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1 Introduction

Economists are often criticized for paying little attention to issues of fairness
in distribution. It is indeed true that many shy away from making recom-
mendations on the fair allocation of goods and services, perhaps fearing the
necessary reliance on value judgements of such recommendations. However,
in the last thirty years, a variety of formal criteria of economic justice have
been introduced that have broad conceptual appeal as well as significant op-
erational power. Our purpose is to review this literature. Mathematically,
the objects of study are mappings that associate with each economy in some
domain a non-empty subset of its set of feasible allocations. These mappings
are called “solutions” or “rules”.

The Bergson-Samuelson social welfare functions (Bergson, 1938; Samuel-
son, 1938), a central tool in traditional welfare economics, do provide the
basis for answers to distributional questions in the form of complete order-
ings defined on the space of vectors of utilities (Chapter 14). However, they
are in general not ordinal, and in fact they often rely on interpersonal com-
parisons of utility. The conceptual and practical issues associated with the
measurement of an agent’s utility, the choice of scales in which to make in-
terpersonal comparisons of utility comparisons, and the manner in which to
make them, are discussed in Chapter 14.

The social choice literature that originated in Arrow’s work (1951)
(Part I), partly as a criticism of the Bergson-Samuelson approach, does not
require utility information, but one may argue that its formulation is too
abstract to be directly relevant to the understanding of concrete resource
allocation problems such as problems of fair allocation. Indeed, it ignores
information that gives such problems their specificity. The mathematical
structure of consumption spaces is not retained, so that restrictions on pref-
erences that would be natural to impose cannot be formulated. Rules cannot
be defined that take into account that information, nor can requirements on
rules that are meaningful for their evaluation in each particular context, be
expressed.

It is only in 1967 that an ordinal equity criterion designed for the evalu-
ation of choices in concretely specified allocation models was first proposed,
“no-envy” (Foley, 1967). This criterion has since been the object of a large
number of studies. Its limitations have been uncovered and alternative no-
tions offered, in part to remedy these limitations. Although it remains im-
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portant, we will see that the literature has developed much beyond it.
On what basis should we evaluate a solution? First of all, of course, is

our intuition about what is “fair”. We should also understand when it is
compatible with other fundamental requirements, such as efficiency. If cer-
tain minimal “rights” or “guarantees” have to be offered to agents, does it
protect these rights and does it offer these guarantees? Another considera-
tion is the scope of its applicability. We should ask whether it performs well
on “classical” domains of privately appropriable goods, that is, when these
goods are infinitely divisible and preferences satisfy standard assumptions of
continuity, monotonicity, and convexity, and production sets (when included
in the specification of economies) are similarly well-behaved. But we should
also inquire whether it can accommodate wider classes of situations, when
public goods or indivisible goods are present, when preferences may be sati-
ated or exhibit consumption externalities, and when technologies are subject
to increasing-returns-to-scale or externalities.

How adaptable is the solution to the evaluation of trades, as opposed to
that of allocations, and to the evaluation of how fairly groups, as opposed to
individuals, are treated? Its informational demands and ease of computation
are also relevant issues. Is it appropriately responsive to changes in the pa-
rameters defining the economy, such as increases in the resources available,
improvements in technology, variations in the population of agents involved,
or changes in their preferences? Does it give agents the incentive to exert
themselves or to provide accurate information about their tastes or the tech-
nologies they are familiar with? How vulnerable is it to manipulation? And
can it be implemented by well-chosen game forms? All of these are questions
that should be addressed.

This survey deals only with concretely specified economic models and or-
dinal solutions. Yet, it is undeniable that distributional judgments are often
based on utility information, and even involve interpersonal comparisons of
utility. And great is the intellectual appeal of the all-encompassing theo-
ries of the kind envisioned by Arrow (1951), Sen (1970), Rawls (1971), and
others. However, by targeting more narrowly resource allocation problems,
a lot more can be said, and this, without invoking concepts of utility. We
will attempt here to find out how far such an approach can take us. The
debate about which variables one should focus on when discussing fairness
(resources, welfares, utilities, opportunities, functionings) has involved many
writers (Dworkin, 1981a,b; Cohen, 1989, 1990; Sen, 1970; Roemer, 1996).
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Here, we center our attention on resources and opportunities, understood in
their physical sense.

The scope of our study is limited in another way, to models in which
agents’ preferences play a central role. Although it is methodologically rele-
vant, we ignore the literature concerning certain models of cost allocation in
which demands are taken as fixed data, as they have been the object of other
surveys in this volume, and the literature on the adjudication of conflicting
claims (Moulin, Chapter 6; Thomson, 2003). Also, we only make brief refer-
ence to models whose mathematical structures almost by definition preclude
the existence of allocations meeting any reasonable definition of fairness. An
example is when indivisible goods have to be allocated but monetary com-
pensations are not possible. Finally, and although we see their study as an
integral part of the program under discussion here, we leave strategic issues
aside. They too are the subject of other chapters (Barberà, Chapter 23).

Earlier surveys covering some of the same ground as the present one are
Thomson and Varian (1985), Young (1985), Arnsperger (1994), and Moulin
and Thomson (1997). Book-length treatments are Kolm (1972, 1997), Young
(1994), Moulin (1995, 2003), Thomson (1995c), Brams and Taylor (1996),
Fleurbaey (1996b), and Roemer (1996).

As far as the search for meaningful social orderings in the context of
resource allocation is concerned, we note that an important axiomatic liter-
ature has recently been developed (Fleurbaey and Maniquet and coauthors,
Chapter 21). These advances are conceptually related to the program we
describe here. A precursor of this work is Goldman and Sussangkarn (1978)
and recent contributions are by Tadenuma (2001, 2005).

2 A note on the approach followed

We use the classical model to introduce the central concepts. In subsequent
sections, we revisit these concepts in the context of several other models.
Much of the literature we survey is axiomatic. For a discussion of this ap-
proach in this context we refer to Thomson (2001), but a short presentation
may be useful at this point.

Our goal is to identify well-behaved solutions and rules. Requirements
on these mappings, given the mathematical expressions of axioms, are for-
mulated. Their logical relations are clarified and their implications, when
imposed singly and in various combinations, are explored. For each such
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combination, do solutions exist that satisfy all of them? If yes, can one
characterize the class of solutions satisfying them?

Requirements can be organized into two main categories. “Punctual”
requirements apply to each economy separately; “relational” requirements
relate choices made across economies. The first category can be subdivided:
one subcategory consists of bounds on welfares defined agent-by-agent, in
an intra-personal way; some are lower bounds, offering agents welfare guar-
antees; others are upper bounds, specifying ceilings on their welfares. The
other subcategory consists of concepts based on inter-personal comparisons
of bundles, or more abstractly, “opportunities” or “circumstances”, involving
exchanges of, or other operations performed on, these objects.

The category of relational requirements can also be subdivided. First are
various expressions of the central idea of solidarity: when the environment in
which agents find themselves changes, and if no one in particular is respon-
sible for the change, (or no one in a particular group of agents is responsible
for it,) the requirement is that the welfares of all agents, (or all agents in this
particular group), should be affected in the same direction: these agents—we
call them the “relevant” agents—should all end up at least as well off as they
were initially, or they should all end up at most as well off. In implementing
this general idea, the focus of each study is usually on one specific parame-
ter entering the description of the environment under consideration. When
this parameter belongs to a space equipped with an order structure, which
is often the case, one can speak of the parameter being given a “greater”
or “smaller” value in that order. Examples are the resources available (a
point in a vector space), the technology (a subset of a vector space), and the
population of agents present (a natural number). Then, depending on which
assumptions are made on preferences, together with efficiency, the solidarity
idea often implies a specific direction in which welfares should be affected.
It tells us that all relevant agents should end up at least as well off as they
were initially, or it tells us that they should all end up at most as well off.
Thus, solidarity takes the form of what are usually called “monotonicity”
requirements.

The other subcategory of relational requirements are expressions of the
idea of robustness. They are motivated less by normative considerations than
by the desire to prevent the solution from being too dependent on certain
data of the problem. In that family are several notions of conditional invari-
ance under changes in preferences, resources, technology, or populations. A
number of those are particularly relevant to the understanding of strategic

4



issues, but, as already mentioned, other contributors to this volume have
reviewed the strategic component of the axiomatic literature. For that rea-
son, we only make passing mention of studies involving both normative and
strategic principles but in which the latter play a central role.

Although the general principles just discussed are few, for each particular
model, some adaptation is often necessary. This is what makes the work in-
teresting and challenging. Also, because models vary in their mathematical
structures, the implications of a given principle may differ significantly from
one to the other. For instance, monotonicity requirements are very restric-
tive for the classical model when imposed in conjunction with no-envy and
efficiency, but not so in the context of allocation with single-peaked pref-
erences. This survey should help readers gain an appreciation of this twin
fact, the great generality of the principles invoked and the specificity of their
implications for each model.

Important remark on notation and language. We examine in succes-
sion several classes of economies, starting with the canonical model which
concerns the allocation of a bundle of unproduced goods among agents
equipped with standard preferences. We introduce each issue in the context
of this model, and study it in the context of several other models in subse-
quent sections. We consider economies with public goods, economies with
indivisible goods, economies with single-peaked preferences, and economies
in which the dividend is a non-homogenous continuum. When we turn to
these models, and in order to save space, we do not rewrite all the definitions,
unless the necessary adjustments are not straightforward. We hope that no
confusion will result from taking this shortcut.

Our generic notation for an agent set is N and when this set is fixed, N ≡
{1, . . . , n}. Some of our relational axioms involve variations of populations.
To allow for such variations, we imagine then that agents are drawn from
an infinite universe of “potential” agents, the set N of natural numbers. We
denote by N the class of finite and non-empty subsets of N, and N is now
the generic element of N . In the statements of many results, solutions and
rules are required to satisfy certain axioms none of which involves changes
in populations. Other relational axioms may be invoked however, specifying
how rules should respond to changes in other parameters. In each case,
the domain should be understood to be rich enough that changes in these
parameters can actually take place.

Our generic notation for solutions is the letter ϕ. We place statements
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pertaining to strategic questions within square brackets to help relate our
survey to the work reviewed in other chapters. We always assume preferences
to be continuous (when continuity is meaningful), and omit this assumption
from the formal statements of the theorems.

A solution is single-valued—we refer to it as a rule then—if for
each economy in its domain, it selects a single allocation, and essentially
single-valued if whenever it selects several allocations, these allocations are
Pareto-indifferent, that is, all agents are indifferent between them. An
essentially single-valued subsolution of a solution ϕ is a selection from ϕ.

3 The classical problem of fair division

Here is our first model. There are ` privately appropriable and infinitely
divisible goods and a set N ≡ {1, . . . , n} of agents. Each agent i ∈ N is
described by means of a (continuous, as indicated previously) preference
relation Ri defined on R`

+. The strict preference relation associated with
Ri is denoted by Pi and the corresponding indifference relation by Ii. Let
R ≡ (Ri)i∈N be the profile of preference relations.

LetR be our generic notation for a domain of admissible preferences.
A preference relation is classical if it is (i) continuous: lower and upper con-
tour sets are closed, (ii) monotonic: if z′i > zi, then z′i Pi zi,

1 and (iii) convex:
upper contour sets are convex. On occasions, we assume preferences to be
strictly monotonic: if z′i ≥ zi, then z′i Pi zi.

Since preferences are continuous, we can represent them by continuous
real-valued functions, and it is sometimes convenient to do so. For each i ∈
N , let ui:R`

+ → R be such a representation of agent i’s preferences, and let
u ≡ (ui)i∈N . Except in a few places in this exposition, these representations
have no cardinal significance. Indeed, the theory developed here is based
only on preferences.

The vector of resources available for distribution, the social endow-
ment, is denoted Ω ∈ R`

+.
Altogether, an economy is a pair (R, Ω) ≡ ((Ri)i∈N , Ω) ∈ RN ×R`

+. Let
EN be our generic notation for a domain of economies.

1Vector inequalities: x = y means that for each i ∈ N , xi ≥ yi; x ≥ y means that x = y
and x 6= y; x > y means that for each i ∈ N , xi > yi.
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In an economy, resources are owned collectively, whereas in an economy
with individual endowments, each agent starts out with a particular share
of society’s resources. Agent i’s endowment, a vector ωi ∈ R`

+, is usually
interpreted as a bundle that he has the right to dispose of as he wishes.
However, this interpretation, which strongly suggests that he is entitled to
a welfare that is at least the welfare he experiences when consuming his
endowment, is not the only possible one.2 Formally, ω ≡ (ωi)i∈N is simply
a reference allocation on which the final choice is allowed, or required, to
depend. A generic economy is now a pair e ≡ (R,ω) with R ∈ RN and
ω ∈ R`N

+ .
We distinguish between the problem of fairly allocating a social endow-

ment from the problem of fairly re-allocating individual endowments. A fea-
sible allocation for (R, Ω) is a list z ≡ (zi)i∈N ∈ R`N

+ such that
∑

zi = Ω,3

and a feasible allocation for (R, ω) is a list z ≡ (zi)i∈N ∈ R`N
+ such that∑

zi =
∑

ωi. The i-th component of a feasible allocation is agent i’s con-
sumption bundle. The equality sign appearing in the feasibility constraint
indicates the absence of free disposal. When preferences are monotonic and
efficiency is required, as is mostly the case here, this assumption entails no
loss of generality. In Section 11, where we drop monotonicity, the equality
takes real significance. Let Z(e) be the set of feasible allocations of e ∈ EN .
A feasible allocation of particular interest is equal division, ( Ω

|N | , . . . ,
Ω
|N |).

We designate it as ed.
We recall that an allocation is (Pareto)-efficient if it is feasible and there

is no other feasible allocation that Pareto-dominates it, which means that
each agent finds it at least as desirable and at least one agent prefers. It
is weakly efficient if there is no other feasible allocation that each agent
prefers. The Pareto solution associates with each economy its set of effi-
cient allocations.

Sometimes, we find it notationally convenient to assume that preferences
are defined over the cross-product of the consumption spaces. Instead of
statements of the form “zi Ri z′i,” we write “z Ri z′.” Also, given z, z′ ∈ Z(e),
if for each i ∈ N , zi Ri z′i, we write z R z′, the statements z P z′ and z I z′

being understood in a similar way. When externalities in consumption are
present, such notation is of course necessary.

2This is why we prefer avoiding the phrase “private ownership economy”, which is
commonly used.

3Unless otherwise indicated, a sum without explicit bounds should be understood to
be carried out over all agents.
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Quasi-linear preference profiles are of particular interest: for such
a profile, there is a good whose consumption is usually unrestricted in sign
(but sometimes non-negativity is imposed)—we always let it be good 1—such
that all preferences can be given representations that are separably additive
in good 1 on the one hand, and a function vi:R`−1

+ → R of the remaining
goods on the other. Designating by xi ∈ R agent i’s consumption of good 1
and by yi ∈ R`−1

+ his consumption vector of the other goods, we can write
ui(xi, yi) = xi + vi(yi). Quasi-linear economies lend themselves to the appli-
cation of the solution concepts developed in the rich theory of cooperative
games with “transferable utility”. Quasi-linearity applies to domains other
than the classical domain by appropriately choosing the arguments of the vi

functions.

4 Equitable allocations

The simplest problem of fair division is when there is only one good and
preferences are strictly monotonic. Since in this situation, efficiency is au-
tomatically satisfied, how we choose to perform the division is a reflection
of our position on normative issues only. Indeed, preferences are identical
then. Our choice is equal division. This is because, as already announced,
we have decided to ignore intensities of satisfaction—we have no “utility”
information. When agents differ in the effort they provide, their productive
talents, and so on, adjustments may also have to be made, but for the time
being, we ignore these complications. An important exception is Section 5.

4.1 Comparisons to equal division

If there is more than one good, equal division conflicts with efficiency, so other
criteria have to be formulated. Our next proposals are based on comparisons
to equal division.4 The first comparison is expressed in physical terms. No-
domination of, or by, equal division, says that no agent should receive
a bundle that contains at least as much as equal division of each good, and
more than equal division of at least one good (Thomson, 1995c), or a bundle

4Pazner and Schmeidler (1976) give several reasons why equal division would emerge
in the “original position”, and they propose a way of giving operational meaning to the
Rawlsian objective of making the worse-off agent as well-off as possible.
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that contains at most as much as equal division of each good, and less than
equal division of at least one good.

The next comparison involves preferences: each agent should find his
bundle at least as desirable as equal division. It has been advocated by
many authors (see for instance Kolm, 1973, and in particular, Pazner, 1977).

Definition Given e ≡ (R, Ω) ∈ EN , the allocation z ∈ Z(e) meets
the equal-division lower bound in e, written as z ∈ Bed(e), if
z R ( Ω

|N | , . . . ,
Ω
|N |).

5

The existence of efficient allocations meeting the equal-division lower
bound is a straightforward consequence of the compactness of the feasible
set and continuity of preferences.

We add two elementary requirements on a solution involving comparisons
to equal division. First, if equal division is efficient, it should be chosen. Sec-
ond, if equal division is efficient, any allocation that is Pareto-indifferent to
it—these allocations are the ones that meet the equal-division lower bound—
should be chosen (Thomson, 1987c). This second requirement is stronger but
it is satisfied by most of the solutions that we will encounter:

Property α: For each e ≡ (R, Ω) ∈ EN , if ( Ω
|N | , . . . ,

Ω
|N |) ∈ P (e), then

ϕ(e) ⊇ Bed(e).

4.2 No-domination

Another natural extension of our choice of equal division for the one-good
case, this time involving inter-personal comparisons, but again formulated
in physical terms, is that no agent should receive at least as much of all
goods as, and more of at least one good than, some other agent. (Thomson,
1983a; Thomson and Varian, 1985. The notion appears as a formal solution
in Moulin and Thomson, 1988):

Definition Given e ≡ (R, Ω) ∈ EN , the allocation z ∈ Z(e) satisfies no-
domination, written as z ∈ D(e), if there is no pair {i, j} ⊆ N such that
zi ≥ zj.

5These allocations are often referred to as “individually rational from equal division”,
but we prefer not using this phrase since it implies that agents are entitled to equal division.
This may not be a legitimate assumption.
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Figure 1: No-envy. In both panels, N ≡ {1, 2}. (a) A simple geometric test
tells us that z is envy-free: each agent i ∈ N finds his bundle zi at least as
desirable as its symmetric image with respect to the center of the Edgeworth box,
π̄i(z). (b) The no-envy and Pareto solution violates Pareto-indifference: here, z
is envy-free and efficient and z′ I z; yet, since agent 1 prefers z′2 to z′1, z′ is not
envy-free.

The no-domination requirement, which has the practical merit of being
verifiable without knowing preferences, is a very weak one, and we will present
more powerful ones. Most of them are based on comparisons of bundles in-
volving preferences, and they differ from each other only in the specification
of which comparisons are admissible. For no-envy, the admissible compar-
isons are between the allocation that is being evaluated and the allocations
obtained by permuting its components. But we will define solutions based
on comparisons that are restricted, for example to only efficient allocations,
or extended, for example to certain infeasible allocations.

4.3 No-envy

Next, we require of an allocation that each agent should find his bundle at
least as desirable as that of each other agent (Foley, 1967):6

Definition Given e ≡ (R, Ω) ∈ EN , the allocation z ∈ Z(e) is envy-free
for e, written as z ∈ F (e), if for each pair {i, j} ⊆ N , zi Ri zj.

This definition can also be stated as follows. Let ΠN denote the class of
permutations on N , with generic element π. Given z ∈ Z(e), let π(z) be the
allocation whose i-th component is zπ(i). Then, z ∈ F (e) if and only if for

6The idea had been formulated by at least one previous writer. Tinbergen (1953)
devotes a few pages to a discussion of the no-envy test, explaining that he had developed
it in conversations with the Dutch physicist Ehrenfest. However, it is thanks to Foley that
the criterion has become known, and this author is usually credited with it.
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each π ∈ ΠN , z R π(z) (in Figure 1a, the permutation exchanging agents 1
and 2 is denoted π̄).

It is clear that if preferences are strictly monotonic, no-envy implies no-
domination. Because equal division satisfies the definition, envy-free alloca-
tions always exist in the classical model.

Before we address the issue of existence of envy-free and efficient alloca-
tions, a comment on the terminology we have adopted may be useful. As
usually understood, “envy” denotes a feeling that reflects negatively not only
on the external circumstances in which people find themselves (here, their
circumstances are defined by the bundles they receive), but also on prefer-
ences themselves. A number of writers have argued that reference to “envy”
is justified only if externalities is consumption exist (Archibald and Don-
aldson, 1979). Translating into economic terminology the connotation that
referring to an individual, say agent i, as being “envious” has in common
language would require specifying his preferences as exhibiting consumption
externalities that fail to satisfy the right monotonicity property with respect
to agent j’s consumption, where j 6= i. Chaudhuri (1985), following Nozick
(1974), formalizes such a notion and relates it to other forms of externalities.
He also establishes elementary properties of the binary “envy relation” that
one can associate with each allocation, pointing out that it may not be tran-
sitive. Sussangkarn and Goldman (1980) suggest plausible specifications of
these external effects, and establish various impossibilities in reconciling the
standard approach, followed here, with an approach in which external effects
are explicitly taken into account.

As we use the term, “envy” can occur even if externalities in consump-
tion are not present. More neutral expressions, explicitly referring to the
mathematical operation that is being performed in evaluating an allocation
(such as “robustness under substitutions”, “under transpositions”, or “under
permutations”)7 might be more accurate, but we chose to use the term that
is common in the literature.8

To summarize the various possibilities that could arise when preferences
do exhibit consumption externalities, and starting from a given allocation

7In Thomson (1983a) we use the phrase “permutation-acceptable” to designate a re-
lated concept. Gevers (quoted in Fleurbaey and Maniquet, 1996a) suggests the term
“permutation-proof”.

8In much of the early literature, the term “fair” was used to designate allocations that
are envy-free and efficient (Schmeidler and Yaari, 1971). In common language, fairness
has no efficiency connotation, and we will express the two requirements separately.
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z ∈ Z(e), we could check whether agent i is better off (i) after his bundle has
been switched with agent j’s bundle; (ii) after his bundle has been replaced by
a bundle identical to agent j’s; (iii) after agent j’s bundle has been replaced
by a bundle identical to agent i’s; (iv) after an arbitrary permutation of the
components of z.

Note that in (ii) and (iii), the list of bundles to which z is compared
constitutes a feasible allocation only in the trivial case zi = zj. Also, a
feature of “envy”, as the term is commonly understood, is that it is directed
against a specific individual. Thus, the operation described in (iv), where
the i-th components of z and π(z) may actually be the same, has nothing to
do with envy, although it seems economically relevant: it reflects agent i’s
view on how the resources assigned to the other agents should be distributed
between them.

Whether the feelings suggested in common language by the term “envy”
should be acknowledged in the evaluation of an allocation has been the object
of an interesting debate (Kolm, 1995, 1996; Fleurbaey, 1994).

From here on, we return to the standard case of preferences that do
not exhibit consumption externalities. In such economies, do envy-free and
efficient allocations exist? The answer is yes under classical assumptions.

Theorem 4.1 Domain: private goods; monotonic and convex preferences.
Envy-free and efficient allocations exist.

The simplest way to prove Theorem 4.1 is to invoke the concept of an
equal-division Walrasian allocation. These allocations are obviously envy-
free:

Definition Given e ≡ (R, Ω) ∈ EN , the allocation z ∈ Z(e) is an equal-
division Walrasian allocation for e, written as z ∈ Wed(e), if there is
p ∈ ∆`−1 such that for each i ∈ N , zi is a maximizer of Ri in the budget set
Bi(p) ≡ {z′i ∈ R`

+: pz′i ≤ p Ω
|N |}.

Under the assumptions of Theorem 4.1, equal-division Walrasian alloca-
tions exist. In fact, any set of assumptions guaranteeing the existence of
these allocations also guarantees that of envy-free and efficient allocations.
Usually, convexity of preferences is included.9 Although envy-free and effi-
cient allocations may not exist if preferences are not convex (Varian, 1974),

9Actually, “constrained” equal-division Walrasian allocations (Hurwicz, Maskin, and
Postlewaite, 1995), are envy-free as well, and under slightly stronger assumptions, efficient.
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their existence can actually be derived from substantially weaker assump-
tions than those known to ensure the existence of Walrasian allocations. It
should be noted however that, in addition to monotonicity of preferences, the
main ones concern the structure of the efficient set, and not the primitives
themselves. We state them in order of increasing generality: if an alloca-
tion z is efficient, (i) no other allocation is Pareto-indifferent to z (Varian,
1974);10 (ii) the set of allocations that are Pareto-indifferent to z is convex
(Svensson, 1983, 1994); (iii) the set of allocations that are Pareto-indifferent
to z is contractible (Diamantaras, 1992).

At this point, we do not claim any particularly merit for the equal-division
Walrasian solution except as a convenient means of delivering envy-free and
efficient allocations. However, this solution stands out for its informational
efficiency, as measured by the dimensionality of message spaces required for
what is called in the theory of mechanism design, its “realization”: in a for-
mal sense that would require more machinery than is justified for this survey
(see Hurwicz, 1977, and Mount and Reiter, 1974, for the theoretical founda-
tions), the Walrasian mechanism has minimal dimension among all mecha-
nisms realizing envy-free and efficient allocations. Moreover, it is the only
such mechanism (Calsamiglia and Kirman, 1993). A number of other charac-
terizations bringing out the informational merits of the Walrasian solution,
such as the fact that it only depends on local information about preferences,
or that it is invariant under certain “monotonic” transformations of prefer-
ences (Maskin, 1999; Gevers, 1986; Subsection 7.3) are available (Thomson,
1985, 1987c; Gevers, 1986; Nagahisa, 1991, 1992, 1994; Nagahisa and Suh,
1995; Yoshihara, 1998). Some of these characterizations involve no-envy but
we will not elaborate, as the informational considerations on which they are
based do not have a strong normative relevance. We only emphasize that
by contrast, the no-envy criterion, as well as most of the other fairness no-
tions surveyed here, cannot be checked on the basis of local information only.
Marginal analysis, the fundamental tool of modern microeconomics, is often
of little use when investigating fairness.

Beyond existence, we would like to understand the structure of the set
of envy-free and efficient allocations. First, the no-envy and Pareto solution
violates a requirement that is satisfied by virtually all solutions commonly

10Alternatively, one may assume of each preference relation that any non-zero bundle
is preferred to the zero bundle, and on the preference profile that the Pareto set coincides
with the weak Pareto set.
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discussed. It says that if an allocation is chosen, then so should any allocation
that all agents find indifferent to it:11

Pareto-indifference: For each e ≡ (R, Ω) ∈ EN , and each pair {z, z′} ⊂
Z(e), if z ∈ ϕ(e) and z′ I z, then z′ ∈ ϕ(e).

In the economy e ≡ (R, Ω) depicted in Figure 1b, z ∈ F (e) (in fact,
z ∈ FP (e)), and z′ I z; yet, since z′2 P1 z′2, z′ /∈ F (e).12

Another basic requirement, obviously satisfied by the no-envy solution but
by neither the equal-division lower bound solution nor by the no-domination
solution, is that agents with the same preferences should be assigned bundles
that are indifferent according to these preferences (not necessarily identical
bundles, although, in the presence of efficiency, and if preferences are strictly
convex, equality of bundles will result):13

Equal treatment of equals: For each e ≡ (R, Ω) ∈ EN , each pair {i, j} ⊆
N , and each z ∈ ϕ(e), if Ri = Rj, then zi Ii zj.

To obtain the entire set of envy-free allocations in an Edgeworth box, it
suffices to identify for each agent the set of points each of which he finds
indifferent to its symmetric image with respect to equal division. This set
is (i) a strictly downward-sloping continuous curve (ii) that passes through
equal division and is symmetric with respect to that point (Kolm, 1972;
Baumol, 1982, 1986; Thomson, 1982; Kolpin, 1991a).14 An allocation is
envy-free if it is on or above each agent’s envy boundary (Figure 2). In
general, the envy-free zone is the disconnected union of closed sets, one of
which contains the set of allocations meeting the equal-division lower bound.

Let us add efficiency. Under standard assumptions (if preferences are
continuous, strictly monotonic, and strictly convex), the efficient set is a
continuous curve connecting the two origins, and it intersects the envy-free
set along a curvi-linear segment. This segment is contained in the component

11The usefulness of this condition in the context of the problem of fair division is pointed
out by Thomson (1983a) and Gevers (1986). The condition has played an important role
in recent literature.

12In fact, preferences could be drawn in such a way that z′ violates no-domination.
13This condition is often referred to as “horizontal equity”.
14Conversely, any curve with properties (i) and (ii) is the envy boundary of some mono-

tonic and convex preference relation, for instance, one with right-angle indifference curves
(Thomson, 1995c).
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Figure 2: Determining the set of envy-free and efficient allocations in
an Edgeworth box: it is the set of allocations that are above each agent’s envy
boundary. In the example, it is the union of two disconnected sets (the two shaded
areas).

of the envy-free set to which equal division belongs. It often contains allo-
cations that do not meet the equal-division lower bound. In Figure 2, these
allocations constitute the curvi-linear segments from x to z1 and from y to z2.

The above remarks indicate that the envy-free set does not have a simple
structure, even for |N | = 2. Unfortunately, if |N | > 2, things get worse.
In particular, an allocation meeting the equal-division lower bound is not
necessarily envy-free.

However, the main limitation of the no-envy concept is that in production
economies, envy-free and efficient allocations may not exist, even under very
standard assumptions on preferences and technologies. This difficulty occurs
as soon as productivities are allowed to differ across agents (Section 5).

4.4 Concepts related to no-envy

Here, we discuss several variants and extensions of no-envy. First is average
no-envy: each agent should find his bundle at least as desirable as the
average of what the others receive. Indeed, one could argue that how the
resources allocated in total to these agents have been distributed among
them should be of no concern to him ( Thomson, 1979, 1982; Baumol, 1982;
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Kolpin, 1991b).
If |N | = 2, the criterion coincides with no-envy. Under convexity of

preferences, it is less restrictive than the equal-division lower bound, but
under certain regularity conditions, in a large economy (for example in a
replica economy), it is “approximately” equivalent to it. An allocation may
be envy-free and efficient and yet not average envy-free. Conversely, an
allocation may be average envy-free and efficient and yet not envy-free.15

A stronger requirement, strict no-envy, involves subgroups: each agent
should find his bundle at least as desirable as the average of the bundles re-
ceived by any subgroup of the other agents (Zhou, 1992). A further strength-
ening is obtained by dropping the proviso that the agent not be a member
of the comparison group.

The following requirement includes all of the above as special cases (Kolm,
1973).16 Given i ∈ N , we specify (i) a subgroup Gi ⊆ N of agents with whose
bundles a comparison of agent i’s bundle is judged relevant, and (ii) a set Λi

of admissible vectors of weights λ ∈ ∆Gi to be used in these comparisons.17

Let (G, Λ) ≡ (G1, . . . , Gn, Λ1, . . . , Λn).

Definition (Kolm, 1973) Given e ≡ (R, Ω) ∈ EN , the allocation z ∈ Z(e)
is (G, Λ)-envy-free for e if for each i ∈ N and each λ ∈ Λi, zi Ri∑

j∈Gi
λjzj.

Suppose Gi ≡ N\{i}. Then, if each Λi is the set of unit vectors in ∆Gi ,
the resulting definition coincides with no-envy, and if Λi contains only the
vector of equal coordinates, we obtain average no-envy. If for each i ∈ N ,
Gi = N and Λi = ∆N , then the requirement is that each agent should find
his bundle at least as desirable as any point in the convex hull of all assigned
bundles (Kolm, 1996).18 Strictly envy-free allocations are also obtained as
a special case. Equal-division Walrasian allocations satisfy the definition no
matter what (G, Λ) is (Kolm, 1973).

15For each agent, one can define a boundary above which an agent’s consumption should
lie for it to pass the average no-envy test. The properties of this boundary are established
in Baumol (1986) and Thomson (1982). The boundary is analogous to the envy boundary
encountered earlier but now the construction can be performed for any number of agents.

16Kolm uses the phrase “super envy-free”.
17By the notation RGi , we mean the cross-product of |Gi| copies of R, indexed by the

members of Gi. Kolm actually allows the weights to be negative.
18Kolm uses the phrase “super equity”.
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Some solutions are based on comparing across agents the number of agents
whom each agent envies and the number of agents who envy him. One such
“counting requirement”, balanced envy, is that for each agent, these two
numbers should be equal (Daniel, 1975).19 It is particularly appealing in
production economies, where there may be no envy-free and efficient allo-
cations (Section 5). Indeed, the existence of allocations with balanced envy
in such economies can be established more generally than is standard for
other concepts (as in the variants of Theorem 4.1 discussed after its state-
ment). In economies without production, the main assumption for existence
is not convexity of preferences, but that no two Pareto-efficient allocations
be Pareto-indifferent. (A refinement is proposed by Fleurbaey, 1994, and
proven to be non-empty).

The concept has been criticized because it is theoretically compatible
with the existence of a large number of occurrences of envy (Pazner, 1977).
However, in situations where envy cannot be avoided, it is natural to attempt
to distribute it “uniformly” across agents. Other natural ideas are to require
of an allocation that all agents should envy the same number of agents, or that
all agents should be envied by the same number of agents. But neither will do,
as soon as efficiency is imposed, a consequence of the following proposition:

Proposition 4.1 (Varian, 1974; Feldman and Kirman, 1974) Domain: fea-
sible set is closed under permutations of the components of allocations. At
an efficient allocation, at least one agent envies no one, and at least one
agent is envied by no one.

Proposition 4.1 certainly reinforces the appeal of the balanced-envy crite-
rion but there are other ways to deal with the non-existence of envy-free and
efficient allocations in production economies (Section 5). Varian (1976) in-
vokes the proposition to render operational the Rawlsian objective of making
the worse-off agent as well off as possible, defining a worse-off agent as one
whom no-one envies, and “making that agent as well off as possible” being
interpreted as minimizing the number of agents whom he envies—no one if
that is possible. (Then, an envy-free allocation is obtained.)

Other notions have been proposed in which each agent’s preference re-
lation is used to compare the bundles received by any two other agents. A
suggestion is to require of an allocation that there should not be two agents

19Daniel uses the term “just”.
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such that all agents, if consuming the bundle assigned to the first one, would
be worse off than if consuming the bundle assigned to the second one (van
Parijs, 1990. Iturbe-Ormaetxe and Nieto, 1996a, and Fleurbaey, 1994, gen-
eralize the idea.)

4.5 Selections and rankings

As we have seen, in exchange economies, envy-free and efficient allocations
exist very generally, and the set they constitute may even be quite large.
In such situations, we would like to be able to identify which allocations are
preferable in the envy-free set, that is, to refine the no-envy concept, perhaps
to rank all allocations in terms of the extent to which they satisfy no-envy.
However, strengthening it will aggravate the non-existence difficulty that we
will encounter in production economies, and unfortunately, the concept does
not seem to lead directly to a ranking of all feasible allocations in terms of
equity. Of course, we could (i) declare socially indifferent all allocations at
which no one envies anyone, (ii) declare socially indifferent all allocations at
which someone envies someone else, and (iii) declare any allocation at which
no one envies anyone socially preferred to any allocation at which someone
envies someone else. But this ranking would have only two indifference classes
and thus would provide a trivial answer to our question.20 Finer rankings
would be desirable.

One suggestion has been to measure aggregate envy at an allocation z
by the number of pairs {i, j} ⊆ N such that zj Pi zi (Feldman and Kirman,
1974). Other proposals involve cardinal measurements of welfare differences:
after choosing for each agent i ∈ N a numerical representation of his pref-
erences, ui, the extent to which agent i is envious is quantified by the sum
ei(z) ≡ ∑

j max{0, ui(zj) − ui(zi)}. (When utility information is available,
one may argue that these are the functions that should be used for that pur-
pose.) Aggregate envy is then evaluated by the expression

∑
ei(z) (Feldman

and Kirman, 1974). Alternatively, we may also want to take into account
the extent to which agent i prefers his bundle to the bundles of the agents
whom he does not envy. Then, defining ēi(z) ≡ ∑

j∈N [ui(zj)−ui(zi)], aggre-
gate envy is evaluated by the expression

∑
ēi(z). Finally, these individual

20A more limited question is whether one can associate to each allocation an order on the
set of agents reflecting how well they are treated. At an efficient allocation, the no-envy
relation is acyclic but not transitive unless a strong assumption of similarity of preferences
is made (Feldman and Weiman, 1979).
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sums can be weighted. Varian (1976) suggests a particular way in which the
weights can be made to depend on the allocation.

These measures all have the advantage of yielding complete rankings of
the set of feasible allocations, although the ranking provided by the counting
measure still has large indifference classes.21 The measures of aggregate envy
proposed by Feldman and Kirman (1974) do provide fine rankings of the set
of allocations at which someone envies someone else, but all allocations at
which no one envies anyone belong to the same indifference class.

The extent to which an agent envies another agent can be measured in
other ways, and a fine ranking of all allocations derived from this measure,
as follows: Given z ∈ Z(e) for which there is a pair {i, j} ⊆ N such that
zj Pi zi, let λij(z) ∈ R+ be the factor by which zj should be reduced so as
to obtain a bundle that agent i finds indifferent to zi: λij(z)zj Ii zi. Then
we rank allocations at which there is envy as a function of the quantity∑

{i,j}⊆N ;zjPizi
λij(z) (Chaudhuri, 1985, 1986).

Conversely, in order to measure the extent to which an allocation may
exceed the no-envy requirement, let z ∈ Z(e) be an allocation for which there
is a pair {i, j} ⊆ N such that zi Pi zj, but this time, let λij(z) be the factor
by which zj should be expanded so as to recover indifference, that is, so that
once again λij(z)zj Ii zi. This is a natural generalization of the previous
idea. We then evaluate z by the sum

∑
λij(z). Alternatively, instead of

evaluating an allocation z by summing the terms λij(z), we could focus on
the largest coordinate of the vector (λij(z))i,j∈N . Choosing the allocation
at which this coordinate is as small as possible is more likely to produce a
fair distribution of envy across agents when envy cannot be avoided, and to
even out distance from envy, when envy-free allocations exist. The formal
definition is as follows:

Definition (Diamantaras and Thomson, 1990) Given e ≡ (R, Ω) ∈ EN ,
and λ ∈ R, let F λ(e) ≡ {z ∈ Z(e): for each {i, j} ⊆ N , zi Ri λzj}. Let
λ(e) ≡ inf{λ: F λP (R) 6= ∅} and H(e) ≡ F λ(e)P (e).

The existence of λ(e) is guaranteed if indifference curves are transversal to
the axes, (and holds for significantly broader domains of economies than the

21Feldman and Kirman assess the extent to which these criteria distribute welfare
“evenly” across agents. As they have the form of a summation, it is not surprising that
the answer may be unsatisfactory, as frequently occurs from maximization of utilitarian
objectives. Another relevant contribution is Allingham (1977).
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domain considered in this section). This definition both maximally strength-
ens no-envy when the concept is too permissive without losing existence, and
minimally weakens it so as to recover existence when it is too strong. Like the
no-envy notion itself, the solution it generates violates Pareto-indifference.
Although it is quite selective, it is not essentially single-valued. Finally, it is
not the case, as one could have hoped, that for each allocation z it selects,
and for each i ∈ N , there is j ∈ N such that zi = λ(e)zj (Kolpin, 1991a).

The contractions and expansions underlying these definitions can be
adapted so as to extend, or select from, other equity notions (Thomson,
1995c), and from them rankings of the set of feasible allocations can be
derived (for the special case of agents with identical and homothetic prefer-
ences, Chaudhuri, 1986, establishes a relation to rankings based on income
inequality). An application to income taxation is developed by Nishimura
(2002).22

Other geometric operations are conceivable. For instance, if an agent
envies some other agent, one could use the distance between that second
agent’s bundle to the lower contour set of the first agent at his assigned
bundle (Chaudhuri, 1986).

All of the definitions may have intuitive appeal, but none has axiomatic
foundations. It is the chief merit of the Fleurbaey and Maniquet program
cited earlier that it shows how rankings of allocations can be derived from
axioms.

4.6 Economies with a large number of agents

Next, we turn to economies with a large number of agents modelled as an
atomless measure space. An important result for that case concerns no-envy:
informally, if preferences are smooth and “sufficiently dispersed”, the set of
envy-free and efficient allocations is approximately equal to the set of equal-
division Walrasian allocations.

We have seen that in economies with finitely many agents, the equal-
division Walrasian solution is a subsolution of the no-envy and Pareto so-

22Another idea is to formulate iterative procedures to improve the equity “content” of
allocations at every step. For the case of two goods and two agents, an attempt at such a
formulation is made by Baumol (1982): it consists in identifying the extreme points of the
envy-free set and in successively selecting “a middle zone” (in a manner that we will not
specify). Philpotts (1983) studies this procedure and shows that it is incompatible with
efficiency.
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lution independently of the number of agents, and of course this inclusion
remains true for infinite economies. We will state a theorem on the approxi-
mate equivalence of the two solutions in large economies that is reminiscent
of the asymptotic equivalence of the core and of the Shapley value (Shapley,
1953) with the Walrasian solution. However, it occurs here under less general
conditions. In particular, one of the most convenient methods of modeling
economies of increasing size, namely replication, does not guarantee conver-
gence of the no-envy and Pareto solution to the equal-division Walrasian
solution.

Although the study of variable-population requirements will mainly be
discussed in later sections, it is convenient to introduce here a basic one.
Given a profile R of preferences, and a natural number k ∈ N, we denote by
k ∗R a profile obtained by introducing, for each i ∈ N , k− 1 agents with the
same preferences as his. We say that it is a “k-replica of R.” The notation
k ∗ z designates the corresponding k-replica of z. The requirement is that
if an allocation is chosen for some economy, then for each k ∈ N, and each
k-replica economy, its k-replica should be chosen:

Replication-invariance: For each N ∈ N , each (R, Ω) ∈ EN , each z ∈
ϕ(R, Ω), each N ′ ⊃ N , each k ∈ N, and each (R′, Ω′) ∈ EN ′

, if (R′, Ω′) is a
k-replica of (R, Ω), then k ∗ z ∈ ϕ(R′, Ω′).

The no-envy and Pareto solution is obviously replication-invariant. Now,
starting from a finite economy admitting an envy-free and efficient allocation
that is not an equal-division Walrasian allocation, one can easily construct an
atomless economy with the same feature. However, if preferences are smooth
and “sufficiently dispersed”, any envy-free and efficient allocation is an equal-
division Walrasian allocation. The first formal result of this kind is due to
Varian (1976). To formalize the idea that preferences are dispersed, we work
with a continuum of agents indexed by a parameter t ∈ T ≡ ]0, 1[, supposing
that there is a function u: T × R`

+ → R representing their preferences such
that agent t’s welfare from consuming the bundle z is u(t, z).
Assumption A: The function u is continuous in both arguments and for each
t ∈ T , u(t, ·) is strictly concave.

Under Assumption A, if z is an envy-free allocation and t, t′ are close,
we expect z(t) and z(t′) to be close evaluated by either u(t, ·) or u(t′, ·), that
is, agents with similar preferences are treated similarly. If in addition, z is
efficient, then the bundles z(t) and z(t′) themselves are close: the function
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z: T → R`
+ is continuous. The next result is based on the stronger assumption

that z is in fact differentiable.

Theorem 4.2 (Varian, 1976) Domain: private goods; continuum of agents
whose preferences can be represented by a function satisfying Assumption A.
If an envy-free and efficient allocation is a differentiable function, it is an
equal-division Walrasian allocation.

The tightness of Varian’s assumptions is examined by Kleinberg (1980)
and McLennan (1980). Kleinberg (1980) and Champsaur and Laroque (1981)
specify assumptions on the primitives of an economy with a continuum of
agents guaranteeing the Walrasian conclusion. They require strict mono-
tonicity, strict convexity, and smoothness of preferences, and model an econ-
omy as a mapping from some space of parameter values (an open subset of
a finite-dimensional Euclidean space) onto a space of preference relations.
If this mapping satisfies sufficient continuity properties, the only envy-free
and efficient allocations are equal-division Walrasian allocations. Mas-Colell
(1987) also identifies conditions on the primitives guaranteeing the implica-
tion.

Now, recall that at a strictly envy-free allocation, each agent finds his
bundle at least as desirable as the average of the bundles received by any
subgroup of the other agents (Subsection 4.4). An interesting equivalence
holds:

Theorem 4.3 (Zhou, 1992) Domain: private goods; measure space of
agents; preferences are strictly monotonic and differentiable in the interior
of commodity space. An allocation is efficient and the set of agents each
of whom prefers the average bundle of some group to his own bundle has
measure zero, if and only if it is an equal-division Walrasian allocation.

We also note that under standard assumptions on preferences, the equal-
division core and the set of equal-income Walrasian allocations coincide
(Vind, 1971).

4.7 Equity criteria for groups

Next, we propose criteria designed to evaluate the relative treatment of
groups. First are extensions of the no-domination requirement. No-
domination of, or by, equal division for groups says that no group
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of agents should receive on average at least as much as equal division of each
good and more than equal division of at least one good (this is equivalent to
requiring that no group should receive on average at most equal division of
at least one good and less than equal division of at least one good).

Next is a generalization of the equal-division lower bound: suppose that
each agent is given access to an equal share of the social endowment, and
require of an allocation that no group of agents should be able, by redis-
tributing among themselves the resources they collectively control, to make
each of its members at least as well off, and at least one of them better off:

Definition Given e ≡ (R, Ω) ∈ EN , the allocation z ∈ Z(e) belongs to
the equal-division core of e, written as z ∈ Ced(e), if for each G ⊆ N ,

there is no list (z′i)i∈G ∈ R`G
+ such that

∑
G z′i = |G|

|N |Ω; z′G RG zG; and for at

least one i ∈ G, z′i Pi zi.

We have seen that if |N | = 2, an allocation meeting the equal-division
lower bound is envy-free. However, if |N | > 2, an allocation in the equal-
division core may not be envy-free (Kolm, 1972; Feldman and Kirman, 1974).
In fact, this situation is the rule. Indeed, absence of envy implies that two
agents with the same preferences are assigned bundles that are indifferent
according to these preferences, but this property is certainly not met at
each equal-division core allocation. For economies parameterized by their
endowment profiles, the violations are typical (Green, 1972; Khan and Pole-
marchakis, 1978). An interesting exception are replica economies. At an
equal-division core allocation of such an economy, two agents with the same
preferences receive bundles that are indifferent according to these preferences
(Debreu and Scarf, 1963).

We continue with inter-group requirements. An allocation z ∈ Z(e) sat-
isfies no-domination for groups if there is no pair {G,G′} of subsets of N

such that
∑

G zi

|G| ≥
∑

G′ zi

|G′| : on a per capita basis, G should not receive at least

as much of each good as G′, and more of at least one good. We obtain vari-
ants of the definition by requiring |G′| = |G| or G′ = N\G. Also, in the first
case, we can require G′ ⊆ N \G.

To adapt to groups the no-envy criterion, we have several choices. First,
we can consider what a group G could achieve by redistributing among its
members what has been assigned to any other group, these resource being
adjusted to take account of their relative sizes, and require that no such
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redistribution should make each member of G at least as well off as he was
initially, and at least one of them better off (Vind, 1971; Varian, 1974).
We introduce the formal definition in two steps. Given e ≡ (R, Ω) ∈ EN ,
z ∈ Z(e), and G ⊆ N , the list (z′

i)i∈G G-dominates z in e if z′G RG zG,
and for at least one i ∈ G, z′i Pi zi.

Definition Given e ≡ (R, Ω) ∈ EN , the allocation z ∈ Z(e) is group
envy-free for e if there is no (z′i)i∈G ∈ B(z) that G-dominates z, where

B(z) ≡ {(z′i)i∈G: there is G′ ⊆ N with
∑

G

z′i =
|G|
|G′|

∑

G′
zi}.

Alternatively, we can insist on |G′| = |G| and set B(z) ≡
{(z′i)i∈G: there is G′ ⊆ N with |G′| = |G| and

∑
G z′i =

∑
G′ zi} (Varian,

1974).23 If we want G′ = N \ G, we set B(z) ≡ {(z′i)i∈G:
∑

G z′i =
|G|

|N |−|G|
∑

N\G zi}. Finally, the first two definitions can be weakened by re-

quiring G′ ⊆ N \ G. (The concept of a strictly envy-free allocation of Sub-
section 4.4 can be seen as a step towards the definitions just given.)

Further generalizations, along the lines of Kolm’s generalization of no-
envy (Subsection 4.4) can also be formulated. Equal-division Walrasian al-
locations satisfy all of them. Moreover, under replication, there is a sense
in which the set of efficient allocations that are group envy-free converges to
the set of equal-division Walrasian allocations (Varian, 1974; Section 8). We
also have the following equivalences:

Theorem 4.4 (Kolpin, 1991b) Domain: private goods; locally non-satiated
and strictly convex preferences. In an economy replicated at least twice, any
equal-division core allocation is envy-free. If the economy is replicated at
least 3|N | − 1-times, any such allocation is group envy-free. (When, in the
definition of group no-envy, comparisons are restricted to groups of the same
size, it suffices to replicate three times for this conclusion to hold.)

For economies with a large number of agents modelled as a continuum,
direct equivalence results between several of these definitions hold (Varian,
1974). The set of group envy-free (according to our primary definition, but

23In the case |G′| = |G|, we could simply reallocate among the members of G the specific
bundles attributed to the members of that group, but then we would simply recover the
no-envy concept.
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even if only groups of the same size are compared) and efficient allocations
coincide with the set of equal-division Walrasian allocations (Varian, 1974).

We conclude this subsection with a short discussion of non-convex pref-
erences. Envy-free and efficient allocations may not exist then, as we saw,
and it is natural to ask whether weakening no-envy to no-domination would
help. The answer is no:

Theorem 4.5 (Maniquet, 1999) Domain: private goods; strictly monotonic,
smooth, but not necessarily convex preferences. There are economies in
which all efficient allocations violate no-domination.

Theorem 4.5 can be proved by means of a two-good and three-agent
example. If |N | = 2, the solution that selects the allocation most preferred
by one of the two agents among all allocations that the other finds indifferent
to equal division, does satisfy the two requirements of the theorem.

4.8 Egalitarian-equivalence

Our next criterion is at the center of a family of solutions that constitute the
main alternative to the families based on the permutation idea and on the
agent-by-agent lower or upper bounds. It involves comparisons to “reference”
allocations whose fairness could not be disputed since they are composed of
identical bundles:

Definition (Pazner and Schmeidler, 1978a) Given e ≡ (R, Ω) ∈ EN , the
allocation z ∈ Z(e) is egalitarian-equivalent for e, written as z ∈ E(e),
if there is z0 ∈ R`

+ such that z I (z0, . . . , z0).

The fact that (z0, . . . , z0) is not feasible has been at the origin of some
opposition to the concept, but the reference to hypothetical situations in the
evaluation of an actual alternative is not unreasonable. In abstract social
choice theory, axiomatic bargaining theory, apportionment theory, to name
just a few examples, the desirability of an outcome for some situation is often
evaluated by comparing it to choices made in reference economies that have
a larger or smaller feasible set, involve a greater or smaller number of agents,
or exhibit certain symmetries not actually present.

Some critics have also argued that the criterion might lead us to declare
desirable an allocation associated with a reference bundle that none of the
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agents cares for (Daniel, 1978). But this criticism is misdirected since such an
allocation would in general not be efficient, and we presumably will want to
complement the criterion with efficiency. It would be equally easy to identify
economies admitting envy-free allocations at which each agent is indifferent
between his assignment and the zero bundle. Should we object to the no-envy
concept on these grounds?

Nevertheless, objections can indeed be raised against egalitarian-
equivalence, and we will present them after a study of its basic features.
On the positive side, we will see in later sections that it enjoys a variety
of desirable properties not satisfied by the no-envy concept, justifying the
important place it has in this exposition.

The existence of egalitarian-equivalent and efficient allocations is obtained
under weak assumptions. Note in particular that in the following theorem,
no convexity assumption is made:

Theorem 4.6 (Pazner and Schmeidler, 1978a) Domain: private goods;
strictly monotonic preferences. Egalitarian-equivalent and efficient alloca-
tions exist.

The egalitarian-equivalence solution and its intersection with the Pareto
solution both satisfy Pareto-indifference and equal treatment of equals. If
|N | = 2, envy-free allocations are egalitarian-equivalent. This relation, how-
ever, fails for |N | > 2. In fact, an equal-division Walrasian allocation may
then not be egalitarian-equivalent.

Conversely, an egalitarian-equivalent allocation may violate no-
domination, and a fortiori, no-envy. In fact, extreme violations of no-
domination may occur: at an egalitarian-equivalent and efficient allocation,
a particular agent may receive the entire social endowment.24 This suggests
that the egalitarian-equivalence and Pareto solution is “too large”. Are there
selections from it that satisfy no-domination? The following paragraphs clar-
ify the extent to which these various ideas can be reconciled.

Definition Let r ∈ R`
+, r 6= 0, be given. Given e ≡ (R, Ω) ∈ EN , the

allocation z ∈ Z(e) is r-egalitarian-equivalent for e, written as z ∈
Er(e), if it is egalitarian-equivalent with a reference bundle proportional
to r.

24Corchón and Iturbe-Ormaetxe (2001) propose a general definition of fairness based on
expectations. It covers various notions discussed in the foregoing pages, such as no-envy
and egalitarian-equivalence, as special cases.
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The existence of r-egalitarian-equivalent and efficient allocations is guar-
anteed under the assumptions of Theorem 4.6.

For each r ∈ R`
+\{0}, let ĒrP be the selection from the egalitarian-

equivalence and Pareto solution defined by requiring the reference bundle
z0 to be such that the vector z0 − Ω

|N | is proportional to r, and let ĒP ≡⋃
r∈R`

+\{0} ĒrP . The subcorrespondence of the egalitarian-equivalence and

Pareto solution so obtained is a subsolution of the equal-division lower bound
solution.

Obviously, if r and r′ are proportional, Er = Er′ . If |N | = 2 and r is
proportional to Ω (but only then), the solution ErP satisfies no-domination.
In fact, still if |N | = 2, if r is proportional to Ω and additionally preferences
are convex, any r-egalitarian-equivalent and efficient allocation is envy-free.
Without convexity, this inclusion may fail (Figure 3a).

If |N | > 2, requiring r to be proportional to Ω does not guarantee no-
domination, although it obviously guarantees that the equal-division lower
bound is met (Figure 3b).25 More seriously, there are economies where
all egalitarian-equivalent and efficient allocations violate no-domination.26

Therefore, egalitarian-equivalence is fundamentally incompatible with no-
domination (and therefore no-envy).

To compensate for this limitation, the egalitarian-equivalence correspon-
dence enjoys a variety of appealing properties. In particular, it admits selec-
tions that are monotonic with respect to changes in resources, technologies,
and other parameters, and we will come back to it on many occasions (for
instance, Section 7). Moreover, it can be generalized so as to yield other con-
cepts that also enjoy these properties, as we will discover at various points
in this survey.

Conditions are known that guarantee the existence of Ω-egalitarian-
equivalent and efficient allocations for economies with a large number of
agents modelled either as an infinitely countable set or as a continuum (Spru-
mont and Zhou, 1999).

25Pazner and Schmeidler (1978a) provide other reasons for requiring the reference bundle
to be proportional to the average bundle.

26This follows directly from an example constructed by Postlewaite and described by
Daniel (1978) in order to establish the existence of economies where all egalitarian-
equivalent and efficient allocations violate no-envy.
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Figure 3: Clarifying the relation between no-domination, no-envy, and
egalitarian-equivalence. (a) Here, N = {1, 2}. The dotted concave curve is the
symmetric image of agent 2’s indifference curve through z2 with respect to equal
division. The allocation z is r-egalitarian-equivalent and efficient for the two-agent
economy depicted here, with r ≡ Ω, but since agent 1 prefers z2 to z1, z is not-
envy-free. (b) Here, N = {1, 2, 3}. The allocation z is r-egalitarian-equivalent and
efficient for this three-agent economy, but since z3 > z2, z violates no-domination.

4.9 Equitable trades

Consider a society where each agent starts out with a bundle on which he
has particular rights. The allocation defined by these individual endowments
not being in general efficient, the problem arises as to how to distribute the
gains made possible by exchanges among agents. In other words, how should
we evaluate the process that takes an economy from its initial position to
its final position when it is felt that the possibly uneven rights that agents
have on resources should be taken into account?27 Recall that an economy
with individual endowments is a pair e ≡ (R, ω) ∈ RN × R`N

+ . Let EN
end be

a domain of such economies. Given e ∈ EN
end, let T (e) ⊆ R`N be its set of

feasible trade profiles: T (e) ≡ {t ∈ R`N :
∑

ti = 0}.
We start with the evaluation of the equity of trades. The simplest idea is

formulated in physical terms: the trade of no agent should dominate, good
by good, that of any other agent:

Definition Given e ≡ (R, ω) ∈ EN
end, the trade profile t ∈ T (e) satisfies

no-domination for e if (ω + t) ∈ Z(e) and for no pair {i, j} ⊆ N , tj ≥ ti.

Next is the counterpart of the equal-division lower bound. It is a standard
requirement:

27Holcombe (1983) emphasizes this aspect of fairness.
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Definition Given e ≡ (R, ω) ∈ EN
end, the trade profile t ∈ T (e) meets

the individual-endowments lower bound for e if (ω + t) ∈ Z(e) and
(ω + t) R ω.

The following concept is the counterpart for trades of the no-envy concept
introduced earlier for allocations: if given access to any of the trade vectors
(tj)j∈N , each agent i ∈ N would choose the vector ti intended for him:

Definition (Kolm, 1972; Schmeidler and Vind, 1972) Given e ≡ (R,ω) ∈
EN

end, the trade profile t ∈ T (e) is envy-free for e if (ω + t) ∈ Z(e) and for
no pair {i, j} ⊆ N such that (ωi + tj) ∈ R`

+, we have (ωi + tj) Pi (ωi + ti).

Obviously, no-envy implies that two agents with the same endowments
and the same preferences receive bundles that are indifferent according to
these preferences. The Walrasian solution satisfies this requirement, which
generalizes equal treatment of equals. However, both the “cardinal value” and
the “ordinal value”, solutions induced on the economies under consideration
here by the Shapley value (Shapley, 1953) violate it (Yannelis, 1985).

Imagine now that agents have repeated access to any of the trades in the
list (ti)i∈N . We obtain the following stronger definition, which embodies a
requirement of anonymity:

Definition (Schmeidler and Vind, 1972) Given e ≡ (R,ω) ∈ EN
end, the trade

profile t ∈ T (e) is strongly envy-free for e if (ω + t) ∈ Z(e), and for no
i ∈ N and no α ∈ NN , (ωi +

∑
αjtj) Pi (ωi + ti).

Walrasian trades are easily seen to be strongly envy-free. More interesting
is that under weak conditions on preferences, a converse holds (Schmeidler
and Vind, 1972).

The no-envy concept can also be adapted to evaluate the trades of groups.
Given z ∈ Z(e), we could require that there should be no pair of groups
{G,G′} ⊆ N with G ∩ G′ = ∅ and a list t ≡ (ti)i∈G ∈ R`|G| of trades for
the members of G such that

∑
G ti =

∑
G′(zj − ωj); (ω + t) RG z; and for

at least one i ∈ G, (ωi + ti) Pi zi. Note that in this definition, the relative
sizes of the two groups are not restricted. The set of allocations passing
this test is contained in the core and it contains the set of Walrasian al-
locations (Jaskold-Gabszewicz, 1975; Yannelis, 1985). The extent to which
an allocation obtained through a group envy-free trade differs from a Wal-
rasian allocation can be quantified. Yannelis (1985) proves the existence of
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allocations meeting an approximate version of group no-envy in economies
with small and large traders in which small traders may not have convex
preferences.

Jaskold-Gabszewicz (1975) also considers economies with both atoms and
an atomless sector and studies this notion of envy-free trades for groups,
when the admissible groups are arbitrary, and alternatively, when they are
restricted to be subsets of the two sectors. He relates the sets of allocations
satisfying these definitions to the core and to the set of Walrasian allocations.
If there are no atoms, the core coincides with the set of group envy-free
allocations. Also, at a group envy-free allocation of such a mixed economy,
and even if only groups of equal measures are considered in the definition,
the value of the trades of all small agents are equal (Shitovitz, 1992).

4.10 Towards a complete theory of equity

Suppose that it has been decided that gains from trade should be distributed
according to a particular method. One could hope that the equity of the final
allocation would be guaranteed if the initial allocation is itself equitable. But
how is one to judge the equity of an initial allocation? A complete theory of
equity would involve choosing criteria for initial positions, final positions, and
trades. Now, the question is whether the criteria chosen for trades and initial
allocations should bear any relation to the criterion chosen for allocations,
or whether these choices can be made independently. In this subsection, we
attempt to lay the foundation for an integrated theory of fairness.28

We start with the evaluation of initial allocations. Once again, equal
division is an appealing choice. In fact, equal division seems to be a more
legitimate initial-state than end-state principle since its (usual) inefficiency
will hopefully be removed by any reasonable transition principle. However,
the end-state principles discussed in Section 4 can be used as initial-state
principles too. For instance, we can certainly define an envy-free initial
allocation as we defined an envy-free final allocation.

28For a discussion of related issues, see Varian (1975). Yamashige (1997) can be seen as
a contribution to this program too, as he proposes the following test on a transition princi-
ple ϕ: if agent j’s endowment dominates agent i’s endowment, commodity by commodity,
then at the allocation chosen by ϕ, agent j should not envy agent i. For consistency, one
could argue that the same test should be performed on initial and final allocations, and
for greater generality, base the comparisons on other fairness notions.
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Next, we submit that there are good reasons to preserve the conceptual
distinction between initial-state and end-state principles. Elaborating on the
previous example, the fact that an agent would not want to consume anyone
else’s initial bundle may be thought irrelevant; the initial position matters
only to the extent that it affects the final position. In more general situations,
preferences may not even be defined on initial positions: for instance, in a
production economy, the initial position would commonly be given by the
specification of how much of each of the factors of production (machinery,
land, . . .) each agent controls. These resources cannot be directly consumed
but their initial distribution will in general affect the final allocation.

The following facts, which have been described in the literature as “para-
doxes”, clearly indicate that certain consistency conditions should indeed be
respected.

We have already seen that (i) if |N | ≥ 3, starting from equal division (an
envy-free but typically not efficient allocation), a trade to the core may lead
to an allocation that is not envy-free (Kolm, 1972; Feldman and Kirman,
1974). In fact, starting from equal division, a sequence of envy-free trades
may lead to a core allocation that is not envy-free (Golman and Sussangkarn,
1980). (ii) Also, and even if |N | = 2, starting from an envy-free (and not
efficient) allocation, an envy-free trade profile (even a Walrasian trade pro-
file) may lead to an allocation that is not envy-free (Kolm, 1972; Feldman
and Kirman, 1974). (iii) Moreover, and again even if |N | = 2, starting
from an envy-free (and non-efficient) allocation, there may be no Pareto-
improving trade leading to an envy-free and efficient allocation (Goldman
and Sussangkarn, 1978). Since, in general, there are envy-free trades that
are not Pareto improving, the following fact is even more serious. (iv) Even
if |N | = 2, starting from an envy-free (and not efficient) allocation, there
may be no envy-free trade leading to an envy-free and efficient allocation
(Thomson, 1982).

The complex structure of the set of envy-free allocations is reflected in
its image in utility space, but at least this image is connected, which is not
the case for the former set.

The main lesson to be drawn from (i)-(iv) is that it is not legitimate to
arbitrarily and independently select initial-state, transition, and end-state
principles. These choices should be linked in some way. We will decompose
the search for links by first assuming that a transition principle has been se-
lected, and in showing that on the basis of this choice, natural restrictions on
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both the initial-state and the end-state principles can be formulated. Then,
we will suggest how transition principles can in turn be derived from end-
state principles. We will conclude by requiring the “consistency” of the two
operations. (These developments follow Thomson, 1983a, and Thomson and
Varian, 1985.)

4.10.1 Deriving initial state and end-state principles from transi-
tion principles

The derivation of initial-state and end-state principles from transition prin-
ciples is achieved by a simple extension of the permutation idea. Let ϕ be a
transition principle:

Definition Given e ≡ (R,ω) ∈ EN
end, the pair (ω, z) ∈ Z(e) × Z(e) of an

initial allocation and a final allocation is a ϕ-acceptable pair for e if for
each π ∈ ΠN , z ∈ ϕ(R, π(ω)).

Here, the initial position is evaluated indirectly, via its effect on the final
allocation. Similarly, the final allocation is evaluated indirectly, by checking
its independence from permutations of the components of the initial position.

Since equal division is not affected by permutations, it is clear that, as
soon as ϕ is well-defined, ϕ-acceptable pairs exist. Indeed, any pair of the
form (ω̄, z), where ω̄ ≡ (

∑
ωi

|N | , . . . ,
∑

ωi

|N | ) and z ∈ ϕ(R, ω̄), satisfies the defini-
tion.

However, the free choice of ω may lead to a violation of no-domination,
and if we insist on this important requirement, the consistency requirement
suggested above should be strengthened. We propose to strengthen it by
placing a natural restriction on the class of comparisons in which society en-
gages in order to decide whether an allocation is equitable, (and limiting our
attention to subsolutions of the Pareto solution). Assuming a commitment
to efficiency, and given an efficient allocation whose equity is to be evalu-
ated, we declare its comparison to non-efficient allocations irrelevant. Since
the allocation π(z) obtained from some z through an arbitrary permutation
π is in general not efficient, we ignore it as a possible candidate.

It remains that permuting the components of z is appealing. The question
then is whether one could associate with π(z) some efficient allocation that
is equivalent to it from the viewpoint of equity and to which z could be
compared instead. We suggest that if an equitable transition principle has
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been adopted, this can be done since whatever inequities exist in π(z) will
presumably be preserved by its operation. This line of thought leads us to
the following test: starting from some efficient allocation z, we permute its
components to obtain π(z), and we reestablish efficiency by operating ϕ. It
is to the resulting allocation(s) that we compare z. We require that this
process returns to z, or rather can return to z.

Definition Given e ≡ (R, ω) ∈ EN
end, the allocation z ∈ Z(e) is ϕ-

acceptable for e if for each π ∈ ΠN , z ∈ ϕ(R, π(z)).

Let us apply the definitions to some examples:

Theorem 4.7 (Thomson, 1983a) Domain: private goods; monotonic and
convex preferences. The acceptable allocations relative to (a) the individual-
endowments lower bound and Pareto transition correspondence are the envy-
free and efficient allocations; (b) the Walrasian transition correspondence are
the equal-division Walrasian allocations.

4.10.2 Deriving transition principles from end-state principles.

Summarizing the progress we have made, our problem of selecting initial-
state, transition, and end-state principles has been reduced to the selection
of a transition principle. In Subsection 4.9 we already suggested several
criteria to evaluate trades, but we would like to be systematic and coherent
in our choice.

Could internal considerations such as the ones that helped us derive end-
state principles from transition principles permit us to achieve this objec-
tive? We now argue that indeed such considerations can be brought in to
derive transition principles from end-state principles. First, recall the defi-
nition of an envy-free trade (Subsection 4.9): this is a feasible trade t ∈ R`N

such that for each i ∈ N and each π ∈ ΠN , if (ωi + πi(t)) ∈ R`
+, then

zi ≡ (ωi + ti) Ri (ωi + πi(t)). This transition principle is obtained from
the end-state principle of an envy-free allocation by substituting trades for
final consumption bundles, and using the preference relations on trades in-
duced in the natural way from the preference relations on final consumption
bundles. We propose to apply this transformation generally, thereby defin-
ing a mapping from end-state principles to transition principles that mirrors
the mapping from transition principles to end-state principles defined in the
previous section. Examples of transition principles that can be so obtained
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are the notion of an average-envy-free trade for (R, ω), that is, a trade

t ∈ R`N such that for no i ∈ N , (ωi +
∑

N\{i} zj

|N |−1
) Pi (ωi + ti), and the notion

of an egalitarian-equivalent trade for (R, ω), that is, a trade t ∈ R`N

such that for some t0 ∈ R`, and for each i ∈ N , (ωi + ti) Ii (ωi + t0).

4.10.3 Consistency between transition principles and end-state
principles

We are now ready to close the loop. Starting from some end-state principle,
we derive from it a transition principle as just indicated. From this tran-
sition principle, we derive the end-state principle as explained earlier; the
consistency test that we suggest is that we get back to where we
started. Are there end-state principles such that the loop closes back on
itself?

The answer is yes, and we possess all the elements to provide it. If the end-
state principle is the equal-division Walrasian solution, then the transition
principle is the (standard) Walrasian solution, which takes us back to the
equal-division Walrasian solution as end-state principle.

To give an example of a sequence that does not fold back on itself, suppose
that the end-state principle is the equal-division lower bound. Then, the
derived transition principle is Pareto-domination, which in turn leads us to
the end-state principle of no envy for allocations.

Usually, the loop will indeed not close back on itself. The “fixed point”
property satisfied by the pair {Walrasian solution, equal-division Walrasian
solution} does not seem to be shared by many other examples.

Another way of relating initial allocations, trades, and final allocations
is proposed by Maniquet (2001): the transition principle should be robust
under partial delivery of the trades it specifies. If a trade t ∈ R`N is
chosen for some economy (R,ω), and an arbitrary proportion α of this trade
is carried out, then the remainder of it, (1 − α)t, should be chosen for the
revised economy (R,ω + αt).29 On the domain of economies with individual
endowments in which preferences are smooth, if a subsolution of the no-envy
in trades and Pareto solution is robust under partial delivery, then in fact it
is a subsolution of the Walrasian solution.

29Maniquet calls this invariance property “decomposability”.
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5 Economies with production

Although we have been concerned up to now only with the fair allocation
of a fixed bundle of goods among agents with equal rights on them, another
fundamental issue is that of fair allocation when agents have contributed
differently to the production of these goods, because they have supplied un-
equal amounts of their time, or because they have unequal productivities, or
both.

A number of results described next pertain to this more general situation,
in which some inputs are “agent-specific”. The consumption bundle of each
agent i ∈ N has a coordinate representing his consumption of leisure, `i.
Through an appropriate normalization, we assume that each agent i’s maxi-
mal consumption of leisure is 1, so that his labor input is 1−`i. If skills differ
across agents, labor inputs have to be distinguished according to who sup-
plies them. Then, production possibilities are given as a subset Y of Rn+m,
where n is the number of labor inputs (equal to the number of agents) and
m is the number of produced goods.

Let Y be a class of admissible production sets. An economy is now a pair
(R, Ω, Y ) ∈ RN × R`

+ × Y . Let EN
pro be our generic notation for a class of

such economies.

5.1 Adapting the basic concepts

A first way to extend the notion of an envy-free allocation to such economies is
by having each agent i ∈ N compare his complete consumption bundle (`i, xi)
to those of the other agents. Unfortunately, we run into the fundamental
incompatibility with efficiency:

Theorem 5.1 (Pazner and Schmeidler, 1974) Domain: private goods;
strictly monotonic and linear preferences; linear production function with
agent-specific inputs. Envy-free and efficient allocations may not exist.

Interestingly, at an efficient allocation of an economy with production,
two agents may mutually envy each other, a situation that, as the reader
may recall, cannot occur in an exchange economy (Proposition 4.1).

We emphasize that in Theorem 5.1, preferences are quite well-behaved.
It is true that if either all abilities or all preferences are the same, envy-
free and efficient allocations do exist (Varian, 1974), but these assumptions
are of course overly restrictive. Now, consider a two-good economy, the two
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goods being time and another good produced from labor. Suppose that
agents can be ordered by their productivities and that their preferences sat-
isfy the following Spence-Mirrlees “single-crossing” condition: given any two
agents, at each bundle in their common consumption space, the increase in
the consumption good required to keep a less productive agent on the same
indifference curve when he gives up an arbitrary amount of leisure is greater
than the corresponding increase for the more productive agent. Then, if
the production technology is linear, envy-free and efficient allocations exist
(Piketty, 1994).

Finally, in a production economy in which agents differ in their produc-
tivities, there may be no efficient allocation at which each agent finds his
bundle at least as desirable as the average of the bundles received by all
agents (a criterion proposed by Pazner, 1977). This can be seen by means
of the example Pazner and Schmeidler (1978a) use to prove Theorem 5.1,
because in that example, preferences are convex.30

Faced with the fundamental negative result stated as Theorem 5.1, a
number of authors have proposed alternative definitions of equity. We
have already encountered egalitarian-equivalence and balanced envy (Sub-
section 4.4). Egalitarian-equivalent and efficient allocations exist quite gen-
erally (Pazner and Schmeidler, 1978a). The main assumption is “welfare-
connectedness”: if an agent consumes a non-zero bundle, resources can be
redistributed away from him so that all other agents are made better off.
Under sufficiently strong convexity assumptions on preferences and technolo-
gies, the reference bundle in the definition of egalitarian-equivalence can be
required to be proportional to the average consumption bundle and existence
preserved. The assumption under which balanced-envy and efficient alloca-
tions are known to exist are more restrictive (mainly, that the production
set is a convex cone, and that no two Pareto-efficient allocations be Pareto-
indifferent; Daniel, 1975).

The following proposal is another generalization of no-envy. It recognizes
the envy of agent j ∈ N by agent i ∈ N only after agent i’s consumption of
leisure is adjusted for him to produce the output produced by agent j:

Definition (Varian, 1974) Given e ≡ (R, Ω, Y ) ∈ EN
pro, the allocation

30Pazner refers to it as “per-capita fairness”. Similarly, since average no-envy and the
various criteria of group equity coincide with one of these criteria for |N | = 2, we conclude
that existence also fail for them in production economies with differentially productive
agents.
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z ∈ Z(e) is productivity-adjusted envy-free31 for e if for each i ∈ N ,
(`i, xi) Ri (`i(x̄j), xj), where x̄j is the bundle produced by agent j ∈ N , and
1− `i(x̄j) is the amount of labor that agent i ∈ N needs to produce x̄j.

The concept has the technical disadvantage of being well-defined only if
the production set is additive, since only then is it possible to identify the
share of the total output produced by each agent. Another, more fundamen-
tal problem with it is that, in a sense, it lets agents with high productivity
appropriate the benefits of their greater skills. To the extent that higher
productivity is “earned”, through a lengthier education or greater exertion
on the job, this may be legitimate (but would be recognized in a model in
which all inputs are properly included in the description of an allocation).
However, if it is the result of greater innate ability, one may well object to it
(Pazner, 1977; see below).

A proof of the existence of productivity-adjusted envy-free and efficient
allocations can be given along the lines of the “Walrasian” proof of existence
of envy-free and efficient allocations in exchange economies and under the
same assumptions. It suffices to operate the Walrasian solution from equal
division of the produced goods but leaving to each agent the ownership of
his time endowment. At any allocation reached in this manner, each agent
produces a bundle whose value at the equilibrium prices is equal to the value
of the bundle produced by each other agent (Varian, 1974).

The intent of the next concept is to distribute across agents the benefits
derived from the greater productivity of the more productive among them
(Pazner and Schmeidler, 1978b; Varian, 1974; Pazner, 1977). The solutions
using either equal division as a lower bound on welfares or no-envy are not
easily adaptable because the preferences of an agent are not defined on a
space that includes other agents’ leisure, but one can at least take advantage
of the instrumental value of the Walrasian solution in delivering envy-free
allocations when there is no production, and in providing equal opportunities.
Let us then operate the Walrasian solution from equal division of all goods,
including time endowments.32 Svensson (1994b) states an existence result for
allocations at which implicit incomes are equal, and neither preferences nor
technology are necessarily convex. As in the extensions of Theorem 4.1, where

31Varian (1974) refers to these allocations as “wealth-fair”.
32These authors speak of the equalization of “implicit incomes”, or “potential incomes”,

or “full incomes”, and use the term “income-fairness” for the resulting fairness notion.
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the main assumption pertains to the topological structure of the Pareto set,
his critical assumption is that the Pareto set be invariant under replication.
(Section 8 is devoted to an analysis of properties of this type.)33

A concept in the same spirit as that of a productivity-adjusted envy-
free allocation, but subject to the same limitations, is formulated by Otsuki
(1980). Biswas (1987) also defines an equity notion in production economies
with differently productive agents.

Non-convexities in technologies present another difficulty for the existence
of envy-free and efficient allocations:

Proposition 5.1 (Vohra, 1992) Domain: private goods; strictly monotonic
and convex preferences; no agent-specific inputs; not necessarily convex tech-
nologies. Envy-free and efficient allocations may not exist.

In the face of this negative result, which in fact can be proved by means of
an example in which in fact the only source of non-convexity in the technology
is the presence of a fixed cost, Vohra proposes to weaken no-envy by imposing
a certain symmetry among all agents with respect to possible occurrences of
envy (a notion related to one suggested by Varian, 1974):

Definition (Vohra, 1992) Given e ≡ (R, Ω, Y ) ∈ EN
pro, the allocation z ∈

Z(e) is essentially envy-free for e if for each i ∈ N , there is zi ∈ Z(e)
that is Pareto-indifferent to z and at which agent i envies no one.

If preferences are strictly convex, this definition reduces to no-envy. This
weakening of the standard definition suffices to recover existence. In fact,
existence holds without any convexity assumption on either preferences or
technologies. A critical one, however, remains that there be no agent-specific
input:

Theorem 5.2 (Vohra, 1992) Domain: private goods; strictly monotonic
preferences; no agent-specific input; non-empty and compact feasible set.
Essentially envy-free and efficient allocations exist.

33As a compromise between the two definitions just discussed, Archibald and Donaldson,
1979, propose that each agent be given ownership of a certain fraction of his own time
and an equal share of the remaining time of everyone. At equilibrium, budget sets are not
related by inclusion, which they suggest is a minimal requirement of “fairness of implicit
opportunities” (Section 6).
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In economies in which no two distinct Pareto-efficient allocations are
Pareto-indifferent, an allocation is essentially envy-free as well as efficient
if and only if it is envy-free and efficient. In general, if |N | > 2, the set of
allocations that are Pareto-indifferent to an envy-free and efficient allocation
(these allocations may violate no-domination) is a strict subset of the set of
essentially envy-free allocations.

5.2 Agent-by-agent lower and upper bounds

No-envy and egalitarian-equivalence notions are based on interpersonal com-
parisons of bundles. We now turn to criteria that, by contrast, can be eval-
uated agent by agent, just like the equal-division lower bound.

First, for each agent, we imagine an economy composed of agents having
preferences identical to his, and we identify his welfare under efficiency and
equal treatment of equals. We take this welfare as a bound. For nowhere-
increasing returns-to-scale, the profile of these welfares is feasible, and it can
be used to define a lower bound requirement on welfares.

Definition (Gevers, 1986; Moulin, 1990d) Given e ≡ (R, Ω, Y ) ∈ EN
pro, the

allocation z ∈ Z(e) meets the identical-preferences lower bound for e
if for each i ∈ N , zi Ri z∗i , where z∗i is a bundle that agent i would be
assigned by any efficient solution satisfying equal treatment of equals in the
hypothetical economy in which each other agent had preferences identical to
his.34

Alternatively, we could imagine each agent in turn to have control of an
equal share of the social endowment and unhampered access to the technol-
ogy:35

Definition (Moulin, 1990d) Given e ≡ (R, Ω, Y ) ∈ EN
pro, the allocation z ∈

Z(e) meets the equal-division free-access upper bound for e if for each
i ∈ N , z∗i Ri zi, where z∗i is a bundle that maximizes agent i’s preferences if
given access to ( Ω

|N | , Y ).

34Gevers uses the phrase “egalitarian lower bound” and Moulin the phrase “unanimity
lower bound”. The bound proposed by Steinhaus (1948) can also be understood in this
way (Section 12).

35Yoshihara (1998) proposes an extension of this notion to the case of economies with
arbitrarily many goods.
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This definition can be generalized by imagining each group of agents in
turn to have control over a proportion of the social endowment equal to its
relative size in the economy and unhampered access to the technology:

Definition (Foley, 1967) Given e ≡ (R, Ω, Y ) ∈ EN
pro, the allocation z ∈ Z(e)

is in the equal-division free-access core of e if there is no G ⊆ N and
no list of bundles (z∗i )i∈G ∈ R`G

+ such that for each i ∈ G, z∗i Ri zi, and for
at least one i ∈ G, z∗i Pi zi, this list being attainable by the group G if given

access to ( |G||N |Ω, Y ).

What of the compatibility of these bounds with no-envy? First, we state
an incompatibility:

Proposition 5.2 (Moulin, 1990c) Domain: one-input one-output produc-
tion economies; monotonic and convex preferences; concave production func-
tion. There are economies in which no allocation that is envy-free and effi-
cient meets the equal-division free-access upper bound.

The equal-division free-access upper bound itself is met on the domain of
the theorem by selections from the Pareto solution, in particular by a solu-
tion we find more convenient to define later, the constant-returns-to-scale–
equivalent solution (Mas-Colell, 1980a; Moulin, 1987b) (See the discussion
following Theorem 7.3).

In the case of nowhere-decreasing returns-to-scale, the equal-division free-
access bound becomes a lower bound, and an impossibility parallel to that
stated in Proposition 5.2 obtains: no subsolution of the Pareto solution sat-
isfies no-envy for trades and meets the equal-division free-access lower bound
(Moulin, 1987b).

When preferences are quasi-linear, the welfare of a group at an allocation
can be defined as the aggregate utility of its members evaluated by means
of the quasi-linear representations. Then, the core constraints form a system
of inequalities that is familiar in the theory of transferable utility coalitional
games.

Next is another bound for one-input one-output production economies.
Say that an allocation z is a proportional allocation for e if there are
prices such that each agent i maximizes his preferences given these prices
at zi. Let Pro(e) be the set of these allocations. An allocation z satisfies

40



the constant-returns-to-scale lower bound if for each z̄ ∈ Pro(e), z R z̄
(Maniquet, 1996).36 Such allocations exist very generally, but on the domain
of economies with concave production functions, no solution jointly satisfies
the constant-returns-to-scale lower bound and the identical-preferences lower
bound.

A “proportional equilibrium” is a configuration of input contributions
that constitute a Nash equilibrium of the game that results when agents are
paid for their input contributions according to average cost. The propor-
tional equilibria can be Pareto ranked. We require next that each agent
should find his bundle at least as desirable as what he would re-
ceive at the Pareto superior proportional equilibrium. The existence
of allocations satisfying this bound can be established by standard argu-
ments. Unfortunately, there may be no such allocation satisfying no-envy
(Maniquet, 1996b).

Fleurbaey and Maniquet (1996a, 1999a) formulate yet other bounds and
study their compatibility with other criteria (Chapter 21). They consider a
model in which each agent is described in term of his preferences over a two-
dimensional commodity space and a productivity parameter. The constant-
returns-to-scale lower bound is defined for each agent by reference to
the best bundle he could achieve if he had access to a constant-returns-to-
scale technology, the same for all agents; the work-alone lower bound
is defined for each agent by reference to the best bundle he could achieve
if given unhampered access to the technology but under the obligation to
provide bundles to the other agents to which he would not prefer his own.

For another study of the logical relations between bounds in a class of
two-good economies with convex production sets, the identical-preferences
lower bound and the free-access upper bound, see Watts (1999). She shows
that, except in trivial cases, the latter does not imply the former.

A general theory of “aspirations” that encompasses several of the notions
discussed above is developed by Corchón and Iturbe-Ormaetxe (2001).

36Maniquet uses the phrase “average-cost lower bound”.
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6 Equal opportunities as equal, or equivalent,

choice sets

In this section, we switch our focus from allocations to the opportunities that
lead to allocations. The notion of equal opportunities is of course central in
the theory of economic justice, and many references could be given (Arne-
son, 1989; Cohen, 1989; Fleurbaey, 1995a, are representative pieces). We
are interested here in implementing it in concrete economic environments,
and exploring various notions of “equal opportunities as equal, or equiva-
lent, choice sets.” These notions formalize and generalize ideas informally
discussed by a number of authors.

The phrase “equal opportunities” has been given a variety of meanings.
When used in economies affected by uncertainty, it may mean “equal treat-
ment ex-ante”; after the choice of nature is known, agents may end up with
bundles that are not necessarily equitable, but redistributions may not be
possible. Uncertainty may be endogenously generated by an allocation rule.
Anticipating briefly on Section 10, consider the problem of allocating an in-
divisible good. A lottery giving all agents equal chances might be deemed
equitable ex-ante although the final allocation may well appear unequitable.

Alternatively, in a context where agents’ opportunities today are deter-
mined by decisions they made yesterday, equal opportunities may mean hav-
ing access to the same set of decisions at that early stage. An example here
is education. Giving two children with equal talents access to the same edu-
cational opportunities ensures that whatever differences exist between them
later in life are due to their own decisions, for instance how hard they stud-
ied in school. It is often argued that, because of incentive considerations,
we should not attempt to equalize end-results but should limit ourselves to
giving people equal chances to develop their potential. Then, equal opportu-
nities are provided by the transition mechanism (Subsection 4.9). Here, we
ignore questions of uncertainty and incentives, and focus instead on compar-
ing availability of concrete choices given in commodity space. This section is
mainly based on Thomson (1994a).

Other approaches have been taken for the comparative evaluation of op-
portunity sets. One line of investigation was opened by Barberà, Barrett, and
Pattanaik (1984) and pursued by Pattanaik and Xu (1992), Klemisch-Ahlert
(1993), Bossert, Pattanaik, and Xu (1994), Kranich (1996), and Bossert
(1997), to name a few representative contributions. These authors derive
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axiomatic characterizations of various rules to rank opportunity sets. (For a
survey of this literature, see Peragine, 1999).

An initial limitation of this literature is that most of it was written for
abstract domains, no account being taken of the natural restrictions on do-
mains and alternatives that characterize concretely specified economic do-
mains. Also, and for the same reason, they ignore restrictions on preferences
that are natural on such domains. Recent contributions have addressed these
issues however (Kranich, 1997; Xu, 2004).

6.1 Equal opportunities

Another way to give substance to the idea of equal opportunities is to let
each agent choose his consumption bundle from a common choice set, as
suggested in particular by Kolm (1973).

Although the straight-line choice sets of Walrasian analysis first come
to mind, for a number of practical and theoretical reasons, we may want to
consider other possibilities. First, even in economies where resources are sup-
posedly allocated by operating the Walrasian mechanism, in practice, agents
rarely face linear prices. Quantity discounts, quantity constraints, non-linear
tax rates, welfare payments, all contribute to generating choice sets that de-
part considerably from standard Walrasian budget sets. Neither convexity
of choice sets nor smoothness of their boundaries should be expected. In the
theory of revealed preference, generalized notions of choice sets have been
discussed and a complete treatment elaborated (Richter, 1979). Here too,
we would like to start from abstract choice sets with no a priori restrictions.
How generally can this be done?

The difficulty with giving all agents the same choice set is of course that
the list of choices they will make from it will in general not constitute a
feasible allocation: aggregate feasibility of the profile of choices precludes
that the set be specified once and for all, before preferences are determined.
Instead, one should have access to a “rich enough” family of choice sets, that
is, a family such that, no matter what preferences are, it is guaranteed that
for at least one member of the family, the list of chosen bundles constitutes a
feasible allocation. In addition, one would prefer efficiency to hold whenever
feasibility does. Although experience with the modified Walrasian budget
sets agents face in the real world should make us doubt that this will be
the case very generally, the search for families for which it does is certainly
worthwhile. Let B be a family of choice sets (subsets of R`

+). We state the
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definitions for economies with production, EN
pro being a generic domain of

such economies with agent set N .

Definition Given e ≡ (R, Ω, Y ) ∈ EN
pro, the allocation z ∈ Z(e) is an

equal-opportunity allocation relative to B for e, written as z ∈ OB(e),
if there is B ∈ B such that for each i ∈ N , zi maximizes Ri on B.

Definition The family B is satisfactory on the domain EN
pro if for each

e ∈ EN
pro, ∅ 6= OB(e) ⊆ P (e).

A satisfactory family is easy to find: the equal-income Walrasian fam-
ily, Wei, is satisfactory on the classical domain.

It turns out that under natural assumptions on preferences and on the
family B, if B is satisfactory, then OB ⊇ Wei. Families B exist for which
OB ⊃ Wei however. For instance, if |N | = 2, families B can be defined
such that OB = BedP . Of course, for each family B, we have OB ⊆ F . This
inclusion is in fact a common justification for no-envy, namely an implication
of equal opportunities, some say “equal liberty”.

6.2 Equal-opportunity–equivalence

Another concept is obtained by generalizing the reasoning underlying the
notion of egalitarian-equivalence. It involves checking whether an allocation
under consideration is such that, for some member of the family of choice
sets, each agent is indifferent between what he receives and the best bundle
he could attain. Again, let B be a family of choice sets:

Definition (Thomson, 1994a) Given e ≡ (R, Ω, Y ) ∈ EN
pro, the allocation

z ∈ Z(e) is equal-opportunity–equivalent relative to B for e, written
as z ∈ O'

B (e), if there is B ∈ B such that for each i ∈ N , zi Ii z∗i , where z∗i
maximizes Ri on B.

If B ≡ {{z0}: z0 ∈ R`
+}, then O'

B = E (egalitarian-equivalence). If |N | =
2, and B is the family of all linear choice sets, then O'

B = P . For |N | > 2,
there is no containment between O'

BP and EP . If B ≡ Wei, then O'
B =

Wei. Suppose now that preferences satisfy the classical assumptions and
that the technology is convex. Then, for a natural subfamily of the linear
family of choice sets, if the associated equal-opportunity–equivalence solution
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is to have an empty intersection with the no-domination solution, then the
family should be a subsolution of the equal-income Walrasian family, as noted
earlier. The resulting solution is the equal-income Walrasian solution. Here
are other examples:

Definition Let p ∈ ∆`−1 be fixed. Given M ∈ R+, let Bp(M) ≡ {z ∈
R`

+: pz ≤ M}. Let Bp ≡ {Bp(M): M ∈ R+}.

Definition Given p ∈ ∆`−1, let L(p) ≡ {z ∈ R`
+: pz = p Ω

|N |}. Let L ≡
{L(p): p ∈ ∆`−1}.

Let p ∈ ∆`−1 be fixed. If the family Bp is used, and when efficiency is
imposed, we obtain the solution that selects for each economy the efficient
allocations that are Pareto-indifferent to |N |-lists of bundles whose values
at the prices p (which have nothing to do with the prices of support of z)
are equal. For the family L, we obtain any efficient allocation such that
each agent finds his component of it indifferent to the best bundle he could
achieve if endowed with Ω

|N | and given access to a constant-returns-to-scale

technology, the same for all agents, (Mas-Colell, 1980a). We describe below
a characterization of the solution just defined on the basis of a monotonicity
requirement (Section 7; Moulin, 1987a; Roemer and Silvestre, 1993, also
explore the criterion).

Yet other examples of solutions can be obtained by having all agents
face a hypothetical technology obtained from the actual one by imagining
the productivity of one specific factor of production (alternatively of some
subset of the factors of production) to be multiplied by some number, or by
introducing a fixed cost of some factor of production (alternatively, introduc-
ing a fixed cost proportional to some fixed vector). Radial expansions and
contractions of the production set can also be considered. A special case is
the ratio solution (Kaneko, 1977a,b). A general application of the concept
is due to Nicolò and Perea (2005). It covers private good allocations, cost
sharing, and location of a public good.

6.3 No envy of opportunities

Given e ≡ (R, Ω, Y ) ∈ EN
pro and z ∈ P (e), let us now define the (implicit)

opportunity set of agent i ∈ N at z as the set of bundles whose value at the
prices supporting z is no greater than the value of zi (Varian, 1976). Equal
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opportunities, according to this definition, implies that z ∈ Wei(e). More
generally, define the (once again, implicit) opportunity set of agent i ∈ N
at any z ∈ Z(e) as the set of bundles whose value at the prices supporting
agent i’s upper contour set at zi is no greater than the value of zi (Archibald
and Donaldson, 1979). For this definition to make sense, we should assume
that these supporting prices are unique. Now, if the opportunity sets of two
agents are not the same, they may not be related by inclusion, in contrast
to the situation considered by Varian. In a production economy with differ-
ently productive agents, supporting prices need not be the same, so implicit
opportunities cannot be equalized. One may require instead that no agent
should prefer the implicit opportunities of another. To generalize this idea,
let B be a family of choice sets:

Definition (Thomson, 1994a) Given e ≡ (R, Ω, Y ) ∈ EN
pro, the allocation

z ∈ Z(e) exhibits no envy of opportunities relative to B for e,
written as z ∈ OFB(e), if for each i ∈ N , there is Bi ∈ B such that zi ∈ Bi

and zi maximizes Ri on
⋃

Bj.

It is easy to check that if B is the family L of linear choice sets, then the
resulting solution OFB coincides with the equal-income Walrasian solution.
Also, if B is the family of |N |-lists of bundles, we obtain the following concept,
which generalizes both no-envy and egalitarian-equivalence:

Definition (Pazner, 1977) Given e ≡ (R, Ω, Y ) ∈ EN
pro, the allocation z ∈

Z(e) is envy-free–equivalent for e if there is z′ ≡ (z′i)i∈N ∈ R`N
+ such

that for each pair {i, j} ⊆ N , z′i Ri z′j, and z I z′. (Note that z′ ∈ Z(e) is
not required.)

A model in which agents have preferences over commodity bundles, pref-
erences over opportunity sets, and preferences over pairs of a commodity
bundle and an opportunity set is studied by Tadenuma and Xu (2001). They
say that a pair of a profile of an allocation and a profile of opportunity sets is
decentralizable for a profile of preference relations over bundles if
for each agent, his component of the allocation maximizes his preference re-
lation over bundles in his component of the opportunity profile. They relate
notions of no-envy according to these different relations, and offer charac-
terizations of the Walrasian solution on the basis of decentralizability, and
various forms of independence and no-envy requirements.
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7 Monotonicity

For most of the analysis of the preceding sections, we have assumed the social
endowment, and the production set when there was one, to be fixed. Here,
we imagine changes in these data and we study how solutions respond to such
changes. We start with the distribution of an unproduced social endowment.
If it increases, we require that all agents should end up at least as well off as
they were initially. We ask whether this requirement is compatible with our
earlier equity criteria. As we will see, the answer depends on which of them
is chosen. In economies with production, an appealing requirement is that
if the technology improves, all agents should end up at least as well off as
they were initially. We also consider a monotonicity requirement pertaining
to economies with fixed resources but a variable number of agents. We would
like everyone initially present to help supporting newcomers.

Each of the parameters just listed whose possible variations we consider
belongs to a space equipped with an order structure, and the rule is required
to respond well to changes that can be evaluated in that order. Under such
assumptions, the change can be unambiguously evaluated in terms of wel-
fares. More generally, we could consider simply replacing the initial value
taken by the data with another value, and only require that the welfares of
all agents should be affected in the same direction, namely that all should
end up at least as well off as they were initially or that they all should end
up at most as well off. We close with an application of the idea to situations
when it is the replacement of the preferences of some agents that has to be
faced, thereby obtaining an application of what we call later the “replacement
principle”.

7.1 Resource-monotonicity

Our first monotonicity property pertains to variations in resources. (For a
survey of the various applications of the idea of monotonicity with respect to
resources or opportunities, see Thomson, 1999c.) Given a class R of possible
preferences over R`

+, an economy is a pair (R, Ω) ∈ EN ≡ RN × R`
+ and a

solution is a mapping defined over EN and taking its values in R`N
+ .

Our requirement is that if the social endowment increases, all agents
should end up at least as well off as they were initially. It allows for solution
correspondences but given the choice of quantifiers, it implies essential single-
valuedness.
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Figure 4: Two solutions, one resource-monotonic, the other not. (a) The
equal-division Walrasian solution is not resource-monotonic. When the social en-
dowment is Ω, the solution selects z. After the social endowment increases to Ω′,
it selects z′, to which agent 1 prefers z. (b) The r-egalitarian-equivalence and
Pareto solution is resource-monotonic. As the social endowment increases from Ω
to Ω′, the reference bundle associated with the allocation chosen by this solution
can only move further out on the ray defined by r (it goes from z0 to z′0). This
implies that both agents end up at least as well off as they were initially.

Resource-monotonicity: (Thomson, 1978; Roemer, 1986a,b; Chun and
Thomson, 1988) For each (R, Ω) ∈ EN , each z ∈ ϕ(R, Ω), each Ω′ ∈ R`

+,
and each z′ ∈ ϕ(R, Ω′), if Ω′ = Ω, then z′ R z.

It is easy to see that the equal-division Walrasian solution violates the
property (Figure 4). This is so even on domains on which it is essentially
single-valued, such as the domain of homothetic preferences (essential single-
valuedness follows from the fact that in addition, endowments are equal),
so writing the definition with existential instead of universal quantifiers
for z and z′ would not help. Our main result here is that the Walrasian
solution is far from being the only one to suffer from this problem. To
present it, we need to formally introduce as a solution the correspondence
that associates with each economy the set of allocations at which no agent
receives at least as much of each good as some other agent and more of
at least one good. Let D: EN → R`N

+ be this no-domination solution:
D(R, Ω) ≡ {z ∈ Z(R, Ω): for no pair {i, j} ⊆ N, zi ≥ zj} (note that the def-
inition does not involve preferences). This is a “large” correspondence. How-
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ever, even under strong assumptions on preferences, it is not large enough to
admit efficient resource-monotonic selections.

Theorem 7.1 (Moulin and Thomson, 1988) Domain: private goods; strictly
monotonic, convex, and homothetic preferences. No selection from the no-
domination and Pareto solution is resource-monotonic.

Theorem 7.1 is rather disappointing, but unfortunately, the situation is
worse. Indeed, given ε ≥ 0, let us replace no-domination by the require-
ment that each agent should be made at least as well off as he would be by
consuming ε percent of the social endowment (Moulin and Thomson, 1988).
The smaller ε is, the weaker the requirement. However, no matter how small
ε is, provided it is positive, the incompatibility persists. Alternatively, and
here too, for each ε > 0, no-domination could be replaced in this theorem
by the requirement that no agent should receive less than ε percent of what
each other agent receives.

It is only at the limit, when ε = 0, that is, when no restriction is placed on
the extent to which an agent might be discriminated against, that a positive
result is obtained. Indeed, all of the egalitarian-type solutions defined as fol-
lows are resource-monotonic: for each agent, choose a continuous numerical
representation of his preferences—a welfare index—and then the allocation(s)
whose image in welfare space is maximal among all feasible points at which
the welfare gains from the image of the allocation consisting entirely of zero
bundles are equal. Any such solutions is resource-monotonic because an in-
crease in the social endowment causes the feasible set to expand. It then
becomes possible to move further up along the equal-gains line.37 More gen-
erally, each equal-opportunity–equivalent solution with respect to a family
of choice sets satisfying minimal regularity properties is resource-monotonic.

37It is on this fact that Kalai’s (1977) well-known characterization of the egalitarian
solution to the bargaining problem is based. In economies in which agents are individually
endowed, this fact also underlies the proof of existence of rules that are “own-endowment
monotonic”, that is, such that when an agent’s endowment increases, he ends up at least as
well off as he was initially. Aumann and Peleg (1974) provide an example of an economy
with continuous, strictly monotonic, convex, and homothetic preferences revealing that
this rule violates the property. In the example, the Walrasian allocation is in fact unique
for each endowment profile. The strategic implication of such a violation is that an agent
may benefit from destroying part of his endowment (Hurwicz, 1978). The Aumann-Peleg
example can also be used to show that the Walrasian solution is such that as one agent
transfers some of his endowment to some other agent, both may benefit (Gale, 1974), a
phenomenon related to the “transfer problem”, well-known to international trade theorists.
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One can even go beyond this class without losing resource-monotonicity :
each solution defined by selecting a maximal point of equal welfares, using
as welfare index for each agent a function that takes value zero at the zero
bundle, will do.

A result related to Theorem 7.1 is that no selection from the Pareto solu-
tion satisfies Property α (Subsection 4.1) and resource-monotonicity (Mani-
quet and Sprumont, 2000).

A requirement in the spirit of, but weaker than, resource-monotonicity, is
that when the social endowment increases, the bundle assigned to no agent
should be dominated, good by good, by the bundle assigned to him initially.
No selection from the no-envy and Pareto solution satisfies it (Geanakoplos
and Nalebuff, 1988).38 Also, no matter how small ε > 0 is, no selection
from the Pareto solution that always makes each agent at least as well off
as he would be by consuming ε percent of the social endowment satisfies it
(Moulin, 1991).

The proofs of the negative results just described rely on the admissibility
of preferences with indifference curves that are close to right angles. In their
“ε variants”, the smaller ε is, the closer to right angles indifference curves
are. Do the results persist if preferences are required to satisfy some minimal
degree of substitutability? The answer is no. For instance, it follows from
Polterovich and Spivak (1980, 1983) that when preferences satisfy gross sub-
stitutability and all goods are normal, the equal-division Walrasian solution
is resource-monotonic (Moulin and Thomson, 1988).

Let r ∈ ∆`−1\{0} be given. By using as each agent i’s welfare index
the function t:R`

+ → R defined by zi Ii t(zi)r, we deduce from an earlier
observation that the r-egalitarian-equivalence and Pareto solution is resource-
monotonic. (In fact, the rule is such that the welfares of all agents are affected
in the same direction by any variation in the social endowment, whether or
not the values it takes are related by domination.) This property of the r-
egalitarian-equivalence family of solutions is a very strong point in their favor.
In the pages to follow, we will encounter a number of additional arguments

38Geanakoplos and Nalebuff state their result for correspondences, requiring that when
the social endowment increases, then for each agent, there should be at least one good,
one allocation in the initial economy and one allocation in the final economy at which
he receives more of that good after the enlargement. This choice of quantifiers makes
the monotonicity requirement weaker. Their non-existence proof involves economies with
more than two agents.
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of that nature lending them additional support. What is critical is that
the reference bundle be independent of the social endowment. We saw that
requiring that it be proportional to the social endowment guarantees that
the equal-division lower bound is met. It is an implication of Theorem 7.1
that if efficiency is imposed, this bound is obtained at the price of resource-
monotonicity. (Without efficiency, the rule that always selects equal division
would of course be acceptable.)

For the quasi-linear case, we have good news. Given an economy e in
which preferences can be represented by functions that are quasi-linear with
respect to a particular good (the same for all agents), and using such rep-
resentations as welfare indices—the special good is used as an “accounting
good” then—consider the coalitional game w(e) defined as follows: set the
worth of each coalition to be the maximal aggregate welfare it can reach
if given access to the entire social endowment, its “free-access” aggregate
welfare, in the terminology of Section 5. The next theorem describes ad-
ditional properties of preferences under which the Shapley value (Shapley,
1953) applied to the coalitional game w(e) induces a resource-monotonic
solution. First, say that two goods j and k are substitutes for a
function f :R` → R if the amount by which it increases as its k-th ar-
gument increases by some arbitrary amount is a decreasing function of its
j-th argument: for each xi ∈ R`

+ and each pair {a, b} ⊂ R+, we have
f(yi + bek)−f(yi) ≥ f(yi +aej + bek)−f(yi +aej), where ej denotes the j-th
unit vector. Also, the function f satisfies substitutability if any two
goods are substitutes for f . (Writing the condition when j = k is equivalent
to saying that f is concave in yj.) Finally, the coalitional game w(e)
satisfies substitutability if each of its coordinates does. Now, we have:

Proposition 7.1 (Moulin, 1992b) Domain: private goods; quasi-linear pref-
erence profiles; free-access coalitional game associated to each economy satis-
fies substitutability. The Shapley value, when applied to these games, induces
a resource-monotonic solution.

If there is only one good in addition to the accounting good, substitutabil-
ity of vi is equivalent to its concavity. Another application of Proposition 7.1
is when there are only two goods in addition to the accounting good, and
for each i ∈ N , the function vi is concave and submodular over R2

+. It also
applies in the case of many goods if for each i ∈ N , the function vi is twice
continuously differentiable in the interior of R`

+, strictly concave, exhibits
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gross substitutability, and the marginal utility of each good at 0 is infinite.

Studies of monotonicity in abstract settings are due to Moulin (1989,
1990d).

7.2 Welfare-domination under preference-replacement

In the statement of the monotonicity properties discussed above, we focused
on one of the parameters defining the economy, and considered changes in
that parameter that could be unambiguously described as good for a certain
group of agents; we required that as a result of the change, all agents should
be made at least as well off as they were initially. We could in fact imag-
ine arbitrary changes in the parameter and demand that the welfares of all
relevant agents should be affected in the same direction: as a result of the
replacement, they should all be made at least as well off as they were initially
or they should all be made at most as well off. This is the most general way of
expressing the idea of solidarity among agents. It is referred to in Thomson
(1990c, 1997) as the replacement principle. The principle can also be ap-
plied to changes in parameters taken from spaces that are not equipped with
order structures. A primary example of such a parameter are the preferences
of an agent. This consideration leads us to the following requirement. (The
literature devoted to its analysis in various models is surveyed in Thomson,
1999a.)

Welfare-domination under preference-replacement: For each (R, Ω) ∈
EN , each z ∈ ϕ(R, Ω), each i ∈ N , each R′

i ∈ R, and each z′ ∈ ϕ(R′
i, R−i, Ω),

either z′N\{i} RN\{i} zN\{i} or zN\{i} RN\{i} z′N\{i}.

It is obvious that the equal-division Walrasian solution violates the prop-
erty, even in the two-good case. In general, a change in some agent’s prefer-
ences is accompanied by a change in the equilibrium prices, and if at least
two of the other agents are initially on opposite sides of the market, any such
change will make one of them better off and the other worse off. Unfortu-
nately, this difficulty is widely shared:

Theorem 7.2 (Thomson, 1996) Domain: private goods; strictly monotonic
and homothetic preferences. No selection from the no-envy and Pareto solu-
tion satisfies welfare-domination under preference-replacement.
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The proof is by means of two-good and three-agent economies. In
fact, even if no-envy is weakened to no-domination, an incompatibility
with efficiency holds (Kim, 2001). It is clear however that selections from
the egalitarian-equivalence and Pareto solution exist that satisfy welfare-
domination under preference-replacement. Simply choose a continuous, un-
bounded, and monotone path in commodity space and require the reference
bundle to belong to the path. If the path goes through equal division, the
resulting rule is also a selection from the equal-division lower bound solution.
These desirable properties hold whether or not the path is a ray.

The replacement principle can be applied to the joint replacement of re-
sources and preferences. A general result describing its implications then is
given by Sprumont (1996). His formulation covers as special cases the clas-
sical model but also public good models. Suppose that it is meaningful to
compare the relative treatment of agents i and j, when agent i has prefer-
ences Ri and is assigned a consumption on a certain indifference curve of Ri

and agent j has preferences Rj and is assigned a consumption on a certain
indifference curve of Rj, and that in fact a social order exists on the space of
all such pairs. The result is that under a richness property of its range, and
if there are at least three agents, a rule satisfies what can be called welfare-
domination under resource-and-preference replacement if and only if there is
an ordering of the kind just described such that for each problem, the rule
selects an allocation at which all agents are assigned consumptions so that
they are all treated equally well according to this ordering.

7.3 Technology-monotonicity

Another interesting comparison can be made between two economies that
differ only in their technologies. Suppose that the technology of one domi-
nates the technology of the other. It seems natural to require that in the first
one, all agents should be made at least as well off as they are in the second
one. In order to formally state the property, we need to reintroduce produc-
tion possibilities in the notation. A technology is a subset Y of commodity
space R`. Let Y be a class of admissible technologies. Here, an economy is
a triple (R, Ω, Y ) ∈ RN × R`

+ × Y . Let EN
pro be our generic notation for a

domain of economies.

Technology-monotonicity: (Roemer, 1986) For each (R, Ω, Y ) ∈ EN
pro,

each Y ′ ∈ Y , each z ∈ ϕ(R, Ω, Y ), and each z′ ∈ ϕ(R, Ω, Y ′), if Y ′ ⊇ Y , then
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z′ R z.

The requirement is satisfied by certain selections from the egalitarian-
equivalence and Pareto solution. In the case of two goods, a characterization
of a particular one is obtained by imposing it together with a few other
minimal requirements, as explained next.

Suppose first that good 1 is used to produce good 2 according to a
nowhere-decreasing-returns-to-scale technology Y . Given a group N of
agents with preferences defined on R2

+, given some social endowment Ω of
good 1, which can be consumed as such or used as input in the production
of good 2, and given Y , let ϕ(R, Ω, Y ) be the set of allocations selected by
the solution ϕ. Here, we denote by Bed+Y (R, Ω, Y ) the set of allocations
such that each agent finds his bundle at least as desirable as the best bundle
he could achieve if endowed with Ω

|N | and given unhampered access to the
technology Y : the equal-division free-access lower bound solution.

The next solution illustrates the definition of equal-opportunity–
equivalence of Subsection 6.2. The definition is depicted in Figure 5 for
a nowhere-increasing-returns-to-scale technology.

Definition (Mas-Colell, 1980a) Given e ≡ (R, Ω, Y ) ∈ EN
pro, the allocation

z ∈ P (e) is a constant-returns-to-scale–equivalent allocation for e,
written as z ∈ CRS'(e), if there is a constant returns-to-scale technology
such that for each i ∈ N , zi Ii z∗i , where z∗i maximizes agent i’s preferences
if given access to ( Ω

|N | , Y ).

Theorem 7.3 (Moulin, 1987b; 1990d) Domain: one-input and one-output
production economies; social endowment of the input; preferences are strictly
monotonic with respect to the input and monotonic with respect to the
output; (a) nowhere-decreasing-returns-to-scale technologies; (b) nowhere-
increasing-returns-to-scale technologies (alternatively, convex technologies).
(a) The only selection from the equal-division free-access lower bound and
Pareto solution satisfying Pareto-indifference and technology-monotonicity is
the constant-returns-to-scale–equivalence solution. (b) A parallel statement
holds for selections from the equal-division free-access upper bound.

Although in Part (a) of the theorem, the bounds on welfares are individual
bounds, the solution that emerges happens to satisfy the requirement that no
group of agents should be able to make each of its members at least as well
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Figure 5: Constant-returns-to-scale equivalence solution. This solution
selects the unique (up to Pareto-indifference) efficient allocation such that, for some
reference constant-returns-to-scale technology Y p, each agent i ∈ N is indifferent
between his bundle zi and the best bundle he could reach if endowed with an
equal share of the social endowment of the input and given access to that reference
technology.

off, and at least one of them better off, if each of its members is endowed with
an equal share of the social endowment and the group is given unhampered
access to the technology. A parallel statement holds for Part (b).

One could be more demanding and consider simultaneous changes in sev-
eral of the parameters describing the problem. For instance, suppose that
resources and technologies both change. This may or may not lead to an
enlargement of opportunities, but Dutta and Vohra (1993), who study this
possibility, require of a correspondence that if an enlargement of the set of
feasible profiles of welfare levels does occur, each allocation chosen initially
should be welfare dominated by some allocation chosen after the change, and
that each allocation chosen after the change should welfare dominate some
allocation chosen initially. Let us refer to this requirement as opportunity-
monotonicity. They also require, under the name of r-equity, that in an
exchange economy in which there is only some amount of good r to divide,
equal division should be chosen. They consider an invariance requirement
that also depends on the choice of a good, say r, so we call it r-invariance.
It is somewhat technical and not motivated by normative considerations, so
we do not state it explicitly, only noting that it is a weak version of the in-
variance requirement shown by Maskin (1999) to be critical to the possibility
of implementation. This requirement is usually called “Maskin monotonic-
ity”, but we will use the more descriptive expression of invariance under
monotonic transformations of preferences: if an allocation is chosen
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for some economy and preferences change in such a way that the restriction
of each agent’s new lower contour set at his component of the allocation to
the set of feasible allocations contains the corresponding set for his initial
preferences, then the allocation should still be chosen for the new economy:

Theorem 7.4 (Dutta and Vohra, 1993) Domain: private goods; monotonic
and convex preferences such that each indifference curve crosses the r-th
axis; production set is closed, contains the origin, and exhibits free disposal
(non-convex sets are allowed; exchange economies are included); set of feasi-
ble welfare profiles (using arbitrary continuous numerical representations of
preferences), is bounded. Up to Pareto-indifference, (a) the r-egalitarian
equivalence and Pareto solution is the only subsolution of the Pareto solution
satisfying r-equity and opportunity-monotonicity; (b) on the subdomain of
exchange economies, it is the only subsolution of the Pareto solution satisfy-
ing r-equity, r-invariance, and opportunity-monotonicity.

Another independence condition is contraction-independence: if an
allocation is chosen for some economy, the technology contracts but the al-
location remains feasible, then it should still be chosen.

Several characterizations are available that involve this requirement. For
the first one, we need an addition definition, due to Roemer and Silvestre
(1993). They consider economies with arbitrarily many goods and identify
general conditions under which existence is guaranteed. We limit attention
to economies with two goods:

Definition Given e ≡ (R, Ω, Y ) ∈ EN
pro, a class of production economies

with two goods, one of them being used as an input in the production of
the other, the allocation z ∈ P (e) is a proportional allocation for e,
written as z ∈ Pro(e), if either z = 0 or for each pair {i, j} ⊆ N , the ratio
of agent i’s input contribution over his output consumption is equal to the
corresponding ratio for agent j.

Theorem 7.5 (Moulin, 1990d) Domain: one-input one-output production
economies; monotonic and strictly convex preferences; convex technolo-
gies. (a) If a selection from the identical-preferences lower bound satisfies
contraction-independence, then it contains the equal-income Walrasian so-
lution. (b) The proportional rule is the only selection from the Pareto and
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free-access upper bound solution satisfying contraction-independence and in-
variance under monotonic transformations of preferences.

We also have a partial characterization based on the constant-returns-to-
scale lower bound:

Theorem 7.6 (Maniquet, 1996b) Domain: one-input one-output produc-
tion economies; monotonic and convex preferences; nowhere-increasing-
returns-to-scale technology. If a subsolution of the constant-returns-to-
scale lower bound solution satisfies Pareto indifference and contraction-
independence, then it contains the constant-returns-to-scale–equivalence so-
lution.

The next theorem involves weak invariance under monotonic trans-
formations of preferences, obtained from the requirement defined above
by using the hypothesis of inclusion of upper contour sets instead of inclusion
of restricted upper contour sets (Gevers, 1986).

Theorem 7.7 (Maniquet, 2002) Domain: one-input one-output production
economies; monotonic and convex preferences; convex technologies. The pro-
portional rule is the only subsolution of the Pareto solution that selects the
efficient and proportional allocations when they exist and satisfies weak in-
variance under monotonic transformations of preferences.

We close this discussion of production economies with a mention of two
other interesting monotonicity requirements. The first one pertains to situa-
tions where agents are differentiated by their input contributions. It simply
says that if the contribution of an agent increases, he should end up at least
as well off as he was initially.

The second one pertains to situations in which agents differ in their pro-
ductivities. It states the corresponding requirement that if an agent’s pro-
ductivity increases, then again, he should end up at least as well off as he
was initially.

Technology-monotonicity is also considered Moulin and Roemer (1989).
They focus on economies with two agents equipped with utility functions,
the same for both, but whose productivities may differ.

57



-

6

z1

z2

z3

Ω

Ω
2

Ω
3

(p)

(p′)

z′1
z′2

µR1

µR1

µ
R2

µ
R3

Figure 6: The equal-division Walrasian solution is not population-
monotonic. In the example depicted here, when all three agents are present,
the solution selects z. If agent 3 is not present, it selects z′, to which agent 2
prefers z.

7.4 Population-monotonicity

Next, and returning to the problem of distributing a fixed bundle of goods,
we consider a monotonicity property that pertains to situations in which re-
sources are fixed but the population of agents varies. If it enlarges, we require
that all agents initially present should end up at most as well off as they were
initially. (The literature devoted to the analysis of this requirement in various
models is surveyed in Thomson, 1995b). For a formal statement, recall our
notation for solutions that accommodate variable populations (Section 2).

Population-monotonicity: (Thomson, 1983b) For each N ∈ N , each
(R, Ω) ∈ EN , each z ∈ ϕ(R, Ω), each N ′ ⊆ N , and each z′ ∈ ϕ(RN ′ , Ω), we
have z′ RN ′ zN ′ .

It is easy to see that the equal-division Walrasian solution violates this
property (Figure 6). In fact, it may violate it in economies with mono-
tonic, convex, and homothetic (or quasi-linear) preferences (Chichilnisky and
Thomson, 1987). More seriously, we have the following general impossibil-
ity:39

Theorem 7.8 (Kim, 2004) Domain: private goods; strictly monotonic, con-
vex, and homothetic preferences. No selection from the no-envy and Pareto
solution is population-monotonic.

A related result holds for economies with a large number of agents mod-
elled as a continuum (Moulin, 1990c, 1991). It is based on the following facts:

39The proof requires that there be at least eight agents.
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(i) in such an economy, and if preferences are sufficiently diverse, any envy-
free allocation is an equal-division Walrasian allocation (Section 4.6) and
(ii) in economies with finitely many agents, the equal-division Walrasian so-
lution is not population-monotonic (Figure 6). The proof consists in approx-
imating a finite pair of economies illustrating (ii) by a continuum economy
satisfying (i).

Theorem 7.8 can be strengthened in the same manner as Theorem 7.1
was: on the same domain, for each ε > 0, no selection from the ε—no-
domination and Pareto solution is population-monotonic (Kim, 2004) (the
smaller ε is, the larger the number of agents required for the proof). Just
as was the case for Theorem 7.1 and its “ε variant”, Theorem 7.8 and its “ε
variant” rely on the admissibility of preferences whose indifference curves can
be arbitrarily close to right angles. Positive results hold, at least for the equal-
division Walrasian solution, if preferences satisfy some minimal degree of
substitutability. In particular, it follows from Polterovich and Spivak (1980,
1983) that this solution is population-monotonic if preferences exhibit the
gross-substitutability property and all goods are normal (Fleurbaey, 1995c).

There is a connection between population-monotonicity being violated by
the equal-division Walrasian rule to its being subject to the “transfer para-
dox”: in an economy with individual endowments, a transfer of endowment
from an agent to some other agent may make the donor better off and the re-
cipient worse off. The following results pertain to homothetic preferences: In
the absence of substitution effects, the rule is subject to the transfer paradox
if and only if it violates population-monotonicity. In the presence of substitu-
tion effects, it may violate population-monotonicity even in situations where
no transfer paradox can occur (Jones, 1987).

What if other distributional requirements are imposed? If preferences
are strictly monotonic, the Ω-egalitarian-equivalence and Pareto solution is
population monotonic (Thomson, 1987). Recall that this solution also meets
the equal-division lower bound. More generally, and still if preferences are
strictly monotonic, the equal-opportunity–equivalence and Pareto solutions
of Subsection 6.2 are population-monotonic.

For quasi-linear preference profiles, we have a counterpart of Proposi-
tion 7.1:

Proposition 7.2 (Moulin, 1992b) Domain: private goods with a positive
amount of money; quasi-linear preferences; free-access coalitional game asso-
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ciated with each economy satisfies substitutability. The Shapley value, when
applied to these games, induces a population-monotonic solution.

Selections from the equal-division lower bound and Pareto solution exist
that are population-monotonic. A constructive algorithm producing such a
solution can indeed be defined (Moulin, 1990b), but in contrast with the so-
lution induced by the Shapley value, this solution is not resource-monotonic.

If we apply the replacement principle of Subsection 7.2 to the joint re-
placement of preferences and population, then under the additional require-
ment of replication-invariance, only one solution emerges, namely the selec-
tion from the egalitarian-equivalence solution for which the reference bundle
is proportional to the social endowment.

Theorem 7.9 (Sprumont and Zhou, 1999) Domain: private goods; strictly
monotonic and convex preferences. The Ω-egalitarian-equivalence and Pareto
solution is the only selection from the equal-division lower bound and
Pareto solution satisfying replication-invariance and welfare-domination un-
der preference-and-population-replacement.

Interestingly, this uniqueness result fails if the joint welfare-domination
requirement is replaced by two separate requirements, one pertaining to
changes in preferences and the other pertaining to changes in population.

In a model with infinitely many agents modelled as a continuum, versions
of Theorem 7.9 hold that do not involve replication-invariance (Sprumont
and Zhou, 1999).

7.5 Monotonicity in economies with individual endow-
ments

If the issue is that of allocating gains from trade, other appealing mono-
tonicity requirements can be imposed. One is that if an agent’s endowment
increases, he should be made at least as well off as he was initially. Another
is that under the same hypotheses, nobody else should be made worse off
than he was initially. Here are the formal definitions:

Own-endowment monotonicity: For each (R, ω) ∈ RN × R`N
+ , each z ∈

ϕ(R,ω), each i ∈ N , each ω′i ∈ R`
+, and each z′ ∈ ϕ(R,ω′i, ω−i), if ω′i ≥ ωi,

then z′i Ri zi.
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No negative effects on others: Under the hypotheses of the previous
definition, z′N\{i} RN\{i} zN\{i}.

It is easy to define selections from the individual-endowments lower-bound
and Pareto solution that are own-endowment monotonic. However, we also
have impossibilities:

Theorem 7.10 (Thomson, 1987a) Domain: private goods; strictly mono-
tonic, convex, and homothetic preferences; individual endowments. (a) No
selection from the no-envy in trades and Pareto solution satisfies either own-
endowment monotonicity or no negative effect on others.40 (b) No selection
from the egalitarian-equivalence and Pareto solution satisfies no negative ef-
fect on others.41

When population varies, the appropriate form of the idea of population-
monotonicity is that the welfares of all agents who are present before and
after the change should be affected in the same direction. It is easy to see
that the Walrasian solution violates the property, even when preferences are
homothetic and endowments proportional (assumptions that guarantee its
single-valuedness).

However, the selections from the egalitarian-equivalence in trades and
Pareto solution, obtained by requiring the reference trade to lie on a mono-
tone path satisfy the requirement (Thomson, 1995a). They also meet the
individual-endowments lower bound.

8 Consistency and related properties

Here, we return to situations in which both the population of agents and the
resources available may vary, but this time, our focus is on a variety of invari-
ance properties. These properties can be interpreted as formalizing tradeoffs
between equity and efficiency objectives with objectives of informational sim-
plicity. Unless otherwise indicated, this section is based on Thomson (1988).
(The literature devoted to the analysis of the properties in various models is
surveyed in Thomson, 1990b, 1995d.)

40The first part of this statement is an implication of the fact that on this domain
no selection from the no-envy in trades and Pareto solution is immune to manipulation
through withholding of endowments (Postlewaite, 1978).

41An ε variant of this result holds, analogous to the ε variant of Theorem 7.1.
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8.1 Consistency and converse consistency

We have already encountered replication-invariance (Subsection 4.6). A con-
verse of this requirement is that if an allocation that is chosen for a replica
economy happens to be a replica allocation (of the same order), then the
model allocation should be chosen for the model economy:

Division-invariance: For each N ∈ N , each (R, Ω) ∈ EN , each z ∈ ϕ(R, Ω),
each N ′ ⊂ N , each (R′, Ω′) ∈ EN ′

, and each k ∈ N, if (R, Ω) is a k-replica
of (R′, Ω′) and z is the corresponding k-replica of some z′ ∈ Z(R′, Ω′), then
z′ ∈ ϕ(R′, Ω′).

Given a group N ∈ N , and an allocation z chosen for some economy
(R, Ω) ∈ EN , consider some subgroup N ′ ⊂ N , and the problem of allocating
among its members the resources that it has received in total. Our next
requirement, the central one in this section, is that the restriction of z to
the subgroup should be chosen for this economy, (RN ′ ,

∑
N ′ zi), the reduced

economy of e with respect to N ′ and z:

Consistency: For each N ∈ N , each (R, Ω) ∈ EN , each z ∈ ϕ(R, Ω), and
each N ′ ⊂ N , we have zN ′ ∈ ϕ(RN ′ ,

∑
N ′ zi).

A counterpart of this requirement when the population of agents enlarges
is the following: given some allocation z that is feasible for some economy,
check whether the restriction of z to each subgroup of two agents is chosen
for the problem of allocating between them what they have received in total.
If the answer is yes for each such subgroup, then one can say that each agent
is in a sense treated fairly in relation to each other agent; then, we require
that z itself should be chosen for the initial economy:

Converse consistency: For each N ∈ N , each e ≡ (R, Ω) ∈ EN , and each
z ∈ P (e), if for each N ′ ⊆ N with |N ′| = 2, zN ′ ∈ ϕ(RN ′ ,

∑
N ′ zi), then

z ∈ ϕ(e).

An alternative formulation is obtained by writing the hypotheses for all
proper subgroups of N , as opposed to all subgroups of two agents, but an easy
induction argument shows that this apparently weaker property is equivalent
to the one just stated.
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Figure 7: The equal-division Walrasian solution is consistent but not
conversely consistent. (a) For the three-agent economy represented here, the
solution selects the allocation z. For the economy with agent set {1, 2} in which
the amount to divide is Ω − z3, it selects (z1, z2) (the same prices can serve as
equilibrium prices). (b) If kinks in indifference curves are permitted, the solution
is not conversely consistent. We consider the efficient allocation z in the three-
agent economy e ≡ (R1, R2, R3, Ω). It is such that for each pair {i, j}, (zi, zj) ∈
Wed(Ri, Rj , zi + zj). Yet z /∈ Wed(e).

Several results below require preferences to be smooth: at each zi ∈ R`
++,

agent i’s upper contour set has a unique hyperplane of support. Let EN
sm be

a class of smooth economies.

It is easy to see that the Pareto solution is consistent. Under smoothness
of preferences, it is also conversely consistent. (Goldman and Starr, 1982,
establish conditions under which the hypothesis that no group of t < |N |
agents can achieve any gain from trade implies that the entire set of agents
cannot either.) It is replication-invariant in general (convexity of preferences
is important here). The no-envy solution satisfies all of the above properties,
and the egalitarian-equivalence solution only fails converse consistency. This
is also the case for the equal-division Walrasian solution. Its consistency is
illustrated by Figure 7a. (The same prices remain equilibrium prices in a
reduced economy but there could be other equilibrium allocations, some of
which supported by prices other than the equilibrium prices of the initial
economy.) Figure 7b shows that the equal-division Walrasian solution is not
conversely consistent. However, if preferences are smooth and corners are
excluded, the property does hold. The equal-division core satisfies division-
invariance but none of the other properties.
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We will complement the four properties by efficiency and fairness require-
ments, obtaining characterizations of the equal-division Walrasian solution.
The first one is a direct consequence of the well-known fact that under repli-
cation, the core shrinks to the set of Walrasian allocations (Debreu and Scarf,
1963). Many variants of this theorem have been proved. It is stated in this
form in Thomson (1988). Nagahisa (1994) also discusses the issue.

Theorem 8.1 Domain: private goods (strictly positive social endowment);
locally non-satiated and convex preferences. If a subsolution of the equal-
division core is replication-invariant, it is a subsolution of the equal-division
Walrasian solution.

Theorem 8.2 (Varian, 1974) Domain: private goods; monotonic and con-
vex preferences. If a subsolution of the group no-envy solution is replication-
invariant, it is a subsolution of the equal-division Walrasian solution.

Theorem 8.3 (Thomson, 1988) Domain: private goods; monotonic, convex,
and smooth preferences. If a subsolution of the equal-division lower bound
and Pareto solution is replication-invariant and consistent, it is a subsolution
of the equal-division Walrasian solution.

A characterization of the equal-division Walrasian solution on the basis
of the concept of a strictly envy-free allocation (Subsection 4.4) due to Zhou
(1992) is equivalent to Theorem 8.3. Zhou also offers an estimate of the speed
of convergence to Walrasian allocations as the order of replication increases.

The issue of consistency in economies with a large number of agents
modelled as a continuum has also been addressed. For this model, we adapt
the definition of a strictly envy-free allocation as one such that the set of
agents each of whom prefers the average bundle received by some group to his
own bundle has measure zero. Under certain assumptions, a central one being
smoothness of preferences, the equal-division Walrasian solution coincides
with the strict no-envy and Pareto solution (Zhou, 1992). Also, it is the only
subsolution of the equal-division lower bound and Pareto solution satisfying
consistency (Thomson and Zhou, 1993). As compared to Theorem 8.3, it is
noteworthy that this second result does not involve replication-invariance.
Also, it extends to economies with possibly satiated preferences, yielding a
characterization of the “equal-slack Walrasian solution” (Mas-Colell, 1992),
which differs from the standard notion in that each agent’s income is obtained
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by adding to the value of his endowment a supplementary income, the same
for all agents. Finally, it holds for solutions defined on a domain consisting
of a single economy and all of its possible reductions. The case of economies
with both atoms and an atomless sector is considered by Zhou (1992). There,
a Walrasian conclusion is reached for the members of the atomless sector only.

The following characterization of the equal-division Walrasian solution
involves converse consistency :

Theorem 8.4 (Thomson, 1995d) Domain: private goods; monotonic, con-
vex, and smooth preferences. (a) If a subsolution of the equal-division lower
bound and Pareto solution satisfies anonymity and converse consistency, then
on the subdomain of two-agent economies, it is a subsolution of the equal-
division Walrasian solution. (b) If in fact coincidence occurs on that sub-
domain, it is an arbitrary solution containing the equal-division Walrasian
solution for all other cardinalities.

The next result involves two new axioms. Uniform treatment of uni-
forms says that if all agents have the same preferences, only allocations
consisting of bundles that are indifferent to each other according to these
preferences should be chosen (Maniquet, 1996). Juxtaposition-invariance
says that if an allocation is efficient for some economy and it happens to
be obtained by juxtaposing two allocations that are chosen for two sube-
conomies with equal per-capita social endowments, then it should be chosen
(Thomson, 1988):

Theorem 8.5 (Maniquet, 1996) Domain: private goods; monotonic, con-
vex, and smooth preferences such that no positive bundle is indifferent to a
bundle having at least one zero coordinate. The equal-division Walrasian so-
lution is the only subsolution of the Pareto solution satisfying uniform treat-
ment of uniforms, juxtaposition-invariance, and consistency.

The next results pertain to production economies. In formulating con-
sistency for a production economy, the issue arises of how to adjust the
technology to reflect the fact that agents leave with their consumptions. The
simplest one is to translate the production set by the sum of the bundles taken
with them by the agents who leave. Standard classes of technologies are not
closed under this operation however, and adjustments have to be made to
ensure that the “reduced” production set is admissible. Adjustments are also
needed for replication-invariance.
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A requirement related to invariance under monotonic transformations of
preferences is that if an allocation is chosen for some economy and preferences
change in such a way that for each agent, his indifference curve through
his assigned bundle remains the same, then the allocation should still be
chosen. Let us refer to it as invariance under restricted monotonic
transformations of preferences (Maniquet, 2002).

Theorem 8.6 (Maniquet, 2002) Domain: one-input one-output production
economies; monotonic and convex preferences; production set is closed un-
der disposal. If a subsolution of the Pareto and constant-returns-to-scale
lower bound solution satisfies invariance under restricted monotonic trans-
formations of preferences, replication-invariance, and consistency, then it is
subsolution of the constant-returns-to-scale–equivalent solution.

Next are characterizations of two essentially single-valued solutions, the
equal-wage–equivalent and Pareto solution, which selects the alloca-
tions for which there is a reference wage such that each agent finds his bundle
indifferent to the best bundle he could achieve by maximizing his prefer-
ences on a budget set defined by this wage rate. The output-egalitarian-
equivalence and Pareto solution, selects the efficient allocations that
each agent finds indifferent to a common consumption consisting of only
some amount of the output. We will impose the self-explanatory notion of
equal welfares for equal preferences.

Theorem 8.7 (Fleurbaey and Maniquet, 1999) Domain: private goods;
preferences are strictly monotonic with respect to output and monotonic with
respect to input, and convex; unrestricted technologies. The equal-wage–
equivalent and Pareto solution is the only essentially single-valued selection
from the constant-returns-to-scale lower bound solution satisfying Pareto-
indifference, equal welfares for equal preferences, contraction-independence,
and consistency.

Note the difference of domains in the next theorem:

Theorem 8.8 (Fleurbaey and Maniquet, 1999) Domains: private goods;
preferences are strictly monotonic with respect to output and monotonic
with respect to input, and convex; technologies are one of the following:
(a) they are unrestricted, (b) they exhibit nowhere-increasing-returns-to-
scale, (c) they are concave. The output-egalitarian-equivalence and Pareto
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solution is the only essentially single-valued selection from the work-alone
lower bound solution satisfying Pareto-indifference, equal welfares for equal
preferences, and consistency.

Roemer (1986a,b, 1988) formulates consistency requirements with respect
to changes in the number of goods. We will not review these papers here
as they importantly depend on utility information, which we have chosen
to ignore in defining the scope of this survey. (Iturbe-Ormaetxe and Nieto,
1992, 1996b, provide further results along the same lines.)

8.2 Minimal consistent enlargements

When a solution is not consistent, one way to evaluate how far from being
consistent it is. We propose two procedures for doing this.

First, it follows directly from the definitions that the intersection of an
arbitrary family of consistent solutions, if it constitutes a well-defined solu-
tion (that is, if it is non-empty for each economy in its domain), is consistent.
Also, for most natural ways of specifying allocation problems, the solution
that associates with each economy its entire feasible set is consistent. Now,
given a solution ϕ, consider the correspondence that associates with each
economy its set of allocations that are selected by all of the consistent so-
lutions containing ϕ. Since this family is non-empty, this correspondence
is a well-defined solution, and it is clearly the minimal consistent solution
containing ϕ, its minimal consistent enlargement.

This definition is proposed and explored by Thomson (1994d) who estab-
lishes certain algebraic properties of the concept and applies it to examples.
The minimal consistent enlargement of the union of two solutions is the union
of their minimal consistent enlargements. The minimal consistent enlarge-
ment of their intersection is a subsolution of the intersection of their minimal
consistent enlargements; the inclusion may be strict.

The enlargement is sometimes considerable. For instance, the mini-
mal consistent enlargement of the equal-division lower bound and Pareto
solution—recall that this solution is not consistent—is “essentially” the
Pareto solution. Also, that of the Ω-egalitarian-equivalence and Pareto solu-
tion is “essentially” the egalitarian-equivalence and Pareto solution.

A second procedure to evaluate how far a solution is from being consis-
tent is, provided that it contains at least one consistent solution, to reduce
it instead of enlarging it. This is because consistency is preserved under
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arbitrary unions. Then, define the maximal consistent subsolution of
the solution as the union of all of its consistent subsolutions. Parallel alge-
braic relations can be established for the maximal consistent subsolution of
the intersection and the union of two solutions as a function of the maximal
consistent subsolutions of the two of them.

This concept allows us to relate different notions that have been dis-
cussed separately in the literature. To describe an application, let us first
observe that replication-invariance is preserved under union too, and so by
the same logic, one can define the maximal consistent and replication-
invariant subsolution of a given solution, provided the solution has at
least one subsolution with these properties. Now, the maximal consistent
and replication-invariant subsolution of the equal-division lower bound so-
lution is the solution defined by requiring that each agent should find his
bundle at least as desirable as any bundle in the convex hull of the bundles
received by all agents (one of the formal definitions of Subsection 4.4). Also,
the strict no-envy solution (Subsection 4.4) is nothing other than the maxi-
mal consistent and replication-invariant subsolution of the average no-envy
solution (Subsection 4.4).

8.3 Consistency in economies with individual endow-
ments

In economies with individual endowments, formulating consistency is not
straightforward. If we imagine the departure of some agents with their bun-
dles and keep the endowments of the agents who stay as initially specified,
the list of bundles assigned to these agents initially will not be feasible given
their endowments.

One possible resolution of this feasibility problem is to adjust the endow-
ments of the agents who stay. Dividing equally among them the difference
between the sum of the consumptions and the sum of the endowments of
the agents who leave comes to mind (Dagan, 1995; Thomson, 1992), but re-
vised endowments may have negative coordinates, which will require further
adjustments.

Another possible resolution is to add to the description of an economy a
“gap vector” T ∈ R`: a positive coordinate of T is understood as a surplus of
the corresponding good and a negative coordinate as a deficit. A general-
ized economy is a list (R,ω, T ) ∈ RN×R`N

+ ×R` such that
∑

ωi+T = 0, and
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a feasible allocation for it is a list (zi)i∈N ∈ R`N
+ such that

∑
zi =

∑
ωi + T .

This formulation is proposed by Thomson (1992) and Dagan (1994). Let
ϕ be a solution defined on a domain of generalized economies. To reduce
(R, ω, T ) ∈ RN × R`N

+ × R` with respect to N ′ ⊂ N and z ∈ ϕ(R, ω, T ),
we restrict the preference and endowment profiles to the members of N ′ and
adjust the gap vector by the difference between the sum of the consumptions
of the departing agents and the sum of their endowments: this yields the list
(RN ′ , ωN ′ , T +

∑
N\N ′(ωi − zi)). Equipped with this notion of a reduction,

consistency takes the usual form: zN ′ should be chosen by ϕ for the reduced
economy.

Natural examples of consistent Walrasian-like solutions can be based on
two alternative choices for the distribution of the gap among agents, equal
division on the one hand and proportional division on the other (Thomson,
1992). Peleg (1996) establishes the existence of an extension of the notion
of a Walrasian equilibrium for generalized economies. His notion covers the
examples just mentioned. He suggests, for each price vector, to add to each
agent’s income a share of the value of the gap calculated at these prices, in
such a way that the agent’s total income be a non-negative and continuous
function.

It is fair to say that none of the characterizations obtained for these mod-
els are as natural as the ones we presented for the model without individual
endowments. Indeed, most of them allow solutions to be empty-valued, and
in fact, empty-valuedness is frequent (Dagan, 1994; van den Nouweland, Pe-
leg, and Tijs, 1996). If not, they involve strong additional requirements
(Korthues, 1996, 2000).

Serrano and Volij (1998) also explore the issue in the context of production
economies, and propose two definitions inspired by concepts of cooperative
game theory. Their main results are characterizations of the Pareto solution,
the core, and the Walrasian solution.

9 Public goods

The formulation and the study of equity criteria in economies with public
goods has been the object of much less attention than economies with only
private goods.
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9.1 Basic solutions

Before beginning our discussion of fairness for this model, we refer the reader
to the classical marginal conditions for efficiency identified by Samuelson
(1955), and subsequently refined by Saijo (1990), Campbell and Truchon
(1988), and Conley and Diamantaras (1996). The topological properties
(closedness and connectedness) of the set of efficient allocations are studied
by Diamantaras and Wilkie (1996). This set coincides with the set of weakly
Pareto efficient allocations under significantly stronger assumptions than in
private good economies.

We begin our discussion of fairness by considering the case of one private
good and one public good, the public good being produced from the private
good according to a linear technology, which, with an appropriate choice
of units of measurement, we can assume to be one-to-one. If |N | = 2, the
feasible allocations can be identified with the points of an equilateral triangle
of appropriate size, as in Figure 8 (Kolm, 1970. A pedagogical presentation
is Thomson, 1999b). An allocation is a vector z ≡ (x1, x2, y) ∈ RN

+×R+ with
x1 + x2 + y = Ωx, where the amount Ωx ∈ R+ of the private good initially
available can be consumed as such—this accounts for x1 + x2 units of it, or
used as an input in producing y units of the public good, which requires y
units of it. Let EN

pub denote a class of economies.
Since agents necessarily consume the same amount of the public good, an

allocation z ≡ (x1, x2, y) is envy-free if and only if x1 = x2. (More gener-
ally, as long as there is only one private good, the no-envy and no-domination
criteria coincide.) An envy-free allocation can then be equivalently described
as an “equal contribution allocation”. Thus, the set σ of envy-free alloca-
tions is the vertical segment containing the top vertex. It is independent of
preferences. (Independence holds whenever there is only one private good.)
It intersects the Pareto-optimal set, which typically is a curvi-linear segment
with end-points on the slanted axes of the triangle, at a finite number of
points. In Figure 8a, the Pareto set is “thick”, and there is a continuum of
envy-free and efficient allocations.

There are many situations in economic theory where the Lindahl solu-
tion has been found to be the natural counterpart for public good economies
of the Walrasian solution. Given the usefulness of the latter, when oper-
ated from equal division, in producing envy-free allocations, one may wonder
whether the Lindahl mechanism will be equally useful in achieving this goal.
However, since the public good can be produced at several alternative levels,

70



¾ -

Á]

O1 O2

IR2

µR1

σ

(a)

¾ -

Á]

O1 O2

a

z∗1

α

β

z∗2

b

e2∗

b

e1∗

a

(
Ω
2 , Ω

2 , 0
)

-R1

-R1

Y
R2

(b)

Figure 8: Envy-free allocations in the Kolm triangle. (a) The set of envy-
free allocations is the segment σ. The Pareto set is the horizontal wavy band
connecting the two slanted sides. (b) The curvilinear segment from α to β is the
set of efficient allocations that each agent finds at least as desirable as the best
bundle he could achieve if endowed with an equal share of the social endowment of
the private good and given unhampered access to the technology. The curvilinear
segment from A to B is the set of efficient allocations that each agent finds at most
as desirable as the equal-bundle allocation he prefers (e1∗ for agent 1 and and e2∗

for agent 2).

there does not exist a unique “point of equal division”. In the Kolm triangle,
any point of σ qualifies. Given ω ∈ σ, operating the Lindahl solution from
ω yields an envy-free allocation only accidentally. Also, the Lindahl solution
operated from any ω ∈ σ does not necessarily treat identical agents identi-
cally, (in contrast with the Walrasian solution); at a Lindahl allocation, two
identical agents may receive bundles that are not indifferent to each other
according to their common preferences. It is true, however, that there always
are Lindahl allocations at which identical agents receive equivalent bundles
(Champsaur, 1976, studies the continuity properties of the subsolution of the
Lindahl solution that selects these allocations).

The above observations indicate that the existence of envy-free and effi-
cient allocations cannot be obtained as a direct corollary of theorems stating
the existence of Lindahl allocations (following the pattern we had observed in
exchange economics). However, under standard assumptions on preferences
and production sets that we will not state in detail, and if for each efficient al-
location, the set of allocations that are Pareto-indifferent to it is contractible,
and if there are no agent-specific input (these are the critical assumptions),
envy-free and efficient allocations exist (Diamantaras, 1992). Moreover, if
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envy-free and efficient allocations cannot be reached by operating the Lin-
dahl solution from equal division, they are supported as “public competitive
equilibria” when taxation is proportional to incomes and endowments are
equal (Foley, 1967), because equal expenditure on the private goods obtains
then. That every envy-free and efficient allocation is an equilibrium alloca-
tion of this type is proved for an economy with a large set of agents modelled
as a continuum by Diamantaras (1991).

The notion of egalitarian-equivalence is well defined for public good
economies, and egalitarian-equivalent and efficient allocations exist under
general conditions. Sato (1985) considers the case when there is only one
private good and advocates the selection from the egalitarian-equivalence
and Pareto solution obtained by requiring the reference bundle to be the
unit vector in the private good direction. This choice provides a natural
interpretation of the reference bundle as measuring each “agent’s willingness
to pay for the public good in terms of the private good”.

The case of one public good is of particular interest: Suppose there are
` private goods, which can be either consumed directly or used in the pro-
duction of the public good. Let Y ⊆ R`+1

+ be the production set. There
is a social endowment Ω ∈ R`

+ of the private goods, and a set N of agents
with preferences defined over R`+1

+ . The following is the selection from the
egalitarian-equivalence and Pareto solution obtained by requiring the refer-
ence bundle to be of the form ( Ω

|N | , y0) for some y0 ≥ 0.

Definition (Mas-Colell, 1980b) Given e ≡ (R, Ω, Y ) ∈ EN
pub, let Ey(e) ≡

{z ∈ Z(e): there is y0 ≥ 0 such that for each i ∈ N , zi Ii ( Ω
|N | , y0)}.

Sato (1987) proposes a notion of equity for which the Lindahl solution
plays a role similar to the role played by the Walrasian solution. He also
discusses generalizations (1990).

The issue of informational efficiency is addressed by Aizpurua and Man-
resa (1995) for a general model with arbitrarily many private and public
goods, but in which there are no agent-specific inputs. A variant of the Lin-
dahl mechanism that they introduce under the name of “Lindahl egalitarian”
(which produces the public competitive equilibria described earlier) has min-
imal dimensionality among all mechanisms satisfying a regularity condition
and realizing envy-free and efficient allocations.

Next, we formulate upper and lower bounds similar to the ones defined
earlier for economies with private goods (Section 5.2).
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The first bound, the equal-division lower bound, is simply that each
agent should be made at least as well off as he would be by consuming an
equal share of the social endowment of the private good(s). In the example
depicted in Figure 8, the unique envy-free and efficient allocation meets this
bound, but it is easy to modify it to show that there may be no envy-free
and efficient allocation that does.

A second lower bound on an agent’s welfare is obtained by imagining that
he is alone and has to cover the full cost of the public goods.42

Definition (Moulin, 1992c) Given e ≡ (R, Ω, Y ) ∈ EN
pub, the allocation z ∈

Z(e) meets the equal-division free-access lower bound for e if for each
i ∈ N , zi Ri z∗i , where z∗i is any bundle that would maximize agent i’s welfare
if endowed with an equal share of the social endowment and given free access
to the technology.

A third bound—this time it is an upper bound—is obtained by first imag-
ining, for each agent, that all others have preferences identical to his, and in
this economy of identical agents, imposing efficiency and equal treatment of
equals. Returning to the actual economy, we require that each agent should
be made at most as well off as he would be in this hypothetical economy:

Definition (Moulin, 1992c) Given e ≡ (R, Ω, Y ) ∈ EN
pub, the allocation z ∈

Z(e) meets the identical-preferences upper bound for e if for each
i ∈ N , z∗i Ri zi, where z∗i is any bundle that agent i would be assigned by
any efficient solution satisfying equal treatment of equals in the hypothetical
economy in which each other agent had preferences identical to his.

The existence of efficient allocations meeting the identical-preferences up-
per bound is guaranteed under general assumptions (Moulin, 1992c).

On the domain of one-input one-output economies, the identical-
preferences upper bound and the equal-division free-access lower bound are
compatible. Here is an example of an efficient solution satisfying both:

Definition (Moulin, 1992c) Let e ≡ (R, Ω, Y ) ∈ EN
pub be a one-input one-

output economy. The allocation z ∈ Z(e) is an equal-ratio–equivalent
allocation for e if there is λ ∈ R+ such that for each i ∈ N , zi Ii z∗i , where

42The previous bound is often called “individual rationality from equal division” and
the next one, “strong individual rationality from equal division”.
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z∗i is any bundle that would maximize agent i’s welfare if given access to an
equal share of the social endowment and to the technology Y λ ≡ {(x, y) ∈
R2: (λx, y) ∈ Y }.

The free-access constraints can be generalized to groups:

Definition (Moulin, 1992c) Given e ≡ (R, Ω, Y ) ∈ EN
pub, the allocation z ∈

Z(e) is in the equal-division free-access core of e if for each S ⊆ N , there
is no list (z∗i )i∈S that is feasible for the coalition S (without the contribution

of the complementary coalition), if endowed with |G|
|N |Ω and given unhampered

access to the technology, and such that for each i ∈ S, zi Ri z∗i , and for at
least one i ∈ S, zi Pi z∗i .

Under general conditions, this solution is non-empty: Indeed, the solution
EyP is a subsolution of the equal-division free-access core. The solution EyP
also happens to satisfy very appealing monotonicity properties in response
to improvements in the technology (Section 9.4).

In a class of economies with one private good and one public good pro-
duced according to a convex technology, further logical relations between the
identical-preferences upper bound and the equal-division free-access lower
bound are developed by Watts (1999). She shows that, except in trivial
cases, the former does not imply the latter.

9.2 Notions of equal, or equivalent, opportunities

The notions of equal opportunities introduced in Section 6 can be adopted
to the current situation, but not all the results established in the private
good case extend. In particular, even if |N | = 2, there is no family of
choice sets whose associated equal-opportunity solution is a subsolution of
the Pareto solution. Suppose now that preferences satisfy the classical as-
sumption and that the technology is linear. Then, if |N | = 2, the equal-
opportunity–equivalence solution associated with the family of linear choice
sets is the egalitarian-equivalence solution. If |N | > 2, there is no necessary
containment between the intersections of these two solutions with the Pareto
solution, a result that mirrors one obtained for the private good case. Most
importantly, under appropriate assumptions on preferences, the intersection
of the equal-opportunity–equivalent and Pareto solution associated with the
family of choice sets normal to a fixed price vector is well-defined.
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9.3 Social endowment monotonicity

Monotonicity questions are addressed in the context of public good economies
by Thomson (1987c) and Moulin (1992c). The interesting case here is when
there is, in addition to the public goods, only one private good. Indeed,
as soon as there are two private goods, the impossibility results obtained for
exchange economies extend to this more general class of economies. It suffices
to consider “degenerate” public good economies in which agents happen to
only care about the private goods.

If there is only one private good, and preferences are such that the r-
egalitarian-equivalence and Pareto solution ErP , where r is the unit vector
corresponding to that good, is well defined (this requires that all indifference
surfaces intersect the axis corresponding to the good), then this solution
is resource-monotonic. Therefore, resource-monotonic selections from the
egalitarian-equivalence and Pareto solution exist. However, no such selec-
tions from the no-envy and Pareto solution exists:

Theorem 9.1 (Thomson, 1987c) Domain: one private good and one public
good; strictly monotonic and convex preferences; linear technologies. No
selection from the no-envy and Pareto solution is resource monotonic.

9.4 Technology-monotonicity

Here, we address the issue of technology-monotonicity. Recall the definition of
the selection from the egalitarian-equivalence and Pareto solution obtained
by requiring the reference bundle to be of the form ( Ω

|N | , y0). Given e ≡
(R, Ω, Y ) ∈ RN × R+ × Y , Ey(e) ≡ {z ∈ Z(e): there is y0 such that for
each i ∈ N , zi Ii ( Ω

|N | , y0)}. We have the following characterization of this
solution, in which assumptions are made to guarantee that it is well-defined:

Theorem 9.2 (Moulin, 1987a) Domain: one private good and one public
good; the preferences of each agent i, defined over a set of the form [0, ωi]×R+,
are strictly monotonic with respect to the private good, weakly monotonic
with respect to the public good, and such that for each x ≥ 0, there is
a unique zi ∈ Yi for which (x, yi) Ii (ωi, 0); technology exhibits returns-
to-scale that are bounded above. The solution EyP is the only selection
from the equal-division free-access lower bound and Pareto solution satisfying
technology-monotonicity.
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The assumption on the technology can be relaxed. What is important is
that production sets be closed under union. However, the assumption that
there is only one public good cannot be removed (Ginés and Marhuenda,
1996, 1998).

The solution characterized in Theorem 9.2 is applied by Weber and Wies-
meth (1991). These authors identify assumptions on preferences under which
it actually coincides with the Lindahl solution (these assumptions are obvi-
ously quite strong), and they define a generalization of it in Weber and
Wiesmeth (1990).

9.5 Welfare-domination under preference-replacement

Here, we will only note that the selection from the egalitarian-equivalence
and Pareto solution characterized in Theorem 9.2 happens to be such that
any change in the preferences of one agent affects all other agents in the same
direction. Moreover, although we only required that an improvement in the
technology should make all agents at least as well off as they are initially, it
turns out that any change in the technology affects the welfares of all agents
in the same direction (that is, even when the old and the new technologies
cannot be ranked, the welfare levels can).

We omit the formal statement of welfare-domination under preference-
replacement, and simply note that a counterpart of Theorem 7.2 holds for
this domain.

9.6 Monotonicity in economies with individual endow-
ments

Here, we consider economies in which agents may be individually endowed,
and discuss properties introduced in Subsection 7.5. We ask whether it is
possible to ensure that an increase in an agent’s endowment never hurts any
of the others. We have the following:

Theorem 9.3 (Thomson, 1987b) Domain: economies one private good and
one public good; monotonic and convex preferences; convex technologies. No
selection from (a) the no-envy and Pareto solution or (b) the egalitarian-
equivalence and Pareto solution, satisfies no negative effect on others.
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Under certain properties of preferences, the Lindahl solution is population-
monotonic (Sertel and Yıldız, 1998).

9.7 Population-monotonicity

Turning now to variable populations with fixed resources, we have a pos-
sibility result provided we are satisfied with weak Pareto-optimality. Let
e ≡ (R, Ω, Y ) ∈ EN

pub and Bed(e) be the set of feasible allocations for e at
which each agent is at least as well off as he would be at the best point he
could achieve, if endowed with an equal share of the social endowment of
the private good and given unhampered access the technology: this is the
equal-division free-access lower bound solution.

In situations in which sufficiently strong positive external effects exist, the
natural monotonicity requirement to formulate in response to increases in the
population is that all agents initially present should be affected positively.
Let us refer to this condition as population-monotonicity+.

The selection from the egalitarian-equivalence and Pareto solution ob-
tained by requiring the reference bundle to be the unit vector corresponding
to the public good is a population-monotonic+ selection from the Pareto so-
lution.

In the quasi-linear case, the Shapley value (Shapley, 1953) when applied
to the free-access game associated with each economy induces a population-
monotonic solution. A population-monotonic solution meeting the identical-
preferences upper bound is constructed by Moulin (1990a). Parallel results
hold for the case of bads (Moulin, 1992a).

Let us say that a solution is weakly population-monotonic if when
new agents come in, all agents initially present are affected in the same
direction.

Proposition 9.1 (Thomson, 1987c) Domain: one private good and possibly
multiple public goods; strictly monotonic preferences except that any bundle
that is not strictly positive is indifferent to 0. There are selections from the
equal-division free-access lower bound solution satisfying weak population-
monotonicity.

A counterpart of Theorem 7.9 holds for economies with one private good
and possibly multiple public goods, the population of agents being modelled
as an atomless continuum. It is a characterization of the solution that selects
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any efficient allocation such that there is a ratio a ≥ 0 with the property
that each agent is indifferent between his bundle and the best bundle he
could reach among all bundles obtained for which he would have to pay the
fraction a of the cost of production. Let us call this solution the equal-
factor-equivalence solution.

Theorem 9.4 (Sprumont, 1998) Domain: one private good and possibly
multiple public goods; continuum of agents; strictly monotonic and con-
vex preferences; cost function for the public goods is strictly increasing,
strictly convex, takes value 0 at 0, and satisfies a mild regularity condition.
The equal-factor–equivalence and Pareto solution is the only selection from
the identical-preferences upper bound and Pareto solution satisfying welfare-
domination under preference-and-population–replacement.

As for the private good version of the theorem (Theorem 7.9), uniqueness
depends on the possibility of varying preferences and populations jointly. A
version of the result holds for finite economies provided a certain form of
replication-invariance is imposed too.

9.8 Consistency

In a public good economy, conceptual problems arise in expressing the idea
of consistency (Section 8) because one cannot imagine the departing agents
to leave with their consumptions. Indeed, the public good components of
their consumptions are also consumed by the agents who stay. Proposals
have been made to deal with this problem but the definitions are not as
compelling as in the private good case.

For a version of the model in which the set of agents is represented as
a continuum, Diamantaras (1992) provides a characterization of the public
competitive equilibrium solution on the basis of such a notion.

Van den Nouweland, Tijs, and Wooders (2002) characterize the gener-
alization of Lindahl equilibrium proposed by Kaneko (1977a,b) under the
name of “ratio equilibrium”. In defining a reduced economy, they make ad-
justments in the cost function as a function of the ratios associated with the
allocation that is the point of departure.
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10 Indivisible goods

Estate or divorce settlements often involve items that cannot be divided
(houses, family heirlooms), or can only be divided at a cost that would
make the division undesirable (silverware). Other examples that have been
the subject of much discussion recently are positions in schools or organs
for transplants patients. In this section, we reconsider the theory of fair
allocation in the presence of such indivisible goods, called “objects”. We
assume that there is also an infinitely divisible good, called “money”. We
focus on situations in which each agent can consume at most one object. An
illustration is the problem of allocating rooms to students in a house they
share, and specifying how much each of them should contribute to the rent.
The multi-object-per-agent case and the object-only case are discussed in
Subsection 10.7.

Some, but not all, of the concepts introduced earlier can be adapted to
this situation, but interestingly, due to the special structure of the model,
several equivalences exist that do not hold in general. Consistency properties
can be met and characterizations are available based on them. On the other
hand, monotonicity properties are quite restrictive and hold only on narrow
subdomains.

10.1 The model

Let Ω be a social endowment consisting of some amount M of money and a set
A of objects. This endowment is to be distributed among a set N of agents.
Unless specified otherwise, |N | = |A|. Each agent i ∈ N has preferences Ri

defined over R× A (or over R+ × A, but for these introductory paragraphs,
we choose the former). They are continuous and strictly monotonic with
respect to money, and satisfy the following “compensation assumption”: for
each bundle (mi, α) ∈ R×A, and each object β ∈ A, there is m′

i ∈ R such that
(m′

i, β) Ii (mi, α). Let Rind be the class of all such preferences. An economy
is a list e ≡ (R, M,A) as just described, and EN

ind is our generic notation for a
class of economies. A feasible allocation for e ≡ (R, M,A) ∈ EN

ind is a pair
z ≡ (m,σ) consisting of a vector m ∈ RN such that

∑
mi = M specifying

how much money each agent receives and a bijection σ: N → A specifying
which object is assigned to each agent. The bundle received by agent i ∈ N
at z is zi ≡ (mi, σ(i)). Let Z(e) denote the set of feasible allocations of
e ∈ EN

ind.
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Figure 9: The no-envy solution applied to economies with indivisible
goods. (a) Representation of consumption space and of an indifference curve for
agent 1. (b) The allocation z is not envy-free since agent 3’s indifference curve
through z3 passes to the left of z1.

Situations where there are fewer objects than agents are accommodated
by introducing a “null object”, denoted ν, the objects in A being then referred
to as “real objects” when there is a risk of ambiguity. There are always
enough copies of the null object for each agent to end up with one object.
Denoting by A∗ the augmented set A ∪ ν, preferences are then defined over
R × A∗. A real object α is desirable for Ri if for each mi ∈ R, (mi, α) Ri

(mi, ν). It is undesirable if preference always goes in the other direction. An
object may of course be neither desirable nor undesirable. If there are fewer
agents than objects, some objects are unassigned. In some applications, it is
natural to require that the null object not be assigned until all real objects
are, even if these objects are undesirable. For instance, they could be tasks
to be assigned to students in the house they share. Some students may find
some of these tasks desirable and others not (cooking), but all tasks may
have to be carried out.

Figure 9a gives a convenient graphical representation of the model for
|N | = |A|. There are |A| axes indexed by the elements of A. Along the axis
indexed by each object is measured the amount of the divisible good that
comes with that object. The broken line through zi ≡ (mi, α) links zi to two
other bundles z′i ≡ (m′

i, β) and z′′i ≡ (m′′
i , γ) that agent i finds indifferent

to zi; it can be thought of as an indifference curve. Quasi-linearity of
preferences means that indifference curves are all obtained from any one of
them by horizontal translations.

A variant of the model just described is when the objects in A are iden-
tical. For instance, they may be jobs on an assembly line. When there are
more workers than jobs, the null object is interpreted as being unemployed.
Finally is the even more special situation in which |A| = 1. In either one of
these cases, any recipient of a real object is called a “winner”. The others
are called “losers”.
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10.2 Basic solutions

The no-envy concept applies directly to this model. In Figure 9b, agent 1
envies no one, agent 2 envies no one, but agent 3 envies agent 1.

For the distribution of multiple copies of the same object, in order for the
winners not to envy each other, they should receive equal amounts of money.
For the losers not to envy each other, they should also receive equal amounts
of money. In addition, each winner should find the “winning bundle” at least
as desirable as the “losing bundle”, and each loser should find the “losing
bundle” at least as desirable as the “winning bundle”.

It is clear that if consumptions of money have to be non-negative, envy-
free allocations may not exist. Imagine for instance that all agents have the
same preferences and the social endowment of money is 0. Conversely, one
may hope that if the social endowment of money is sufficiently large, it is
possible to compensate those agents who do not receive the objects they
would prefer. This hope is justified:

Theorem 10.1 (Svensson, 1983) Domain: one infinitely divisible good, and
a set A of objects; equal number of agents; preferences, defined on R+×A, are
strictly monotonic with respect to money, and such that for each i ∈ N and
each α ∈ A, there is an allocation at which the bundle containing α is most
preferred among all bundles the allocation is composed of. (a) Envy-free
allocations exist. (b) Envy-free allocations are efficient.

Techniques rather different from Svensson’s have been used to prove the
existence of envy-free allocations (Maskin, 1987; Alkan, Demange, and Gale,
1991). When consumptions of money are unbounded below, and if prefer-
ences are continuous, monotonic with respect to money, and satisfy the com-
pensation assumption, envy-free allocations exist without any assumption
relating preferences and the social endowment of money (Alkan, Demange,
and Gale, 1991). A constructive proof is possible that covers preferences that
need not be monotonic but otherwise satisfy assumptions similar to those of
Theorem 10.1 (Su, 1999). For a general proof that covers all of the above,
see Velez (2007). When the objects are identical, an elementary existence
proof is also available (Tadenuma and Thomson, 1993).

The implication stated as Part (b) of Theorem 10.1 fails if |A| > |N |. In
that case, no-envy may well be achieved by assigning objects that all agents
find inferior to objects that are not assigned. However, the implication can
be recovered under a certain strengthening of the definition of no-envy, a def-
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inition that is non-vacuous under general conditions (Alkan, Demange and
Gale, 1991). The distributional merits of the stronger notion can be ques-
tioned however, as it sometimes seems to favor particular agents (Tadenuma,
1994).

A variant of the model is when each agent can consume only some of the
objects available (Svensson, 1988). To illustrate, the objects could be jobs,
and not all agents may be qualified for all jobs. Svensson states assumptions
guaranteeing the existence of envy-free allocations in this context.

For quasi-linear preferences, several algorithms leading to envy-free al-
locations have been developed. Then, and except for degenerate cases, the
assignments of objects are the same at all efficient allocations (efficiency is
undisturbed by transfers of money among agents), so that one can speak of an
“efficient allocation of objects”. There are finitely many assignments of ob-
jects, so the efficient ones can be identified by exhaustive search. Aragones
(1995)’s starting point is an efficient assignment. She considers the case
when consumptions of money are non-negative and her algorithm identifies
the smallest social endowment of money M∗ guaranteeing the existence of
envy-free allocations. This amount depends of course on preferences. The
envy-free allocation obtained then is unique up to Pareto-indifference, and it
provides the basis for the definition of a selection from the set of envy-free
allocations of that economy when the social endowment of money M is at
least M∗, by dividing equally among all agents the difference M −M∗.

Klijn’s algorithm (2000) starts from an arbitrary feasible allocation. Envy
cycles are first eliminated. If an envy relation remains, transfers of money
from the envied agent to the envious agent are made to eliminate it but
additional transfers to or from other agents are carried out too in order to
ensure that no new envy relation is created.43

At each step of the market-like algorithm proposed by Abdulkadiroğlu,
Sönmez, and Ünver (2004), no-envy is met, as all agents maximize their
preferences over a common budget set, but feasibility is not, and conver-
gence is to a feasible allocation. When envy-free allocations exist at which
consumptions of money are all non-positive, as might be needed when the
social endowment of money is negative, objects are desirable, and each agent
is required to pay something for receiving an object (think of the rent di-
vision application), the algorithm produces such an allocation. A family of

43The algorithm can be modified to produce the extreme points of the set of envy-free
allocations.
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algorithms in that spirit is developed by Ünver (2003).44

The notion of egalitarian-equivalence also applies directly to this
model. Egalitarian-equivalent and efficient allocations exist very generally,
when consumptions of money are unbounded below and the compensation as-
sumption holds. The proof is similar to that of the existence of r-egalitarian-
equivalent and efficient allocations in classical economies. When preferences
are defined over R+ × A, existence holds under similar assumptions as the
ones guaranteeing that of envy-free allocations in Theorem 10.1. In either
case, to each object can be associated a reference bundle containing that
object to which corresponds an egalitarian-equivalent and efficient allocation
(Svensson, 1983b). Thus, there are as many egalitarian-equivalent and effi-
cient allocations as objects. Let e ≡ (R,M, A) ∈ EN . Figure 10a illustrates
that if |N | = 2 and z ∈ EP (e), then z ∈ F (e). If z ∈ EP (e) with reference
bundle z0, then there is i ∈ N such that zi = z0, so that agent i envies no
one, but if |N | ≥ 3, there may be occurrences of envy. Moreover, just as in
the classical case, there are economies in which all egalitarian-equivalent and
efficient allocations violate no-envy (Thomson, 1990a).

If there is only one real object, these notions are compatible however.
Consider the solution F ∗ that selects the envy-free allocation that is the least
favorable to the winner: at this allocation, the winner is indifferent between
his bundle and the losers’ common bundle. (For some configurations of pref-
erences, there are several, Pareto-indifferent, allocations with this property.)
This allocation is egalitarian-equivalent, with the losers’ bundle serving as
reference bundle.

The Walrasian solution can be adapted to the present model as follows:
for each α ∈ A, let pα ∈ R+. We call pα the price of object α. A price
vector is a list p ≡ (pα)α∈A.

Definition Given e ≡ (R,M, A) ∈ EN
ind, the allocation z ∈ Z(e) is an equal-

income Walrasian allocation for e, written as z ∈ Wei(e), if there are
p ∈ RA

+ and M0 ∈ R+ such that for each i ∈ N and each z′i ≡ (m′
0, α

′) ∈ R×A
satisfying m′

0 + pα′ ≤ M0, we have zi Ri z′i.

The definition is illustrated in Figure 10b. Recall that in classical
economies, the equal-income Walrasian allocations constitute a small subset

44Another procedure is defined by Brams and Kilgour (2001) that generates an efficient
allocation at which agents do not receive money, but it may not be envy-free.
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Figure 10: Egalitarian-equivalence and the equal-income Walrasian so-
lution in economies with indivisible goods. (a) For |N | = 2, if z is egalitarian-
equivalent and efficient, it is envy-free. (b) Independendly of the number of objects,
if z is an equal-income Walrasian allocation, it is envy-free.

of the set of envy-free and efficient allocations. Here, the two notions coin-
cide. We also have equivalence between no-envy for individuals and group
no-envy (defined as in the classical case):

Theorem 10.2 (Svensson, 1983b) Domain: one infinitely divisible good,
and a set A of objects; preferences, defined on R+ × A (or on R × A), are
monotonic with respect to the divisible good. (a) An allocation is envy-free
if and only if it is an equal-income Walrasian allocation. (b) An allocation
is envy-free if and only if it is group envy-free.

A variety of selections from the no-envy solution have been proposed.
First, define the worse-off agent at an allocation as the agent who receives
the smallest amount of money. The maximin money rule selects the envy-
free allocation at which this amount is as large as possible. If the null object
is present, define the worse-off agent as the one whose money-only equivalent
bundle contains the smallest amount of money. The maximin money-only-
equivalent rule selects the envy-free allocation at which this amount is as
large as possible. Two solutions can be defined in a symmetric way based
on identifying the agent whose consumption of money is the largest. The
minimax money rule selects the envy-free allocation at which the agent
who receives the largest amount of money receives the smallest such amount.
The minimax money-only-equivalent rule performs the parallel exercise
with the money-only equivalent bundles (Alkan, Demange, and Gale, 1991.
The first criterion is also studied in the quasi-linear case by Aragones, 1995).

Next, (and whether or not the null object is available,) given any envy-free
allocation, for each two-agent subgroup and each agent in the pair, calculate
the amount of money that should be added to the other agent’s bundle for
the first agent to be indifferent between his bundle and the second agent’s
revised bundle. These |N |(|N | − 1) “compensation” terms give a picture
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of how well each agent is treated in relation to each other agent at the
allocation. Then, select the allocation(s) at which all agents are treated “as
equally as possible”. This can be done in several ways. One is to calculate for
each agent the average of his compensation terms over the pairs to which he
belongs, and choosing the allocation(s) at which the smallest (across agents)
such average is maximal. This maximin average compensation rule is
essentially single-valued (Tadenuma, 1989). Criteria based on lexicographic
operations are also possible, focused on the agents who are treated the worse
according to the size of their compensation terms (Tadenuma and Thomson,
1995).

Another idea exploits the fact that if |N | = 2, the assignment of objects is
the same at all envy-free allocations (except for degenerate cases). Given an
envy-free allocation, for each two-agent subgroup, identify the two extreme
allocations obtained by transferring money from one agent to the other with-
out violating envy. The difference between the amounts of money received
by either one of the two agents at these two allocations can be thought of
as an “equity surplus” at the allocation. Calculate the share of this sur-
plus that each agent receives. Then, select the allocation(s) at which agents
are treated as equally as possible. Again, several choices are possible here
depending upon whether an average of these surplus shares is considered,
yielding what could be called a maximin average share rule, or whether a
lexicographic operation is performed on these surplus terms (these last two
proposals are developed by Tadenuma and Thomson, 1995). In the two-agent
case, and when preferences are quasi-linear, several of these proposals agree.

In the model under study here, dividing resources equally is not an option
but an earlier distributional requirement that remains meaningful is that each
agent should be made at least as well off as he would be at the (essentially)
unique envy-free allocation of the hypothetical economy in which everyone
had his preferences. This is the identical-preferences lower bound. If
|N | = 2, meeting this bound is actually equivalent to no-envy, but if |N | > 2,
the identical-preferences lower bound is weaker (Bevia, 1996a). (In particu-
lar, it does not imply efficiency.) Thus, this concept gives us another chance
of obtaining positive results when no-envy is too demanding. Unfortunately,
there are quasi-linear economies with equal numbers of objects and agents in
which all egalitarian-equivalent and efficient allocations violate not only no-
envy, as we already know, but in fact the identical-preferences lower bound.
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When there are more objects than agents, an allocation may be envy-free
and efficient without meeting the identical-preferences lower bound, but it
meets the variant of the lower bound obtained by using only the objects that
are assigned. Let us call it the weak identical-preferences lower bound.
Our earlier result concerning the incompatibility of egalitarian-equivalence
and the identical-preferences lower bound persists however, since it can be
proved by means of an example with an equal number of objects and agents,
for which the two versions of the bound coincide (Thomson, 2003b).

10.3 Resource-monotonicity

Next, we consider changes in resources. We begin with the requirement that
as the amount of money available increases, all agents should end up at least
as well off as they were initially:

Money-monotonicity: For each (R,M,A) ∈ EN
ind, each z ∈ ϕ(R, M,A),

each M ′ > M , each z′ ∈ ϕ(R, M ′, A), we have z′ R z.

Any selection from the egalitarian-equivalence and Pareto solution ob-
tained by fixing the reference object is money-monotonic. If there is only
one real object, and if the reference object is chosen to be the null object,
we obtain the solution F ∗, introduced earlier, which is also a selection from
the no-envy solution. This solution enjoys other desirable properties, as we
will see.

In the multiple-object case, selections from the no-envy solution exist that
are money-monotonic (Alkan, Demange, and Gale, 1991).

Next, we require that when additional objects become available, all agents
should end up at least as well off as they were initially. This property makes
sense if the objects are desirable or if they do not have to be assigned. Of
course, in specifying an economy, we now have to allow the numbers of objects
and agents to differ. Then, an envy-free allocation is not necessarily efficient
and we explicitly impose efficiency. Recall that in our basic definition of an
economy, preferences are defined over the cross-product of R with the set of
objects. In specifying the economy that results after the disappearance of
some objects, we therefore restrict preferences to the cross-product of R with
the set of remaining objects.

Object-monotonicity: For each (R,M, A) ∈ EN
ind, each z ∈ ϕ(R, M,A),

each A′ ⊂ A, each z′ ∈ ϕ(R|R×A′ ,M, A′), we have z R z′.
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A negative result holds, even on the quasi-linear domain:

Theorem 10.3 (Alkan, 1994) Domain: one infinitely divisible good and a
set A of objects and its subsets; preferences, defined on R×A, are quasi-linear.
No selection from the no-envy and Pareto solution is object-monotonic.

A weaker monotonicity requirement can be formulated, which says that
for each economy, there should be at least one allocation such that, upon the
addition of one more object, an improvement in the welfares of all agents can
be achieved. A limited sense in which this requirement of local extendabil-
ity in an object-monotonic way can be met within the no-envy solution
is discussed by Alkan, Demange, and Gale (1991). The most general result
along these lines covers variations in populations as well, and we find it con-
venient to wait until our discussion of this issue to give a single statement
(Subsection 10.5).

Consider situations in which all real objects have to be assigned before
any null object is, independently of whether they are desirable. For instance,
objects may be activities that some agents enjoy and others do not, but these
activities have to be carried out if there are enough agents for that. Even if
preferences are quasi-linear, no selection from the weak identical-preferences
lower bound and Pareto solution is weakly object monotonic, that is,
such that the welfares of all agents are always affected in the same direction
by an enlargement of the set of objects (Thomson, 2003b).

We have one positive result to report, which is parallel to Theorem 7.1
pertaining to the classical model. Consider the quasi-linear domain when all
objects are desirable. The Shapley value (Shapley, 1953), when applied to
the free-access coalitional game associated with each economy, induces an
object-monotonic selection from the identical-preferences lower bound and
Pareto solution (Moulin, 1992a).

10.4 Welfare-domination under preference-
replacement

Here, we turn to the requirement introduced in Subsection 7.2 under the
name of welfare-domination under preference-replacement, that a change in
some agent’s preferences should affect all other agents in the same direction.

In the one-object case, the property can be met, but in the presence of no-
envy, in a unique way, by the solution F ∗ of Subsection 10.2 (which selects the
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envy-free allocation that is the least favorable to the winner). This solution
is also a selection from the egalitarian-equivalence solution (recall that in
the one-object case egalitarian-equivalence and no-envy are compatible). We
state this uniqueness result for general preferences, although it also holds on
the quasi-linear domain:

Theorem 10.4 (Thomson, 1998) Domain: one infinitely divisible good and
a set A consisting of a single object; at least 3 agents; preferences, defined
on R × A, satisfying the compensation assumption. The solution F ∗ is the
only selection from the no-envy solution satisfying Pareto-indifference and
welfare-domination under preference-replacement.

In the case of more than one object, we have an impossibility, even on the
quasi-linear domain:45

Theorem 10.5 (Thomson, 1998) Domain: one infinitely divisible good and
a set A of objects; quasi-linear preferences, defined on R× A, satisfying the
compensation assumption. No selection from the no-envy solution satisfies
welfare-domination under preference-replacement.

10.5 Population-monotonicity

Next, we consider variations in populations, generalizing the model and the
notation in the following way: an economy is a triple (R, M, A) where M ∈ R
is an amount of money, A is a list of objects, and R ≡ (Ri)i∈N , for some
N ∈ N , is a list of preferences defined on R× A.

A first requirement in this context is that if the social endowment of
money is non-negative and the objects are all desirable, none of the agents
initially present should benefit from the arrival of additional agents.

We start with the one-object case. First, even when preferences are quasi-
linear, population-monotonicity is incompatible with no-envy (Alkan; 1994,
Moulin, 1990b). In fact, an agent could be better off at any envy-free alloca-
tion than if he were alone, so that a violation of the free-access upper bound
(see Section 7) is unavoidable if no-envy is insisted upon.

However, in this model in which there is no lower bound on consumption
spaces, requiring agents to end up at most as well off when new agents come

45This result is proved for any n ≥ 4. Gordon (2000) shows that it also holds for n = 3.
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in may not be the right thing to do. This is because the model is then
essentially equivalent to a production model. Receiving the object is similar
to being given a chance to produce. When new agents come in with “good”
production functions, they may be able to use the input very productively,
and the agents originally present may be made to benefit from it. To be
ready to deal with that case and with the case when the new agent has
a poor production function, we return to weak population-monotonicity (the
requirement that changes in population should affect the welfares of all agents
who are present before and after the change in the same direction.)

It is easy to see that the solution F ∗ enjoys the property, but it is es-
sentially the only selection from the no-envy solution to do so. To formally
state this characterization, we need the following very mild condition of neu-
trality: if an allocation obtained by exchanges of bundles from one that is
chosen by the solution leaves unaffected the welfares of all agents, then it
should also be chosen by the solution. We also impose translation invari-
ance: for each t ∈ R, if each preference map is translated by t and the social
endowment of money is changed by t times the number of agents, then the
recommended bundle for each agent should be obtained from his old one by
changing its money component by t units.

Theorem 10.6 (Tadenuma and Thomson, 1993) Domain: one infinitely di-
visible good and a set A consisting of a single object; preferences, defined
over R × A, are strictly monotonic with respect to money and satisfy the
compensation assumption. The solution F ∗ is the only selection from the
no-envy solution to be neutral, translation invariant, and weakly population-
monotonic.

The next few results pertain to economies in which the object is desir-
able: an agent would always need to be compensated to give it up. Then, in
economies with quasi-linear preferences in which the amount of money is 0,
a population-monotonic selection from the identical-preferences lower bound
and Pareto solution can be defined that differs from F ∗ (Moulin, 1990b). For
each economy, the allocation it recommends is the one obtained by applying
the Shapley value to the associated free-access game. When preferences are
not necessarily quasi-linear and the amount of money is non-negative, the
existence of a solution enjoying these same properties can still be demon-
strated (Bevia, 1996c). Its restriction to the quasi-linear case is the solution
induced by the Shapley-value in the manner described above.
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In the multiple-object case, the selection from the egalitarian-equivalence
and Pareto solution obtained by requiring the reference bundle to contain a
fixed object is weakly population-monotonic, but it is not guaranteed to be a
selection from the no-envy solution anymore. In fact, if no-envy is imposed,
we have the following impossibility, which holds even on the quasi-linear
domain:

Theorem 10.7 (Tadenuma and Thomson, 1995) Domain: one infinitely di-
visible good and a set A of objects; preferences, defined over R×A, are strictly
monotonic with respect to money and satisfy the compensation assumption.
No selection from the no-envy solution is weakly population-monotonic.

The following positive result is available. Consider the quasi-linear do-
main and suppose that the social endowment of money is 0. The Shap-
ley value, when applied to the free-access coalitional game associated with
each economy, induces a population-monotonic selection from the identical-
preferences lower bound and Pareto solution (Moulin, 1992a).

Theorem 10.7 shows that weak population-monotonicity is a very strong
requirement in the present context and it is therefore natural to investigate
the possibility of satisfying weaker requirements. The following question can
be asked (Alkan, 1994): for each economy, and when all objects are desirable,
is there an allocation such that upon the arrival of an additional agent, all
agents initially present can be made at most as well off as they were initially,
and such that upon the departure of an agent, all remaining agents can be
made at least as well off as they were initially? If yes, the allocation is locally
lower-extendable, and locally upper-extendable (respectively), in a
population-monotonic way. This definition extends a notion introduced
in Section 10.3 in connection with variations in the number of objects. Alkan
(1994) considers a two-part definition that covers both variations in objects
and variations in populations. We refer to it by the shorter phrase locally
upper, or lower, extendability. It turns out that if no-envy is required,
only a limited form of these properties holds:

Theorem 10.8 (Alkan, 1994) Domain: one infinitely divisible good and a
set A of objects and subsets; preferences, defined over R × A, are strictly
monotonic with respect to money and satisfy the compensation assump-
tion. (a) When objects are desirable, the minimax money allocation of each
economy is an envy-free and locally upper-extendable allocation. (b) The
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maximin money-only-equivalent allocation of each economy is locally lower-
extendable. (c) When objects are desirable and there are at least as many
agents as objects, the minimax money allocation is the only locally upper-
extendable in an object-monotonic way envy-free allocation.46

Local lower-extendability in a population-monotonic way is a weaker re-
quirement than local upper-extendability : indeed there are economies in
which all envy-free allocations are locally lower-extendable in a population-
monotonic way (Alkan, 1994).

10.6 Consistency

We now turn to consistency and related properties. The concept was first
encountered in Subsection 8.1 in the context of classical economies. Let A
be the family of all finite subsets of a set of “potential” objects, with generic
element denoted A. Given σ: N → A and N ′ ⊂ N , let σ(N ′) ≡ ∪N ′σ(i):

Consistency: For each N ∈ N , each (R, M, A) ∈ EN
ind, each z ≡ (m,σ) ∈

ϕ(R,M,A), and each N ′ ⊂ N , we have zN ′ ∈ ϕ((R′
i)i∈N ′ ,

∑
N ′ mi, σ(N ′)),

where zN ′ is the restriction of z to the group N ′, and for each i ∈ N ′, R′
i is

the restriction of Ri to R× σ(N ′).

It is clear that both the Pareto solution and the no-envy solution are
consistent. Are there consistent subsolutions of the no-envy solution?

In the one-object case, the solution F ∗ is a consistent selection from the
no-envy solution. Moreover, subject to neutrality, it is the smallest one, as
follows directly from the following theorem:

Theorem 10.9 (Tadenuma and Thomson, 1993) Domain: one infinitely di-
visible good; a set A of at most one object; preferences, defined on R × A,
are monotonic with respect to money and satisfy the compensation assump-
tion. If a subsolution of the no-envy solution is neutral and consistent, then
it contains the solution F ∗.

As a corollary of Theorem 10.9, one easily obtains a complete character-
ization of all solutions satisfying its hypotheses.

The results in the multiple-object case are quite different:

46A version of (a) holds that accommodates objects that are not desirable. The unique-
ness result stated in (c) does not persist if variations in populations are considered.
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Theorem 10.10 (Tadenuma and Thomson, 1991) Domain: one infinitely
divisible good; a set A of objects; equal number of agents; preferences, de-
fined on R × A, are monotonic with respect to money and satisfy the com-
pensation assumption. If a subsolution of the no-envy solution is neutral and
consistent, then in fact it coincides with the no-envy solution.

This result is also true when the objects are identical. On the other
hand, and here too, whether or not the objects are identical, there are many
subsolutions of the no-envy solution satisfying the weakening of consistency
obtained by applying it only to two-agent subgroups (bilateral consistency),
but all such solutions coincide with the no-envy solution in the two-agent
case.

The next axiom pertains to the arrival of new agents, and it is the coun-
terpart of an axiom of the same name that we encountered first in our study
of the classical model (Subsection 8.1):

Converse consistency: For each N ∈ N with |N | > 3, each e ≡
(R, M, A) ∈ EN

ind, each z ≡ (m,σ) ∈ Z(e), if for each N ′ ⊂ N such that
|N ′| = 2, zN ′ ∈ ϕ((Ri|R×σ(N ′))i∈N ′ ,

∑
N ′ mi, σ(N ′)), then z ∈ ϕ(e).

Clearly, the no-envy solution is conversely consistent, but many proper
subsolutions of it are too (as well as neutral). On the other hand, the Pareto
solution is not, unless the objects are identical. However, we have:

Theorem 10.11 (Tadenuma and Thomson, 1991) Domain: one infinitely
divisible good; a set A of objects; equal number of agents; preferences, defined
on R×A, are monotonic with respect to money and satisfy the compensation
assumption. If a subsolution of the no-envy solution is neutral, bilaterally
consistent, and conversely consistent, then in fact it coincides with the no-
envy solution.

The identical-preferences lower bound solution is conversely consistent
but not consistent. The minimal consistent enlargement (Section 8.2) of its
intersection with the Pareto solution is the Pareto solution itself. This is true
when there is at most one object, when there are multiple identical objects,
and when there are multiple and possibly different objects. The maximal
consistent subsolution of the identical-preferences lower bound and Pareto
solution is the no-envy solution (Bevia, 1996a)
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10.7 Related models

10.7.1 Several objects per agent.

A generalization of the model is when each agent can consume several ob-
jects (in addition to the infinitely divisible good). If not otherwise indicated,
all of the results below are due to Bevia (1998). The lesson that emerges
from this work is that the situation is quite different from what it is in the
one-object-per-person case, unless severe additional restrictions are imposed
on preferences. It is true that, under similar assumptions as in the one-
object-per-agent case, efficient allocations still exist and that so do envy-free
allocations (this is also shown by Tadenuma, 1996). Moreover, when prefer-
ences are quasi-linear, allocations that are both envy-free and efficient exist
too. If consumptions of money are required to be non-negative, existence
holds if and only if the social endowment of money is at least as large as a
certain amount that can be identified. This amount depends on preferences.
An algorithm is available that leads to envy-free allocations (Haake, Raith,
and Su, 2002). At each step, it focuses on a pair of agents between whom
envy is maximal, as measured in terms of the amount of money that should
be added to the bundle of the envious agent so as to make him non-envious,
and adjustments are carried out so as to decrease this maximal envy.

If preferences are not quasi-linear, and even when consumptions of money
are unbounded below (or the social endowment of money is sufficiently large),
and preferences satisfy the compensation assumption, envy-free and efficient
allocations may not exist (Tadenuma, 1996; Meertens, Potters, and Rei-
jnierse, 2002).

Even if preferences are quasi-linear, no-envy does not imply efficiency any
more. Thus, and since by definition, group no-envy still implies efficiency, the
group no-envy solution may be a proper subsolution of the no-envy solution.
There may be no allocation meeting the identical-preferences lower bound,
although a necessary and sufficient condition on preferences can be stated
guaranteeing existence. The no-envy and identical-preferences lower bound
solutions are not related by inclusion. An equal-income Walrasian alloca-
tion obviously remains envy-free—in fact, it remains group envy-free—but a
group envy-free allocation may not be an equal-income Walrasian allocation.
Equal-income Walrasian allocations exist if preferences have additive numer-
ical representations, a case discussed in the next paragraph. Egalitarian-
equivalence applies to this model with no difficulty and existence is guaran-
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teed very generally.
Preferences that have additive representations have been the object of

particular attention. For that case, a rule is proposed by Knaster (this
attribution is by Steinhaus, 1948; also, Kuhn, 1967). It consists in first
assigning all objects efficiently (this is a meaningful objective because of
quasi-linearity), and, using our earlier terminology, assigning consumptions
of money so that all agents receive equal amounts of it above their identical-
preferences lower bounds. Steinhaus also defines an asymmetric generaliza-
tion of the solution. An alternative is the selection from the egalitarian-
equivalence and Pareto solution obtained by choosing the null object as ref-
erence object. Interestingly, this second solution is a selection from the no-
envy solution (Willson, 2003), showing that for additive preferences, no-envy
is compatible with egalitarian-equivalence. Each is money-monotonic and
each satisfies a form of object-monotonicity. Knaster’s solution is advocated
by Samuelson (1980).

Next, we turn to the implications of relational fairness requirements
of monotonicity and consistency. If the social endowment of money is
non-negative and all objects are desirable, the natural form of population-
monotonicity is that upon the arrival of additional agents, each of the agents
initially present should end up at most as well off as he was initially. Then,
and even if preferences are quasi-linear and no other fairness requirement
is imposed, no selection from the Pareto solution is population-monotonic
(Bevia, 1996b). On the other hand, suppose that preferences are further
restricted by the requirement that the free-access game associated with each
economy satisfies the substitutability assumption described before Proposi-
tion 7.1. Then, the Shapley value, when applied for each economy to the
free-access game associated with it, induces a rule that satisfies the prop-
erty (Bevia, 1998). Much is known about consistency. In contrast to the
one-object-per-person case, there are consistent subsolutions of the no-envy
and Pareto solution, and converse consistency becomes a much stronger re-
quirement. Nevertheless, characterizations in the spirit of Theorems 10.10
and 10.11 hold under an additional invariance requirement on solutions (Be-
via, 1998).

10.7.2 Lotteries.

Population-monotonicity of rules based on lotteries is examined by Ehlers
and Klaus (2001). [They also consider strategic issues. Lotteries are allowed
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by Crawford and Heller (1979), but mainly in the context of the strategic
analysis of Divide-and-Choose.]

10.7.3 When monetary compensations are not possible

One object per agent. Economies in which money is not available to
make compensations have recently been much studied, mainly in situations
where preferences over objects are strict. [This literature often considers the
implications of fairness conditions in conjunction with the strong requirement
of immunity to strategic behavior called strategy-proofness, which says that
no agent should ever benefit from misrepresenting his preferences.]

It is clear that punctual requirements of fairness such as no-envy and
egalitarian-equivalence are not achievable here (think of situations where all
agents have the same preferences), and not much can be said about these
requirements. However, most of our relational requirements remain mean-
ingful. The main lesson of this literature is that they can be satisfied, but in
a rather limited way.

Of course, they are satisfied by the single-order priority rules defined
as follows. To each order on the set of agents is associated the rule that
selects, for each preference profile, the allocation at which the agent ranked
first receives his most preferred object, the agent ranked second receives
his most preferred object among the remaining objects, and so on. These
rules, which are the counterparts for this model of what are usually called
“dictatorial rules” or “sequential dictatorial rules”, are a little less distasteful
than they are in the classical model since here, there is a natural constraint
on what an agent consumes. Even if an agent receives his most preferred
object, other objects remain that are available for the other agents, and
when preferences differ sufficiently, some of them may in fact receive their
most preferred objects too.

Being first in an order amounts to being given ownership rights over the
entire social endowment of objects. Once the agent ranked first has exercised
his rights by choosing his most preferred object, the agent ranked second is
given ownership rights over the remaining objects, and exercises his rights by
choosing his most preferred object among them, and so on. More generally,
one can “spread” priority over agents. For each object, let us specify a
priority order over agents. Each agent identifies his best object over all
objects. Each agent i gets his best object if he owns it. If agent i owns the
best object of the owner of his own best object, they then exchange these
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objects and leave. Suppose there is a cycle starting with agent i such that
agent i’s best object is owned by the next agent in the cycle, the next agent’s
best object is owned by the following agent, and so on, until the last agent’s
best object is owned by agent i. Then these agents trade along the cycle and
leave. Each object in the endowment of an agent who leaves is inherited by
the first agent in the priority order for that object who does not leave. These
“bequests” define revised ownership rights for the remaining agents and the
process is repeated with them. Let us call it a multiple-order priority
rule. The collection of the orders indexed by objects (the priority profile),
presented as a table, is the inheritance table of the rule, which can also
be referred to as the hierarchical exchange rule associated with the
inheritance table (Pápai, 2000).

Although envy cannot be avoided in this model, there is a natural way
to attempt to limit it. Given a single priority order on the set of agents
and an allocation, say that agent i’s envy of agent j is “justified” if agent i
prefers the object agent j receives to the one he receives, and agent i has
a higher priority than agent j (Svensson, 1994a). More generally, when the
priority order may depend on the object, and given an allocation, say that
agent i’s envy of agent j is “justified” if agent i prefers the object agent j
receives to the one he receives and he has a higher priority than agent j for
that object. A rule respects a priority profile if it always selects an
allocation at which there is no justified envy (Balinski and Sönmez, 1999)
[Svensson, 1994a, addresses the issue of strategy-proofness when agents may
be indifferent between objects.]

We also need the notion of an acyclic priority profile (one usually
speaks of the acyclicity of a single relation, but here, the notion applies to
a profile of relations). It is defined as follows: if for some object, agent i is
ranked above agent j and agent j is ranked above agent k, there is no other
object for which agent k is ranked above agent i (Ergin, 2002). It turns
out that this is equivalent to saying that an ordered partition of the set of
agents into singletons and pairs exists such that each agent in a singleton
set appears in an entire row of the inheritance table, and the two agents in
each pair appear only in two successive rows (Ergin, 2002). By considering
ordered partitions in which components would be allowed to have up to
three members, then up to four, and so on, we would dilute even more the
hierarchical nature of the rule and move further and further away from single-
order priority rules. But for a partition with at most two agents in each
component, the resulting rule is not far from being a single-order priority
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rule, so we say that it is one step away from a single-order priority
rule.47

Unfortunately, this is as far as one can go if imposing the requirement
that when the set of available objects expands, all agents should end up
at least as well off as they were initially, object-monotonicity. When the
set of objects varies, the question is whether in defining an economy, one
specifies preferences over all potential objects, or only over existing objects.
We choose the latter formulation, for which we can state a result that takes
a very simple form:48

Theorem 10.12 (Ehlers and Klaus, 2003) Domain: at least as many po-
tential objects as agents; strict preferences over objects; either one of the
following holds: (a) real objects may or may not be preferred to the null
object; (b) real objects are always preferred to the null object. A selection
from the Pareto solution is object-monotonic if and only if it is one step
away from a single-order priority rule.

The implications of consistency for this model are explored by Ergin
(2000). His main theorem involves no efficiency requirement, but we state
the corollary obtained by adding efficiency:

Theorem 10.13 (Ergin, 2000) Domain: a set of objects; strict preferences
over individual objects. A selection from the Pareto solution is neutral and
consistent if and only if it is a single-order priority rule.

For solution correspondences, a characterization is available based on the
axioms of Theorem 10.13 together with converse consistency. All admissible
rules are obtained as certain unions of single-order priority rules.

The following theorem states that within the class of multiple-order pri-
ority rules, either one of two important properties implies that the orders are
strongly correlated:

Theorem 10.14 (Ergin, 2002) Domain: a set of objects; strict preferences
over individual objects. A multiple-order priority rule is a selection from the

47These rules are usually referred to as “mixed dictator-pairwise-exchange rules”, or
“restricted endowment inheritance rules”.

48Ehlers and Klaus (2003) choose the former formulation and their characterization also
involves the requirement that, given two economies such that the restrictions of prefer-
ences over the set of existing objects are the same, the rule makes the same choice: the
preferences over objects that are not available should not affect the choice.
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Pareto solution or satisfies consistency, if and only if it is one step away
from a single-order priority rule.

[Another requirement on a rule for which the conclusion of Theorem 10.14
applies is group strategy-proofness , that is, immunity to joint misrepresenta-
tion of preferences by the agents in any group. The implications for selections
from the Pareto solution of population monotonicity and strategy-proofness
together are described by Ehlers, Klaus, and Papai (2002). The only rules
passing these tests are one step away from single-order priority rules reformu-
lated so as to apply to this variable-population context. The order used for
each population should be induced from a single “reference” order over the
entire set of potential agents. The class of selections from the Pareto solution
satisfying consistency and strategy-proofness is characterized by Ehlers and
Klaus (2005a,b). Kesten (2003, 2004a, 2004b) are other contributions to this
line of investigation.]

Several objects per agent. Still assuming that money is not available, we
now imagine that agents can receive several objects. Then, their preferences
are defined over sets of objects. No selection from the Pareto solution satis-
fies welfare-domination under preference replacement (Klaus and Miyagawa,
2001). [The implications of resource-monotonicity, population monotonicity,
and consistency have also been studied for this problem but mainly when im-
posed in conjunction with strategy-proofness, so we will not elaborate (Klaus
and Miyagawa, 2001; Ehlers and Klaus, 2003). These combinations of prop-
erties mainly result in some form of priority rule.]

The model is also considered by Herreiner and Puppe (2002), who pro-
pose the following fairness criterion: For each allocation and each agent, one
determines the rank in his preference of the set he receives. An allocation is
then evaluated by means of the highest (across agents) such rank. Thus, the
focus is on the agent who is treated the worse according to these ranks. An
iterative procedure can be defined that produces the efficient allocation that
is best according to this criterion among all efficient allocations.49

Brams and Fishburn (2000) for |N | = 2 and Edelman and Fishburn (2001)
for |N | > 2 examine the special case when agents have the same preferences
over individual objects but possibly different preferences over sets of objects.

49Herreiner and Puppe (2002) also discuss variants of this criterion and identify situa-
tions (they are quite limited) under which an envy-free allocation may be obtained. See
also Ramaekers (2006).
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These preferences are assumed to have additive representations in the sec-
ond paper and to satisfy a slightly more general property in the first paper.
Envy-free allocations may not exist—in fact, the more preferences agree, the
less likely such allocations are to exist—so they propose alternative criteria.
These studies underscore the importance of the relation between the number
of objects and the number of agents. Brams, Edelman, and Fishburn (2003)
pursue this analysis without the assumption that preferences over individual
objects are the same, and propose, in addition to requirements related to no-
envy, some that are based on comparing the numbers of objects received by
the various agents. Brams, Edelman, and Fishburn (2001) relate the no-envy
condition in the context of this model to efficiency, and to the Rawlsian and
Borda choice rules. For one of their examples, there is a unique envy-free
allocation, but it is not efficient.

Models with individual endowments. The possibility that agents are
endowed with objects is first considered by Shapley and Scarf (1974). Sit-
uations when some objects are initially individually owned and others are
commonly owned, as in Subsection 8.3, are also of interest, residential hous-
ing on a university campus being an illustrative example, since current renters
are usually allowed to keep the units they occupy from one year to the next.
An application to kidney exchange is discussed by Roth, Sönmez, and Ünver
(2004). [Abdulkadiroğlu and Sönmez, 1999, define a strategy-proof selection
from the Pareto solution that respects individual ownership. See also Sönmez
and Ünver, 2005.]

Lotteries. Rules based on lotteries are examined by Hylland and Zeck-
hauser (1979), Abdulkadiroğlu and Sönmez (1998, 1999), and Bogomolnaia
and Moulin (2002, 2003, 2004). Demko and Hill (1988) consider the several-
objects-per-agent case in this context.

10.7.4 Compensations.

Consider the problem of allocating a single infinitely divisible good, “money”,
among agents characterized by talent or handicap variables, which cannot be
transferred. Preferences are defined over the cross-product of the real line
and the set of possible values of these variables. Each agent can be under-
stood as endowed with a particular one of these objects, but no exchange of
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objects can take place. How should money be divided? This model, formu-
lated by Fleurbaey (1994, 1995b), has been analyzed from a variety of an-
gles. (Bossert, 1995; Bossert and Fleurbaey, 1996; Fleurbaey and Maniquet,
1996b, 1998, 1999; Iturbe-Ormaetxe and Nieto, 1996a; Otsuki, 1996b; Spru-
mont, 1997; Maniquet, 1998; Bossert, Fleurbaey, and van de Gaer, 1999).
Fleurbaey and Maniquet (2003, Chapter 21) survey this work in detail and
discuss how it fits in with the literature under discussion here. So, we will
not elaborate.

11 Single-peaked preferences

Consider a one-commodity model where preferences are single-peaked: up
to some critical level, an increase in an agent’s consumption increases his
welfare but beyond that level, the opposite holds.

An example of a situation of this kind is distribution at disequilibrium
prices in a two-good economy with strictly convex preferences; the restrictions
of such preferences to budget lines are single-peaked. Alternatively, imagine a
task that is to be divided among a group of agents who are jointly responsible
for it, and suppose that each agent enjoys performing it up to a point, but
that additional time spent at it decreases the agent’s welfare. Then, the
agent has single-peaked preferences over the time performing the task. If
the task has to be completed, the feasibility requirement is that the sum
of the amounts of time spent by the agents performing it should be equal
to the total time needed for completion. Depending upon whether the sum
of the preferred amounts is greater or smaller than completion time, agents
may have to supply more than their preferred amounts, or they may have to
supply less. The formal model is introduced by Sprumont (1991).

It turns out that a certain rule, known as the uniform rule, is central
in solving this class of problems, independently of the angle from which we
attack them; whether we consider changes in the amount to divide, or in
the population (here, monotonicity or consistency requirements have been
considered), or in the preferences of some agents. [The rule also has very
desirable strategic properties, and it is in the context of a study of strategy-
proofness that it first emerged.]
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11.1 The model

Each agent i ∈ N is equipped with a continuous preference relation Ri defined
on R+ with the property that there is a number, denoted p(Ri), and called
his peak amount, such that for each pair {zi, z

′
i} ⊂ R+, if z′i < zi ≤ p(Ri) or

p(Ri) ≤ zi < z′i, then zi Pi z′i: the relation is single-peaked. Let Rsp denote
the class of all such relations. Given zi ∈ R+, let ri(zi) be the amount on the
other side of his peak amount that agent i finds indifferent to zi, if there is
such an amount. If there is no such amount and zi < p(Ri), let ri(zi) ≡ ∞,
and otherwise, let ri(zi) ≡ 0. Let Ω ∈ R+ denote the social endowment.
An economy is a pair e ≡ (R, Ω) ∈ RN

sp × R+ and EN
sp is the domain of all

economies with agent set N . The commodity is not freely disposable. Thus,
a feasible allocation for e ≡ (R, Ω) ∈ EN

sp is a list z ≡ (zi)i∈N ∈ RN
+ such

that
∑

zi = Ω. Let Z(e) denote the set of feasible allocations of e.

11.2 Basic solutions

It is easy to check that an allocation z ∈ Z(e) is efficient for e ≡ (R, Ω) ∈ EN
sp

if and only if (i) when Ω ≤ ∑
p(Ri), then for each i ∈ N , zi ≤ p(Ri), and

(ii) when Ω ≥ ∑
p(Ri), then for each i ∈ N , zi ≥ p(Ri): all consumptions

should be “on the same side” of the peak amounts (Sprumont, 1991). In the
first case, we can say that “there is too little of the commodity” (too little
because everyone has to receive at most his peak amount), and in the second
case, that “there is too much” (too much because everyone has to receive at
least his peak amount).

Figure 11 illustrates an envy-free and efficient allocation for N ≡
{1, . . . , 7} and e ≡ (R, Ω) ∈ EN

sp such that
∑

p(Ri) > Ω. In the exam-
ple, agents are ordered by their peak amounts: p(R1) ≤ · · · ≤ p(R7). As we
just saw, by efficiency, no one receives more than his peak amount. By no-
envy, agents are partitioned into groups—in the example, they are {1, 2, 3},
{4}, {5}, and {6, 7}—with all agents in each group receiving equal amounts.
For each group G, the common consumption of the members of the group
receiving the next greatest amount is at least maxi∈G ri(zi).

The question of existence of envy-free and efficient allocations is given
a very simple positive answer later on. In fact, the set of these allocations
is usually quite large and one of our objectives is to identify well-behaved
selections from the no-envy and Pareto solution.

The equal-division lower bound is defined as in classical economies,
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Figure 11: An envy-free and efficient allocation in an economy with
single-peaked preferences. When there is not enough of the commodity, ef-
ficiency requires that each agent should receive at most his peak amount. For
no-envy, no agent’s consumption should fall in the interval of peak consumptions
of any other agent at his consumption. All of these requirements are met here.

and so is the equal-division core. There always are allocations meeting the
equal-division lower bound, but the equal-division core may be empty. How-
ever, if the blocking requirement for each group is strengthened by insisting
that each agent in the group should be made better off by redistribution of
the resources the group controls, then non-emptiness is recovered, as we will
see.50

A number of interesting solutions can be defined for this model by tak-
ing advantage of its special features. Quite a few are single-valued. Here
are some of them. The first one is the most frequent suggestion in the con-
text of rationing: Given e ≡ (R, Ω) ∈ EN

sp, the allocation z ∈ Z(e) is the
proportional allocation of e if, when at least one peak amount is pos-
itive, there is λ ∈ R+ such that for each i ∈ N , zi = λp(Ri). If all peak
amounts are zero, z ≡ ( Ω

|N | , . . . ,
Ω
|N |). It is its equal-distance allocation if

there is λ ∈ R+ such that for each i ∈ N , zi = max{p(Ri) − λ, 0}. It is its
equal-preferred-sets allocation if (i) when Ω ≤ ∑

p(Ri), then for each
{i, j} ⊆ N , zi − ri(zi) = zj − rj(zj), or zi = 0, and (ii) when Ω ≥ ∑

p(Ri),
then for each {i, j} ⊆ N , zi − ri(zi) = zj − rj(zj).

The following rule will turn out to be most central in our analysis:

Definition (Bénassy, 1982) Given e ≡ (R, Ω) ∈ EN
sp, the allocation z ∈ Z(e)

is the uniform allocation of e if (i) when Ω ≤ ∑
p(Ri), there is λ ∈ R+

such that for each i ∈ N , zi = min{p(Ri), λ}, (ii) when Ω ≥ ∑
p(Ri), there

50The notion of egalitarian-equivalence cannot be directly applied in this context but a
reformulation is possible that produces a well-defined solution (Chun, 2000).
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is λ ∈ R+ such that for each i ∈ N , zi = max{p(Ri), λ}.

The proportional, equal-distance, and equal-preferred-sets rules are mo-
tivated by the desire to distribute “evenly” across agents deficits or surpluses
(the difference Ω−∑

p(Ri) when it is negative or positive respectively). The
uniform rule does not seem to achieve this objective since it assigns to some
agents their peak amounts, and it assigns to the others equal amounts (it
ignores differences in the peak amounts of the members of the latter group).
However, it does select an allocation that is envy-free (this solves the exis-
tence question for these allocations, as announced earlier), and it meets the
equal-division lower bound, in contrast with the proportional, equal-distance,
and equal-preferred-sets rules.

The uniform rule depends only on the profile of peak amounts—we say
that it satisfies peak-only. This property is satisfied by many other solutions
such as the Pareto solution, and by the equal-distance and proportional rules.
However, we have the following characterization:

Theorem 11.1 (Thomson, 1994c) Domain: one good; single-peaked prefer-
ences. The uniform rule is the only subsolution of the no-envy and Pareto
solution satisfying peak-only.

The uniform allocation of an economy is also its only efficient allocation
at which each agent receives an amount that he finds at least as desirable as
any convex combination of the amounts received by all agents (recall Kolm’s
generalization of no-envy; Chun, 2000). When there is too little of the com-
modity, it is also the only allocation maximizing the factor α such that each
agent finds the amount he receives at least as desirable as the proportion α
of the social endowment. When there is too much, replace “maximizing”
by “minimizing”. Finally, the uniform rule is the only selection from the
Pareto solution minimizing either one of the following two alternative ways
of measuring the disparity among the amounts received by the various agents:
(i) the difference between the smallest amount anyone receives and the great-
est amount anyone receives; (ii) the variance of the amounts they all receive
(Schummer and Thomson, 1997). Parallel results can be obtained if the
Pareto requirement is replaced by peak-only (Kesten, 2004c).

The group no-envy solution, defined as in the classical case, is some-
times empty but the uniform allocation satisfies the weaker requirement on
an allocation that no group of agents can make all of its members better off,
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assuming that each of them is given access to an equal share of the social
endowment, by redistributing the resources it controls in total.

11.3 Resource-monotonicity

We begin our study of relational requirements for this model by considering
changes in the social endowment. Since preferences are not monotonic, it
would of course make no sense to ask that when it increases, all agents
should be made at least as well off as they were initially. Instead, a natural
expression of the idea of solidarity is that either all agents should be made at
least as well off as they were initially or that they should all be made at most
as well off. In the presence of efficiency, the first case applies in particular
if all agents initially receive at most as much as their peak amounts and the
social endowment does not increase too much, and the second case if initially
they already receive at least as much as their peak amounts. Unfortunately,
none of the rules defined above satisfies this requirement, as can be seen
by means of simple examples. Although it is met on a large subdomain
of our primary domain by variants of the equal-preferred-sets rule, it turns
out to be incompatible with no-envy as well as with the equal-division lower
bound, even if efficiency is dropped. The reason is that the increase can
be so disruptive that it turns an economy in which there is too little to
one in which there is too much. The relevance of this distinction to the
possibility of monotonicity should not be surprising, and it suggests limiting
the application of the requirement to situations in which no such switches
occur. We write this weaker property for single-valued solutions:

One-sided resource-monotonicity: For each (R, Ω) ∈ EN
sp and each Ω′ ∈

R+, if either Ω′ ≤ Ω ≤ ∑
p(Ri) or

∑
p(Ri) ≤ Ω ≤ Ω′, then ϕ(R, Ω) R

ϕ(R, Ω′).

This property is satisfied by all the rules mentioned earlier. Yet, when
imposed in conjunction with no-envy and efficiency, it essentially singles out
the uniform rule. The “essentially” is a reference to a restriction on the
domain: for each i ∈ N , 0 should have a finite equivalent (ri(0) < ∞).
If the restriction is not imposed, generalizations of the uniform rule become
admissible. The class they constitute can be characterized, but we omit their
formal description.
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Theorem 11.2 (Thomson, 1994b) Domain: one good; single-peaked pref-
erences for which 0 has a finite equivalent. The uniform rule is the only
selection from the no-envy and Pareto solution satisfying one-sided resource-
monotonicity.

In this characterization, the Pareto requirement can be replaced by peak-
only (Kesten, 2004c), or by resource-continuity, which says that small
changes in the resource should not lead to large changes in the selected
allocation (Ehlers, 2002d).

11.4 Welfare-domination under preference-
replacement

Next, we consider the replacement of the preferences of some agents by some
other preferences, and require that the welfares of all other agents should
be affected in the same direction by the replacement (Subsection 7.2). This
property of welfare-domination under preference-replacement is also
quite strong: once again, no selection from the no-envy and Pareto solution
satisfies it. The reason is that here too, the change may turn an economy
in which there is too little to one in which there is too much, or conversely.
So, let us consider the weaker property of one-sided welfare-domination
under preference-replacement, obtained by limiting attention to changes
in preferences that do not reverse the direction of the inequality between the
amount to divide and the sum of the peak amounts.

Many rules satisfy this property, including the uniform, proportional,
equal-distance, and equal-preferred-sets rules, but here too, we have a unique-
ness result. It is another characterization of the uniform rule, based on this
property. It also involves replication-invariance. This requirement is very
weak, being met by the Pareto solution, the no-envy solution, their intersec-
tion, the uniform rule, and the equal-division lower bound solution. Never-
theless, we have:

Theorem 11.3 (Thomson, 1997a) Domain: one good; single-peaked pref-
erences for which 0 has a finite equivalent. The uniform rule is the only
selection from the no-envy and Pareto solution satisfying weak replication-
invariance and one-sided welfare-domination under preference-replacement.

The independence of replication-invariance from the other axioms in The-
orem 11.3 is established by Klaus (1999).
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There are selections from the equal-division lower bound and Pareto solu-
tion satisfying welfare-domination under preference-replacement other than
the uniform rule. They constitute a convex class.

11.5 Separability

Here, we consider the requirement that, given any two economies having
a group of agents in common, if the agents in this group receive the same
aggregate amount in both, then each of them should receive the same amount
in both (Chun, 2006c). Note that the economies that are compared may have
different social endowments:

Separability: For each pair N ⊂ N , each e ≡ (R, Ω) ∈ EN
sp, each N ′ ⊂ N ,

and each e′ ≡ (R′, Ω′) ∈ EN ′
sp , if RN ′ = R′

N ′ and
∑

N ′ ϕi(e) =
∑

N ′ ϕi(e
′), then

ϕN ′(e) = ϕN ′(e′).

We have the following characterizations:

Theorem 11.4 (Chun, 2006c) Domain: one good; single-peaked prefer-
ences. The uniform rule is the only selection (i) from the no-envy and Pareto
solution satisfying resource-continuity and separability; (ii) from the equal-
division lower bound and Pareto solution satisfying resource-continuity and
separability;51 (iii) from the equal-division lower bound solution satisfying
one-sided resource monotonicity and separability.

In (i), the conclusion persists if replication-invariance is imposed instead
of resource continuity (Klaus, 2006). Other characterizations of the uni-
form rule not involving efficiency are available (Chun, 2003). The distribu-
tional requirements are either no-envy or the equal-division lower bound and
the relational requirements are replication-invariance, one-sided population-
monotonicity, and separability. Additional properties involving simultaneous
changes in several parameters can be formulated (Chun, 2006c, discusses
their logical relations).

51We do not include replication invariance, which Chun had imposed, as Klaus (2006)
showed that it is redundant.
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11.6 Population-monotonicity

Turning now to variations of population,we first note that here too, it would
make no sense to require as we did for classical economies, that the departure
of some agents, resources being kept fixed, should make all of the remaining
agents at least as well off as they were initially. Indeed, when there is initially
too much of the commodity, this departure may permit a uniform welfare
improvement for them. Therefore, we require instead that their welfares
should all be affected in the same direction.

This requirement is incompatible with no-envy as well as with the equal-
division lower bound. However, as was the case in our examination of the
impact of changes in the social endowment, on important subdomains of our
primary domain, there are selections from the Pareto solution that do satisfy
it, namely, variants of the equal-preferred-sets rule.

Just as was the case there, the reason why population-monotonicity is so
strong is that it sometimes forces comparisons between economies in which
there is too little to divide and economies in which there is too much. We
therefore weaken it by excluding from its coverage changes in populations
that reverse the direction of the inequality between the amount to divide
and the sum of the peak amounts, thereby obtaining one-sided population-
monotonicity. We have the following uniqueness result:

Theorem 11.5 (Thomson, 1995a) Domain: one good; single-peaked prefer-
ences for which 0 has a finite equivalent. The uniform rule is the only selec-
tion from the no-envy and Pareto solution satisfying replication-invariance
and one-sided population-monotonicity.

The independence of replication-invariance from the other axioms in The-
orem 11.5 is established by Klaus (1999). Also, the Pareto requirement can
be replaced by peak-only without affecting the conclusion (Kesten, 2004c).

11.7 Consistency

Recall that a (possibly multi-valued) solution is consistent (Section 8) if
the desirability of an allocation it selects for some economy is not affected
by the departure of some agents with their assigned consumptions:

Consistency: For each N ∈ N , each (R, Ω) ∈ EN
sp, each z ∈ ϕ(R, Ω), and

each N ′ ⊂ N , we have zN ′ ∈ ϕ(RN ′ ,
∑

N ′ zi).
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Quite a few solutions are consistent, including the Pareto solution, the
no-envy solution, and the uniform and proportional rules. The equal-division
lower bound solution is not. However, consistency, together with the mild
and self-explanatory requirement of resource upper hemi-continuity,
when imposed on a subsolution of the no-envy and Pareto solution, implies
that this solution contains the uniform rule:

Theorem 11.6 (Thomson, 1994c) Domain: one good; single-peaked prefer-
ences. If a subsolution of the no-envy and Pareto solution satisfies resource
upper hemi-continuity and consistency, then it contains the uniform rule.

From this theorem can easily be derived a complete characterization of
the class of solutions satisfying the hypotheses. A corollary of that charac-
terization is that if the solution is in addition required to be single-valued,
then in fact, it coincides with the uniform rule. A similar result holds when
the equal-division lower bound is imposed instead of no-envy.

A direct proof of this corollary, exploiting more completely the single-
valuedness requirement, is possible (Dagan, 1996). The main step is show-
ing that if a single-valued selection from the no-envy and Pareto solution is
consistent, then it satisfies peak-only. The conclusion follows then by Theo-
rem 11.1. This characterization involves no continuity requirement.

The uniform rule is also the only single-valued selection from the equal-
division lower bound and Pareto solution to be replication-invariant and
consistent (a counterpart of Theorem 8.3), and to be anonymous and con-
versely consistent (see Section 8 for a formulation of this property, whose
adaptation to the current model is straightforward) (Thomson, 1994c).

When the set of agents is modelled as a non-atomic measure space, the
uniform rule is the only subsolution of the equal-division lower bound and
Pareto solution to be consistent (This is an application of a result due to
Thomson and Zhou, 1993, mentioned in Section 8.1).

Additional characterizations of the uniform rule are available (Kesten,
2004c). They involve various combinations of the properties just seen. Some
rely on peak-only, and some dispense with efficiency.
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11.8 Extensions and related models

11.8.1 Other characterizations of the uniform rule

Sönmez (1994) strengthens one-sided resource-monotonicity—let us call the
stronger requirement strong one-sided resource-monotonicity—and charac-
terizes the uniform rule as the only selection from the equal-division lower
bound solution to satisfy this property and to be consistent. For a parallel
strengthening of one-sided population-monotonicity, he characterizes the rule
as the only selection from the equal-division lower-bound solution to satisfy
in addition replication-invariance and consistency (or converse consistency).
He does not impose efficiency. It turns out that in fact, one-sided resource-
monotonicity could have been imposed instead. When consumption spaces
are bounded above, strong one-sided resource-monotonicity by itself implies
efficiency (Ehlers, 2002a). Uniqueness still holds with bilateral consistency
instead of consistency Kesten (2004c).

In this model, the idea of resource monotonicity can also be formulated
in physical terms: when the amount to divide increases, each agent should
receive at least as much as he did initially (Otten, Peters, and Volij, 1996,
consider variants of the idea; Moulin, 1999). Otten, Peters, and Volij (1996)
require that two agents with the same preferences should receive amounts
that are indifferent according to these common preferences, and impose a
monotonicity property with respect to simultaneous changes in the social
endowment and preferences. Their main result is a characterization of the
uniform rule.

It is easy to see that in the presence of efficiency, the various notions
of resource-monotonicity that have been proposed for the model are equiv-
alent (Ehlers, 2002a). The implications of several combinations of solidarity
requirements with respect to changes in several of the parameters of the prob-
lem, as well as consistency, are explored by Chun (2003). Additional results,
which are also characterizations of the uniform rule, involve no efficiency.
[For the variant of the model in which consumption spaces are bounded
above, a family of “fixed path” rules that can be seen as generalizations of
the uniform rule emerge as the only selections from the Pareto solution to
satisfy resource-monotonicity expressed in physical terms, consistency, and
strategy-proofness ; Moulin, 1999. Ehlers, 2002a, 2002b, establishes a variety
of related results, some not involving efficiency.]
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11.8.2 Economies with individual endowments and economies
with a social endowment and individual endowments

All of the rules we have discussed can be easily extended to the variant of
the model obtained by introducing individual endowments. Various fairness
issues for this model are considered by Moreno (2002), Klaus (1997a, 2001b),
and Klaus, Peters, and Storcken (1997a). [Strategy-proofness is studied by
Klaus, Peters, and Storcken, 1997a,b, and Barberà, Jackson, and Neme,
1997, the latter invoking it in conjunction with welfare-domination under
preference-replacement.]

Even more general are situations where, in addition to individual en-
dowments, we specify an amount interpreted as a collective obligation to or
from the outside world (recall the “generalized” economies of Subsection 8.3).
Various ways of generalizing the punctual fairness requirements that have
been central in this survey, and issues of monotonicity, with respect to the
individual endowments, the collective obligation, in addition to consistency
and population-monotonicity, have been addressed (Thomson, 1996; Herrero,
2002).

In these studies, a rule that is the natural extension of the uniform rule
has most frequently emerged. Like the uniform rule, it gives all agents equal
opportunities, but this time for change in consumptions. For each i ∈ N , let
ωi ∈ R+ be agent i’s endowment, and let T ∈ R be the collective obligation.
Assume that

∑
ωi +T ≥ 0, since otherwise there would be no feasible alloca-

tion. Now, given λ ∈ R, if
∑

ωi +T ≤ ∑
p(Ri), give to each agent i ∈ N the

maximizer of his preferences among all amounts at most as large as ωi + λ if
this set is non-empty. Give him 0 otherwise. If

∑
ωi + T ≥ ∑

p(Ri), give to
each agent i ∈ N the maximizer of his preferences among all amounts at least
as large than ωi + λ. In each case, choose λ so that the list of maximizers
defines a feasible allocation. (To apply the definition to economies in which
there is no collective obligation, just set T = 0.)

11.8.3 Multi-commodity generalization

A multi-commodity version of the single-peaked assumption is easily defined.
For such a model, a generalization of the “equal-slacks Walrasian solution”
(Mas-Colell, 1982) is axiomatized along the lines of Schummer and Thom-
son’s (1997) axiomatization of the uniform rule (Amoros, 1999). [Amoros,
2002, defines an extension of the uniform rule that remains a strategy-proof
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selection from the no-envy solution, but it only satisfies a weak form of effi-
ciency. Sasaki, 2003, also focuses on strategy-proofness.]

11.8.4 Lotteries

A probabilistic version of the uniform rule is defined and characterized by
Sasaki (1997). [Probabilistic rules are studied for a version of the model
in which the dividend comes in discrete units by Ehlers and Klaus, 2003,
who focus on strategy-proofness. Their main result is a characterization of a
probabilistic version of the uniform rule.]

11.8.5 An application to a pollution control problem

The problem of allocating pollution permits can be seen as a variant of the
present model, and characterizations of a counterpart of the uniform rule for
it have been developed (Kıbrıs, 2003).

11.8.6 Single-troughed preferences

Concerning the dual case of single-troughed preferences, not much can be
said about fairness. Preferences not being convex, there may be no efficient
allocation that is also envy-free or meets the equal-division lower bound.
[The model has mainly been studied in the context of strategic issues, by
Klaus, Peters, and Storcken, 1997b; Klaus, 2001a; Ehlers, 2002c.]

12 Non-homogeneous continuum

Here, we consider another non-classical problem, that of dividing a heteroge-
neous commodity, such as land or time. In such situations, equal division has
no economic meaning, even when it can be defined in physical terms (length
or surface area, say). However, our central criteria (no-envy; egalitarian-
equivalence) remain applicable. A large literature concerns the case when
preferences can be represented by atomless measures, and additional criteria
can be formulated for that case. Representability by measures means that
the value to an agent of each “parcel” (measurable subset of the dividend)
is independent of which other parcels he may already consume. It precludes
complementarity or substitutability between parcels.
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This literature has addressed several issues: (i) The existence of parti-
tions satisfying various criteria of fairness as well as certain topological and
geometric requirements, for instance whether each agent’s component of the
partition is connected; whether it is connected to a preexisting parcel that
the agent already consumes (and that is added to the specification of the
problem); when the dividend is a subset of a Euclidean space, whether the
boundaries between components of the partitions are hyperplanes, or perhaps
parallel hyperplanes. (ii) The construction of iterative procedures leading to
such partitions, the distinction being made between continuous procedures
(“moving knife” procedures in the terminology of Brams and Taylor, 1995,
or “moving knives” procedures, as there may be more than one knife moving
at once), or discrete; the number of steps required, and whether the fairness
criterion ends up being met exactly or only in some approximate sense. [The
strategic properties of the procedures, that is, whether, when agents behave
strategically, it produces the desired partitions, are also important. Here,
the answer depends on which behavioral assumptions are made, but most
writers have assumed that agents follow a maximin criterion. The imple-
mentation literature, which we do not review here, has focused on Nash and
related behaviors.] The existential part of this program often relies on tools
of measure theory, and mathematicians have been the main contributors.

If no restrictions are imposed on preferences apart from continuity and
monotonicity (of two parcels related by inclusion, the larger one is preferred
to the smaller one), it is easy to show that envy-free and efficient partitions
may not exist (Berliant, Dunz, and Thomson, 1992). Indeed, there is a sense
in which economies with homogeneous goods but non-convex preferences can
be seen as a special case of the economies considered here, and for these
economies, there may be no such partition (Subsection 4.3). However, if
preferences can be represented by measures, envy-free partitions exist:

Theorem 12.1 (Weller, 1985) Domain: measurable space; preferences rep-
resentable by finite and atomless measures. Envy-free and efficient partitions
exist.

An existence result that pertains to the notion of a group envy-free par-
tition is available:

Theorem 12.2 (Berliant, Dunz and Thomson, 1992) Domain: measurable
subset of a finite-dimensional Euclidean space; strictly monotonic preferences
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that are representable by atomless measures. Group envy-free partitions ex-
ist.

An interesting special case is the one-dimensional case when the contin-
uum has to be divided into intervals, each agent receiving one. It has many
applications: division of an interval of time, a length of road, etc. The ex-
istence of envy-free partitions when preferences are represented by measures
is proved by Woodall (1980). A more general existence result holds however.
It only relies on continuity of preferences and a very weak monotonicity as-
sumption:

Theorem 12.3 (Stromquist, 1980) Domain: interval in R+; preferences,
defined over intervals, are such that each interval is at least as desirable as
the empty set. Envy-free partitions into intervals exist.

An even stronger result holds for preferences that may exhibit a certain
form of consumption externalities, no-envy being appropriately reformulated.
The proof is existential. Under essentially the same assumptions, Su (1999)
gives an algorithmic proof for the existence of partitions satisfying no-envy,
not exactly, but up to any degree of approximation.

If the one-dimensional continuum is a closed curve, there may be no
envy-free partition (Thomson, 2007) unless |N | = 2, in which case existence
holds as soon as the preferences of at least one agent are representable by a
measure.

Under monotonicity of preferences, no-envy implies efficiency (Berliant,
Dunz, and Thomson, 1992). This implication is reminiscent of an earlier
result pertaining to the assignment of objects when monetary compensations
are possible (Theorem 10.1). These authors describe a class of models for
which no-envy implies efficiency, and in fact group no-envy.

As far as egalitarian-equivalent and efficient allocations are concerned, ex-
istence is guaranteed under continuity and strict monotonicity of preferences
(Berliant, Dunz and Thomson, 1992).

An extensive literature pertains to the case when preferences can be rep-
resented by countably additive and atomless measures,52 and the requirement
is that for each agent, the value to him of his assignment should be at least
1
n

times his value of the dividend. Let us refer to it as the 1
n
–lower-bound.

52Properties of preferences guaranteeing representability by such measures are given by
Barbanel and Taylor (1995).
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It is the form taken by the identical-preferences lower bound for this model.
Some of the early literature searched for partitions such that for each agent,
the value to him of his assignment should be equal to 1

n
times his value of the

dividend (which is of course in violation of efficiency). A more demanding re-
quirement than the 1

n
–lower-bound is that in addition and when possible, the

inequality be strict for each agent. Given a list α ∈ ∆N of “shares”, chosen
so as to reflect the relative importance to be given to the various agents—
asymmetric treatment may be important in some circumstances—the notion
can be modified by requiring that each agent i should receive at least αi times
his value of the dividend. Let us refer to it as the α–lower-bound. The
existence of partitions satisfying these notions and generalizations is an easy
implication of the Dvoretsky, Wald, and Wolfovitz (1951) theorem (Barbanel
and Zwicker, 1995). Barbanel (1996b) proposes yet more general criteria.
No-envy remains of course applicable for this model and we have already
cited Weller ’s (1985) existence result. Until relatively recently and except
for that paper, efficiency issues had been ignored in this literature—this is
the case in the papers just cited—computational and algorithmic aspects of
the problem being given a central place instead.

The existence of partitions meeting the α–lower-bound, for each α ∈ ∆N ,
is in fact guaranteed under a more general assumption than in Theorem 12.1,
namely that preferences be representable by an integrable function h with
two arguments, the points of the dividend, and measurable subsets of it,
and such that for each pair {B, B′} of such subsets with B′ ⊂ B, and each
x ∈ B \ B′, we have h(x,B′) ≥ h(x,B) (Berliant, Dunz and Thomson,
1992; related sufficient conditions for existence are stated by these authors).
Efficiency is obtained in some approximate sense. An existence result for
preferences representable by atomless concave capacities is given by Mac-
cheroni and Marinacci (2003). Akin (1995) also goes beyond Theorem 12.1
by proving the existence of envy-free partitions for a more general notion of
a partition (where agents receive “fractional” consumptions of each point of
the dividend).

A succession of attempts at generalizing to more than two agents the
classical two-person Divide-and-Choose scheme (one agent divides and the
other chooses one of the two pieces; the divider receives the other), have
been made over the years that generate partitions that are either envy-free
or meet the 1

n
–lower-bound, two properties that the scheme satisfies (as noted

earlier, some authors have required that each agent’s own measure of his share
be exactly 1

n
of his measure of the dividend) (Knaster, 1946; Steinhaus,
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1948, 1949; Dubins and Spanier, 1961; Singer, 1961; Kuhn, 1967; Austin,
1982; Sobel, 1981; Woodall, 1986). Some of these papers also cover the
case when the monotonicity assumption on preferences is reversed (of two
parcels related by inclusion, the smaller one is at least as desirable as the
larger one), which describes situations when the dividend is a “bad”. Several
of these procedures yield partitions satisfying the 1

n
–lower-bound. It took

many years until an algorithm that produces an envy-free partition in the
n-person case, for arbitrary n, was discovered (Brams and Taylor, 1995). In
none of these algorithmic papers is efficiency necessarily attained.

Other contributors are Hill (1983), Legut (1985, 1990), Barbanel (1995,
1996a,b), Brams, Taylor, and Zwicker (1997), Reijnierse and Potters (1998),
Ichiishi and Idzik (1999), Zeng (2000), and Barbanel and Brams (2004).
Brams and Taylor (1996) offer a detailed review of the literature. Robertson
and Webb (1998) focus on algorithms and pay little attention to efficiency.
On the other hand, Barbanel (2005), the most recent entry in the field, pro-
vides an in-depth analysis of the shape of the image of the set of feasible
partitions in a Euclidean space of dimension equal to the number of agents,
using their measures as representations of their preferences. It offers charac-
terizations of its subset of efficient points. It also gives existence results for
efficient and envy-free partitions.

13 Other domains and issues

We began this survey by specifying its scope as being limited to resource
allocation in concretely specified economic models. We conclude by tying it
to literatures concerning other models.

• Arrovian model of extended sympathy. The no-envy concept has been
studied in this context (Goldman and Sussangkarn, 1978; Suzumura, 1981a,
1981b, 1983; Denicoló, 1999).

• Rights assignments. Here too, the no-envy concept has been the object
of several studies (Austen-Smith, 1979; Suzumura, 1982)

• Quasi-linear model of social choice. This model is somewhat more
structured, although physical resource constraints do not explicitly appear.
A number of bounds on welfares have been defined, and relational fairness
requirements investigated (Moulin, 1987c; Chun, 1986).

• Intertemporal allocation. Models of allocation across generations are
usually formulated in utility space (Diamond, 1965, is a precursor; Svensson,
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1980, is the closest in spirit to the literature we reviewed).
• Choosing a point from an interval or a closed curve when agents have

single-peaked preferences. Since all agents consume the same thing, punctual
fairness requirements provide little help here, but relational requirements
of monotonicity are still meaningful (Thomson, 1993; Ching and Thomson,
1994; Ehlers and Klaus, 2006, Gordon, 2004). [Moulin, 1980, is the classic
reference for strategy-proofness.]

• Strategic issues (the implementability of solutions, in particular
strategy-proofness) have been the object of a considerable literature, most
of which is reviewed in Chapter 5. A number of authors have considered
implementation in the special context of fairness (Crawford, 1979; Demange,
1984; van Damme, 1986, 1992; Maniquet, 1994, 2002; Thomson, 2005).

• Cost sharing. This literature is reviewed in Chapter 6. (Moulin, and
various coauthors)

• Queueing, scheduling, and sequencing. This is a very new literature
(Crès and Moulin, 2001; Maniquet, 2003; Chun, 2006a,b).

14 Conclusion

When normative issues are being addressed, the likelihood of a resolution that
satisfies everyone is even more remote than when only issues of efficiency are
at stake. In addition, several approaches to the problem of fair allocation
can be taken and we have deliberately followed only an ordinal approach,
without attempting to survey the literature based on utility information.
Our objective was simply to see how far this approach could take us and to
explore its potential and limitations.

We now have available a well-developed theory of fair allocation that
is unified in its conceptual apparatus, and well integrated with theoretical
developments that have taken place in other areas of economic theory, such
as the theory of mechanism design and implementation.

At this point, it might therefore be appropriate to attempt some pre-
liminary assessment, and we close with a few general remarks intended to
highlight what we think are particularly important developments.

Punctual fairness requirements. Although we have encountered a great
variety of concepts, they can all be roughly divided into criteria compatible
with, or in the spirit of, no-envy, and a class of “egalitarian” criteria, which
we have discussed under the name of egalitarian-equivalence. In each family,
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noteworthy solutions have been identified. The most prominent member of
the first family is the equal-division Walrasian solution. For the second fam-
ily, various selections obtained by imposing some restriction on the reference
bundle have proved most useful.

Relational requirements. As far as these types of axioms are concerned,
and in spite of their apparent diversity, we should return to the notion of sol-
idarity to emphasize it as a major unifying theme. Its general expression is
that when a parameter entering the description of a problem changes (simul-
taneous changes in several parameters can be considered too), the welfares of
what we call the “relevant” agents should be affected in the same direction.
When efficiency is imposed as well, it is often known what that direction has
to be. For instance, in a private good economy with monotonic preferences,
an increase in the social endowment is required to benefit everyone (the scope
of the axiom covers everyone), a requirement that we have studied under the
name of resource monotonicity. When some agents leave, the relevant agents
are the agents who stay. Together with efficiency, we derive our condition
of population monotonicity. Sometimes it is not clear whether the change
permits a Pareto improvement or whether it forces a Pareto deterioration, so
solidarity takes the weaker form of a uniform change in the direction of the
welfares of the relevant agents. This is the case in a private good economy
when the amount available of some commodity goes up and that of another
commodity goes down (once again, everyone is a relevant agent), or when the
preferences of some agents change (here, the relevant agents are all the agents
whose preferences are fixed). The requirement of consistency can also be seen
in that light. This time, we imagine some agents leaving, not empty-handed
but with the bundles assigned to them by the rule. Together with efficiency,
the solidarity idea tells us that for the remaining agents, the rule should
choose the same bundles as initially, or a Pareto-indifferent distribution of
these bundles.

Solutions. Given the prominence of the Walrasian solution throughout
modern economic theory, we should emphasize that the equal-division Wal-
rasian solution has a priori no greater intrinsic merit than others do. Yet,
the recommendation is often made to use this solution. Explicit reasons are
rarely given, although the fact that it treats agents anonymously seems to
be an important underlying motivation. However, most solutions commonly
discussed also have this property when operated from equal division, and
much more is needed to justify focusing on the Walrasian solution.
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One lesson to be drawn from the work we have reviewed is that the so-
lution does have a number of remarkable features that indeed justify that
special attention be paid to it. First, as noted earlier, it is compatible with
no-envy, but as opposed to this concept itself, which is satisfied by a contin-
uum of allocations, Walrasian allocations typically are few in number; it often
makes much more precise recommendations. Equal-division Walrasian allo-
cations satisfy various notions related to no-envy, as well as criteria, adapted
from no-envy, designed to deal with the fair treatment of groups. In large
economies in which the set of agents is modelled as a continuum, if preferences
are smooth and sufficiently dispersed, any envy-free and efficient allocation
is in fact an equal-division Walrasian. Moreover, together with the concept
of a Walrasian trade, that of an equal-division Walrasian allocation can form
the basis for a complete and coherent theory of fair allocation, free of the
conceptual difficulties encountered with some of the other solutions. When
more general formulations are examined, in particular, in situations where it
is deemed desirable to give agents equal opportunities to choose from a com-
mon choice set, we found that requiring the choice set to have a straight-line
boundary, that is, to be a Walrasian choice set, has a number of advantages.
In a model with variable populations, the equal-division Walrasian solution
is the only solution to satisfy a number of appealing consistency require-
ments. In economies with indivisible goods, it coincides with the no-envy
solution. In economies with single-peaked preferences, the special form it
takes, which is known under the name of the uniform rule, was also found to
be best-behaved from a number of viewpoints. [The equal-division Walrasian
solution plays a prominent role in the analysis of incentive and informational
issues.] These findings contribute to creating an overall picture in which the
star solution is the equal-division Walrasian solution.

On the negative side, we should recognize that the equal-division Wal-
rasian solution fails a number of important relational tests of solidarity. In
particular, it fails all monotonicity tests with respect to any of the data de-
scribing the economy (resources, technology, number of agents). Moreover,
better-behaved solutions exist. These solutions are various selections from
egalitarian-equivalence, as well as some generalizations. If increases in the
social endowment may hurt some agents when the Walrasian solution is op-
erated from equal division, selections from the egalitarian-equivalence and
Pareto solution exist that behave well in response to such changes. Sim-
ilarly, in public good economies, selections from the correspondence exist
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that respond well to improvements in the technology, whereas in private
good economies with increasing returns, an extension of the concept is shown
to provide the only way to select efficient allocations that satisfy a natural
individual rationality condition: this solution is such that each agent finds
his bundle indifferent to the best bundle he could reach if given access to a
constant-returns-to-scale economy, this reference technology being the same
for all.

It would serve no purpose at this point to commit oneself to a particular
concept. Certainly the recent literature has shown that no concept uniformly
dominates the other, but some reassessment of the existing concepts has
certainly taken place, and at the same time a variety of new concepts have
been proposed and exciting results established.
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——, Justice et Equité, Paris: Editions du Centre National de la Recherche Scien-

tifique, 1972. English Edition, M.I.T. Press, Cambridge, 1988.
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Ünver, “Market mechanisms for fair division with indivisible objects and money”,
mimeo, 2003.

van Damme, E., “Fair allocation of an indivisible object”, mimeo, 1986.
——, “Fair division under asymmetric information”, in Rational Interaction, (R.

Selten, ed), Springer-Verlag, Berlin, 1992, 121-144.
van den Nouweland, A., B. Peleg, and S. Tijs, “Axiomatic characterizations of the

Walras correspondence for generalized economies”, Journal of Mathematical
Economics 25 (1996), 355-372.

——, ——, and ——, “Axiomatization of ratio equilibria in public good
economies”, Social Choice and Welfare 19 (2002), 627-636.

van Parijs, P., “Equal endowments as undominated diversity”, Recherches
Economiques de Louvain 56 (1990), 327-355.

Varian, H., “Equity, envy, and efficiency”, Journal of Economic Theory 9 (1974),
63-91.

——, “Distributive justice, welfare economics, and the theory of fairness”, Philos-
ophy and Public Affairs 4 (1975), 223-247.

——, “Two problems in the theory of fairness”, Journal of Public Economics 5
(1976), 249-260.

Velez, R., “A unifying theory of fair allocation”, mimeo, 2007.
Vind, K., “Lecture notes in mathematical economics”, mimeo, 1971.

138



Vohra, R., “Equity and efficiency in non-convex economies”, Social Choice and
Welfare 9 (1992), 185-202.

Watts, A., “Cooperative production: a comparison of lower and upper bounds”,
Journal of Mathematical Economics 32 (1999), 317-331.

Weber, S. and H. Wiesmeth, “On the theory of cost sharing”, Journal of Economics
52 (1990a), 71-82.

—— and ——, “Economic models of NATO”, Journal of Public Economics 46
(1991), 181-197.

Weller, D., “Fair division of measurable space”, Journal of Mathematical Eco-
nomics 14 (1985), 5-17.

Willson, S., “Money-egalitarian-equivalent and gain-maximin allocations of indi-
visible items with monetary compensation”, Social Choice and Welfare 20
(2003), 247-259.

Woodall, J.R., “Dividing a cake fairly”, Journal of Mathematical Analysis and
Applications 78 (1980), 233-247.

——, “A note on the cake-division problem”, Journal of Combinatorial Theory,
Series A 42 (1986), 300-301.

Xu, Y., “On ranking linear budget sets in terms of freedom of choice”, Social
Choice and Welfare 22 (2004), 281-289.

Yamashige, S., “Fairness in markets and government policies: a weak equity cri-
terion for allocation mechanisms”, Hitotsubashi Journal of Economics 38
(1997), 61-77.

Yannelis, N., “Existence and fairness of value allocation without convex prefer-
ences”, Journal of Economic Theory 31 (1983), 283-292.

——, “Value and fairness”, in Lecture Notes in Economics and Mathematical
Systems, Vol. 244, Advances in Equilibrium Theory (C.D. Aliprantis, O.
Burkinshaw and N.J. Rothman, eds.), Springer-Verlag, Berlin, 1985, 205-
235.

Yoshihara, N., “Characterizations of public and private ownership solutions”,
Mathematical Social Sciences 35 (1998), 165-184.

Young, P., (ed.), Fair Allocation, American Mathematical Society, Providence,
1985.

——, Equity: How Groups Divide Goods and Burdens Among Their Members,
Princeton University Press, Princeton, 1994.

Zeng, D. Z., “Approximate envy-free procedures”, Chapter 17 of Game Practice:
Contributions from Applied Game Theory, (F. Patrone, I. Garćıa-Jurado,
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