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Abstract

We consider the problem of fairly allocating a bundle of privately appropriable

and infinitely divisible goods among a group of agents with “classical” preferences.

We propose to measure an agent’s “sacrifice” at an allocation by the size of the set

of feasible bundles that the agent prefers to her consumption. As a solution, we

select the allocations at which sacrifices are equal across agents and this common

sacrifice is minimal. We then turn to the manipulability of this solution. In the tra-

dition of Hurwicz (1972, Decision and Organization, U. Minnesota Press), we identify

the equilibrium allocations of the manipulation game associated with this solution

when all commodities are normal: (i) for each preference profile, each equal-division

constrained Walrasian allocation is an equilibrium allocation; (ii) conversely, each

equilibrium allocation is equal-division constrained Walrasian. (iii) Furthermore, we

show that if normality of goods is dropped, then equilibrium allocations may not be

efficient.

JEL Classification: C72, D63.

Key-words: equal-sacrifice solution; manipulation game; equal-division Walrasian

solution.



1 Introduction

We consider the problem of fairly allocating a bundle of privately appropriable and in-

finitely divisible goods among a group of agents having equal rights on these goods. To

make the objective of fairness operational, we propose to measure the sacrifice made by

an agent at an allocation by the size of the set of feasible bundles that she prefers to her

assignment, and to select the allocations at which sacrifices are equal across agents and

this common sacrifice is minimal. We refer to the resulting solution as the “equal-sacrifice”

solution.

First, we prove that the equal-sacrifice solution is well-defined under general assump-

tions on preferences, and that under some very mild additional monotonicity assumptions,

equal-sacrifice allocations are also efficient.

Crawford (1980) advocates, for the two-agent case, the rule that selects, from the

one of agent 1’s indifference curves that divides the Edgeworth box into two regions of

equal volumes, the allocation preferred by agent 2. This proposal suffers from treating

the two agents asymmetrically, and it is not easily generalized to more than two agents.

Nevertheless, basing the choice of an allocation on the size of upper contour sets is a natural

assumption that we have retained. We have adapted it to handle arbitrary populations,

and done so in a manner that delivers a symmetric treatment of agents. Our solution can

also be thought of as a member of the following family. Specify for each agent a function

that represents her preferences, a “welfare index” for her. Then, select the allocations

at which these welfare indices take a common value, and this common value is maximal

among all feasible allocations.

We then turn to the question of manipulability. To each rule can be associated a manip-

ulation “game form” as follows: the strategy space of each agent is the space of preferences

satisfying the properties that her relation is known to satisfy; the outcome function is the

rule itself. If in this game, it is a dominant strategy for each agent to announce her true

preferences, we say that the rule is “strategy-proof”. It is well-known that on the domain

on which we are operating, strategy-proofness is very restrictive. Indeed, no selection from

the correspondence that associates with each economy its set of efficient allocations at

which each agent finds her consumption at least as desirable as her endowment, is strat-

egy-proof (Hurwicz, 1972, Serizawa, 2002). This conclusion also applies to all selections

from the Pareto solution satisfying “equal treatment of equals” (Serizawa, 2002).1 It fol-

lows from this latter result that the equal-sacrifice solution is not strategy-proof. It is of

course easy to construct examples directly establishing this fact, and we will provide some.

1Barberà and Jackson (1995) drop efficiency and provide a characterization of the class of strategy-proof

rules in the two-agent case, and under some additional property in the case of more than two agents.
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The study of a solution should not stop with the observation that it is not strategy-

proof, however. A violation of this property simply means that there are preference profiles

such that, if all agents but possibly one tell the truth about their preferences, the last agent

may benefit for not doing so. However, what should really concern us is not so much that

agents may not be truthful, but rather that the allocations that the solution would specify

for the true profile may not be reached. Thus, a determination of which allocations will be

obtained is called for. Only knowing that an agent may benefit by behaving strategically,

keeping fixed the announcements made by the others, does not suffice for that purpose.

Several agents may be in that position, and any agent who is considering misrepresenting

her preferences has to entertain the thought that others could do the same, and should

take that fact into consideration when selecting her strategy. Consequently, we are led to

associating with the solution a manipulation game, identifying its equilibria, and evaluating

them in terms of the true preference profile.

Thus, the second objective of this paper is to characterize, for each preference profile,

the equilibria of the manipulation game associated with the equal-sacrifice solution for that

profile. We achieve this under the assumption that all goods are normal. Our main result

is the following: the set of equilibrium outcomes of the manipulation game associated with

the equal-sacrifice solution coincides with the set of equal-division constrained Walrasian

allocations for the true preferences!2

It is not uncommon that the equilibria of a manipulation game associated with an

allocation rule contain the equal-division constrained Walrasian allocations (see below).

Thus, the striking part of our results is the converse inclusion. No other allocation is

reached at equilibrium. Typically, manipulation does not lead to such a relatively happy

conclusion (these allocations, besides being efficient, have been a focal point in axiomatic

studies of fair allocation). For instance, for each preference profile, the equilibrium alloca-

tions of a game similarly associated with the Walrasian solution itself are not necessarily

constrained Walrasian for that profile. (In the two-agent case, they are all the allocations

in the lens-shaped area defined by the true offer curves, as shown by Hurwicz, 1972.)

The following observations should provide some intuition for our result. First, the

equal-sacrifice solution is very “sensitive”. In particular, any change in any agent’s indif-

ference curve through her assigned bundle at some profile is likely to bring about a change

2A constrained Walrasian allocation is defined as a Walrasian allocation except that maximization

of preferences takes place in “truncated” budget sets. Only consumption bundles that are part of a

feasible allocation and meet the budget constraint are admissible. This variant of the Walrasian solution,

introduced by Hurwicz (1979), only differs from it when some agents consume on the boundary of their

consumption sets.
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in the allocation the rule selects.3 Moreover, if an agent’s announced indifference curve

through her assigned bundle is not linear, switching to a preference relation for which her

indifference curve through her assigned bundle is flatter than it was originally (this is an

“anti-monotonic” transformation of her preferences at that point, where “monotonicity”

is understood in the sense of Maskin, 1999), increases the agent’s apparent sacrifice. This

calls for her sacrifice to be reduced. It is tempting at this point to conclude that equilibrium

has to occur when all announcements are linear. One more step is needed however—and

it turns out to be a technically delicate one—because a reduction in an agent’s sacrifice in

terms of preferences to which she may switch does not necessarily cause a parallel reduction

in terms of her true preferences, which is what really matters to her. What is needed is an

understanding of the circumstances under which this implication does hold. This is where

the assumption of normality of goods comes into play. Under that assumption, the agent

will indeed benefit. We also show that this assumption is necessary. Without it—and we

give examples—equilibria exist involving non-linear preferences and whose outcomes are

not constrained equal-division Walrasian for the true preferences.

2 Related literature

The manipulability of allocation rules on various domains has been the object of a number

of studies.

In the context of exchange economies, early studies are Sobel (1981), for two agents,

and Thomson (1984, 1987, 1988) for quasi-linear preferences. Constrained Walrasian allo-

cations (or equal-income constrained Walrasian allocations) are shown to be equilibrium

allocations, but there can be others. More recent papers have dealt with the manipulability

of solutions to Nash’s bargaining problem (Sobel, 2001, Kıbrıs, 2002) and have also derived

equal-income constrained Walrasian allocations as equilibrium allocations.4 This is why

earlier we wrote that our conclusion that these allocations are equilibrium allocations of

the game associated with the equal-sacrifice solution is not the surprising part. What is

remarkable is that there are no other equilibrium allocations. We noted above that for

two agents and for each specification of their preferences, the equilibrium allocations of the

game associated with the Walrasian rule are delimited by the true offer curves. This region

does contain the true Walrasian allocations but it also contains the endowment allocation,

3The sensitivity of our solution explains in part the difference between the conclusions we reach for

it and what we know about the Walrasian solution. These issues are discussed by Thomson (1984), who

shows the relevance of Maskin-monotonicity to the characterization of the set of equilibria.
4See also Crawford and Varian (1979) for an earlier study of the manipulation of utility functions in

the context of bargaining.
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and a continuum of allocations in between. Thus, Pareto efficiency is a possible outcome

but it may also be that no gains from trade are achieved at equilibrium.

The context of the allocation of a single infinitely divisible good when agents have single-

peaked preferences (Sprumont, 1983) is a rare one in which a strategy-proof rule exists. It

is called the uniform rule. Other rules that have been proposed as providing fair outcomes

for this class of problems. It so happens that for each preference profile, the manipulation

game associated with a number of these rules has a unique equilibrium allocation, which

is none other than the uniform allocation for that profile (Thomson, 1990, Bochet and

Sakai, 2008.) Consequently, not only does manipulation not necessarily cause violations of

efficiency, but it leads to a rule that has a number of other desirable properties (Thomson,

2006, provides an overview of these properties.) The similarity between these results and

the main result of the current paper is due, in part, to the fact that the uniform rule can

be thought of as a counterpart for the single-peaked model of the Walrasian concept when

operated from equal division.

The problem of allocating an indivisible good when monetary compensations are feasi-

ble is studied by Tadenuma and Thomson (1995). Consider an allocation rule that selects

envy-free allocations. Then, the equilibrium correspondence of its associated manipula-

tion game is the entire no-envy solution. This conclusion can also be related to our main

result. Indeed, for that model, the no-envy solution coincides with the equal-income Wal-

rasian solution (Svensson, 1983). Nevertheless, no such coincidence takes place in either

the classical model or the model with which we are concerned here.

In the context of matching (Roth and Sotomayor, 1990), no selection from the stable

solution exists that is strategy-proof. However, for each preference profile, the set of

undominated Nash equilibria of the manipulation game associated with either the “man-

optimal” rule or the “woman-optimal” rule is the entire set of stable outcomes for that

profile (Roth, 1984, Gale and Sotomayor, 1985.) Moreover, the set of Nash equilibria is

the entire set of individually rational outcomes for the true preferences (Alcalde, 1996).

The manipulability of solutions has been studied under alternative behavioral assump-

tions. Crawford (1980) shows that for the rule that he had defined (see above), under

maximin behavior, agent 1 would announce the one of her true indifference curves that

divides the Edgeworth box into equal areas (volumes). The behavioral assumption under

which he addresses the manipulation issue supposes an extreme form of risk aversion. We

have found it more natural to assume Nash behavior.

Manipulation of preferences in economies with public goods is studied by Thomson

(1979) and manipulation through endowments by Postlewaite (1979) and Thomson (1987).

Manipulation of voting procedures is studied by Sanver and Zwicker (2004).
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3 Model

3.1 The environment

We consider the problem of allocating a fixed social endowment Ω ≡ (Ω1, . . . ,Ω𝐾) ∈ ℝ𝐾
++,

for some 𝐾 ∈ ℕ, among a group of agents 𝑁 ≡ {1, . . . , 𝑛}. Their preferences are complete

and transitive binary relations on ℝ𝐾
+ . The generic preference is 𝑅0. The symmetric and

asymmetric parts of 𝑅0 are 𝐼0 and 𝑃0 respectively. A preference 𝑅0 ismonotone if for each

{𝑏, 𝑏′} ⊂ ℝ𝐾
+ , 𝑏

′ ≥ 𝑏 implies 𝑏′𝑅0 𝑏, and 𝑏
′ ≫ 𝑏 implies 𝑏′ 𝑃0 𝑏.5 Let 퓤 denote the domain

of convex, continuous, and monotone preferences. A preference 𝑅0 ∈ 𝒰 is semi-strictly

monotone if for each {𝑏, 𝑏′} ⊂ ℝ𝐾
+ such that 𝑏′ ⪈ 𝑏, if 𝑏 𝑃0 0, then 𝑏′ 𝑃0 𝑏. The sub-domain

of 𝒰 of semi-strictly monotone preferences is 퓡.6

For each 𝑅0 ∈ 𝒰 and each 𝑏 ∈ ℝ𝐾
+ , the indifference set of 𝑹0 at 𝒃 is 𝐼(𝑅𝑖, 𝑏) ≡ {𝑏′ ∈

ℝ𝐾
+ : 𝑏′ 𝐼0 𝑏} and the constrained indifference set of 𝑹0 at 𝒃 is 𝐼𝑐(𝑅0, 𝑏) ≡ {𝑏′ ∈ ℝ𝐾

+ :

𝑏′ 𝐼0 𝑏, 𝑏′ ≤ Ω}. The upper contour set of 𝑹0 at 𝒃 is 𝑈(𝑅0, 𝑏) ≡ {𝑏′ ∈ ℝ𝐾
+ : 𝑏′𝑅0 𝑏} and

the constrained upper contour set of𝑹0 at 𝒃 is 𝑈
𝑐(𝑅0, 𝑏) ≡ {𝑏′ ∈ ℝ𝐾

+ : 𝑏′𝑅0 𝑏, 𝑏
′ ≤ Ω}.

The strict upper contour set of 𝑹0 at 𝒃 is 𝑈(𝑃0, 𝑏) ≡ {𝑏′ ∈ ℝ𝐾
+ : 𝑏′ 𝑃0 𝑏} and the

constrained strict upper contour set of 𝑹0 at 𝒃 is 𝑈 𝑐(𝑃0, 𝑏) ≡ {𝑏′ ∈ ℝ𝐾
+ : 𝑏′ 𝑃0 𝑏, 𝑏′ ≤

Ω}.
Let 𝑅0 ∈ ℛ, 𝑏 ∈ ℝ𝐾

+ , and 𝑝 ∈ ℝ𝐾
+ . The set of prices that support 𝑼(𝑹0, 𝒃)

at 𝒃 is Supp(𝑹0, 𝒃). An income expansion path for 𝑹0 at prices 𝒑 is a function

𝑉 : ℝ+ → ℝ𝐾
+ , such that for each 𝑤 ∈ ℝ+, 𝑤 = 𝑝 ⋅ 𝑉 (𝑤) and 𝑝 ∈ Supp(𝑅0, 𝑉 (𝑤)); 𝑉 is

quasi-strictly increasing if its component functions {𝑉𝑘}𝐾𝑘=1 are strictly increasing up

to a possible “flat part” containing the origin. Formally, 𝑉 is quasi-strictly increasing if

for each each 𝑘 ∈ {1, . . . , 𝐾}, and each {𝑤,𝑤′} ⊂ 𝑅+ such that 𝑤 < 𝑤′, 0 < 𝑉𝑘(𝑤) implies

𝑉𝑘(𝑤) < 𝑉𝑘(𝑤
′).

We consider four additional preference domains.

∙ A preference 𝑅0 has quasi-strictly increasing income expansion paths (i.e.,

all goods are normal) if for each 𝑏 ∈ ℝ𝐾
+ ∖ {0} and each 𝑝 ∈ Supp(𝑅0, 𝑏), there

is a quasi-strictly increasing income expansion path for 𝑅0 at prices 𝑝 that passes

through 𝑏.7 Let 퓘 be the domain of preferences in ℛ with quasi-strictly increasing

5We use the following vector inequalities. For each 𝐿 ∈ ℕ and each {𝑥, 𝑥′} ⊂ ℝ𝐿: 𝑥′ ≥ 𝑥 if for each

𝑙 ∈ {1, . . . , 𝐿}, 𝑥′𝑙 ≥ 𝑥𝑙; 𝑥
′ ⪈ 𝑥 if 𝑥′ ≥ 𝑥 and 𝑥′ ∕= 𝑥; and 𝑥′ ≫ 𝑥 if for each 𝑙 ∈ {1, . . . , 𝐿}, 𝑥′𝑙 > 𝑥𝑙.

6Semi-strict monotonicity of 𝑅0 is weaker than strict monotonicity of 𝑅0, which says that for each

{𝑥, 𝑦} ⊂ ℝ𝐾
+ such that 𝑥 ⪈ 𝑦, 𝑥𝑃0 𝑦. For instance, Cobb-Douglas preferences are semi-strictly monotone,

but not strictly monotone (violations of the strict form of the property occur on the boundary.)
7Observe that if 𝑝 ∈ ℝ𝐾

++ and 𝑅0 ∈ ℛ, then each income expansion path relative to prices 𝑝 that passes

through 𝑏 starts at 0 ∈ ℝ𝐾
+ .
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income expansion paths.

∙ A preference 𝑅0 is smooth if for each 𝑏 ∈ ℝ𝐾
++, there is a unique 𝑝 ∈ ℝ𝐾

++ that

supports 𝑈(𝑅0, 𝑏) at 𝑏, i.e., ∣Supp(𝑅0, 𝑏)∣ = 1. Let 퓢 be the domain of smooth

preferences in ℛ.

∙ A preference 𝑅0 is homothetic if for each 𝑏 ∈ ℝ𝐾
+ ∖ {0} and each 𝑝 ∈ Supp(𝑅0, 𝑏),

the ray passing through 𝑏 is an income expansion path for 𝑅0 at prices 𝑝.
8 Let 퓗 be

the domain of homothetic preferences in ℛ.

∙ A preference 𝑅0 is a positively oriented linear preference, if there is 𝑝 ∈ ℝ𝐾
++

such that for each {𝑏, 𝑏′} ⊂ 𝑅𝐾
+ , 𝑏𝑅0 𝑏

′ if and only if 𝑝 ⋅ 𝑏 ≥ 𝑝 ⋅ 𝑏′. For each 𝑝 ∈ ℝ𝐾
++,

the linear preference associated with 𝑝 is 𝐿𝑝. Let 퓛 be the domain of positively

oriented linear preferences.9

Lemma 9 in Appendix states that ℋ ⊊ ℐ, and thus the following inclusion relations hold

among the preference domains above: ℒ ⊊ ℋ ⊊ ℐ ⊊ ℛ and ℒ ⊊ 𝒮 ⊊ ℛ.
Agent 𝑖’s generic preference is 𝑅𝑖 ∈ 𝒰 , and the generic preference profile is 𝑅 ≡

(𝑅𝑖)𝑖∈𝑁 ∈ 𝒰𝑁 . For each 𝑅 ∈ 𝒰𝑁 , each 𝑖 ∈ 𝑁 , and each 𝑅′
𝑖 ∈ 𝒰 , the profile (𝑅−𝑖, 𝑅

′
𝑖) ∈ 𝒰𝑁

is obtained from 𝑅 by replacing 𝑅𝑖 by 𝑅
′
𝑖.

The set of feasible allocations is 𝑍 ≡ {𝑧 ≡ (𝑧𝑖)𝑖∈𝑁 ∈ ∏
𝑁 ℝ𝐾

+ :
∑

𝑖∈𝑁 𝑧𝑖 ≤ Ω}.
Agent 𝑖’s allotment at 𝑧 ∈ 𝑍 is 𝑧𝑖 ≡ (𝑧𝑘𝑖 )

𝐾
𝑘=1 ∈ ℝ𝐾

+ . A solution associates to each

preference profile a non-empty subset of 𝑍. The generic solution is 𝐹 . A selector 𝑓 from

a solution 𝐹 is a function that associates with each 𝑅 ∈ ℛ𝑁 an element of 𝐹 (𝑅). We write

𝑓 ∈ 𝐹 .
A solution 𝐹 is essentially single-valued if for each 𝑅 ∈ ℛ𝑁 , each {𝑧, 𝑧′} ⊆ 𝐹 (𝑅),

and each 𝑖 ∈ 𝑁 , 𝑧 𝐼𝑖 𝑧
′.

3.2 Manipulation of a solution

When a solution 𝐹 recommends for a particular economy a set of allocations, as opposed

to a singleton, one has to ask the question: how will agents manipulate 𝐹 ? Consider

some profile of announced preferences. Suppose that a given 𝐹 -optimal allocation, say 𝑧,

is chosen for that profile. If an agent unilaterally deviates, and the set of 𝐹 -optimal

allocations for the new profile is not a singleton, then there could be some allocations in

8Since indifference sets with linear pieces are allowed for preferences in ℛ, then for a given price vector,

income expansion paths are not necessarily unique.
9Observe that linear preferences with indifference sets parallel to some coordinate subspaces are not

included in ℒ. Moreover, ℒ ⊂ ℛ.
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the set at which she is better off, some at which she is worse off, and some at which her

welfare is unaffected.10

Several behavioral assumptions can be formulated to deal with this indeterminacy. For

instance, one can suppose that the agent is optimistic, i.e., given the others’ reports, if by

reporting different preferences, there is at least one 𝐹 -optimal allocation for the new profile

that she prefers to 𝑧, then she will not stick with her initial announcement. Alternatively,

one can suppose that she will switch only if she prefers all of the 𝐹 -optimal allocations for

the new profile to 𝑧. Of course, one can think of yet other behavioral assumptions.

We solve this issue in a way that bypasses any speculation about which behavioral

assumption is the most appropriate. We complete the allocation process by assuming

that each agent is asked to report not only her preferences, but also a bundle, which we

interpret as the one she would like to receive. Moreover, we add to the specification of

the outcome function a “selector” to break ties between the 𝐹 -optimal outcomes for the

reported preferences when the 𝐹 -optimal set is not a singleton and the profile of reported

bundles is not in this set. Now the outcome function is complete: if the profile of reported

bundles is an 𝐹 -optimal allocation for the profile of reported preferences, then it is the

outcome of the allocation process; otherwise, the selector determines this outcome.

Adding a selector allows us to understand the strength of the behavioral assumptions

in the strategic analysis of solutions. If the outcomes that obtain at equilibrium are inde-

pendent of this selector, then these outcomes will result under any of the aforementioned

behavioral assumptions. In Section 5 we show that this is the case for the equal-sacrifice

solution in the domain of preferences with quasi-strictly increasing income expansion paths.

For a given solution and one of its selectors, we now formally define the game form

associated with them for some domain of preferences. Let𝒟 ⊆ 𝒰 be a domain, 𝐹 a solution,

and 𝑓 ∈ 𝐹 . The game form ⟨𝑺(퓓)𝑵 , 𝑭 𝒇⟩ is defined as follows: (𝑖) each agent’s strategy

space is 𝑺(퓓) ≡ 𝒟×ℝ𝐾
+ ; and (𝑖𝑖) given the strategy profile (𝑅, 𝑧) ≡ (𝑅𝑖, 𝑧𝑖)𝑖∈𝑁 ∈ 𝑆(𝒟)𝑁 ,

the outcome is

𝑭 𝒇(𝑹, 𝒛) ≡
{

𝑧 if 𝑧 ∈ 𝐹 (𝑅)
𝑓(𝑅) otherwise.

For each 𝑅0 ∈ 𝒰𝑁 , the game ⟨𝑺(퓓)𝑵 , 𝑭 𝒇 , 𝑹0⟩ is obtained by augmenting the game form

⟨𝑆(𝒟)𝑁 , 𝐹 𝑓⟩ by the preference profile 𝑅0.

A Nash equilibrium of ⟨𝑺(퓓)𝑵 , 𝑭 𝒇 , 𝑹0⟩ is a strategy profile (𝑅, 𝑧) ∈ 𝑆(𝒟)𝑁 , such
10This issue arises even for an essentially single-valued solution. For such a solution, agents are seemingly

indifferent among the recommended allocations under the reported preferences, but this could not be the

case for their true preferences.
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that for each 𝑖 ∈ 𝑁 and each (𝑅′
𝑖, 𝑧

′
𝑖) ∈ 𝑆(𝒟),

𝐹 𝑓
𝑖 (𝑅, 𝑧)𝑅

0
𝑖 𝐹

𝑓
𝑖 (𝑅−𝑖, 𝑅

′
𝑖, 𝑧−𝑖, 𝑧

′
𝑖).

For each game ⟨𝑆(𝒟)𝑁 , 𝐹 𝑓 , 𝑅0⟩, the set of Nash equilibria is 퓝⟨𝑺(퓓)𝑵 , 𝑭 𝒇 , 𝑹0⟩
and the set of Nash equilibrium outcomes is 퓞⟨𝑺(퓓)𝑵 , 𝑭 𝒇 , 𝑹0⟩.

If for each pair of selectors of 𝐹 , 𝑓 and 𝑔, 𝒪⟨𝑆(𝒟)𝑁 , 𝐹 𝑓 , 𝑅0⟩ = 𝒪⟨𝑆(𝒟)𝑁 , 𝐹 𝑔, 𝑅0⟩, we
denote this common set by 퓞⟨𝑺(퓓)𝑵 , 𝑭, 𝑹0⟩.

3.3 Additional notation

For each pair {𝑥1, 𝑥2} ⊂ ℝ𝐾
+ , let seg[𝒙

1, 𝒙2] be the segment connecting 𝑥1 and 𝑥2. For

each list {𝑥1, 𝑥2, . . . , 𝑥𝑙} ⊂ ℝ𝐾
+ , let bro.seg[𝒙

1, 𝒙2, . . . , 𝒙𝒍] be the broken segment con-

necting these points in that order, and let con.hull{𝒙1, 𝒙2, . . . , 𝒙𝒍} be the convex hull

of {𝑥1, 𝑥2, . . . , 𝑥𝑙}. Finally, for each pair of vectors {𝑥1, 𝑥2} ⊂ ℝ𝐾
+ such that 𝑥1 ≤ 𝑥2, let

rec{𝒙1, 𝒙2} be the rectangle {𝑦 ∈ ℝ𝐾
+ : 𝑥1 ≤ 𝑦 ≤ 𝑥2}. For each 𝑏 ∈ ℝ2

+ and each 𝑚 ∈ ℝ+,

let ray{𝒃,𝒎} be the ray emanating from 𝑏 with slope 𝑚.

4 The equal-sacrifice solution

The Pareto solution, 𝑷 , and the weak Pareto solution, 𝑷𝒘, are defined as usual: for

each 𝑅 ∈ 𝒰𝑁 and each 𝑧 ∈ 𝑍, 𝑧 ∈ 𝑃 (𝑅) if and only if there is no 𝑧′ ∈ 𝑍 such that (i) for

each 𝑖 ∈ 𝑁 , 𝑧′𝑖𝑅𝑖 𝑧𝑖, and (ii) there is 𝑗 ∈ 𝑁 such that 𝑧′𝑗 𝑃𝑗 𝑧𝑗 ; 𝑧 ∈ 𝑃𝑤(𝑅) if and only if

there is no 𝑧′ ∈ 𝑍 such that for each 𝑖 ∈ 𝑁 , 𝑧′𝑖 𝑃𝑖 𝑧𝑖.
Let 𝜇 be the Lebesgue measure on ℝ𝐾 . For each 𝑅0 ∈ 𝒰 and each 𝑏 ∈ ℝ𝐾

+ , let

𝒂(𝑹0, 𝒃) ≡ 𝜇(𝑈 𝑐(𝑅0, 𝑏)), i.e., the size of the constrained upper contour set of 𝑅0 at 𝑏.

Since resources are owned collectively in our model, then when an agent with preferences

𝑅0 consumes 𝑏, she “sacrifices” her option of consuming the bundles in 𝑈 𝑐(𝑅0, 𝑏). Thus,

𝑎(𝑅0, 𝑏) is a reasonable measure of the sacrifice of 𝑅0 at 𝑏, the measure that assigns equal

weights to all bundles.

For each 𝑅 ∈ 𝒰𝑁 , let Ψ(𝑅) be the set of feasible allocations at which sacrifices are

equal across agents, i.e., Ψ(𝑅) ≡ {𝑧 ∈ 𝑍 : for each {𝑖, 𝑗} ⊆ 𝑁, 𝑎(𝑅𝑖, 𝑧𝑖) = 𝑎(𝑅𝑗 , 𝑧𝑗)}. The
equal-sacrifice solution, 𝑬, associates with each 𝑅 ∈ 𝒰𝑁 the set of allocations at which

sacrifices are equal across agents, and this common sacrifice is minimal:

𝐸(𝑅) ≡ {
𝑧 ∈ Ψ(𝑅) : for each {𝑖, 𝑗} ⊆ 𝑁 and each 𝑧′ ∈ Ψ(𝑅), 𝑎(𝑅𝑖, 𝑧𝑖) ≤ 𝑎(𝑅𝑗 , 𝑧

′
𝑗)
}
.

The following theorem states that 𝐸 is a well-defined and essentially single-valued solution.

We present the proof in Appendix.
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Theorem 1. For each 𝑅 ∈ 𝒰𝑁 , 𝐸(𝑅) ∕= ∅. Moreover, 𝐸 is essentially single-valued.

The following lemma concerns efficiency properties of the equal-sacrifice allocations.

First, they are weakly Pareto efficient. Second, the lemma identifies two wide classes of

economies in which they are in fact Pareto efficient.11

Lemma 1. Let 𝑅 ∈ 𝒰𝑁 . Then, (i) 𝐸(𝑅) ⊆ 𝑃𝑤(𝑅), and (ii) If ∣𝑁 ∣ = 2 or 𝑅 ∈ ℛ𝑁 , then

𝐸(𝑅) ⊆ 𝑃 (𝑅).
The following lemma is an application of the Second Fundamental Theorem of Welfare

Economics. We present the proof in Appendix.

Lemma 2. Let 𝑅 ∈ ℛ𝑁 and 𝑧 ∈ 𝐸(𝑅). Then, (i) for each 𝑖 ∈ 𝑁 , Ω𝑃𝑖 𝑧𝑖 𝑃𝑖 0, (ii)∑
𝑖∈𝑁 𝑧𝑖 = Ω, and (iii) there is 𝑝 ∈ ℝ𝐾

++ such that for each 𝑖 ∈ 𝑁 , 𝑝 ∈ Supp(𝑅𝑖, 𝑧𝑖).

The equal-division constrained Walrasian solution, 𝑾 𝒄
𝒆𝒅, associates with each

𝑅 ∈ 𝒰𝑁 the set of allocations

𝑊 𝑐
𝑒𝑑(𝑅) ≡ {𝑧 ∈ 𝑍 : ∃𝑝 ∈ ℝ𝐾

+ s.t. for each 𝑖 ∈ 𝑁 and each 𝑧′𝑖 ∈ 𝑈 𝑐(𝑃𝑖, 𝑧𝑖), 𝑝 ⋅ 𝑧′𝑖 > 𝑝 ⋅ Ω
𝑛}.

The following lemma is a consequence of the monotonicity properties of preferences in

the domain ℛ. We omit the straightforward proof.

Lemma 3. Let 𝑅 ∈ ℛ𝑁 and 𝑧 ∈ 𝑊 𝑐
𝑒𝑑(𝑅). Then, (i)

∑
𝑖∈𝑁 𝑧𝑖 = Ω, and (ii) if 𝑝 ∈ ℝ𝐾

+

supports 𝑧 as a member of 𝑊 𝑐
𝑒𝑑(𝑅), then 𝑝 ∈ ℝ𝐾

++.

5 The manipulability of the equal-sacrifice solution

Our main theorem characterizes the equilibrium correspondence of the manipulation game

associated with the equal-sacrifice solution on the domain ℐ. For each preference profile

in ℐ𝑁 , each equal-division constrained Walrasian allocation is an equilibrium allocation.

Conversely, for each selector 𝑒 ∈ 𝐸, each equilibrium allocation of the game associated with

the equal-sacrifice solution and 𝑒 and the profile is an equal-division constrained Walrasian

allocation for that profile.

11The equal-sacrifice solution may select weakly Pareto efficient allocations that are not Pareto efficient

when there are at least three agents and preferences are in 𝒰 ∖ ℛ. Let (𝑅𝑖)𝑖∈𝑁 ∈ 𝒰𝑁 and for each 𝑖 ∈ 𝑁 ,

let 𝑢𝑖 be the function defined by: for each 𝑧𝑖 ∈ ℝ𝐾
+ , 𝑢𝑖(𝑧𝑖) ≡ 𝜇(rec{0,Ω}) − 𝑎(𝑅𝑖, 𝑧𝑖). It is easily seen

that 𝐸(𝑅) contains the allocations whose image under (𝑢𝑖)𝑖∈𝑁 is the Kalai-Smorodinsky (K-S) bargaining

solution for the comprehensive hull of the convex problem 𝑢(𝑍). It is well known that K-S may select

weakly efficient allocations that are not efficient for more than three agents on the convex domain. An

example showing this fact is easily adapted to prove the parallel statement for 𝐸.
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Theorem 2. For each 𝑅0 ∈ ℐ𝑁 and each 𝑒 ∈ 𝐸,

𝒪⟨𝑆(ℐ)𝑁 , 𝐸𝑒, 𝑅0⟩ =𝑊 𝑐
𝑒𝑑(𝑅

0).

Since the characterization above is independent of the particular selector from 𝐸, then

we conclude that these are the outcomes that result from the manipulation of this solution.

The following corollary states this result.

Corollary 1. For each 𝑅0 ∈ ℐ𝑁 ,

𝒪⟨𝑆(ℐ)𝑁 , 𝐸, 𝑅0⟩ = 𝑊 𝑐
𝑒𝑑(𝑅

0).

The proof of Theorem 2 follows from four lemmas.

Let 𝑒 ∈ 𝐸 and 𝑅0 ∈ ℐ𝑁 . Our first lemma identifies profiles of actions that do not

constitute equilibria of game ⟨𝑆(ℐ)𝑁 , 𝐸𝑒, 𝑅0⟩. It states conditions under which at least

one agent can benefit by changing her action.

Lemma 4. Let 𝒟 ⊆ ℛ be such that ℋ ⊆ 𝒟 and 𝑒 ∈ 𝐸. Let 𝑅0 ∈ 𝒟𝑁 and (𝑅, 𝑧) ∈ 𝑆(𝒟)𝑁 .
If there are 𝑖 ∈ 𝑁 , 𝑧′ ∈ 𝑍, 𝑝 ∈ ℝ𝐾

++, and 𝑎 ∈ ℝ++ such that:

(1) for each 𝑗 ∈ 𝑁 ∖ {𝑖}, 𝑝 supports 𝑈(𝑅𝑗 , 𝑧
′
𝑗) at 𝑧

′
𝑗 ,

(2) for each 𝑗 ∈ 𝑁 ∖ {𝑖}, 𝑎(𝑅𝑗 , 𝑧
′
𝑗) = 𝑎,

(3) 𝑧′𝑖 𝑃
0
𝑖 𝐸

𝑒
𝑖 (𝑅, 𝑧),

(4) 𝜇(rec{𝑧′𝑖,Ω}) < 𝑎 < 𝑎(𝐿𝑝, 𝑧′𝑖),

then (𝑅, 𝑧) ∕∈ 𝒩 ⟨𝑆(𝒟)𝑁 , 𝐸𝑒, 𝑅0⟩.

Proof. We construct a preference 𝑅′
𝑖 ∈ 𝒟 such that

𝐸𝑒
𝑖 (𝑅−𝑖, 𝑅

′
𝑖, 𝑧−𝑖, 𝑧

′
𝑖)𝑃

0
𝑖 𝐸

𝑒
𝑖 (𝑅, 𝑧).

Let 𝛼 ∈ [0, 1) and 𝐴 be the set obtained by translating the boundary of ℝ𝐾
+ so that the

origin is translated to 𝑧′𝑖, i.e., 𝐴 ≡ {𝑥𝑖 ∈ ℝ𝐾
+ : 𝑧′𝑖 ≤ 𝑥𝑖} ∖ {𝑥𝑖 ∈ ℝ𝐾

+ : 𝑧′𝑖 ≪ 𝑥𝑖}. For each ray

in the direction of a strictly positive vector, 𝑟, the 𝜶-convex combination of 𝑨 and

𝑰(𝑳𝒑, 𝒛′
𝒊) through 𝒓 is the point in ℝ𝐾

+ obtained as a convex combination of 𝑟 ∩ 𝐴 with

weight 𝛼 and 𝑟 ∩ 𝐼(𝐿𝑝, 𝑧′𝑖) with weight 1 − 𝛼. Let 𝐴𝛼 be the set obtained by taking 𝛼-

convex combinations of 𝐴 and 𝐼(𝐿𝑝, 𝑧′𝑖) through all the strictly positive rays. Let 𝑅𝑖(𝛼) be

the preference whose indifference set through the origin is the boundary of ℝ𝐾
+ and whose

indifference sets in the interior of ℝ𝐾
+ are obtained as homothetic images of 𝐴𝛼. Clearly
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𝑅𝑖(𝛼) is homothetic and such that 𝐼(𝑅𝑖(𝛼), 𝑧
′
𝑖) = 𝐴𝛼. The function 𝛼 #→ 𝑎(𝑅𝑖(𝛼), 𝑧

′
𝑖) is

continuous and as 𝛼→ 1, 𝑎(𝑅𝑖(𝛼), 𝑧
′
𝑖)→ 𝜇(rec{𝑧′𝑖,Ω}). By hypothesis (4), 𝜇(rec{𝑧′𝑖,Ω}) <

𝑎 < 𝑎(𝐿𝑝, 𝑧′𝑖) = 𝑎(𝑅𝑖(0), 𝑧
′
𝑖). Thus, by the Intermediate Value Theorem, there is 𝛽 ∈ (0, 1)

such that 𝑎(𝑅𝑖(𝛽), 𝑧
′
𝑖) = 𝑎. Let 𝑅

′
𝑖 ≡ 𝑅𝑖(𝛽).

12 Since ℋ ⊆ 𝒟, then 𝑅′
𝑖 ∈ 𝒟.

Since 𝑈(𝑅′
𝑖, 𝑧

′
𝑖) ⊆ 𝑈(𝐿𝑝, 𝑧′𝑖), then 𝑝 ∈ Supp(𝑅′

𝑖, 𝑧
′
𝑖). Thus, by hypothesis (1), 𝑧′ ∈

𝑃 (𝑅−𝑖, 𝑅
′
𝑖). Since 𝑎(𝑅

′
𝑖, 𝑧

′
𝑖) = 𝑎, then by hypothesis (2), 𝑧′ ∈ 𝐸𝑖(𝑅−𝑖, 𝑅

′
𝑖). By construction,

the upper contour set of 𝑅′
𝑖 at 𝑧

′
𝑖 intersects the hyperplane with normal 𝑝 passing through 𝑧′𝑖

only at 𝑧′𝑖, i.e., {𝑧′′𝑖 : 𝑧′′𝑖 𝑅
′
𝑖 𝑧

′
𝑖, 𝑝 ⋅ 𝑧′′𝑖 = 𝑝 ⋅ 𝑧′𝑖} = {𝑧′𝑖}. Let 𝑧′′ ∈ 𝐸(𝑅−𝑖, 𝑅

′
𝑖). We prove that

𝑧′′𝑖 = 𝑧′𝑖. Since for each 𝑗 ∈ 𝑁 ∖{𝑖}, 𝑧′′𝑗 𝐼𝑗 𝑧′𝑗 , then for each 𝑗 ∈ 𝑁 ∖{𝑖}, 𝑝 ⋅𝑧′′𝑗 ≥ 𝑝 ⋅𝑧′𝑗 and thus,

𝑝 ⋅ 𝑧′′𝑖 ≤ 𝑝 ⋅ 𝑧′𝑖. Since 𝑝 ∈ Supp(𝑅′
𝑖, 𝑧

′
𝑖) and 𝑧

′′
𝑖 𝐼

′
𝑖 𝑧

′
𝑖, then 𝑝 ⋅ 𝑧′𝑖 ≤ 𝑝 ⋅ 𝑧′′𝑖 . Thus, 𝑝 ⋅ 𝑧′𝑖 = 𝑝 ⋅ 𝑧′′𝑖 .

Consequently, 𝑧′′𝑖 = 𝑧′𝑖. By hypothesis (3), 𝐸𝑒
𝑖 (𝑅−𝑖, 𝑅

′
𝑖, 𝑧−𝑖, 𝑧

′
𝑖) = 𝑧′𝑖 𝑃

0
𝑖 𝐸

𝑒
𝑖 (𝑅, 𝑧). Thus,

(𝑅, 𝑧) ∕∈ 𝒩 ⟨𝑆(𝒟)𝑁 , 𝐸𝑒, 𝑅0⟩.
The next lemma states that if a domain 𝒟 ⊆ ℐ is such that ℋ ⊆ 𝒟, then, for each

𝑒 ∈ 𝐸, at each equilibrium of ⟨𝑆(𝒟)𝑁 , 𝐸𝑒, 𝑅0⟩, agents report parallel linear indifference

sets through their consumption bundles within the “feasible box,” i.e., the set rec{0,Ω}.

Lemma 5. Let 𝒟 ⊆ ℐ be such that ℋ ⊆ 𝒟. Let 𝑒 ∈ 𝐸 and 𝑅0 ∈ ℛ𝑁 . If 𝑧 ∈
𝒪⟨𝑆(𝒟)𝑁 , 𝐸𝑒, 𝑅0⟩, then there is 𝑝 ∈ ℝ++ such that for each 𝑖 ∈ 𝑁 ,

𝐼𝑐(𝑅𝑖, 𝑧𝑖) = 𝐼
𝑐(𝐿𝑝, 𝑧𝑖).

Proof. Let (𝑅, 𝑧∗) ∈ 𝒩⟨𝑆(𝒟)𝑁 , 𝐸𝑒, 𝑅0⟩. Let 𝑧 ≡ 𝐸𝑒(𝑅, 𝑧∗). By Lemma 2, for each 𝑖 ∈ 𝑁 ,

𝑧𝑖 ⪈ 0 and there is 𝑝 ∈ ℝ𝐾
++ such that for each 𝑖 ∈ 𝑁 , 𝑝 ∈ Supp(𝑅𝑖, 𝑧𝑖). We claim that

for each 𝑖 ∈ 𝑁 , 𝐼𝑐(𝑅𝑖, 𝑧𝑖) = 𝐼
𝑐(𝐿𝑝, 𝑧𝑖). Suppose by contradiction that there is 𝑖 ∈ 𝑁 for

whom 𝐼𝑐(𝑅𝑖, 𝑧𝑖) ∕= 𝐼𝑐(𝐿𝑝, 𝑧𝑖). By Lemma 2, Ω𝑃𝑖 𝑧𝑖 𝑃𝑖 0. Since preferences are semi-strictly

monotone, then 𝜇(rec{𝑧𝑖,Ω}) < 𝑎(𝑅𝑖, 𝑧𝑖). Moreover, since preferences are continuous, then

𝑎(𝑅𝑖, 𝑧𝑖) < 𝑎(𝐿
𝑝, 𝑧𝑖). Let 𝛿 ≡ 𝑎(𝐿𝑝, 𝑧𝑖)− 𝑎(𝑅𝑖, 𝑧𝑖) > 0.

For each 𝑗 ∈ 𝑁 ∖ {𝑖}, let 𝑉𝑗 be a quasi-strictly increasing income expansion path for

𝑅𝑗 at prices 𝑝 that passes through 𝑧𝑗 .
13 Since preferences are continuous, then for each

𝑗 ∈ 𝑁 ∖{𝑖}, the function 𝑤 ∈ ℝ+ #→ 𝑎(𝑅𝑗 , 𝑉𝑗(𝑤)) is continuous.
14 Let 𝜂 ∈ ℝ+ be such that

𝜂 < 𝛿
2
. Since 𝛿 < 𝜇(rec{0,Ω})− 𝑎(𝑅𝑖, 𝑧𝑖), then by the Intermediate Value Theorem, there

are (𝑤𝜂
𝑗 )𝑗∈𝑁∖{𝑖} ≪ (𝑝⋅𝑧𝑗)𝑗∈𝑁∖{𝑖} such that for each 𝑗 ∈ 𝑁 ∖{𝑖}, 𝑎(𝑅𝑗 , 𝑉𝑗(𝑤

𝜂
𝑗 )) = 𝑎(𝑅𝑗 , 𝑧𝑗)+𝜂.

12𝑅′
𝑖 is semi-strictly monotone, but it is not strictly monotone. It is easy to construct a preference 𝑅′′

𝑖

with the same properties as 𝑅′
𝑖 but strictly monotone.

13These income expansion paths exist because 𝑅 ∈ ℐ𝑁 .
14Since preferences are continuous, then the function 𝑥𝑗 ∈ ℝ𝐾

+ #→ 𝑎(𝑅𝑗 , 𝑥𝑗) is continuous; since 𝑉𝑗 is

quasi-strictly increasing, then it is continuous. Thus, 𝑎(𝑅𝑖, 𝑉𝑗(⋅𝑤)) is the composition of two continuous

functions.
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Let 𝑧𝜂𝑖 ≡ Ω −∑
𝑗∈𝑁∖{𝑖} 𝑉𝑗(𝑤

𝜂
𝑗 ). Since each 𝑉𝑗 is quasi-strictly increasing, then for each

𝜂 > 0, 𝑧𝜂𝑖 ⪈ 𝑧𝑖. Since preferences are semi-strictly monotone, then 𝑧𝜂𝑖 𝑃
0
𝑖 𝑧𝑖. Observe that

as 𝜂 → 0, 𝑧𝜂𝑖 → 𝑧𝑖. Let 𝜈 > 0 be such that 𝑎(𝐿𝑝, 𝑧𝑖)− 𝑎(𝐿𝑝, 𝑧𝜈𝑖 ) <
𝛿
2
. Let 𝑧′𝑖 ≡ 𝑧𝜈𝑖 , and for

each 𝑗 ∈ 𝑁 ∖ {𝑖}, let 𝑧′𝑗 ≡ 𝑉𝑗(𝑤𝜈
𝑗 ). Clearly, 𝑧

′ ∈ 𝑍. Let 𝑎 ≡ 𝑎(𝑅𝑖, 𝑧𝑖) + 𝜈. By construction,

for each 𝑗 ∈ 𝑁 ∖ {𝑖}, 𝑎(𝑅𝑗 , 𝑧
′
𝑗) = 𝑎.

Agent 𝑖 and the objects 𝑧′ ∈ 𝑍, 𝑝 ∈ ℝ𝐾
++, and 𝑎 ∈ ℝ++ satisfy the first three properties

in Lemma 4. We claim that they also satisfy the fourth property. By construction of 𝑧′

and 𝑎, 𝑎(𝐿𝑝, 𝑧𝑖) − 𝛿
2
< 𝑎(𝐿𝑝, 𝑧′𝑖). Recall that 𝛿 ≡ 𝑎(𝐿𝑝, 𝑧𝑖) − 𝑎(𝑅𝑖, 𝑧𝑖). Thus, 𝑎(𝑅𝑖, 𝑧𝑖) +

𝛿
2
< 𝑎(𝐿𝑝, 𝑧′𝑖). Since 𝜈 < 𝛿

2
, then 𝑎 ≡ 𝑎(𝑅𝑖, 𝑧𝑖) + 𝜈 < 𝑎(𝐿

𝑝, 𝑧′𝑖). Finally, since 𝑧′𝑖 ≥
𝑧𝑖, then 𝜇(rec{𝑧′𝑖,Ω}) ≤ 𝜇(rec{𝑧𝑖,Ω}) < 𝑎(𝑅𝑖, 𝑧𝑖) < 𝑎. Thus, by Lemma 4, (𝑅, 𝑧∗) ∕∈
𝒩 ⟨𝑆(𝒟)𝑁 , 𝐸𝑒, 𝑅0⟩. This is a contradiction.

Let 𝑒 ∈ 𝐸. The following lemma states that if a domain 𝒟 ⊆ ℐ is such that ℋ ⊆ 𝒟,
then all equilibrium allocations of ⟨𝑆(𝒟)𝑁 , 𝐸𝑒, 𝑅0⟩ are equal-division constrained Walrasian

for 𝑅0.

Lemma 6. Let 𝒟 ⊆ ℐ be such that ℋ ⊆ 𝒟. Let 𝑒 ∈ 𝐸. Then, for each 𝑅0 ∈ ℛ𝑁 ,

𝒪⟨𝑆(𝒟)𝑁 , 𝐸𝑒, 𝑅0⟩ ⊆𝑊 𝑐
𝑒𝑑(𝑅

0).

Proof. Let (𝑅, 𝑧∗) ∈ 𝒩⟨𝑆(𝒟)𝑁 , 𝐸𝑒, 𝑅0⟩ and 𝑧 ≡ 𝐸𝑒(𝑅, 𝑧∗). From Lemma 5, there is

𝑝 ∈ ℝ++ such that for each 𝑖 ∈ 𝑁 , 𝐼𝑐(𝑅𝑖, 𝑧𝑖) = 𝐼
𝑐(𝐿𝑝, 𝑧𝑖). Since 𝑧 ∈ 𝐸(𝑅), then for each

{𝑖, 𝑗} ⊆ 𝑁 , 𝑎(𝐿𝑝, 𝑧𝑖) = 𝑎(𝐿
𝑝, 𝑧𝑗). Thus, for each 𝑖 ∈ 𝑁 , 𝑝 ⋅ 𝑧𝑖 = 𝑝 ⋅ Ω𝑛 and then 𝑧 ∈ 𝑊 𝑐

𝑒𝑑(𝑅).

We claim that 𝑧 ∈ 𝑊 𝑐
𝑒𝑑(𝑅

0) and 𝑝 supports 𝑧 as a member of 𝑊 𝑐
𝑒𝑑(𝑅

0). That is, we claim

that for each 𝑖 ∈ 𝑁 and each 𝑥𝑖 ∈ 𝑈 𝑐(𝑃 0
𝑖 , 𝑧𝑖), 𝑝 ⋅ 𝑥𝑖 > 𝑝 ⋅ Ω𝑛 . Suppose by contradiction that

there is 𝑖 ∈ 𝑁 and 𝑥𝑖 ∈ 𝑈 𝑐(𝑃 0
𝑖 , 𝑧𝑖) such that 𝑝 ⋅𝑥𝑖 ≤ 𝑝 ⋅ Ω𝑛 . Since preferences are continuous,

then we can suppose w.l.o.g. that 𝑥𝑖 ≫ 0. For each 𝛼 ∈ [0, 1], let 𝑧𝛼𝑖 ≡ 𝛼𝑥𝑖 + (1 − 𝛼)Ω.
Since 𝑅0

𝑖 is semi-strictly monotone and 𝑥𝑖 ≪ Ω, then for each 𝛼 ∈ [0, 1], 𝑧𝛼𝑖 𝑃
0
𝑖 𝑧𝑖. Also,

since 𝑝 ⋅ 𝑥𝑖 ≤ 𝑝 ⋅ Ω𝑛 , then by the Intermediate Value Theorem, there is 𝛽 ∈ (0, 1] such that

0 ≪ 𝑧𝛽𝑖 ∈ 𝑈 𝑐(𝑃 0
𝑖 , 𝑧𝑖) and 𝑝 ⋅ 𝑧𝛽𝑖 = 𝑝 ⋅ Ω

𝑛
. For each 𝑗 ∈ 𝑁 ∖ {𝑖}, let 𝑧𝛽𝑗 ≡ (Ω − 𝑧𝛽𝑖 )/(𝑛− 1).

Thus, 𝑧𝛽 ∈ 𝑍. Moreover, for each 𝑗 ∈ 𝑁 ∖ {𝑖}, 𝑝 ⋅ 𝑧𝛽𝑗 = 𝑝 ⋅ Ω
𝑛
and 𝑝 ∈ Supp(𝑅𝑗, 𝑧

𝛽
𝑗 ).

For each 𝑗 ∈ 𝑁 ∖ {𝑖}, let 𝑉𝑗 be a quasi-strictly increasing income expansion path for

𝑅𝑗 at prices 𝑝 that passes through 𝑧𝛽𝑗 .
15 For each 𝑗 ∈ 𝑁 ∖ {𝑖}, the function 𝑤 ∈ ℝ+ #→

𝑎(𝑅𝑗 , 𝑉𝑗(𝑤)), is continuous.
16 Let 𝜂 ∈ (0, 𝑎(𝐿𝑝, Ω

𝑛
)). By the Intermediate Value Theorem,

there are (𝑤𝜂
𝑗 )𝑗∈𝑁∖{𝑖} ≫ (𝑝 ⋅ 𝑧𝑗)𝑗∈𝑁∖{𝑖} such that for each 𝑗 ∈ 𝑁 ∖ {𝑖}, 𝑎(𝑅𝑖, 𝑉𝑗(𝑤

𝜂
𝑗 )) =

𝑎(𝑅𝑗 , 𝑧𝑗)−𝜂. Let 𝑦𝜂𝑖 ≡ Ω−∑
𝑗∈𝑁∖{𝑖} 𝑉𝑗(𝑤

𝜂
𝑗 ) ⪇ 𝑧

𝛽
𝑖 . Since each 𝑉𝑗 is quasi-strictly increasing,

15These income expansion paths exist because 𝑅 ∈ ℐ𝑁 .
16See Footnote 14.
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and thus, continuous, then as 𝜂 → 0, 𝑦𝜂𝑖 → 𝑧𝛽𝑖 . Thus, as 𝜂 → 0, 𝜇(rec{𝑦𝜂𝑖 ,Ω}) →
𝜇(rec{𝑧𝛽𝑖 ,Ω}). Moreover, for each 𝑗 ∈ 𝑁 ∖ {𝑖}, as 𝜂 → 0, 𝑉𝑗(𝑤

𝜂
𝑗 ) → 𝑧𝛽𝑗 . Let 𝜈 > 0

be small enough such that: (i) for each 𝑗 ∈ 𝑁 ∖ {𝑖}, 𝑎(𝑅𝑗 , 𝑉𝑗(𝑤
𝜈
𝑗 )) > 𝜇(rec{𝑦𝜈𝑖 ,Ω}), (ii)

𝑦𝜈𝑖 ≫ 0, and (iii) 𝑦𝜈𝑖 𝑃
0
𝑖 𝑧𝑖. Let 𝑧

′
𝑖 ≡ 𝑦𝜈𝑖 and for each 𝑗 ∈ 𝑁 ∖ {𝑖}, let 𝑧′𝑗 ≡ 𝑉𝑗(𝑤𝜈

𝑗 ). Clearly,

𝑧′ ∈ 𝑍. Let 𝑎 ∈ ℝ++ be the common value of 𝑎(𝑅𝑗 , 𝑧
′
𝑗) = 𝑎(𝑅𝑗 , 𝑧𝑗) − 𝜈 = 𝑎(𝐿𝑝, 𝑧𝑗) − 𝜈

for 𝑗 ∈ 𝑁 . Since 𝑎 < 𝑎(𝐿𝑝, 𝑧𝑖) and 𝑎(𝐿𝑝, 𝑧𝑖) < 𝑎(𝐿
𝑝, 𝑧′𝑖), then 𝑎 < 𝑎(𝐿𝑝, 𝑧′𝑖). Thus,

𝜇(rec{𝑧′𝑖,Ω}) < 𝑎 < 𝑎(𝐿𝑝, 𝑧′𝑖).
Agent 𝑖 and the objects 𝑧′ ∈ 𝑍, 𝑝 ∈ ℝ𝐾

++, and 𝑎 ∈ ℝ++ satisfy the four properties in

Lemma 4. Thus, (𝑅, 𝑧∗) ∕∈ 𝒩 ⟨𝑆(𝒟)𝑁 , 𝐸𝑒, 𝑅0⟩. This is a contradiction.

The following lemma states that if agents can report linear preferences, then all equal-

division constrained Walrasian allocations are equilibrium outcomes.

Lemma 7. Let 𝒟 ⊆ ℛ be such that ℒ ⊆ 𝒟 and 𝑒 ∈ 𝐸. Then, for each 𝑅0 ∈ 𝒟𝑁 ,

𝒪⟨𝑆(𝒟)𝑁 , 𝐸𝑒, 𝑅0⟩ ⊇𝑊 𝑐
𝑒𝑑(𝑅

0).

Proof. Let 𝑅0 ∈ 𝒟𝑁 and 𝑧 ∈ 𝑊 𝑐
𝑒𝑑(𝑅

0). We show that there is 𝑅 ∈ ℒ𝑁 such that (𝑅, 𝑧) ∈
𝒩⟨𝑆(𝒟)𝑁 , 𝐸𝑒, 𝑅0⟩ and 𝐸𝑒(𝑅, 𝑧) = 𝑧. Since 𝑧 ∈ 𝑊 𝑐

𝑒𝑑(𝑅
0), then by Lemma 3, there is

𝑝 ∈ ℝ𝐾
++ such that for each 𝑖 ∈ 𝑁 and each 𝑧′𝑖 ∈ 𝑈 𝑐(𝑃 0

𝑖 , 𝑧𝑖), 𝑝 ⋅ 𝑧𝑖 > 𝑝 ⋅ Ω𝑛 . Let 𝑅 ≡ (𝐿𝑝
𝑖 )𝑖∈𝑁 .

Let 𝑖 ∈ 𝑁 , 𝑅′
𝑖 ∈ 𝒟, and 𝑧′ ∈ 𝐸(𝑅−𝑖, 𝑅

′
𝑖). Observe that for each {𝑗, 𝑘} ⊆ 𝑁∖{𝑖}, 𝑝⋅𝑧′𝑗 = 𝑝⋅𝑧′𝑘.

We claim that 𝑝 ⋅ 𝑧′𝑖 ≤ 𝑝 ⋅ Ω𝑛 and thus 𝑧𝑖𝑅
0
𝑖 𝑧

′
𝑖. Suppose by contradiction that 𝑝 ⋅ 𝑧′𝑖 > 𝑝 ⋅ Ω𝑛 .

Thus, for each 𝑗 ∈ 𝑁 ∖ {𝑖}, 𝑎(𝐿𝑝, Ω
𝑛
) < 𝑎(𝑅𝑗 , 𝑧

′
𝑗). Efficiency of 𝐸 implies 𝑝 supports

𝑈(𝑅′
𝑖, 𝑧

′
𝑖), i.e., for each 𝑥𝑖 ∈ 𝑈 𝑐(𝑅′

𝑖, 𝑧
′
𝑖), 𝑝 ⋅𝑥𝑖 ≥ 𝑝 ⋅ 𝑧′𝑖. Thus, 𝑎(𝑅′

𝑖, 𝑧
′
𝑖) ≤ 𝑎(𝐿𝑝, 𝑧′𝑖) < 𝑎(𝐿

𝑝, Ω
𝑛
).

Consequently, for each 𝑗 ∈ 𝑁 ∖ {𝑖}, 𝑎(𝑅′
𝑖, 𝑧

′
𝑖) < 𝑎(𝑅𝑗 , 𝑧

′
𝑗). This contradicts 𝑧

′ ∈ 𝐸(𝑅−𝑖, 𝑅
′
𝑖).

Thus, for each 𝑖 ∈ 𝑁 and each (𝑅′
𝑖, 𝑧

′
𝑖) ∈ 𝑆(𝒟), 𝐸𝑒

𝑖 (𝑅, 𝑧)𝑅
0
𝑖 𝐸

𝑒
𝑖 (𝑅−𝑖, 𝑅

′
𝑖, 𝑧−𝑖, 𝑧

′
𝑖). Thus,

(𝑅, 𝑧) ∈ 𝒩⟨𝑆(𝒟)𝑁 , 𝐸𝑒, 𝑅0⟩. Finally, since 𝑧 ∈ 𝐸(𝑅), then 𝐸𝑒(𝑅, 𝑧) = 𝑧.

Now we can complete the proof of our main characterization.

Proof of Theorem 2. Let 𝑒 ∈ 𝐸 and 𝒟 ≡ ℐ. Thus, ℐ ⊇ 𝒟 ⊇ ℋ ⊇ ℒ, and then by Lem-

mas 6 and 7,𝒪⟨𝑆(𝒟)𝑁 , 𝐸𝑒, 𝑅0⟩ ⊆𝑊 𝑐
𝑒𝑑(𝑅

0) ⊆ 𝒪⟨𝑆(𝒟)𝑁 , 𝐸𝑒, 𝑅0⟩. Thus, 𝒪⟨𝑆(ℐ)𝑁 , 𝐸𝑒, 𝑅0⟩ =
𝑊 𝑐

𝑒𝑑(𝑅
0).

The following corollary characterizes the equilibrium outcomes of the manipulation

game associated with the equal-sacrifice solution on the domain of economies with homo-

thetic preferences.

Corollary 2. For each 𝑅0 ∈ ℋ𝑁 and each 𝑒 ∈ 𝐸, 𝒪⟨𝑆(ℋ)𝑁 , 𝐸, 𝑅0⟩ =𝑊 𝑐
𝑒𝑑(𝑅

0)

Proof. Let 𝑒 ∈ 𝐸 and 𝒟 ≡ ℋ. Thus, ℐ ⊇ 𝒟 ⊇ ℋ ⊇ ℒ, and then by Lemmas 6 and 7,

𝒪⟨𝑆(𝒟)𝑁 , 𝐸𝑒, 𝑅0⟩ ⊆ 𝑊 𝑐
𝑒𝑑(𝑅

0) ⊆ 𝒪⟨𝑆(𝒟)𝑁 , 𝐸𝑒, 𝑅0⟩. Thus, 𝒪⟨𝑆(ℋ)𝑁 , 𝐸𝑒, 𝑅0⟩ = 𝑊 𝑐
𝑒𝑑(𝑅

0).
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6 Discussion

Let 𝑒 ∈ 𝐸. In this section we show that if our assumptions on preferences of semi-strict

monotonicity and quasi-strictly increasing income expansion paths are dropped, then equi-

librium outcomes of ⟨𝑆(𝒟), 𝐸𝑒, 𝑅0⟩ are not necessarily equal-division constrained Walrasian

for 𝑅0. We also show that this is so even if smoothness of preferences is required. We do

this by means of three examples.

The next lemma provides conditions that characterize the Nash equilibria in the two-

agent case when preferences are not necessarily semi-strictly monotone. It facilitates the

presentation of the examples that follow.

Lemma 8. Assume 𝑁 ≡ {1, 2}. Let 𝒟 ⊆ 𝒰 , 𝑅0 ∈ 𝒰𝑁 , 𝑅 ∈ 𝒟𝑁 , and 𝑧 ∈ 𝐸(𝑅)
be such that 𝑧1 + 𝑧2 = Ω. Suppose that for each 𝑧′1 ∈ 𝑈 𝑐(𝑃 0

1 , 𝑧1), and each 𝑝 ∈ ℝ𝐾
+

supporting 𝑈 𝑐(𝑅2,Ω − 𝑧′1) at Ω − 𝑧′1, 𝑎(𝐿𝑝, 𝑧′1) < 𝑎(𝑅2,Ω − 𝑧′1), and that the parallel

statement obtained by exchanging the roles of the two agents holds. Then for each 𝑒 ∈ 𝐸,
(𝑅, 𝑧) ∈ 𝒩⟨𝑆(𝒟)𝑁 , 𝐸𝑒, 𝑅0⟩ and 𝑧 ∈ 𝒪⟨𝑆(𝒟)𝑁 , 𝐸𝑒, 𝑅0⟩.
Proof. Let 𝑁 , 𝒟, 𝑅0, 𝑅, and 𝑧 be as in the statement of the lemma. We claim that for

each 𝑒 ∈ 𝐸, each 𝑖 ∈ 𝑁 , and each (𝑅′
𝑖, 𝑧

′
𝑖) ∈ 𝑆(𝒟), 𝐸𝑒

𝑖 (𝑅, 𝑧)𝑅
0
𝑖 𝐸

𝑒
𝑖 (𝑅−𝑖, 𝑅

′
𝑖, 𝑧−𝑖, 𝑧

′
𝑖).

Suppose by contradiction that the above statement is false for say, 𝑒 ∈ 𝐸 and agent 1:

there are (𝑅′
1, 𝑧

′
1) ∈ 𝑆(𝒟) such that 𝐸𝑒

1(𝑅
′
1, 𝑅2, 𝑧

′
1, 𝑧2)𝑃

0
1 𝐸

𝑒
1(𝑅, 𝑧).

Thus, 𝐸𝑒
1(𝑅

′
1, 𝑅2, 𝑧

′
1, 𝑧2) ∕= 𝐸𝑒

1(𝑅, 𝑧). We claim that 𝐸𝑒(𝑅′
1, 𝑅2, 𝑧

′
1, 𝑧2) ∕= (𝑧′1, 𝑧2). Sup-

pose by contradiction that 𝐸𝑒(𝑅′
1, 𝑅2, 𝑧

′
1, 𝑧2) = (𝑧′1, 𝑧2). Since 𝑧 ∈ 𝑍 and 𝑧1 + 𝑧2 = Ω, then

𝑧′1 ≤ 𝑧1. Thus, 𝑧1 = 𝐸𝑒
1(𝑅, 𝑧)𝑅

0
1 𝐸

𝑒
1(𝑅

′
1, 𝑅2, 𝑧

′
1, 𝑧2). This is a contradiction.

Since 𝐸𝑒(𝑅′
1, 𝑅2, 𝑧

′
1, , 𝑧2) ∕= (𝑧′1, 𝑧2), then 𝐸𝑒(𝑅′

1, 𝑅2, 𝑧
′
1, 𝑧2) = 𝑒(𝑅′

1, 𝑅2). Let 𝑧 ≡
𝑒(𝑅′

1, 𝑅2). By Lemma 1, 𝑧 ∈ 𝑃 (𝑅′
1, 𝑅2). Thus, there is 𝑝 ∈ ℝ𝐾

+ that supports 𝑈 𝑐(𝑅2, 𝑧2)

at 𝑧2 and also supports 𝑈 𝑐(𝑅′
1, 𝑧1) at 𝑧1. Thus, 𝑎(𝑅′

1, 𝑧1) ≤ 𝑎(𝐿𝑝, 𝑧1). Moreover, by hy-

pothesis, 𝑎(𝐿𝑝, 𝑧1) < 𝑎(𝑅2, 𝑧2). Thus, 𝑎(𝑅′
1, 𝑧1) < 𝑎(𝑅2, 𝑧2) and 𝑧 ∕∈ 𝐸(𝑅′

1, 𝑅2). This is a

contradiction.

The following example shows that in Theorem 2, semi-strict monotonicity of preferences

(𝒟 ⊆ ℛ) cannot be replaced by monotonicity of preferences (𝒟 ⊆ 𝒰) .
Example 1. Let 𝑁 ≡ {1, 2} and Ω ≡ (1, 1) ∈ ℝ2

++. We specify 𝑅0 ∈ 𝒰𝑁 and construct a

profile (𝑅, 𝑧) ∈ (𝒟 × ℝ2
+)

𝑁 such that preferences 𝑅 are homothetic but not semi-strictly

increasing, i.e., 𝑅 ∈ (𝒰 ∖ℛ)𝑁 , (𝑅, 𝑧) ∈ 𝒩⟨𝑆(𝒰)𝑁 , 𝐸, 𝑅0⟩, 𝑧 ∈ 𝒪⟨𝑆(𝒰)𝑁 , 𝐸, 𝑅0⟩, 𝐼𝑐(𝑅2, 𝑧2)

is not linear, and 𝑧 ∕∈ 𝑊 𝑐
𝑒𝑑(𝑅

0).

∙ Specifying true preferences (Figure 1 (a)). Let 𝑞 ∈ ℝ2
++ be such that 𝑞1 > 𝑞2 and

𝑅0
1 ≡ 𝐿(𝑞1+1,𝑞2). Let𝑅0

2 ∈ 𝒰 be the homothetic preference for which 𝐼(𝑅0
2, (0, 1)) ≡ {(𝑥, 1) ∈

ℝ𝐾
+ : 𝑥 ∈ ℝ+}.
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Figure 1: Example 1.

∙ Specifying reported preferences. Let 𝑅1 ≡ 𝐿𝑞. Let 𝛼 ≡ seg[0,Ω] ∩ 𝐼(𝑅1, (0, 1)). Let

𝑅2 ∈ 𝒰 be the homothetic preference such that 𝐼(𝑅2, (1, 0)) ≡ bro.seg[(0, 1), 𝛼, (1, 0)].

∙ Identifying an equilibrium outcome, 𝑧 (Figure 1 (b)). The function 𝑥 ∈ ℝ+ #→
𝑎(𝑅1, (𝑥, 0)) is continuous and strictly decreasing on [1

2
, 1]; also, the function 𝑥 ∈ ℝ+ #→

𝑎(𝑅2,Ω − (𝑥, 0)) is continuous and strictly increasing on [1
2
, 1]. Moreover, 𝑎(𝑅1, (

1
2
, 0)) >

𝑎(𝑅2,Ω − (1
2
, 0)) and 𝑎(𝑅1, (1, 0)) < 𝑎(𝑅2,Ω − (1, 0)). Thus, by the Intermediate Value

Theorem, there is 𝑎 ∈ [1
2
, 1] such that 𝑎(𝑅1, (𝑎, 0)) = 𝑎(𝑅2,Ω− (𝑎, 0)). In Figure 1 (b), this
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is equivalent to the equality of the measures of the two shaded areas forming a bow-tie.

Let 𝑧1 ≡ (𝑎, 0) and 𝑧2 ≡ Ω− 𝑧1.
We claim that for each 𝑒 ∈ 𝐸, (𝑅, 𝑧) ∈ 𝒩⟨𝑆(𝒰)𝑁 , 𝐸𝑒, 𝑅0⟩. Observe that 𝑧 ∈ 𝐸(𝑅)

and that for each 𝑧′ ∈ 𝑍, 𝑧2𝑅0
2 𝑧

′
2. Thus, 𝑅2 is a best response to 𝑅1. By Lemma 8, it

is enough to show that for each 𝑧′ ∈ 𝑍 such that 𝑧′1 𝑃
0
1 𝑧1, and each 𝑝 ∈ ℝ2

+ supporting

𝑈 𝑐(𝑅2, 𝑧
′
2) at 𝑧′2, we have 𝑎(𝐿𝑝, 𝑧′1) < 𝑎(𝑅2, 𝑧

′
2). Let 𝛽 ≡ seg[(0, 1),Ω] ∩ 𝐼(𝑅0

1, 𝑧1) and

𝛾 ≡ seg[𝑧1, 𝛽] ∩ seg[0,Ω] (Figure 1 (c)). There are five cases.

Case 1: 𝑧′1 ∈ con.hull{𝑧1, 𝛾,Ω, (1, 0)} but 𝑧′1 ∕∈ bro.seg[(1, 0),Ω, 𝛾] (Figure 1 (c)).

Then, the unique 𝑝 ∈ ℝ2
+ (up to a positive scalar multiplication) supporting 𝑈 𝑐(𝑅2, 𝑧

′
2)

at 𝑧′2, is 𝑝 = 𝑞. Since 𝑎(𝐿𝑞, 𝑧′1) < 𝑎(𝐿
𝑞, 𝑧1) = 𝑎(𝑅1, 𝑧1) = 𝑎(𝑅2, 𝑧2) < 𝑎(𝑅2, 𝑧

′
2), then

𝑎(𝐿𝑝, 𝑧′1) < 𝑎(𝑅2, 𝑧
′
2).

Case 2: 𝑧′1 ∈ seg[Ω, (1, 0)]. Then, for each 𝑝 ∈ ℝ2
+ supporting 𝑈 𝑐(𝑅2, 𝑧

′
2) at 𝑧

′
2,

𝑝2
𝑝1
≤ 𝑞2

𝑞1
.

Since 𝑧′1 ∈ seg[Ω, (1, 0)], then 𝑎(𝐿𝑝, 𝑧′1) ≤ 𝑎(𝐿𝑞, 𝑧′1). Now, since 𝑎(𝐿𝑞, 𝑧′1) < 𝑎(𝐿
𝑞, 𝑧1) =

𝑎(𝑅1, 𝑧1) = 𝑎(𝑅2, 𝑧2) < 𝑎(𝑅2, 𝑧
′
2), then 𝑎(𝐿

𝑝, 𝑧′1) < 𝑎(𝑅2, 𝑧
′
2).

Case 3: 𝑧′1 ∈ seg[𝛾,Ω] (Figure 1 (d)). Then, for each 𝑝 ∈ ℝ2
+ supporting 𝑈 𝑐(𝑅2, 𝑧

′
2)

at 𝑧′2,
𝑞2
𝑞1
≤ 𝑝2

𝑝1
≤ 𝑞1

𝑞2
. A simple geometric argument shows that for each 𝑝 ∈ ℝ2

+ satisfying

this inequality, 𝑎(𝐿𝑝, 𝑧′1) ≤ 𝑎(𝐿𝑞, 𝑧′1). Thus, 𝑎(𝐿
𝑝, 𝑧′1) < 𝑎(𝐿

𝑞, 𝑧1) = 𝑎(𝑅1, 𝑧1) = 𝑎(𝑅2, 𝑧2) <

𝑎(𝑅2, 𝑧
′
2).

Case 4: 𝑧′1 ∈ con.hull{𝛾,Ω, 𝛽} but 𝑧′1 ∕∈ bro.seg[𝛾,Ω, 𝛽]. A symmetric argument to the

one in Case 1 applies.

Case 5: 𝑧′1 ∈ seg[𝛽,Ω]. A symmetric argument to the one in Case 2 applies.

Concluding: Observe that 𝑧 ∕∈ 𝑃 (𝑅0). Thus, 𝑧 ∕∈ 𝑊 𝑐
𝑒𝑑(𝑅

0). □

The following example shows that in Lemma 5, the assumption that income expansion

paths be quasi-strictly increasing (𝒟 ⊆ ℐ) cannot be dropped (cannot be replaced by

𝒟 ⊆ ℛ.)

Example 2. Let 𝑁 ≡ {1, 2} and Ω ≡ (1, 1) ∈ ℝ2
++. We specify 𝑅0 ∈ ℛ{1,2} and construct

(𝑅, 𝑧) ∈ (ℛ ∖ ℐ × ℝ2
+)

{1,2} such that (𝑅, 𝑧) ∈ 𝒩⟨𝑆(ℛ)𝑁 , 𝐸, 𝑅0⟩, 𝑧 ∈ 𝒪⟨𝑆(ℛ)𝑁 , 𝐸, 𝑅0⟩,
𝐼𝑐(𝑅1, 𝑧1) and 𝐼

𝑐(𝑅2, 𝑧2) are not linear, and 𝑧 ∕∈ 𝑊 𝑐
𝑒𝑑(𝑅

0).

∙ Specifying true preferences. Let 𝑅0
1 ∈ ℋ be the homothetic preference whose upper

contour set at (1
5
, 4
5
) is the intersection of the upper contour sets of 𝐿(8,1) and 𝐿(4,3) (Fig-

ure 2 (a)). Let 𝑅0
2 ∈ ℋ be the symmetric image of 𝑅0

1 with respect to the 45𝑜 line, i.e., for

each {𝑥, 𝑦} ⊂ ℝ2
+, 𝑥𝑅

0
2 𝑦 if and only if (𝑥2, 𝑥1)𝑅

0
1 (𝑦2, 𝑦1).

∙ Specifying reported preferences. Let us specify 𝑅1 (Figure 2 (b)). Let 𝑄 be the union

of seg
[(

2
5
, 0
)
,
(
1
5
, 4
5

)]
and the half line with slope 4 starting at

(
1
5
, 4
5

)
.17 The indifference

17The ray with slope 4 starting at
(
1
5 ,

4
5

)
is the set of points {(15𝜆, 45𝜆) ∈ ℝ2

+ : 𝜆 ≥ 1}.
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sets of 𝑅1 to the left of 𝑄 are linear with normal (2, 1). The indifference sets of 𝑅1 to the

right of 𝑄 are linear with normal (4, 3).

The indifference sets of 𝑅1 can be alternatively described as follows. For each 𝑎 ∈ [0, 4
5
],

𝐼(𝑅1, (0, 𝑎)) = 𝐼(𝐿
( 4
5
, 2
5
), (0, 𝑎)). For each 𝑎 ∈]4

5
, 6
5
],

𝐼(𝑅1, (0, 𝑎)) = bro.seg

[
(0, 𝑎),

(
4

5
− 1

2
𝑎, 2𝑎− 8

5

)
,

(
13

6
𝑎− 4

3
, 0

)]
.

Let 𝑅̂1 ∈ ℋ be the preference for which 𝐼(𝑅̂1, (0,
6
5
)) = 𝐼(𝑅1, (0,

6
5
)). For each 𝑎 ∈]6

5
,+∞[ ,

𝐼(𝑅1, (0, 𝑎)) = 𝐼(𝑅̂1, (0, 𝑎)).

Now, 𝑅2 is the symmetric image of 𝑅1 with respect to the 45𝑜 line.

Claim 1: 𝑅 ∕∈ ℐ. Indeed, (1, 1) ∈ Supp(𝑅1, (
1
5
, 4
5
)), and for each 0 ⪇ Δ ∈ ℝ𝐾

+ such

that (1
5
, 4
5
)−Δ ⪈ 0, (1, 1) ∕∈ Supp(𝑅𝑖, (0, 1)−Δ). Thus, no quasi-strictly increasing path

of maximizers of 𝑅1 at prices (1, 1) passes through (1
5
, 4
5
) (Figure 2 (b)).

∙ Identifying an equilibrium outcome, 𝑧. Let 𝑧1 ≡ (1
5
, 4
5
) and 𝑧2 ≡ (4

5
, 1
5
).

Claim 2: (𝑅, 𝑧) ∈ 𝒩⟨𝑆(ℛ)𝑁 , 𝐸𝑒, 𝑅0⟩. Observe that 𝑧 ∈ 𝐸(𝑅). Thus, by Lemma 8

and the symmetry of our construction, it is enough to show that for each 𝑅′
2 ∈ ℛ such that

𝑒2(𝑅1, 𝑅
′
2)𝑃

0
2 𝑧2, and each 𝑝 ∈ ℝ𝐾

+ supporting 𝑈 𝑐(𝑅1, 𝑒1(𝑅1, 𝑅
′
2)) at 𝑒1(𝑅1, 𝑅

′
2), we have

𝑎(𝐿𝑝, 𝑒2(𝑅1, 𝑅
′
2)) < 𝑎(𝑅1, 𝑒1(𝑅1, 𝑅

′
2)). Let 𝑅′

2 ∈ ℛ, 𝑧′ ≡ 𝑒(𝑅1, 𝑅
′
2), and 𝐴 the “residual

complement” of the constrained upper contour set of 𝑅0
2 at 𝑧2, i.e., 𝐴 ≡ {𝑧′1 ≤ Ω :

Ω− 𝑧′1 𝑃 0
2 , 𝑧2}. It is easy to see that

𝐴 = con.hull

{
0,

(
3

10
, 0

)
, 𝑧1,

(
1

20
, 1

)
, (0, 1)

}
∖ bro.seg

[(
3

10
, 0

)
, 𝑧1,

(
1

20
, 1

)]
.

There are three cases.

Case 1: 𝑧′1 ∈ 𝐴 ∖ bro.seg[(0, 1), 0,
(

3
10
, 0
)
] (Figure 2 (d)). Then, the unique 𝑝 ∈ ℝ2

+

(up to positive scale multiplication) supporting 𝑈 𝑐(𝑅1, 𝑧
′
1) at 𝑧′1 is (2, 1). Observe that

𝑎(𝐿(2,1), 𝑧2) < 𝑎(𝑅2, 𝑧2), i.e., of the two shaded sets forming a bow-tie in Figure 2 (c), the

measure of the upper set is greater than the measure of the lower one. Since 𝑎(𝐿(2,1), 𝑧′2) ≤
𝑎(𝐿(2,1), 𝑧2) < 𝑎(𝑅2, 𝑧2) = 𝑎(𝑅1, 𝑧1) ≤ 𝑎(𝑅1, 𝑧

′
1), then 𝑎(𝐿

(2,1), 𝑧′2) < 𝑎(𝑅1, 𝑧
′
1).

Case 2: 𝑧′1 ∈ seg[(0, 1), 0]. Then, for each 𝑝 ∈ ℝ2
+ supporting 𝑈 𝑐(𝑅1, 𝑧

′
1) at 𝑧

′
1,

𝑝2
𝑝1
≤ 1

2
.

Since 𝑧′2 ∈ seg[(1, 0),Ω], then 𝑎(𝐿𝑝, 𝑧′2) ≤ 𝑎(𝐿(2,1), 𝑧′1) and the argument in Case 1 shows

that 𝑎(𝐿𝑝, 𝑧′2) < 𝑎(𝑅1, 𝑧
′
1).

Case 3: 𝑧′1 ∈ seg[0,
(

3
10
, 0
)
]. Then, for each 𝑝 ∈ ℝ2

+ supporting 𝑈 𝑐(𝑅1, 𝑧
′
1) at 𝑧

′
1,

𝑝2
𝑝1
≥ 1

2
.

Since 𝑧′𝑗 ∈ seg[( 7
10
, 1),Ω], then 𝑎(𝐿𝑝, 𝑧′2) < 𝑎(𝑅1, 𝑧1). Now, since 𝑎(𝑅1, 𝑧1) < 𝑎(𝑅1, 𝑧

′
1), then

𝑎(𝐿𝑝, 𝑧′2) < 𝑎(𝑅1, 𝑧
′
1).

Concluding: Since (0, 1)𝑃 0
1 𝑧1 and (1, 0)𝑃 0

2 𝑧2, then 𝑧 ∕∈ 𝑃 (𝑅0). Thus, 𝑧 ∕∈ 𝑊 𝑐
𝑒𝑑(𝑅

0).

□
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Figure 2: Example 2.

Let 𝐹 be a solution. A selector 𝑓 ∈ 𝐹 is an equal-division selector, if for each

𝑅 ∈ ℛ𝑁 such that 𝑧𝑒𝑑 ≡ 1
∣𝑁 ∣(Ω, . . . ,Ω) ∈ 𝐹 (𝑅), we have 𝑓(𝑅) = 𝑧𝑒𝑑.

The following example shows that in Lemma 5, the assumption of quasi-strictly in-

creasing expansion path (𝒟 ⊆ ℐ) cannot be replaced by the assumption of smoothness of

preferences (𝒟 ⊆ 𝒮).

Example 3. Let 𝑁 ≡ {1, 2}, 𝜆 > 4
√
2, and Ω ≡ (𝜆, 𝜆) ∈ ℝ2

++. We specify 𝑅0 ∈ 𝒮𝑁

and construct (𝑅, 𝑧) ∈ (𝒮 ∖ ℐ × ℝ2
+)

{1,2} such that for each equal-division selector 𝑒 ∈ 𝐸,
(𝑅, 𝑧) ∈ 𝒩⟨𝑆(𝒮)𝑁 , 𝐸𝑒, 𝑅0⟩, 𝐼𝑐(𝑅1, 𝑧1) and 𝐼

𝑐(𝑅2, 𝑧2) are linear, and 𝑧 ∕∈ 𝑊 𝑐
𝑒𝑑(𝑅

0).

∙ Specifying true preferences (Figure 3 (a)). Let𝑅0
1 ∈ (ℋ∩𝒮)𝑁 be such that 𝑈(𝑅0

1, (𝜆, 0))∩
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{(𝑥1, 𝑥2) ∈ ℝ𝐾
+ : 𝑥1+𝑥2 < 𝜆} ∕= ∅ and for each 𝑥 ∈ 𝑈(𝑅0

1, (𝜆, 0))∩{(𝑥1, 𝑥2) ∈ ℝ𝐾
+ : 𝑥1+𝑥2 ≤

𝜆}, ∣∣(𝜆, 0)− 𝑥∣∣ < 1
2
. Let 𝑅0

2 ≡ 𝐿(1,1) ∈ (ℋ ∩ 𝒮)𝑁 .
∙ Specifying reported preferences (Figure 3 (b)). We construct 𝑅̂ ∈ ℛ𝑁 and 𝑧 ∈ 𝑍,

such that (𝑅̂, 𝑧) = 𝒩⟨𝑆(ℛ)𝑁 , 𝐸𝑒, 𝑅0⟩ and 𝑧 = 𝒪⟨𝑆(ℛ)𝑁 , 𝐸𝑒, 𝑅0⟩; later we smooth out 𝑅̂

and construct 𝑅 ∈ 𝒮𝑁 such that (𝑅, 𝑧) = 𝒩⟨𝑆(𝒮)𝑁 , 𝐸𝑒, 𝑅0⟩ and 𝑧 ∈ 𝒪⟨𝑆(𝒮)𝑁 , 𝐸𝑒, 𝑅0⟩.
We first specify 𝑅̂1 (Figure 3 (b)).

(i) For each 𝑎 ∈ [0, 𝜆] ⊂ ℝ+, 𝐼(𝑅̂1, (0, 𝑎)) ≡ 𝐼(𝐿(1,1), (0, 1)). Let 𝛼 ≡ (
√
2
2
, 𝜆−

√
2
2
) and

𝛽 ≡ (
√
2, 𝜆−√2); note that ∣∣(0, 𝜆)− 𝛼∣∣ = 1 and ∣∣𝛼− 𝛽∣∣ = 1.

(ii) For each 𝑎 ∈]𝜆, 3
2
𝜆] ⊂ ℝ+ let 𝑡(𝑎) ≡ seg[(0, 𝑎), 𝛽] ∩ ray{𝛼, 1} and 𝐼(𝑅̂1, (0, 𝑎)) ≡

bro.seg[(0, 𝑎), 𝑡(𝑎), (𝑡2(𝑎) −
√
2
2
, 0)]. Observe that seg[𝑡(𝑎), (𝑡2(𝑎) −

√
2
2
, 0)] has slope −1

and for each 𝑎 ∈]𝜆, 3
2
𝜆], the line that passes through (0, 𝑎) and whose slope is that of

seg[(0, 𝑎), 𝑡(𝑎)], namely, −𝑎−𝑡2(𝑎)
𝑡1

, intersects at 𝛽 the line that passes through (0, 𝜆) with

slope −1.
Let 𝑅̃1 ∈ ℋ be the homothetic preference for which 𝐼(𝑅̃1, (0,

3
2
𝜆)) ≡ 𝐼(𝑅̂1, (0,

3
2
𝜆)). For

each 𝑎 ∈]3
2
𝜆,+∞[⊂ ℝ+, let 𝐼(𝑅̂1, (0, 𝑎)) ≡ 𝐼(𝑅̃1, (0, 𝑎)). Finally, let 𝑅̂2 ≡ 𝑅̂1.

Claim 1: 𝑅̂1 ∕∈ ℐ. Indeed, (0, 𝜆) is a maximizer for 𝑅̂1 at prices (1, 1), and for each

0 ⪇ Δ ∈ ℝ𝐾
+ such that ∣∣(0, 𝜆) − Δ∣∣ < 1

2
, (0, 𝜆) + Δ is not a maximizer for 𝑅̂1 at prices

(1, 1). Thus, no quasi-strictly increasing path of maximizers of 𝑅̂1 at prices (1, 1) passes

through (0, 𝜆) (Figure 3 (b)).

Let 𝑧1 ≡ (𝜆, 0) and 𝑧2 ≡ (0, 𝜆).

Claim 2: (𝑅̂, 𝑧) ∈ 𝒩⟨𝑆(ℛ)𝑁 , 𝐸𝑒, 𝑅0⟩. Note that 𝑧 ∈ 𝐸(𝑅̂). Thus, by Lemma 8,

it is enough to show that for each 𝑅′
1 ∈ ℛ such that 𝑒1(𝑅

′
1, 𝑅̂2)𝑃

0
1 𝑧1, and each 𝑝 ∈ ℝ𝐾

+

supporting 𝑈 𝑐(𝑅̂2, 𝑒2(𝑅
′
1, 𝑅̂2)) at 𝑒2(𝑅

′
1, 𝑅̂2), 𝑎(𝐿

𝑝, 𝑒1(𝑅
′
1, 𝑅̂2)) < 𝑎(𝑅2, 𝑒2(𝑅

′
1, 𝑅̂2)), and the

parallel statement obtained by exchanging the roles of the two agents hold.

We prove the first statement of Claim 2. Let 𝑅′
1 ∈ ℛ and 𝑝 ∈ ℝ𝐾

+ be as specified above.

Let 𝑧 ≡ 𝑒(𝑅′
1, 𝑅̂2). We prove that 𝑎(𝐿𝑝, 𝑒1(𝑅

′
1, 𝑅̂2)) < 𝑎(𝑅2, 𝑒2(𝑅

′
1, 𝑅̂2)). There are five

cases.

Case 1: 𝑧11 + 𝑧21 > 𝜆 and 𝑧1 ≪ Ω. Then, the unique 𝑝 (up to a positive scale

transformation) supporting 𝑈 𝑐(𝑅̂2, 𝑧2) at 𝑧2 is (1, 1). Since 𝑧
1
2 +𝑧

2
2 < 𝜆, then 𝑎(𝐿

(1,1), 𝑧1) <

𝑎(𝐿(1,1), 𝑧2) = 𝑎(𝑅2, 𝑧2).

Case 2: 𝑧11 + 𝑧
2
1 > 𝜆 and 𝑧11 = 𝜆. The claim is clearly true if 𝑧1 = Ω. Suppose now

that 𝑧1 ∕= Ω. Thus, 𝑧21 < 𝜆 and for each 𝑝 supporting 𝑈 𝑐(𝑅̂2, 𝑧2) at 𝑧2, we have 𝑝1 ≤ 𝑝2.
Thus, 𝑈 𝑐(𝐿𝑝, 𝑧1) ⊆ 𝑈 𝑐(𝐿(1,1), 𝑧1) and 𝑎(𝐿

𝑝, 𝑧1) < 𝑎(𝐿
(1,1), 𝑧2) = 𝑎(𝑅2, 𝑧2).

Case 3: 𝑧11 + 𝑧
2
1 > 𝜆, 𝑧

2
1 = 𝜆, and 𝑧1 ∕= Ω. A symmetric argument to the one in Case 2

shows that for each 𝑝 supporting 𝑈 𝑐(𝑅̂2, 𝑧2) at 𝑧2, 𝑎(𝐿
𝑝, 𝑧1) < 𝑎(𝐿

(1,1), 𝑧2) = 𝑎(𝑅2, 𝑧2).

Case 4: 𝑧11 + 𝑧
2
1 = 𝜆. Then, 𝑧

1
2 + 𝑧

1
2 = 𝜆. Moreover, since 𝑧1 𝑃

0
1 𝑧1, then 𝑧

2
2 < 𝜆. Thus,

the unique 𝑝 (up to positive scale transformations) supporting 𝑈 𝑐(𝑅̂2, 𝑧2) at 𝑧2 is (1, 1).
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Since 𝑧1 𝑃
0
1

Ω
2
and 𝑒 is an equal-division selector, then (Ω

2
, Ω
2
) ∕∈ 𝐸(𝑅′

1, 𝑅̂2), for otherwise

𝑒(𝑅′
1, 𝑅̂2) = (Ω

2
, Ω
2
). Thus, 𝑝 supports 𝑈 𝑐(𝑅′

1, 𝑧1) at 𝑧1, 𝑎(𝑅
′
1, 𝑧1) < 𝑎(𝐿

𝑝, 𝑧1) = 𝑎(𝑅̂2, 𝑧2),

and 𝑧 ∕∈ 𝐸(𝑅′
1, 𝑅̂2). Thus, this case cannot occur.
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Figure 3: Example 3. In order to help visualize our geometrical argument, we have exaggerated the

distance between 𝑧1 and (𝜆, 0) in Panel (c) with respect to preferences shown in Panel (a).

Case 5: 𝑧11+𝑧
2
1 < 𝜆 (Figure 3 (c)). Then, ∣∣𝑧1−𝑧1∣∣ < 1

2
and the unique 𝑝 (up to positive

scale transformations) supporting 𝑈 𝑐(𝑅2, 𝑧2) at 𝑧2 is (𝑝1, 𝑝2) where 𝑝1 = 𝑧
2
2 − 𝜆−

√
2 and
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𝑝2 = 𝑧
1
2−
√
2, i.e., the normal vector to the line that pases through 𝑧2 and 𝛽 (Figure 3 (b)).

Let 𝛾 ≡ 𝐼(𝐿𝑝, 𝑧1) ∩ seg[(0, 𝜆), (𝜆, 0)] and 𝛿 = (𝛿1, 𝛿2) ≡ 𝐼(𝐿𝑝, 𝑧1) ∩ 𝐼(𝑅2, 𝑧2). Note that

∣∣𝛾 − (𝜆, 0)∣∣ = 2 and 𝛿2 ≤ 2
√
2. We claim that 𝑎(𝐿𝑝, 𝑧1) < 𝑎(𝑅2, 𝑧2). This is equivalent

to 𝜇(𝑈 𝑐(𝑅2, 𝑧2) ∖ 𝑈 𝑐(𝐿𝑝, 𝑧1)) > 𝜇(𝑈
𝑐(𝐿𝑝, 𝑧1) ∖ 𝑈 𝑐(𝑅2, 𝑧2)), i.e., from the measures of the

two shaded sets forming a bow-tie in Figure 3 (c), the measure of the upper set is greater

than the measure of the lower one. Indeed, let 𝑚 ≡ √2𝜆 − 4. Then, the upper set is a

proper superset of a congruent set to the lower one if
√
2
2
𝑚 > 2

√
2. Since 𝜆 > 4

√
2, this

last inequality holds.

We now prove the second statement of Claim 2, i.e., for each 𝑅′
2 ∈ ℛ such that

𝑒2(𝑅̂1, 𝑅
′
2)𝑃

0
2 𝑧2, and each 𝑝 ∈ ℝ2

+ supporting 𝑈 𝑐(𝑅1, 𝑒1(𝑅̂1, 𝑅
′
2)) at 𝑒1(𝑅̂1, 𝑅

′
2),

𝑎(𝐿𝑝, 𝑒2(𝑅̂1, 𝑅
′
2)) < 𝑎(𝑅1, 𝑒2(𝑅̂1, 𝑅

′
2)). A symmetric argument to Cases 1, 2, and 3 above

proves this statement (there is no counterpart of Cases 4 and 5.)

Now, we smooth out 𝑅̂ and construct 𝑅 ∈ 𝒮𝑁 such that (𝑅, 𝑧) = 𝒩⟨𝑆(𝒮)𝑁 , 𝐸𝑒, 𝑅0⟩
and 𝑧 = 𝒪⟨𝑆(𝒮)𝑁 , 𝐸𝑒, 𝑅0⟩. The only points at which the indifference sets of 𝑅̂1 and 𝑅̂2

have multiple supporting lines are {𝑡(𝑎) : 𝜆 < 𝑎 < 3
2
𝜆} and the half line starting at 𝑡(3

2
𝜆)

with direction 𝑡(3
2
𝜆). For a small 𝜀 > 0 there are smooth preferences, say 𝑅1 and 𝑅2,

whose indifference sets “coincide” with the indifference sets of 𝑅̂1 and 𝑅̂2 outside each

open ball with radius 𝜀 and centered at each of these “kinks” (Figure 3 (d)). Moreover,

if 𝜀 is small enough, then the same argument that shows that (𝑅̂, 𝑧) = 𝒩⟨𝑆(ℛ)𝑁 , 𝐸𝑒, 𝑅0⟩
and 𝑧 = 𝒪⟨𝑆(ℛ)𝑁 , 𝐸𝑒, 𝑅0⟩ can be used to show that (𝑅, 𝑧) = 𝒩⟨𝑆(𝒮)𝑁 , 𝐸𝑒, 𝑅0⟩ and
𝑧 = 𝒪⟨𝑆(𝒮)𝑁 , 𝐸𝑒, 𝑅0⟩.18

Concluding: Observe that 𝑧 ∕∈ 𝑃 (𝑅0). Thus, 𝑧 ∕∈ 𝑊 𝑐
𝑒𝑑(𝑅

0).□

7 Concluding comment and a conjecture

Our results have implications for what is called “implementation” – for introductions and

surveys, see Corchón (1996), Jackson (2001), and Maskin and Sjöström (2002). A “game

form” consists of a profile of strategy spaces, one for each agent, and an outcome function,

a function that associates with each preference profile an allocation. Once a preference

profile is given, we have a “game.” A game form “implements a solution” if for each

preference profile, the set of equilibrium allocations of the resulting game coincides with

the set of allocations that the solution would select for this profile. Thus, our main result

18Formally, since 𝜆 > 4
√
2, there is 𝑅2 ∈ 𝒮 such that: (i) for each 𝑎 ∈ [0, 𝜆] ⊂ ℝ+, 𝐼(𝑅2, (0, 𝑎)) ≡

𝐼(𝑅̂2, (0, 𝑎)); (ii) there is 0 < 𝜀 <
√
2
2 𝑚 − 2

√
2 such that for each 𝑎 ∈]𝜆, 32𝜆] ⊂ ℝ+, 𝐼(𝑅2, (0, 𝑎)) ∩ {𝑦 ∈

ℝ𝐾
+ : ∣∣𝑦 − 𝑡(𝑎)∣∣ < 𝜀} ≡ 𝐼(𝑅̂2, (0, 𝑎)) ∩ {𝑦 ∈ ℝ𝐾

+ : ∣∣𝑦 − 𝑡(𝑎)∣∣ < 𝜀}; and (iii) for each 𝑧2 ∈ ℝ𝐾
+ such that

∣∣(0, 𝜆) − 𝑧2∣∣ < 1
2 and 𝑧12 + 𝑧22 > 𝜆, the positive normal vector to the the line that passes through 𝑧2 and

𝛽 supports 𝑈 𝑐(𝑅2, 𝑧2) at 𝑧2.
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can be seen as providing an implementation of the equal-division constrained Walrasian

solution.

Since the pioneering work of Hurwicz, a variety of game forms have been defined achiev-

ing this objective, under a range of requirements on the game form and on the domain

of admissible preferences. For some of these game forms, strategy spaces are finite di-

mensional Euclidean spaces. One can argue that from the viewpoint of simplicity, such

game forms are preferable to the game form associated with the equal-sacrifice rule. Con-

sequently, we do not emphasize the fact that our game form provides an implementation

of this solution.

An extension of our results to situations where agents have individual endowments is

possible, although adapting the definition of the equal-sacrifice solution itself is not entirely

straightforward. The following appears the most natural to us. Consider an allocation that

each agent finds at least as desirable as her endowment. Then, for each agent, identify

the consumption bundles that she could receive at an allocation that each agent finds at

least as desirable as her endowment. Then, calculate the ratio of the size of the subset

of bundles that she finds at least as desirable as her assigned bundle to the size of the

subset of these bundles that she finds at least as desirable as her endowment. Finally,

select the allocations at which these ratios are all equal. We conjecture that under the

same assumptions on the domain, and for each preference profile, the set of equilibrium

allocations of the manipulation game associated with this rule is the set of constrained

Walrasian allocations for that profile.

Appendix

Lemma 9. ℋ ⊊ ℐ.

Proof. We show thatℋ ⊊ ℐ by means of an example in ℝ2
+. We construct 𝑅0 ∈ ℐ such that

𝑅0 ∕∈ ℋ. Let us define 𝑅0 ∈ ℐ. For each 𝑎 ∈ [0, 1] ⊂ ℝ+, let 𝐼(𝑅0, (0, 𝑎)) ≡ 𝐼(𝐿(1,1), (0, 𝑎)).

For each 𝑎 ∈]1,∞[, be the set

bro.seg
[
(0, 𝑎), 𝐼(𝐿(3,1), (0, 𝑎)) ∩ ray{(0, 1), 1}, 𝐼(𝐿(1,3), (𝑎, 0)) ∩ ray{(1, 0), 1}, (𝑎, 0)] .

Claim: 𝑅0 ∈ ℐ, i.e., for each 𝑥0 ∈ ℝ2
+ and each 𝑝 ∈ ℝ𝐾

++ such that 𝑥0 is a maximizer

for 𝑅0 at prices 𝑝, there is a quasi-strictly increasing path of maximizers of 𝑅0 at prices 𝑝

that passes through 𝑥0. There are three cases.

Case 1: 𝑥10− 1 ≥ 𝑥20. Then, we consider the path whose graph is seg[(0, 0), (1, 0), 𝑥0]∪
ray{𝑥0, 1} (Figure 4).
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Case 2: 𝑥10+1 > 𝑥20 > 𝑥
1
0−1. Then, we consider the path whose graph is seg[(0, 0), 𝑥0]∪

ray{𝑥0, 1} (Figure 4).
Case 3: 𝑥20 ≥ 𝑥10 +1. Then, we consider the path whose graph is seg[(0, 0), (0, 1), 𝑥0]∪

ray{𝑥0, 1}.
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Figure 4: Lemma 9.

Proof of Theorem 1. Let 𝑅 ∈ 𝒰 and Θ ≡ ∏𝐾
𝑡=1Ω

𝑡. Observe that for each 𝑖 ∈ 𝑁 , the

function 𝑢𝑖, defined by 𝑥𝑖 ∈ ℝ𝐾
+ #→ Θ− 𝑎(𝑅𝑖, 𝑥𝑖), is a continuous representation of 𝑅𝑖. Let

Φ(𝑅) ≡ {𝜈 ∈ ℝ+ : there is 𝑧 ∈ 𝑍 s.t. for each 𝑖 ∈ 𝑁, 𝑎(𝑅𝑖, 𝑧𝑖) = 𝜈}. Since Θ ∈ Φ(𝑅),

then Φ(𝑅) is non-empty. Clearly, Φ(𝑅) ≡ {𝜈 ∈ ℝ+ : there is 𝑧 ∈ 𝑍 s.t. for each 𝑖 ∈
𝑁, Θ − 𝑢(𝑧𝑖) = 𝜈}. Continuity of 𝑢 implies that Φ(𝑅) is closed. Since Φ(𝑅) is bounded,

then it is compact. Let 𝜈∗ ≡ minΦ(𝑅). Since 𝜈∗ ∈ Φ(𝑅), then there is 𝑧 ∈ 𝑍 such that for

each 𝑖 ∈ 𝑁 , 𝑎(𝑅𝑖, 𝑧𝑖) = 𝜈
∗. Moreover, 𝑧 ∈ Ψ(𝑅). Let 𝑧′ ∈ Ψ(𝑅). Then, the common value

of 𝑎(𝑅𝑖, 𝑧
′
𝑖) for 𝑖 ∈ 𝑁 , is in Φ(𝑅). Thus, for each {𝑖, 𝑗} ⊆ 𝑁 , 𝑎(𝑅𝑖, 𝑧𝑖) = 𝑣

∗ ≤ 𝑎(𝑅𝑗 , 𝑧
′
𝑗).

Thus, 𝑧 ∈ 𝐸(𝑅).
Let {𝑧, 𝑧′} ⊆ 𝐸(𝑅). Let 𝑖 ∈ 𝑁 . By definition of 𝐸, 𝑎(𝑅𝑖, 𝑧𝑖) = 𝑎(𝑅𝑖, 𝑧

′
𝑖). Thus,

𝑢𝑖(𝑧𝑖) = 𝑢𝑖(𝑧
′
𝑖). Since 𝑢𝑖 represents 𝑅𝑖, then 𝑧𝑖 𝐼𝑖 𝑧

′
𝑖. Thus, 𝐸 is essentially single-valued.

Proof of Lemma 1. Let 𝑅 ∈ 𝒰𝑁 and 𝑧 ∈ 𝐸(𝑅). We proceed in three steps.

(i) 𝒛 ∈ 𝑷𝒘(𝑹). Suppose by contradiction that there is 𝑧′ ∈ 𝑍 such that for each

𝑖 ∈ 𝑁 , 𝑧′𝑖 𝑃𝑖 𝑧𝑖. Let 𝜈 ≡ max𝑗∈𝑁 𝑎(𝑅𝑗 , 𝑧
′
𝑗). Thus, for each 𝑖 ∈ 𝑁 , 𝑎(𝑅𝑖, 𝑧

′
𝑖) ≤ 𝜈 < 𝑎(𝑅𝑖, 𝑧𝑖).
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Since for each 𝑖 ∈ 𝑁 , 𝑎(𝑅𝑖, 0) ≥ 𝜈 and preferences are monotone and continuous, then by

the Intermediate Value Theorem, there is 𝑧′′ ∈ 𝑍 such that for each 𝑖 ∈ 𝑁 , 𝑎(𝑅𝑖, 𝑧
′′
𝑖 ) = 𝜈.

Thus, 𝑧 ∕∈ 𝐸(𝑅). This is a contradiction.

(iia) If ∣𝑵 ∣ = 2, then, 𝑬(𝑹) ⊆ 𝑷 (𝑹). Suppose by contradiction that there is

𝑧 ∈ 𝐸(𝑅) such that 𝑧 ∕∈ 𝑃 (𝑅). Then, there are 𝑧′ ∈ 𝑍, 𝑖 ∈ 𝑁 and 𝑗 ∈ 𝑁 such that 𝑧′𝑖𝑅𝑖 𝑧𝑖
and 𝑧′𝑗 𝑃𝑗 𝑧𝑗 . Since preferences are monotone, we can assume w.l.o.g. that 𝑧′𝑖 + 𝑧

′
𝑗 = Ω. We

claim that Ω𝑃𝑖 𝑧
′
𝑖. Since 𝑧 ∈ 𝑃𝑤(𝑅), then 𝑧′𝑖 𝐼𝑖 𝑧𝑖. Suppose by contradiction that 𝑧′𝑖 𝐼𝑖Ω.

Then, 𝑎(𝑅𝑖, 𝑧
′
𝑖) = 0 and thus, 𝑎(𝑅𝑖, 𝑧𝑖) = 0. Since 𝑧 ∈ 𝐸(𝑅), then 𝑎(𝑅𝑗 , 𝑧𝑗) = 0. But,

since 𝑧′𝑗 ∈ 𝑈 𝑐(𝑃𝑗 , 𝑧𝑗), then 𝑎(𝑅𝑗 , 𝑧𝑗) > 0. This is a contradiction. Now, since preferences

are continuous, then there is 𝛼 ∈ (0, 1) such that (1 − 𝛼)𝑧′𝑗 𝑃𝑗 𝑧𝑗 . Since 𝑧′𝑖 + 𝑧
′
𝑗 = Ω,

then 𝑧′𝑖 + 𝛼𝑧
′
𝑗 = (1 − 𝛼)𝑧′𝑖 + 𝛼Ω (we are able to make this claim because ∣𝑁 ∣ = 2). Thus,

𝑧′𝑖+𝛼𝑧
′
𝑗 ≫ 𝑧′𝑖. Since preferences are monotone, then (𝑧′𝑖+𝛼𝑧

′
𝑗)𝑃𝑖 𝑧

′
𝑖. Let 𝑧

′′ be the allocation
defined by: 𝑧′′𝑖 ≡ 𝑧′𝑖 + 𝛼𝑧′𝑗 and 𝑧′′𝑗 ≡ (1 − 𝛼)𝑧′𝑗 . Since 𝑧′ ∈ 𝑍, then 𝑧′′ ∈ 𝑍. Since 𝑧′′𝑖 𝑃𝑖 𝑧𝑖
and 𝑧′′𝑗 𝑃𝑗 𝑧𝑗 , then 𝑧 ∕∈ 𝑃𝑤(𝑅). This is a contradiction.

(iib) If 𝑹 ∈ 퓡𝑵 , then, 𝑬(𝑹) ⊆ 𝑷 (𝑹).

We first prove that for each 𝑖 ∈ 𝑁 , Ω𝑃𝑖 𝑧𝑖 𝑃𝑖 0. Let 𝑖 ∈ 𝑁 . Since preferences are semi-

strictly monotone and 𝑧𝑖 ≤ Ω, then 𝑧𝑖 𝐼𝑖Ω implies 𝑧𝑖 = Ω. Thus Ω𝑃𝑖 𝑧𝑖, for otherwise for

each 𝑗 ∈ 𝑁 ∖ {𝑖}, 𝑧𝑗 = 0. We prove now that 𝑧𝑖 𝑃𝑖 0. Suppose by contradiction that 𝑧𝑖 𝐼𝑖 0.

Since preferences are continuous and monotone and 𝑧 ∈ 𝐸(𝑅), then for each 𝑗 ∈ 𝑁 ∖ {𝑖},
𝑧𝑗 𝐼𝑗 0. Since for each 𝑗 ∈ 𝑁 , Ω

𝑛
𝑃𝑗 0, then 𝑧 ∕∈ 𝑃𝑤(𝑅). This is a contradiction.

Now, suppose by contradiction that there is 𝑧 ∈ 𝐸(𝑅) such that 𝑧 ∕∈ 𝑃 (𝑅). Then,

there is 𝑧′ ∈ 𝑍 such that for each 𝑖 ∈ 𝑁 , 𝑧′𝑖𝑅𝑖 𝑧𝑖 and for some 𝑗 ∈ 𝑁 , 𝑧′𝑗 𝑃𝑗 𝑧𝑗 . Now,

since preferences are continuous, then there is 𝛼 ∈ (0, 1) such that (1 − 𝛼)𝑧′𝑗 𝑃𝑗 𝑧𝑗. Since

𝑧′𝑗 𝑃𝑖 𝑧𝑗 𝑃𝑗 0, then 𝑧′𝑗 ∕= 0. Let 𝑖 ∈ 𝑁 ∖ {𝑗}. Since 𝑅 ∈ ℛ𝑁 and 𝑧′𝑖𝑅𝑖 𝑧𝑖 𝑃𝑖 0, then

(𝑧′𝑖 +
𝛼

∣𝑁 ∣−1
𝑧′𝑗)𝑃𝑖 𝑧𝑖. Let 𝑧′′ be the allocation defined by: 𝑧′′𝑗 ≡ (1 − 𝛼)𝑧′𝑗, and for each

𝑖 ∈ 𝑁 ∖ {𝑗}, 𝑧′′𝑖 ≡ 𝑧′𝑖 + 𝛼
∣𝑁 ∣−1

𝑧′𝑗 . Since 𝑧′ ∈ 𝑍, then 𝑧′′ ∈ 𝑍. Since for each 𝑖 ∈ 𝑁 , 𝑧′′𝑖 𝑃𝑖 𝑧𝑖,
then 𝑧 ∕∈ 𝑃𝑤(𝑅). This is a contradiction.

Proof of Lemma 2. Let 𝑅 ∈ ℛ𝑁 and 𝑧 ∈ 𝐸(𝑅). Since 𝑅 ∈ ℛ𝑁 , then by Lemma 1,

𝑧 ∈ 𝑃 (𝑅).
∙ (i) For each 𝒊 ∈ 𝑵 , Ω𝑷𝒊 𝒛𝒊 𝑷𝒊 0. See (iib) in the proof of Lemma 1.

∙ (ii) ∑𝒊∈𝑵 𝒛𝒊 = Ω. Since 𝑧 ∈ 𝑃 (𝑅), preferences are semi-strictly monotone, and for

each 𝑖 ∈ 𝑁 , 𝑧𝑖 𝑃𝑖 0, then
∑

𝑖∈𝑁 𝑧𝑖 = Ω.

∙ (iii) There is 𝒑 ∈ ℝ𝑲
++ such that for each 𝒊 ∈ 𝑵 , 𝒑 ∈ Supp(𝑹𝒊, 𝒛𝒊). Since

𝑧 ∈ 𝑃 (𝑅), then by the Second Theorem of Welfare Economics (Mas-Colell et al., 1995,

Proposition 16.D.1), there is 𝑝 ∈ ℝ𝐾 ∖{0} and a vector of wealth levels (𝑤𝑖)𝑖∈𝑁 ∈ ℝ𝑁 , such

that: (i)
∑

𝑖∈𝑁 𝑤𝑖 = 𝑝 ⋅Ω and (ii) for each 𝑖 ∈ 𝑁 and each 𝑥 ∈ ℝ𝐾
+ , if 𝑥𝑃𝑖 𝑧𝑖, then 𝑝 ⋅𝑥 ≥ 𝑤𝑖.
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Since preferences are monotone and for each 𝑖 ∈ 𝑁 , 𝑧𝑖 𝑃𝑖 0, then it is not the case that

𝑝 ≤ 0. Thus, by semi-strict monotonicity of preferences, for each 𝑖 ∈ 𝑁 , 𝑝 ⋅ 𝑧𝑖 ≥ 𝑤𝑖. Since∑
𝑖∈𝑁 𝑧𝑖 = Ω and

∑
𝑖∈𝑁 𝑤𝑖 = 𝑝 ⋅ Ω, then for each 𝑖 ∈ 𝑁 , 𝑝 ⋅ 𝑧𝑖 = 𝑤𝑖. We claim that 𝑝 ≥ 0.

Suppose by contradiction that there is 𝑘 ∈ {1, . . . , 𝐾} such that 𝑝𝑘 < 0. Let 𝑖 ∈ 𝑁 . For

each 𝛿 ∈ ℝ++, 𝑝 ⋅ (𝑧𝑖 + 𝛿1𝑘) < 𝑤𝑖. Moreover, since preferences are semi-strictly monotone

and 𝑧𝑖 𝑃𝑖 0, then (𝑧𝑖 + 𝛿1
𝑘)𝑃𝑖 𝑧𝑖. This is a contradiction. We claim that 𝑝 ≫ 0. Suppose

by contradiction that there is 𝑙 ∈ {1, . . . , 𝐾} such that 𝑝 𝑙 = 0. Recall that 𝑝 ∕= 0. Since∑
𝑖∈𝑁 𝑧𝑖 = Ω, then there are 𝑘 ∈ {1, . . . , 𝐾} and 𝑖 ∈ 𝑁 such that 𝑝𝑘 > 0 and 𝑧𝑘𝑖 > 0.

Let 𝛿 ∈ ℝ++. Thus, 𝑝 ⋅ (𝑧𝑖 + 𝛿1 𝑙) = 𝑤𝑖. Since preferences are semi-strictly monotone and

𝑧𝑖 𝑃𝑖 0, then (𝑧𝑖+ 𝛿1
𝑙)𝑃𝑖 𝑧𝑖. Let 𝜀 ∈ ℝ++ be such that 𝜀 < 𝑧𝑘𝑖 . Thus, (𝑧𝑖+ 𝛿1

𝑙− 𝜀1𝑘) ∈ ℝ𝐾
+ .

By continuity if preferences, if 𝜀 is small enough, then (𝑧𝑖 + 𝛿1
𝑙 − 𝜀1𝑘)𝑃𝑖 𝑧𝑖. Since 𝑝𝑘 > 0,

then 𝑝 ⋅ (𝑧𝑖 + 𝛿1 𝑙 − 𝜀1𝑘) < 𝑤𝑖. This is a contradiction.

Let 𝑖 ∈ 𝑁 . Since 𝑝≫ 0 and 𝑧𝑖 𝑃𝑖 0, then 𝑝𝑖 ⋅𝑧𝑖 = 𝑤𝑖 > 0. A simple argument (Mas-Colell

et al. (1995), Proposition 16.D.2) shows that since 𝑤𝑖 > 0, then 𝑝 ∈ Supp(𝑅𝑖, 𝑧𝑖).
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