≡ (cN ′ , E −∑

N\N ′ xi) be our notion of a reduced problem.

Consistency for airport problems with transfers: For each N ∈ N ,
each (c, E) ∈ T N , and each N ′ ⊂ N , if x ≡ S(c, E), then xN ′ = S(r̃x

N ′(c, E)).

We see several natural ways of redefining the rules introduced in Section 3
depending upon whether one thinks of the transfer as intended for the entire
set of agents, or for any group of agents, or whether it is intended to be
distributed equally among all agents (subject to no agent’s subsidy exceed-
ing his cost parameter), or by means of some other formula (an alternative
that comes to mind is proportional division to the individual costs). Suppose
that the first approach is adopted. Then, consider the sequential equal con-
tributions rule. For each order in which agents may arrive, the contribution
required of each agent when he arrives is set equal to what it was according to
the original definition if the agent is not the last one; otherwise it is equal to
the total cost minus the sum of the contributions already made by all other
agents and the transfer. If the second approach is adopted, the transfer term
is subtracted whether or not the agent is the last one to arrive. For the
constrained equal benefits rule, two parallel choices are available depending
upon how the no-subsidy constraints are revised.

To each choice of a revision of the no-subsidy constraints comes a natural
formulation of the reduction operation. For the first choice, we only change
the worth of the grand coalition in the reduced problem (subtracting from
the cost that has to be covered by a coalition the contributions made by the
agents who leave). For the second one, we perform the subtraction for all
coalitions.

48This concept is the counterpart for airport problems of the concept of a generalized
economy (Thomson, 1992). A model of cost allocation in which a production function
is explicitly specified includes this model as a special case, by allowing the production
function not to take the value 0 at 0 (Kolpin, 1998).
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6 Cost allocation on trees.

In this section we generalize the model to trees. Think of a road network
linking all agents to a central place where they get supplies. Then, instead of
being linear, the network whose cost has to be shared has a “tree structure”.
A tree is a graph that is connected and has no cycle. There is also a dis-
tinguished node called the root of the tree, the other extremal notes being
called leaves. Nodes are labelled by agents in the set N . The root is given a
separate label. The cost of the direct path from a node to the root is the cost
of serving the agent at the node. If an agent is on the path from some other
agent to the root, its cost parameter is at most as large as the cost parameter
of that second agent. A pair (T, c) as just described is a tree problem. The
notion of a segment is as before. The cost of a tree T , denoted c(T ), is the
sum of the costs of the segments of which it is composed. A subtree of a tree
T is a subset of T that is also a tree. A rooted subtree of T is a subtree of
T that includes the root. The cost of servicing a group of agents is the cost of
the smallest rooted subtree that contains all the agents in the group, namely
the costs of the segments of which this subtree consists. An allocation for
a tree problem (T, c) is a vector x ∈ RN whose coordinates, indexed by
agents, satisfy 0 5 x 5 c and

∑
N xi = c(T ).

Gellekom and Potters (1997) and Koster, Molina, Sprumont, and Tijs
(2001) consider such a formulation and calculate for it the counterparts of the
sequential equal contributions and constrained equal benefits rules. The logic
is transparent once the counterparts of the no-subsidy constraints themselves
are defined. An allocation satisfies the no-subsidy constraints for (T, c) ∈
T N if no group of agents pays in total more than what is required to satisfy
its needs. We consider in turn each of the rules defined for airport problems
and discuss how to generalize its definition to trees.

• Sequential equal contributions rule (Koster et al., 2001). We still
divide equally the cost of each segment among all the agents who use it. The
contribution required of each agent is the sum of these partial payments.
The priority rules and the random arrival rule are defined as for airport
problems. The sequential equal contributions rule is still an average of the
priority rules and it still coincides with the random arrival rule.

• Constrained equal contributions rule (Koster et al., 2001). For each
rooted subtree, calculate the per capita cost of the subtree. Find the largest
rooted subtree with minimal per capita cost. Remove it and assign to each
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agent in the subtree this per capita cost. What remains of the original tree is
a union of disjoint subtrees. The root of each of them is a leaf of the subtree
that has been removed. Also, the per capita cost of any rooted subtree of
the second stage is greater than the minimal per capita cost identified in the
first stage. (If a second-stage rooted subtree had a lower per capita cost, by
concatenating it to the rooted path from which it emerges, we would obtain
a rooted subtree of the original tree whose per capita cost is smaller than the
per capita cost of the first stage, which therefore would not be the smallest).
Repeat the operation for each of these subtrees.

Koster et al (2001) also define extensions of the sequential equal con-
tributions and constrained equal contributions rules designed to ac-
commodate asymmetric treatments of agents, by introducing weights. They
show that as the weights vary, the set of allocations that result is equal to
the core. The characterizations of these rules presented above extend.

• Constrained proportional rule. For each rooted subtree, the process
is similar to the definition of the previous rule except that at each stage, we
calculate the proportional contributions for the subtree. That is, if there is
one branch that splits up into two and the three costs are 5, 7, and 10, the
proportions required of individual costs to cover the three subtrees are 5

5
,

5
5+7

5, and 5
5+7

7. The smallest of these numbers is the second one.

• Constrained equal benefits rule. Let λ ∈ R+ be such that
∑

max{ci−
λ, 0} = c(T ). For each i ∈ N , let x ≡ max{ci − λ, 0}. The no-subsidy
constraints are met at x. This can be shown by induction on the number of
branches of the tree.

Van Gellekom and Potters (1997) introduce axioms pertaining to possible
changes in the structure of the tree, such as deleting links between nodes
whose cost is zero, or deleting agents. They also study consistency issues and
base on these various axioms a characterization of a one-parameter family
of rules. This family, previously discussed in the context of linear facilities,
connects the constrained equal contributions and slack maximizer rules (see
the paragraph following the introduction of this rule).

7 Empirical studies

Situations close to the ideal theoretical model studied in the foregoing pages
exist in the real world and it is useful to understand the sort of arrange-
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ments that people have made to deal with them. An interesting example is
irrigation. Aadland and Kolpin (2004) survey ranchers distributed along a
large number of irrigation ditches in Montana, in an attempt to determine
whether environmental factors help anticipate the rules they use. They argue
that a central property that distinguishes between rules is whether what a
given agent pays is affected by the cost parameters of downstream agents,
and identify criteria that can be used to predict which of these rules will tend
to prevail.

8 Extensions of the model

We conclude this survey by indicating a number of directions for future re-
search. Some have been the object of some initial work but in most cases,
many interesting questions remain. They concern extending the rules de-
fined for the basic model, reformulating the axioms for these extensions,
introducing new axioms that reflect additional considerations emerging from
the generalization, and understanding their implications.

1. Several airports. Suppose that several airports have to be built, each
airline possibly using several of them. When defining additivity we have
essentially enlarged the problem in this way, but an assumption there was
that all agents use all facilities. A more general formulation would allow
each agent to use only some of the facilities. Dubey (1982) considers such an
extension of the model and characterizes the sequential equal contributions
rule along the line of Shapley’s (1953) original characterization of the Shapley
value. This result constitutes a slight generalization of Theorem 4.

2. Accommodating profits. In addition to the cost parameters, we may also
have information about the profit that each agent derives from the facility.
How should this information be taken into account? This extension of the
model is proposed by Littlechild and Owen (1976) and further studied by
Brânzei, Iñarra, Tijs, and Zarzuelo (2006) (for a discussion of the relation,
see Arin, 2004). They develop an algorithm to calculate the nucleolus of the
associated game.

3. Accommodating unions. Another way to enrich the model is to imagine
that planes belong to airlines, and to look for a division of the cost between
airlines first, then planes. This approach is taken by Vásquez-Brage, van
den Nouweland, and Garćıa-Jurado (1997). They show that if the value for
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coalitional games defined for games with “coalition structures” defined by
Owen (1977) is used to allocate cost, then airlines gain by merging. They also
provide a characterization of the Owen value for the model they formulate.

4. Accommodating transfers from outside sources. This concept was already
discussed in Section 5.2 in connection with consistency, but additional prop-
erties with respect to change in this parameter can also be formulated, such
as monotonicity with respect to this transfer, or composition properties (for
instance, invariance with respect to whether the transfer is made in one or
several installments).

5. Accommodating crowding effects. Suppose that the cost of each segment
depends on the number of agents who use it. For each n ∈ N, we specify a
function giving the cost of a runway of length ` when n agents use it. This
cost may also be written as a function of the numbers of planes of each type
using it, as opposed to their sum. How should such external effects be taken
into account?

6. Accommodating incentives. The length of the service demanded by an
agent depends on how much he will be charged. So the choice of which rule
to use has an impact on the cost parameters defining the problem to be
solved. A recent strategic analysis of the problem is due to Arin, Iñarra, and
Luquin (2006).

7. Accommodating general networks. Instead of assuming that the facility
whose cost has to be covered is a line or a tree, a realistic and more general
case is when it is a general graph, and the formal model includes cost in-
formation on the link between any two agents. Although efficiency dictates
that the links that are used to connect all agents to the source will have a
tree structure, the possibility now exists of assessing agents as a function
of the costs of links that are not used, and relational axioms can be formu-
lated involving all links. The literature on the subject is too extensive to
be described here. Recent contributions are by Dutta and Kar (2004) and
Bergantiños and Vidal-Puga (2004).

8. Min problems. Consider a group of agents (municipalities) considering
building a facility that they will jointly use. For each agent, there is a cost
of building it. Efficiency dictates that the facility be built where it is the
cheapest. Now, the problem is to divide the minimal coordinate of the cost
vector. The class of games is defined in Thomson (2006).
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9. Sequential rules. Let us generalize the concept of a rule, as a mapping
that specifies, for each agent, an itemized list of contributions, one for each
of the segment he uses. His total contribution is the sum of these numbers.
The sequential equal contributions rule is defined in this way, but the general
concept seem to be worth studying. The concept is proposed by Thomson
(2006).
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Prop \rules Seq Seq Constr Constr Constr Slack Priority
eq cont full cont eq cont eq benef prop max’zer rule
SEC SFC CEC CEB CP SM D≺

Cost boundedness + + + + + + +
No-subsidy + + + + + + +

Id-cost lower bound + − + − − − −
Equal treat equal + 3 , 4 + + + 9 + + 10 , 11 −

Order pres for contrib + 6 − + + + + −
Order pres for benefits + 6 + + + + + −

Homogeneity + + + + 9 + + 10 +
Continuity + − (t) + + + + +

Ind of at-least-as-large costs + 3 − (t) − − − − +
Last-agent cost add + − (t) − + 9 − + 10 +

Weak last-agent cost add + − (t) − + − + 11 +
Cond cost additivity + 4 − (t) − − − − +
Individual cost mon + − (t) + + + + +

Others-oriented cost mon + − (t) + + + +
Downstream cost mon + + + + + + +

Weak cost mon + 6 + + − − + +
Incremental no-subsidy + 6 − (t) + + + + +

Population mon + + + + + + +
First-agent cons + + + + − + +
Uniform sub-cons − − − + 9 − − −

Downstream-sub cons − + + − − + 10 +
Last-agent cons − + + − − + 11 +

Barg game version Lexi E XEL Lexi KS D≺

TU game version Shapley Dutta−Ray Mod Nuc Nucleolus Dic≺

Table 1: Showing which properties the main rules satisfy. A “+” in
a cell means that the property in the row is satisfied by the rule indexing the
colum. A “−” means the opposite. The numbers refer to characterizations. The
number 3, for instance, appearing in the first column marks the axioms appearing
in Theorem 3, a characterization of the sequential equal contributions rule. The
notation t next to a − sign in the column for the sequential full contributions
rule indicates that the property is only violated when there are ties between cost
parameters.
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Brânzei, R., E. Iñarra, S. Tijs, and J.M. Zarzuelo, “A simple algorithm for
the nucleolus of airport profit games”, International Journal of Game
Theory 34 (2006), 259-272.

Chun, Y., “The equal-loss principle for bargaining problems”, Economics
Letters 26 (1988), 103-106.

Chun, Y., C. Kayı, and C.-H. Yeh, “Consistency and the sequential equal
contributions rule for irrigation problems”, mimeo, 2006.

Dubey, P., “The Shapley value as aircraft landing fees-revisited”, Manage-
ment Science, 28 (1982), 869-874.

Dutta, B. and A. Kar, “Cost monotonicity, consistency, and minimum cost
spanning tree games”, Games and Economic Behavior, 48 (2004), 223-
248.

Dutta, B. and D. Ray, “A concept of egalitarianism under participation con-
straints”. Econometrica, 57 (1989), 615–635.

van Gellekom, A. and J. Potters, “Consistent solution rules for standard tree
enterprises”, mimeo, 1997.

38



Imai, H., “Individual monotonicity and lexicographic maxmin solution”,
Econometrica 51 (1983), 389-401, erratum in Econometrica 51, 1603.

Kalai, E. and M. Smorodinsky, “Other solutions to Nash’s bargaining prob-
lem”, Econometrica 43 (1975), 513-518.

Kolpin, V., “Equitable nonlinear price regulation: an alternative approach to
serial cost sharing”, Games and Economic Behavior 22 (1998), 61-83.

Koster, M., E. Molina, Y. Sprumont, and S. Tijs, “Sharing the cost of a
network: core and core allocations”, International Journal of Game
Theory 30 (2001), 567-599.

Littlechild, S. C. “A simple expression for the nucleolus in a special case”,
International Journal of Game Theory, 3 (1974), 21–29.

Littlechild, S.C. and G. Owen, “A simple expression for the Shapley value in
a special case”, Management Science, 3 (1973), 370–372.

—— and ——, “A further note on the nucleolus of the “airport game”,
International Journal of Game Theory, 5 (1976), 91–95.

Littlechild, S.C. and G.F. Thompson, “Aircraft landing fees: a game theory
approach”, Bell Journal of Economics, 8 (1977), 186–204.

Meertens, M.A. and J.A.M. Potters, “The nucleolus of trees with revenues:
monotonicity properties and a characterization”, University of Ni-
jmegen, mimeo, 2004.

Moulin, H., and S. Shenker, “Serial cost sharing”, Econometrica, 60 (1992),
1009-1037.

Nash, J. F., “The bargaining problem”, Econometrica 28 (1950), 155-162.
O’Neill, B., “A problem of rights arbitration from the Talmud”, Mathematical

Social Sciences, 2 (1982), 345–371.
Owen, G., “Values of games with a priori unions”, in Mathematical Eco-

nomics and Game Theory (R. Henn and R. Moeschlin, eds), Springer-
Verlag, Berlin, 1977, 76-88.

Potters, J. A. M. and P. Sudhölter, “Airport problems and consistent solution
rules”, Mathematical Social Sciences, 38 (1999), 83–102.

Schmeidler, D. “The nucleolus of a characteristic function games”, SIAM
Journal on Applied Mathematics, 17 (1969), 1163–1170.

Schummer, J. and W. Thomson, “Two derivations of the uniform rule and
an application to bankruptcy”, Economics Letters, 55 (1997), 145–168.

Shapley, L. S. “A value for n-person games”, in H. Kuhn and A. W. Tucker
(eds.), Contributions to the Theory of Games, vol. 2, (1953), 307–317.

——, “Cores of convex games”, International Journal of Game Theory, 1
(1971), 11–26.

39



Sönmez, T., “Population-monotonicity of the nucleolus on a class of public
good problems”, University of Rochester mimeo, forthcoming in Math-
ematical Social Sciences, 1994.

Sudhölter, P., “The modified nucleolus: properties and axiomatizations”,
International Journal of Game Theory, 26 (1997), 147–182.

Thomson, W., “The fair division of a fixed supply among a growing popula-
tion”, Mathematics of Operation Research, 8 (1983a), 319–326.

——, “Problems of fair division and the egalitarian principle,” Journal of
Economic Theory, 31 (1983b), 211-226.

——, “Consistency in exchange economies”, University of Rochester mimeo,
1992.

——, “Population-monotonic allocation rules”, Chapter 4 in Social Choice,
Welfare, and Ethics (W. Barnett, H. Moulin, M. Salles and N. Schofield,
eds) Cambridge University Press, 1995, 79-124.

——, Bargaining Theory: the Axiomatic Approach, book manuscript, 1999.
——, “Axiomatic and game-theoretic analyses of bankruptcy and taxation

problems: a survey”, Mathematical Social Sciences, 45 (2003), 249-297.
——, “Consistent allocation rules”, University of Rochester mimeo, 2005.
——, “Min problems and sequential rules for airport problems”, mimeo, 2006.
Vásquez-Brage, M., A. van den Nouweland, and I. Garćıa-Jurado, “Owen’s
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