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Abstract

This essay surveys the literature on the axiomatic model of bar-
gaining formulated by Nash (“The Bargaining Problem,” Economet-
rica 28, 1950, 155-162).
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1 Introduction

Almost sixty years ago, Nash (1950) published his seminal paper on what
is now known as the “axiomatic theory of bargaining”. The “bargaining
problem” formalizes the following situation. Two agents have access to any
of the “alternatives” in some “feasible set”. Their preferences over these
alternatives differ. If they reach a compromise on a particular alternative,
that is what they get. Otherwise, they end up at a pre-specified alternative
in the feasible set, the “disagreement point”. The goal is to predict how they
would settle their differences, or for another interpretation of the model, how
an impartial arbitrator would identify a fair compromise to recommend to
them.

To illustrate, consider the negotiations between the management and the
workers of a firm. Here, the feasible alternatives consist of specifications
of salaries, benefit packages, working conditions, and so on. Disagreement
results in a strike, an outcome that is costly to both sides.

Nash specified a class of conflict situations of this type, and he defined a
“bargaining solution” as a function that produces, for each problem in the
class, an alternative in that problem. He formulated a list of properties, or
“axioms”, that he thought a solution should satisfy, and he established the
existence and the uniqueness of a solution satisfying all of the axioms; this
solution is now called the “Nash solution”. Nash limited his attention to
the two-person case but his solution can easily be extended to the n-person
case; so can his axioms and his characterization. Thus, the expression “Nash
solution” is used independently of how many agents are involved.

Nash (1953) also suggested that each bargaining problem could be ana-
lyzed as a non-cooperative game. He proposed a way of associating with the
problem a set of strategies for each agent, and specified a function assigning
a payoff vector to each profile of strategies; then, he searched for profiles of
strategies such that each agent’s strategy is a best response to the strategy
chosen by the other, such a profile being a “Nash (non-cooperative) equilib-
rium” of the game. He then asked whether the outcome attained at these
profiles corresponded to the outcomes obtained by applying the solution he
had derived axiomatically. He identified certain conditions under which the
answer is yes.

Nash’s model has been one of the most successful paradigms of game
theory. His paper is the founding stone of a literature that now comprises
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several hundred theoretical papers.1 The Nash solution is presented in all
game theory textbooks (for example, see Osborne and Rubinstein, 1990), and
an important section of the leading microeconomics manual is devoted to it
(Mas-Colell, Whinston, and Green, 1994). Together with the Shapley value
(Shapley, 1953) and the core (Gillies, 1959), it constitutes the obligatory
background on cooperative games in most economics graduate programs.
(Yaari, 1981, relates Nash’s theory to other normative theories of resource
allocation.) It has also been applied in countless empirical studies.

Nevertheless, over the years, it has faced many challenges, and one can-
not say that Nash “solved” the bargaining problem. His axiomatic treatment
suffers from a number of limitations, and his strategic model delivers the out-
come predicted by his axiomatic formulation only under certain assumptions
that are not all totally compelling.

The present volume collects papers in which the various axiomatic ap-
proaches that have been followed in addressing the issues raised by Nash’s
formulation have been initiated and developed. We start with the “historical”
papers and end with papers illustrating the latest trends in the literature.

For each particular perspective, it often occurred that several natural
candidate papers could have been selected. Our main objective in making the
difficult but necessary choices was that each of the main ideas be represented.
We hope that, with the help of this introduction, each reader will be able to
identify supplementary readings in the area of his or her interests.

We begin with Nash’s own paper. This is the only paper that we discuss
in any detail. We then present the criticisms to which it has been subjected,
using them as a platform from which to jump in discussing subsequent work.

Nash viewed the cooperative and the strategic models as complementary,
but here, we will mainly concern ourselves with the cooperative model. The
strategic model has also spawn a considerable literature and a separate vol-
ume would be needed to do justice to it. Section 11 should help bridging the
literatures however.

1For surveys, see Roth (1979), Kalai (1985), Thomson and Lensberg (1989), Peters
(1992), Gaertner and Klemisch-Ahlert (1992), Klemisch-Ahlert (1996), and Thomson
(1985a, 1994, 2008).
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2 The formal model and Nash’s axiomatic

derivation of the Nash solution

There is a fixed set N of agents. Each agent is equipped with preferences de-
fined over some underlying set of physical outcomes, and lotteries over these
outcomes. Preferences satisfy the postulates of von-Neumann and Morgen-
stern (1944), and thus can be represented by functions satisfying a certain ex-
pectation formula—they are “von Neumann-Morgernstern utility functions”.
The agents have access to any utility vector obtained as the image of one
of the physical outcomes, or lotteries over these outcomes. However, no in-
formation about this underlying set is retained in specifying a problem (an
assumption that has been the most controversial in recent literature; Sub-
section 10.3).

A (bargaining) problem consists of a pair (S, d) where S, the feasible
set, is a subset of RN of alternatives, and d ∈ RN , the disagreement
point, is a point of S. The set S is compact and convex, and there is at
least one point of S strictly dominating d. To simplify, we consider the class
of comprehensive problems: for such a problem, if a point x is in S, then
so is any point y with d ≤ y ≤ x. A strictly comprehensive problem S is
comprehensive and in addition, if a point x is in S and a point y satisfies d ≤
y ≤ x, then there is a point z in S such that z > y (in words, the part of the
northeast boundary of S that dominates d does not contain a segment parallel
to a coordinate axis). A fully comprehensive problem S is unbounded
below and if a point x is feasible, so is any point y such that y 5 x. A subclass
of problems that is particularly convenient in order to illustrate the central
definitions, as it allows circumventing certain technical issues, is obtained by
setting d = 0 and requiring S to be a compact, convex, and comprehensive
subset of RN

+ containing at least one positive vector. A (bargaining) solution
defined on a class of problems is a function that associates with each problem
(S, d) in the class a unique point of S, the solution outcome of (S, d).

The methodology we follow in searching for the “most desirable” solutions
is axiomatic.2 An axiom is the mathematical expression of our intuition of
how a solution should behave in certain situations. Axioms come in two
categories. A punctual axiom applies to each problem separately. A re-
lational axiom relates the choices made by a solution as the data of the

2A general presentation of the axiomatic method and of its recent applications to game
theory and resource allocation is Thomson (2001).
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problem change in a certain way. An axiomatic characterization is a
theorem identifying a particular solution (or a family of solutions) as the
only one (or the only solutions) satisfying a particular list of axioms. Such a
result is often proved by first handling problems with a simple structure by
means of the punctual axioms, then settling the case of arbitrary problems
by relating them to simple ones by means of the relational axioms.

Nash (1950) considered the two-agent case and required solutions to sat-
isfy the following axioms:3

Pareto-optimality: there should be no alternative at which both agents’
payoffs are at least as large as they are at the solution outcome, and at least
one agent’s payoff is larger.

Symmetry: if a problem is symmetric with respect to the 45◦ line, its
solution outcome should be on that line.

Scale invariance: von Neumann-Morgenstern utilities being unique only
up to positive affine transformations, the solution outcome should be invari-
ant under such transformations.

Contraction independence: if, keeping the disagreement point con-
stant, the feasible set contracts but the alternative chosen as solution out-
come remains feasible, then it should remain the solution outcome.4

Nash proved that only one solution satisfies these axioms. It is the so-
lution that selects, for each problem (S, d) the unique point of S at which
the product of the agents’ utility gains from d is the largest among all points
of S dominating d. The solution is the Nash solution. The result easily
generalizes to arbitrarily many agents.

Theorem 1 (Nash, 1950) The Nash solution is the only solution satisfy-
ing Pareto-optimality, symmetry, scale invariance, and contraction indepen-
dence.

Following the scheme outlined above, the proof consists in solving sym-
metric problems by invoking Pareto-optimality and symmetry ; then, appeal-
ing to scale invariance to transform an arbitrary problem into one whose
disagreement point and Nash point both have equal coordinates, and finally,

3This presentation of the problem slightly differs from Nash’s original formulation.
4The axiom appears in Nash’s paper under the name of “independence of irrelevant

alternatives”, but we prefer a more neutral expression, one that does not prejudge of the
irrelevance of the alternatives that are eliminated.
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after “embedding” this normalized problem into a symmetric one, invoking
contraction independence.

3 Did Nash solve the bargaining problem?

Nash’s theorem provided an answer to the undeterminatedness of the terms
of bargaining that had stumped previous writers. But was it the answer?
An axiomatic characterization is as good as the axiom system on which it is
based, and a number of criticisms of Nash’s were soon raised: the axiomatic
literature on the bargaining problem was launched.

From a normative viewpoint, it is difficult to see why Pareto-optimality
should not be required, but this property is certainly not always observed in
actual bargaining and it does not seem to be a necessary part of a descriptive
theory. Nevertheless, the axiom plays a limited role in precipitating Nash’s
conclusion: if it is dropped, only one additional solution becomes acceptable.
It is the trivial solution that always selects the disagreement point (Roth,
1977a, 1980. See Mariotti, 1994, 1996, 1999, 2000a, 2000b, for alternatives
to contraction independence that also lead to the Nash solution).

Symmetry seems hard to quibble with: if nothing distinguishes the agents,
on what grounds could one choose a point that is not symmetric? Of course,
agents who enter symmetrically in a problem may not be “the same” in cer-
tain respects that are not explicitly modeled. From a descriptive viewpoint,
agents may differ in attributes that may affect their ability to extract con-
cessions from their opponents. From a normative viewpoint, an arbitrator
may have his own reasons to want to favor certain agents over the others;
instead of being individuals, agents may represent other kinds of entities,
such as countries or families, that differ in their size, needs, rights, and so
on. One can of course argue that if these factors are relevant, they should
be incorporated into the model, but they may not be easily formalized or
quantified. (For a discussion, see Schelling, 1959.) A merit of Nash’s model
is that they can instead be accommodated by simply dropping symmetry
and investigating which additional solutions become available. One would
expect any possible bias in favor of particular agents and against others to
operate consistently across all problems, and this is indeed what the theory
delivers, namely a parametric family of weighted Nash solutions, defined
by maximizing the product of utility gains raised to powers that differ from
agent to agent (Harsanyi and Selten, 1972). By choosing weights appropri-
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ately, the arbitrator can gear his recommendation in favor of a particular
agent and against others, and to whatever extent he desires. Extreme viola-
tions of symmetry are accommodated by other solutions with “dictatorial”
features (Peters, 1987b). A characterization when convexity of feasible sets
is dropped is due to Peters and Vermeulen (2007).

Scale invariance appears compelling when the theory is meant to be de-
scriptive but it precludes basing compromises on interpersonal comparisons
of utility. In daily life, such comparisons are often made in reaching compro-
mises. An arbitrator may similarly feel that these comparisons are relevant
in making a recommendation.

Contraction independence has been the object of the sharpest criticisms.
Nash himself expressed some misgivings about it and Luce and Raiffa (1957)’s
objections are well-known. In evaluating a bargaining situation, it is unavoid-
able and probably desirable that it be simplified and summarized, that it be
reduced to its essential features. The issue is how much and what informa-
tion should be discarded in the process, and one can make a convincing case
that contraction independence ignores too much. Indeed, it covers contrac-
tions that affect the shape of the feasible in ways that seem relevant, for
instance, the elimination of only alternatives at which a particular agent’s
payoff is higher than at the initial solution outcome and the other agent’s
payoff lower than at the initial solution outcome; contraction independence
prevents solutions from responding to such eliminations.

4 Beyond Nash

In spite of the criticisms levelled against Nash’s axiom system, his solution
has met with what can only be described an extraordinary success in eco-
nomics, although it is probably the case that the profession at large did not
adopt it for its axiomatic foundations, but rather for the ease with which it
can be calculated: in order to determine whether an undominated alterna-
tive x is the Nash outcome of some problem (S, d), it suffices to calculate
the slope of the boundary of S at x and check that it is the negative of the
slope of the segment connecting x to d. Based on local information, the Nash
solution is tailor-made for economists, steeped in marginal analysis.

Yet, recommending a payoff vector on the basis of marginal information
seems odd. The goal is to balance the interests of different parties, comparing
what each agent gets to what the others get at each particular alternative,
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and to what he and they could have gotten at other alternatives. As noted
earlier, by altering the configuration of the alternatives available, one gener-
ally affects the attractiveness of a proposed compromise.

The main counterargument to this criticism was made by Nash himself:
in practice, information is usually lacking about which alternatives are truly
available, and a compromise under evaluation only competes against others
that are not too different from itself (Nash wrote: there should be “no action
at a distance”). Modeling this lack of information explicitly is what an
investigator should perhaps do, but there are also advantages to keeping the
model simple; contraction independence is a formal way to express the idea.

A great variety of perspectives have been taken over the years and a vari-
ety of axioms have been formulated reflecting these perspectives. To describe
a problem, three entities are given, the set of alternatives, the disagreement
point, and of course the population of agents itself. Accordingly, we organize
our presentation by considering in turn how solutions take into account the
feasible set, the disagreement point, and the population of agents, and how
they respond to variations in this data. In later sections, we review exten-
sions of the model, and discuss the importance of working in utility space
and not retaining information about the structure of the physical alternatives
from which payoff vectors are generated.

Some of these developments have led to the Nash solution, some not.
That other solutions would have come out of this work is of course expected,
but what may be surprising is the fact that, in spite of the large number
of reasonable solutions that one can easily define, only three solutions, and
variants, have consistently emerged: in addition to the Nash solution, they
are the egalitarian and Kalai-Smorodinsky solutions. Weighted versions of
these solutions, designed to accommodate desired biases in favor of particular
agents (as discussed above), and for the latter two, lexicographic extensions,
defined so as to recover Pareto-optimality when these solutions only deliver
a weak form of the property (indeed the egalitarian and Kalai-Smorodinsky
solutions do not satisfy Pareto-optimality as generally as the Nash solution
does) should be added to the list (see below). The dominance of these three
solutions and these variants is a central conclusion to be drawn from the
literature.

The Nash solution has come out somewhat more often than the other
two, and the claim can perhaps be made that it is indeed special; the mere
accumulation of results in which it appears in the theory would be evidence
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in its favor. But the argument is a little dangerous. Earlier, we talked about
the theorist’s need to simplify and summarize in order to analyze, and in
axiomatic analysis, simplification often takes the form of independence and
invariance axioms. The Nash solution satisfying many invariance conditions,
it is not much of a surprise that it should have come out often. On the
other hand, the monotonicity axioms that have generally led to the Kalai-
Smorodinsky and egalitarian solutions are readily understood and endorsed
by the man on the street.

5 Other solutions

Before presenting new axioms, it is useful to attempt to solve bargaining
problems directly, to use intuition to define compromises. Bargaining prob-
lems are relatively simple geometric objects and a wide range of solutions
based on elementary geometric operations quickly come to mind. After in-
troducing the issue in a classroom and taking care not to use language that
might suggest particular resolutions—here, we do not pretend to have pro-
ceeded in a manner that experimental economists would fully endorse—we
have often invited students to make proposals. Even with little or no back-
ground in economics or game theory, they had no trouble coming up with
their own schemes, and several of the solutions defined below frequently
showed up. We will let the reader decide whether the fact that the Nash
solution itself has never been in their lists should be a surprise. An added
reason for the landmark status enjoyed by Nash’s paper (theory having re-
vealing a well-behaved solution whose definition could not be easily guessed)?
Or an additional challenge to this status (the meaning of a product of utility
gains not being easily interpretable)? In the definitions below, (S, d) is an
arbitrary n-agent problem.

The egalitarian solution (Kalai, 1977) selects the maximal point of S
at which utility gains from d are equal. More generally, by making util-
ity gains proportional to a fixed vector of weights, we obtain the weighted
egalitarian solution relative to these weights (Kalai, 1977). Further,
given a continuous and unbounded monotone path G in RN

+ emanating from
the origin, the monotone path solution relative to G selects the maxi-
mal point of S on the path translated to d, namely G + {d} (Thomson and
Myerson, 1980). None of the egalitarian solution and of these generaliza-
tions is Pareto-optimal, but given the comprehensiveness assumption under
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which we are operating, they all satisfy the slightly weaker property of weak
Pareto-optimality, which says that there should be no alternative in S at
which all agents’ payoffs are greater than they are at the solution outcome.

To recover full Pareto-optimality, we can perform a lexicographic opera-
tion: find the maximal point of S of equal utility gains from d, x1. Identify
the agents whose payoffs can be increased from x1 without decreasing the
payoff of any other agent, and then the maximal point of S at which these
agents experience equal gains from x1; repeat. At least one agent drops out
at each step. Thus the process ends in finitely many steps. Obviously, the
endpoint is Pareto optimal. This endpoint is the lexicographic egalitar-
ian solution outcome. (If a problem is not comprehensive, work instead
with its comprehensive hull, that is, the smallest comprehensive problem
that contains it. This technique applies to several other solutions discussed
below) This replacement does not affect the set of Pareto-optimal points.
Lexicographic versions of the monotone path solutions can be defined in a
similar way.

The Kalai-Smorodinsky solution (Kalai and Smorodinsky, 1975) se-
lects the maximal point of S that is proportional to the profile of maximal
payoffs that agents can separately reach among the points of S that dom-
inate d. This list of maximal payoffs is the ideal point of (S, d). The
Kalai-Smorodinsky solution is Pareto-optimal for two agents, but only weakly
Pareto-optimal for more agents. It can be understood as a normalized version
of the egalitarian solution, that is, a scale invariant version. The normal-
ization consists in placing the ideal point on the line of equal gains from the
disagreement point. Weighted and lexicographic versions of the solution can
be defined in the way in which we defined such versions of the egalitarian
solution.

The two-agent equal loss solution (Chun, 1988) selects the maximal
point of S at which all agents’ utility losses from the ideal point are equal. It
involves a shift of perspectives, from the gains that agents achieve from d to
the losses from the ideal point they experience. To extend the definition to
n-agent problems, care must be exercised, as the line of equal losses may not
meet the feasible set, or if it does, this meeting point may not dominate the
disagreement point. To deal with these difficulties, lexicographic operations
can be performed that preserve the spirit of the two-agent definition (Chun
and Peters, 1991; Herrero and Marco, 1993). The equal loss solution belongs
to a one-parameter family, the Yu family (Yu, 1973; Freimer and Yu, 1976),
defined by minimizing the p-distance from the ideal point to the feasible set.
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The member of the Yu family obtained for p = 2 is advocated by Salukvadze
(1971a,b). Weighted versions of the solutions can also be defined.

The i-th dictatorial solution selects the payoff vector at which agent i’s
payoff is maximized subject to the other agents receiving their disagreement
payoffs. Lexicographic versions of these solutions can be defined to recover
Pareto-optimality as follows. Given a strict order on the set of agents, the
lexicographic dictatorial solution relative to that order identifies the
payoff vectors at which the payoff of the agent who is first in that order is
maximized among the payoff vectors dominating d; among those, it identifies
the payoff vectors at which the payoff of the agent who is second in the order
is maximized; and so on, until only one payoff vector is left.

The discrete Raiffa solution (Raiffa, 1953) selects the limit of the
sequence {xt} defined as follows: x1 is the average of the dictatorial solution
outcomes; x2 is the average of the dictatorial solution outcomes obtained
when x1 is used as disagreement point, and so on. The continuous Raiffa
solution selects the limit of the point x(t) such that x(0) = d and whose
motion at time t is in the direction of the average of the dictatorial solution
outcomes.

The two-agent Perles-Maschler solution (Perles and Maschler, 1981)
selects the limit of the point x(t) such that x(0) = d, but whose direction
of motion at time t is based on comparing the relative marginal gains that
agents achieve along the boundary of S at the dictatorial solution outcomes
obtained when x(t) is used as disagreement point. Generalizing the process to
arbitrarily many agents is not straightforward however (Kolhberg, Maschler,
and Perles, 1983; Calvo; Gutiérrez, 1994a; Rosenmüller, 2004). The Raiffa
and Perles-Maschler solutions exemplify a family of solutions defined as limits
of “concession” processes, starting from the agents’ dictatorial outcomes.
Another study of how solutions can be defined by specifying a direction of
movement of x(t) is Calvo and Peters (2000).

Each utilitarian solution (based on 19-th Century ideas) selects an
alternative at which the sum of payoffs is maximal among all alternatives. In
the present context, utilitarian objectives raise several difficulties. First, the
maximizer may not be unique, which is why we have to speak of utilitarian
solutions in the plural, having defined solutions as single-valued mappings.
Unfortunately, selecting from the correspondence of maximizers cannot be
done in a very satisfactory way. In particular, continuity, the requirement
that small changes in problems should not lead to large changes in solution
outcomes, has to fail. Second, the maximizer(s) is (are) independent of d
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and it (they) may not even Pareto dominate d. This seems undesirable
given the interpretation we gave to d. This second difficulty is easily dealt
with however: simply maximize the sum of payoffs over the part of S that
dominates d. The normalized version obtained by placing the ideal point on
the line of equal gains from the disagreement point prior to maximizing the
sum of payoffs is the normalized utilitarian solution (Cao, 1982). It uses
the same information as the Kalai-Smorodinsky solution does in providing a
normalization of the egalitarian solution.

A family of solutions obtained by maximizing a convex function that is
linear on each of the rank-ordered subsets of utility space (the subsets on
which payoffs are ordered in the same way) are introduced by Blackorby,
Bossert, and Donaldson (1994) under the name of generalized Gini solu-
tions because of their relation to the Gini index used in the theory developed
for the measurement of income inequality. Further extensions are due to Ok
and Zhou (2000)—they call them Choquet solutions—the latest step in
this process of generalization being taken by Hinojosa, Mármol, and Zarzuelo
(2008).

The two-agent equal area solution (Dekel, 1982; Ritz, 1985; Anbarci,
1993; 2006; Anbarci and Bigelow, 1993; In, 2008) selects the Pareto-optimal
point x at which the area of S consisting of all points at which agent 1’s
payoff is greater than x1 is equal to the area similarly defined for agent 2.
This solution exemplifies a family obtained by calculating at each feasible
point and for each agent, the “sacrifice” requested of him at that point, and
selecting the point at which sacrifices are equal. Sacrifices can be measured
in other ways. The two-agent equal length solution selects the Pareto-
optimal point x at which the length of the curvi-linear segment in the Pareto-
optimal boundary at which agent 1’s payoff is greater than x1 is equal to the
similarly defined quantity for agent 2. For more than two agents, these
definitions can be generalized by comparing volumes for the first solution,
and comparing surface areas on the Pareto boundary for the second solution,
but these definitions are not as compelling because an alternative at which
an agent’s payoff may be greater than his payoff at the solution outcome is
not necessarily one at which all other agents’ payoffs are at most as large as
at the solution outcome.
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6 Punctual axioms

We now turn to axioms. The transparent requirement of individual ratio-
nality, which we have implicitly invoked on several occasions already, says
that at the solution outcome, all agents’ payoffs should be at least as large
as at d. Strong individual rationality says that they should be larger
than at d. Even the strong form is met by most solutions, but surprisingly,
if in Nash’s theorem, Pareto-optimality is replaced by that axiom, the Nash
solution remains the only acceptable one (Roth, 1977a).

Midpoint domination says that for each problem, each agent’s payoff
should be at least as large as the average of its dictatorial outcomes. This av-
erage can be interpreted as an equal-probability lottery over these outcomes.
This axiom is quite weak but when complemented with contraction inde-
pendence, only the Nash solution is acceptable (Moulin, 1983). A stronger
(in fact, significantly stronger) version of the axiom is obtained by using the
equal-probability lottery over the lexicographic dictatorial solution outcomes.
The two-agent Perles-Maschler solution is the only one of the main solutions
to satisfy this property, although others can certainly be defined that do. For
two agents, Salonen (1985) defines such a solution, which can be seen as a
version of the Kalai-Smorodinsky solution.

7 Relational axioms pertaining to the feasi-

ble set

• Basic axioms. A strengthening of symmetry is anonymity: the solution
outcome of a problem should only depend on its geometry, not on the way in
which the axes are named after agents. Most problems are not symmetric, so
symmetry rarely applies, but anonymity always does because any problem
can be subjected to the renaming operation described in the hypotheses of
this axiom.

Independence of non-individually rational alternatives says that
the solution outcome should only depend on the part of the feasible set that
dominates the disagreement point.

Continuity says that small changes in problems should not lead to large
changes in solution outcomes. There are several ways to define small changes
in problems however, and to each of which corresponds a continuity no-
tion (Peters, 1986; Livne, 1987; Salonen, 1996). Accommodating degenerate
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problems creates complications (Jansen and Tijs, 1983). Yet another notion
can be defined in the context of a model in which population size may vary
(Section 9; Lensberg, 1985a; Thomson, 1985b).

• Independence. A number of variants of contraction independence have
been formulated. For example, the hypothesis of equal disagreement points
in that axiom has been replaced by the assumption of equal “points of mini-
mal expectations”—for a given problem, this is the point whose i-th coordi-
nate is the utility achieved by agent i at the Pareto-optimal point at which
agent j’s payoff is maximized. A variant of the Nash solution obtained by
maximizing the product of utility gains from the point of minimal expecta-
tions is defined and characterized along the lines of Nash’s theorem by Roth
(1977b). A formulation encompassing both Nash’s and Roth’s based on gen-
eral “reference points” is proposed by Thomson (1981a). Another example
of a reference point is the center of gravity of the individually rational region.
This point also appear in a definition proposed by Radzik (1998). See also
Conley, McLean, and Wilkie (1997) and Lahiri (1995). Other variants are
discussed in Thomson and Myerson (1980) and Thomson (1981a). A recent
contribution is Anbarci and Sun (2009).

Instead of contractions of feasible sets, one can also imagine expansions.
Several formulations are possible, which we describe for solutions that are at
least weakly Pareto-optimal, as they are most meaningful then. Expansion
independence says that if a feasible set expands but the initial solution out-
come remains weakly Pareto-optimal, it should remain the solution outcome.
This is a strong requirement, but if the boundary of a problem is smooth at
its solution outcome, it can be advocated by invoking the “localness” argu-
ment made by Nash to justify contraction independence. If the boundary
has a kink at its solution outcome x, a problem containing x and for which
x is weakly Pareto-optimal need not “look the same” as the initial prob-
lem around x. For two problems to look the same at a common boundary
point x, the cones of their lines of support at x should be the same. De-
pending upon the complementary axioms, this formulation leads to the Nash
solution (Thomson, 1981b), or to the utilitarian solution (Thomson, 1981c).
The same logic suggests not imposing an inclusion relation between the two
problems that are evaluated. A formal axiom of localness is formulated by
Lensberg (1987) and also considered by Serrano and Shimomura (1998). One
can also limit the expansion, for each problem, to problems whose feasible
set is supported at the initial solution outcome, by a hyperplane that may
depend on the initial problem.
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An interesting question concerns the identification of properties of a so-
lution that guarantee the existence of a binary relation defined over payoff
space such that for each problem, the solution outcome is given as the sum
of d and the maximizer of this relation over S − {d}. The relevance of con-
traction independence and of the axioms of revealed preference in answering
this question is uncovered by Peters and Wakker (1987), Bossert (1994b),
and Sánchez (2000). A related question is addressed by Bossert (1996). Ra-
tionalizability by tournaments (binary relations that may not be transitive)
is examined by Lombardi and Mariotti (2009).

• Monotonicity. Individual monotonicity says that an expansion of
the feasible set that is favorable to an agent should not hurt him. The idea
is most easily described in the two-agent case. Suppose that the expansion
leaves unaffected the maximal payoff that one of the agents, say agent 2, can
reach when the other (agent 1) is assigned his disagreement payoff. Then, for
each of agent 2’s payoffs between his disagreement payoff and his maximal
payoff as just calculated, the maximal payoff achievable by agent 1 is at least
as large as it was initially. The requirement is that agent 1 should not be
hurt. For two agents, the Kalai-Smorodinsky solution is the only one to
be Pareto-optimal, symmetric, scale invariance, and individually monotonic
(Kalai and Smorodinsky, 1975).

This monotonicity property can be generalized to arbitrarily n in several
ways. When comprehensiveness is dropped, a difficulty with a straightfor-
ward extension is noted by Roth (1979d), but recall that we are imposing
this condition in our exposition here. One possibility is the following. Fix
i ∈ N . Suppose that the feasible set expands but that the set of vectors
attainable by the other agents when agent i’s payoff is his disagreement pay-
off remains the same. This implies that for each such vector, the maximal
payoff attainable by agent i stays the same or increases; then agent i should
not be hurt. The Kalai-Smorodinsky characterization does not extend to
arbitrarily many agents if this formulation is adopted. A related property is
restricted monotonicity, which says that if a feasible set expands without
the ideal point being affected, then no agent should be hurt (also, see Rosen-
thal, 1976). This version is not quite as compelling but together with weak
Pareto-optimality, symmetry, scale invariance, and continuity, it does lead to
a characterization of the Kalai-Smorodinsky solution in general (Segal, 1980).
Note that Pareto-optimality itself is not achieved. Other formulations are ex-
plored in Thomson (1980). Characterizations of a lexicographic extension of
the Kalai-Smorodinsky solution that does achieve Pareto optimality have
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been based on variants of individual monotonicity (Imai, 1983; Chang and
Liang, 1998). For two agents, variants of the Kalai-Smorodinsky solution
are defined and characterized by Salonen (1985, 1987), and weighted lexico-
graphic Kalai-Smorodinsky solutions by Dubra (2001). The solutions that
satisfy the Kalai-Smorodinsky axioms except for symmetry are described by
Peters and Tijs (19884, 1985). A characterization of the lexicographic equal
loss solution (Chun, 1991) along similar lines is also available.

Generalizing some of the previous ideas, replacement (Chun, 2005a)
says that if the feasible set changes, but its intersection with the coordinate
subspace pertaining to a group of agents remains the same, then these agents’
payoffs should all be affected in the same direction. The egalitarian solution
is the only solution satisfying weak Pareto-optimality, symmetry, continuity,
contraction independence, and replacement. A related condition leads to a
characterization of the Kalai-Smorodinsky solution.

Strong monotonicity says that an expansion of the feasible set should
not hurt any agent. The egalitarian solution is the only one to be weakly
Pareto-optimal, symmetric, and strongly monotonic (Kalai, 1977b). When
comprehensiveness of problems is not imposed, the implications of this re-
quirement in the absence of weak Pareto optimality are described by Roth
(1979a). Dropping symmetry, we obtain the family of monotone path solu-
tions (Thomson and Myerson, 1980). A characterization of the lexicographic
egalitarian solution is obtained to Chun and Peters (1988) by insisting on
Pareto optimality but working with a conditional version of strong mono-
tonicity, in which the domination of the solution outcomes in the conclusion
of the axiom is not imposed if an increase in an agent’s utility can be achieved
without the other agent being hurt. Other characterizations of lexicographic
solutions are available in which a monotonicity requirement is central (Chang
and Hwang, 1999, 2001; Chen, 2000). Characterizations of the equal loss so-
lutions and of variants designed to recover individual rationality and Pareto
optimality are proposed by Chun and Peters (1991), and Herrero and Marco
(1993).

Domination is the strongest solidarity requirement: it says that irrespec-
tive of the geometric relation between two problems, the solution outcome
of one of them should dominate the solution outcome of the other (Thomson
and Myerson, 1980). It is satisfied by the monotone path solutions.

In each of the monotonicity properties discussed so far, the change in the
geometry of the problem is evaluated before knowing the solution outcome
of the initial problem. It seems most natural to take that information into
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account however. Here is a series of properties achieving this objective for the
two-agent case (Thomson and Myerson, 1980). Adding says that if a prob-
lem is augmented by the addition of alternatives that are all at least as good
for agent i as the initial solution outcome and at most as good for agent j,
then agent i should not lose and agent j should not gain. The conclusions
of the next two axioms are the same. Cutting pertains to the subtraction
of alternatives that are all at most as good for agent i as the initial solution
outcome and at least as good for agent j. Twisting combines the previous
two operations: it pertains to the simultaneous (i) addition of alternatives
that are all at least as good for agent i as the initial solution outcome and
at most as good for agent j, and (ii) the subtraction of alternatives that are
all at most as good for agent i as the initial solution outcome and at least as
good for agent j. These axioms are satisfied quite generally.

The case of more than two claimants is more complex; these properties
can be generalized in a number of ways.

• Decomposability. Suppose that after the solution outcome of some prob-
lem is calculated, the feasible set expands. There are two ways to look at this
new situation: one is to ignore the initial solution outcome—let us call it x—
and apply the solution directly to the larger feasible set; the other is to add
to x the solution outcome of the larger feasible set, using x as disagreement
outcome. When imposed in conjunction with weak Pareto-optimality and
symmetry, an axiom of decomposability, which says that both perspec-
tives should produce the same payoff vector, leads to the weighted egalitar-
ian solutions (Kalai, 1977). A related formulation is proposed by Myerson
(1977), which also delivers the egalitarian solution. A conditional version
of the requirement, obtained by adding the hypothesis that the vectors of
utility gains be proportional, is satisfied by the Nash solution, and a char-
acterization of this solution based on this axiom can be developed (Chun,
1988). A different notion of decomposability is formulated by Ponsat́ı and
Watson (1998), who base on it characterizations of the Nash and utilitarian
solutions. Ehtamo and Ruusunen (1993) express a related idea, and show its
equivalence to contraction independence.

• Additivity and multiplicability. Consider opportunities simultaneously
coming in two separate feasible sets (the disagreement point being the same
for both). One can think of two ways of handling such situations: solving
each problem separately and adding the results, or adding the problems and
solving the sum problem. Super-additivity says that the second way of
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proceeding should Pareto-dominate the first way, thereby guaranteeing that
all agents will agree on the best course of action. For two agents, the Perles-
Maschler solution is the only one to be Pareto-optimal, symmetric, scale
invariant, super-additive, as well as continuous on the subclass of strictly
comprehensive problems (Perles and Maschler, 1981). If symmetry is not
imposed, a two-parameter family of solutions emerges (Perles, forthcoming-
a). The role of continuity is also well-understood (Perles, forthcoming-b). For
three agents, the Perles-Maschler axioms are generally incompatible (Perles,
1982), but a class of problems on which compatibility is recovered is identified
by Pallaschke and Rosenmüller (2007).

Peters (1986a) proposes a weak form of super-additivity that is satisfied
by the weighted Nash solutions and characterizes the family they constitute
by imposing it in addition to Pareto optimality, strong individual rationality,
scale invariance, and continuity. For an alternative weakening, he obtains a
characterization of the weighted egalitarian solutions however.

Super-additivity is closely related to an axiom motivated by situations
in which the feasible set may not be known with certainty. Suppose that
it may be either one of two sets. By making contingent agreements today,
Pareto-improvements can be achieved over waiting until uncertainly is re-
solved. Concavity says that the expected value of the solution outcomes
selected then should Pareto-dominate the solution outcome of the expected
feasible set. For scale invariant solutions, concavity and super-additivity are
equivalent. Linearity says that the solution outcome should be a linear func-
tion of the feasible set. On the class of fully comprehensive problems egali-
tarian and utilitarian solutions are the only solutions satisfying weak Pareto-
optimality, symmetry, translation invariance contraction independence, and
concavity. Also, on that class, the utilitarian solutions are the only solu-
tions satisfying Pareto-optimality, symmetry, and linearity (Myerson, 1981;
in these statements, the utilitarian solutions are included if appropriate tie-
breaking rules are applied.) For two alternative ways of weakening linearity,
scale invariance is recovered, and the Nash solution emerges. Conditional
linearity 1 is obtained from linearity by adding the hypothesis that the
two solution outcomes be the same. The Nash solution is the only one to
satisfy Pareto-optimality, symmetry, scale invariance, and conditional linear-
ity 1 (Chun, 1988). Conditional linearity 2 is obtained from linearity by
requiring that the boundaries of the component problems be smooth at their
solution outcomes and that the sum of these outcomes be Pareto optimal
for the sum problem. For two agents, the weighted Nash solutions are the
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only solutions to satisfy Pareto-optimality, strong individual rationality, scale
invariance, continuity, and conditional linearity 2 (Peters, 1986a).

Super-additivity involves the addition of problems. “Multiplications” of
problems can also be defined: given two payoff vectors x and y, their prod-
uct is the vector (x1y1, . . . , xnyn). The product of two sets is obtained as the
union of all the points obtained in this manner, when x and y are chosen
arbitrarily in each of the two sets. Multiplicability says that if the prod-
uct of two sets is a well-defined problem (convexity is not preserved under
this operation, hence the proviso), then its solution outcome should be the
product of the solution outcomes of the component problems. Together with
Pareto-optimality and symmetry (note that scale invariance is not imposed,
being a consequence of multiplicability), only one solution is admissible, the
Nash solution (Binmore, 1984).

When agents may face one of several problems and evaluate their prospects
according to the maximin criterion, a natural efficiency condition is met only
by the monotone path solutions, the maximax criterion leading to the dicta-
torial solutions (Bossert, Nosal and Sadanand, 1996). In the two-agent case,
minimax regret delivers a counterpart for the equal-loss solution of the mono-
tone path solutions (Bossert and Peters, 2001). When it is the disagreement
point that may take several values, the maximin criterion leads to general-
izations of the monotone path solutions (Bossert and Peters, 2002). These
authors examine the implications of other criteria. A related contribution is
Bossert and Peters (2000).

• Invariance with respect to operations performed on utilities. Scale in-
variance can be decomposed into two more elementary invariance properties:
Translation invariance states that the addition of constants to utility func-
tions should be accompanied by the corresponding translation of the solution
outcome. The other part states that the multiplication of the utility func-
tions by positive scalars should be accompanied by a similar operation on
the coordinates of the solution outcome. Homogeneity is the more limited
version of this property when the multiplicative coefficients are the same for
all agents.

Ordinal invariance is the requirement that the solution should only de-
pend on the ranking of alternatives implicit in the utility scales. (Convexity
is not preserved under these transformations, so this property is studied on
domains of possibly non-convex problems.) For two agents, no solution is
strongly individually rational and ordinally invariant (Shapley, 1969; Roth,
1979). However, for three agents, a Pareto-optimal solution satisfying both
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properties can be constructed (Shubik, 1982). There are others, in particular
on the class of smooth problems (Shapley, 1984). Sprumont (2000) iden-
tifies a family of problems having the property that an arbitrary problem
can be obtained from only one member of the family by subjecting it to an
ordinal transformation, and this transformation is unique. Thus, this family
can be thought of as an ordinal basis of the space of problems. To define
an ordinally invariant solution, it then suffices to specify how the solution
behaves on this basis. Such a solution can be constructed for the n-agent
case inspired by the Shubik solution (Safra and Samet, 2004). Another so-
lution is proposed by Samet and Safra (2005), whose definition exploits a
technique developed by O’Neill, Samet, Wiener, and Winter (2004) to deal
with a generalization of Nash’s model (Section 10). Other contributions to
the understanding of ordinal invariance are by Kıbrıs (2002b, 2003, 2004)
and Sákovics (2004). Calvo and Peters (2005) impose ordinal invariance for
some players and scale invariance for others.

Weak ordinal invariance (Nielsen, 1983) requires invariance under the
application of the same increasing transformation to all utilities. In the two-
agent case, on the subclass of problems whose Pareto-optimal boundary is
connected, the lexicographic egalitarian solution is the only solution satisfy-
ing Pareto-optimality, strong individual rationality, weak ordinal invariance,
and contraction independence (Nielsen, 1983; 1984).

8 Relational axioms pertaining to the disagree-

ment point

• Monotonicity. The disagreement point represents the agents’ fall-back po-
sitions. Thus, it is natural to to require that if an agent’s disagreement
utility increases, he should not lose. This is the property of disagreement
point monotonicity (Thomson, 1987a). A related property, strong dis-
agreement point monotonicity (Thomson, 1987a) says that such a change
should benefit none of the other agents. Disagreement point monotonicity is
met by most solutions, but its strong form is quite demanding: the egalitar-
ian solution and variants do satisfy it, but none of the other central solutions
does. Engwerda and Douven (2008) formulate a local version of these proper-
ties, and identify classes of problems under which the Nash solution satisfies
them. A related requirement, that a simultaneous increase in an agent’s
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disagreement utility and decrease in some other agent’s disagreement utility
should not hurt the first agent and not benefit the second agent (Thomson,
1987), is the counterpart of the requirement that there should be “no trans-
fer problem” discussed in the theory of international trade. It is studied
by Bossert (1994a) together with the requirement that the impact of such a
change on the other players should be bounded by the impact it has on the
agents whose disagreement utilities change. Other relevant contributions on
this issue are by Furth (1990) and Chun (1996).

Ideal point monotonicity says that if the disagreement point changes
in such a way that at the resulting ideal point, agent i’s payoff is greater
and the payoffs of all other agents remain the same, then agent i should
not lose. On the class of two-agent fully comprehensive problems, the equal-
loss solution is the only solution to satisfy weak Pareto-optimality, symmetry,
translation invariance, restricted monotonicity, ideal point monotonicity, and
continuity (Chun, 1988a).

• Axioms pertaining to the shapes of inverse sets. Other properties per-
taining to situations in which there may be uncertainty in the disagreement
point have been formulated. They can be described by means of geometric
properties of the set of disagreement points from which a particular alterna-
tive is recommended as solution outcome for each particular feasible set S.
Given a point x in S, the inverse set of the solution for S and x is the
set of disagreement points from which the solution leads to x. A solution
has convex inverse sets if, whenever the same point—let us call it x—is
the solution outcome when either d1 or d2 is the disagreement point, then
x is the solution outcome when the disagreement point is any convex com-
bination of d1 and d2. It has star-shaped inverse sets if, denoting x the
solution outcome when the disagreement point is d, x is the solution out-
come when the disagreement is any convex combination of x and d. It has
cone-shaped inverse sets if, denoting x the solution outcome when the
disagreement point is d, x is the solution outcome when the disagreement
point is any point on the half-line passing through x and d and having x as
endpoint. These properties appear in characterizations of the Nash solution
and of the Kalai-Rosenthal solution (Kalai and Rosenthal, 1978; this solution
is a variant of the Kalai-Smorodinsky solution) due to Chun (1990), and de
Clippel (2007). They are also discussed in Furth (1990) and Peters and van
Damme (1991) who offer characterizations of the Nash and continuous Raiffa
solutions based on them. Dagan, Volij, and Winter (2002) offer a variant.

• Operations performed on disagreement points. Disagreement point

20



concavity is a counterpart of our earlier concavity requirement pertain-
ing to feasible sets. On the domain of fully comprehensive problems, the
weighted egalitarian solutions are the only solutions to satisfy weak Pareto-
optimality, independence of non-individually rational alternatives, continuity,
and disagreement point concavity (Chun and Thomson, 1990a; Salonen, 1996,
proves a variant of these results). Generalizations of the egalitarian solution
called directional solutions are obtained if the independence requirement
is weakened to individual rationality (Chun and Thomson, 1990a). A char-
acterization of the lexicographic egalitarian solution along similar lines is
established by Chun (1989).

Weak disagreement point concavity says the following: consider two
problems with the same feasible set. If the boundary of this set is smooth
at their solution outcomes, and the weighted average of these points with
weights λ and 1 − λ is Pareto-optimal, then for the problem in which the
disagreement point is the weighted average of the disagreement points of
the two problems with weights λ and 1 − λ, this point should be the so-
lution outcome of the problem whose disagreement point is this weighted
average. Weakening disagreement point concavity in this manner allows re-
covering scale invariance, but the Nash solution is the only solution to satisfy
Pareto-optimality, symmetry, weak disagreement point concavity, and conti-
nuity (Chun and Thomson, 1990c; related results are due to Peters and van
Damme, 1991, and Salonen, 1998).

9 Relational axioms pertaining to the popu-

lation of agents

Next, we turn to situations in which the population of agents involved may
vary. To study the issue, a generalization of the model is required. We imag-
ine an infinite set of “potential” agents, indexed by the natural numbers N,
but finitely many of them are involved in each particular problem. Here, a so-
lution associates with each finite set of agents and each of the problems that
they could face, a payoff vector for that problem. Examples are the solution
obtained by always applying the Nash formula, and the solution obtained
by always applying the Kalai-Smorodinsky formula. A third one is obtained
by applying the Nash formula when the number of agents is even and the
Kalai-Smorodinsky formula otherwise. However, one expects the resolutions
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of problems involving different populations of agents to be somehow related,
and several criteria have been formulated for that purpose. An account of
the theory that has been elaborated to deal with variations in populations
is Thomson and Lensberg (1989). Two axioms have been central, a mono-
tonicity axiom and an independence axiom.

• Population monotonicity. First, starting from some initial problem for
which a solution has made a particular recommendation, imagine that some
agents leave, relinquishing their rights. Population monotonicity5 says
that none of the remaining agents should lose. If one thinks of the prob-
lem of dividing a social endowment of resources among a group of agents,
saying that some agents are not present is the same thing as saying that
they are present but giving them nothing. Thus, and working for simplicity
with utility functions that assign 0-utility to the 0-bundle, the intersection
of the image in utility space of the problem involving the larger population
with the coordinate subspace pertaining to the smaller group is the image
in utility space of the feasible set for the smaller group. The Nash solution
violates population monotonicity but both the Kalai-Smorodinsky and egali-
tarian solution satisfy it and characterizations of these solutions in which the
axiom is central are available: the Kalai-Smorodinsky solution is the only
solution to satisfy weak Pareto optimality, anonymity, scale invariance, pop-
ulation monotonicity, and continuity (Thomson, 1983a); also, the egalitarian
solution is the only one to satisfy weak Pareto optimality, symmetry, con-
traction independence, population monotonicity, and continuity (Thomson,
1983b; variants of this characterization are Thomson, 1984a,b).

Conversely, when agents come in, one may be interested in measuring the
impact this event has on each of the agents initially present. The ratio of his
final payoff to initial payoff can be used for that purpose. Seen positively,
the minimal value taken by this ratio can be interpreted as a guarantee of-
fered to the agent that his final utility will be at least a certain fraction of
his initial utility. The collection of these minimal values indexed by pairs
of initial and final populations is the guarantee structure of the solution.
Solutions that offer greater guarantees are more desirable. It so happens
that maximal elements within broad families of solutions satisfying partic-
ular lists of basic properties can be identified. Similar definitions can be
given pertaining to groups of agents, resulting in the notion of a collective

5A general presentation of the various applications of the idea of population mono-
tonicity is Thomson (1995a).
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guarantee structure of a solution (Thomson and Lensberg, 1983; Thom-
son, 1983a; Chun and Thomson, 1989). Parallel analysis can be performed of
the opportunities for gains that solutions provide to agents when population
varies, giving rise to concepts of opportunity structures, and collective
opportunity structures (the definitions can indeed be adapted for groups
of agents) (Thomson, 1987b). Depending upon whether the focus is on guar-
antees or opportunities, for individuals or for groups , the Kalai-Smorodinsky
solution or the egalitarian solution, and to a lesser degree, the Nash solution,
are found to be maximal elements within broad classes of solutions.

• Consistency and its converse. After applying a solution to some prob-
lem, let us imagine that some agents “leave” with their components of the
payoff vector x it selects and let us assess the opportunities available to
the agents who remain. They consist of all the payoff vectors in the initial
problem at which the departing agents receive their components of x. Geo-
metrically, this reduced problem is a slice of the original problem parallel
to the subspace pertaining to the remaining agents that passes through x.
Consistency says that its solution outcome should be the restriction of x
to the set of remaining agents. The Nash solution satisfies this requirement
but neither the Kalai-Smorodinsky solution nor the egalitarian solution does.
In fact, the Nash solution is the only solution to satisfy Pareto-optimality,
anonymity, scale invariance, and consistency (Lensberg, 1988; variants of
this characterization are due to Thomson, 1985b, and Lensberg and Thom-
son, 1988).6

Weak consistency is the property obtained from consistency by requir-
ing that in the reduced problem, the payoff to each remaining agent should
be at least as large as it was in the initial problem (instead of requiring
equality). The two axioms are conceptually close, and so are they mathe-
matically since on the subclass of strictly comprehensive problems, they are
equivalent. The egalitarian solution is the only one to satisfy weak Pareto
optimality, symmetry, continuity and the two variable population properties
of population monotonicity and weak consistency (Thomson, 1984c).

A characterization of the lexicographic egalitarian solution is obtained by
dropping scale invariance, adding a feasible set monotonicity property and
weak continuity, a continuity requirement based on a notion of convergence
that takes into account not only how sequences of problems converge but also

6A general presentation of the various applications of the “consistency principle” is
Thomson (2007b).
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how associated sequences of reduced problems converge (Lensberg, 1985a;
Thomson and Lensberg, 1989). A parameterized notion of a property related
to consistency—it applies only to the departure of the agents whose payoffs
are the lowest—is proposed by Blackorby, Bossert, and Donaldson (1996).
This notion appears in a characterization of a subfamily of the generalized
Gini solutions that they develop (the coefficients defining the components of
the solutions for different populations have to be related). An alternative
notion of consistency involving ideal points is proposed by Peters, Tijs and
Zarzuelo (1994). They base on it a characterization of the Kalai-Smorodinsky
solution.

Next, we define a new family of solutions. To each potential agent i ∈ N
we attach a continuous and increasing function fi : R+ → R. To the list
f ≡ (fi)i∈N, we then associate the solution that selects, for each problem
(S, d) with agent set N ⊂ N such that d = 0, the maximizer with respect
to x ∈ S of the sum

∑
i∈N fi(xi). If d 6= 0, we simply translate the prob-

lem so that this be the case before performing the maximization, and we
carry out the inverse translation to obtain the solution outcome of the initial
problem. (The list f should satisfy an additional minor requirement for the
maximizer to be unique.) We thereby obtain the separable additive so-
lution associated with f : these solutions are the only solutions satisfying
weak Pareto-optimality, continuity, and consistency (Lensberg, 1987).

Now, consider a problem and an outcome x as a possible solution outcome.
Let us check whether for each two-agent subgroup of the agents involved in
the problem, the restriction of x to this subgroup is the solution outcome of
the associated reduced problem they face (this is the problem obtained by
imagining that all but these two agents leave with their components of x).
Converse consistency says that if the answer is yes, then x should be the
solution outcome of the initial problem. This axiom is violated by the Nash
solution on our primary domain, but it is satisfied on the class of smooth
problems. It is violated by the Kalai-Smorodinsky solution and satisfied by
the egalitarian solution. Studies of its implications in conjunction with other
standard properties are due to Chun (2000, 2002), who offers characteriza-
tions of the Nash and egalitarian solutions involving it.

Given two problems, suppose that (i) for each member of a particular
group of agents, the solution recommends the same payoffs in both, and
(ii) the sets of payoff vectors at which these agents receive these payoffs are
the same in both problems. Then separability (Chun, 2005) requires that
the other agents should also receive the same payoffs in the two problems.
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This requirement is implied by contraction independence, and even though
it is a fixed population property, it is closely related to consistency. The
Nash solution is the only solution to be Pareto optimal, anonymous, scale
invariant, continuous, and separable. A characterization of the egalitarian
solution is obtained on the basis of weak Pareto optimality, symmetry, conti-
nuity, converse consistency, and a condition of domination-separability,
obtained from separability by dropping (ii) from the hypothesis and only re-
quiring a domination relation between the two solution outcomes (without
the direction of the inequality being specified).

Instead of allowing for general augmentations into spaces of higher cardi-
nalities, a more limited formulation is when problems are replicated (Kalai,
1977a; Thomson, 1986). Yet another geometric relation between problems is
considered by Chae and Heidhues (2004).

10 Variants and enrichments of the model

The directions in which the literature on the bargaining problem has evolved
following Nash’s paper can be sorted according to the extent to which they
question the basic model.

10.1 Variants of the model.

First are reformulations that retain the components of what defines a bar-
gaining problem or a solution, but the specific properties required of them
are relaxed or modified.

• The feasible is not required to be convex (Myerson, 1977; Kaneko, 1980;
Herrero, 1989; Anant, Basu, and Mukherji, 1990; Conley and Wilkie, 1991,
1996a, 1996b; Zhou, 1996; Serrano and Shimomura, 1998; Ok and Zhou,
1999; Denicolò and Mariotti, 2000; Mariotti, 2000c; Hougaard and Tvede,
2003; Peters and Vermeulen, 2007; Xu and Yoshihara, 2007; Lombardi and
Mariotti, 2008).

• Further, the feasible set is a finite set (Mariotti, 1988; Anbarci, 2006;
Nagahisa and Tanaka, 2002; Kıbrıs and Sertel, 2007; Peters and Vermeulen,
2007).

• Solutions are allowed to be multi-valued (Thomson, 1981a; Peters, Tijs
and Koster, 1983; Herrero, 1989; Blackorby, Bossert, and Donaldson, 1994;
Peters and Tijs, 1984; Serrano and Shimomura, 1998; Ok and Zhou, 2000; Pe-
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ters and Vermeulen, 2007; Hinojosa, Mármol, and Zarzuelo, 2008; Lombardi
and Mariotti, 2008).

• Solutions select probability distributions over outcomes (Peters and
Tijs, 1984).

10.2 Related models formulated in utility space.

The basic model can also be enriched by the addition of other data.
• A point inside the feasible set is added. This point can be interpreted as

a first-round compromise, a settlement reached on a previous occasion when
opportunities were more limited, or as an exogenous lower bound on payoffs
(Gupta and Livne, 1988).

• A point to the northeast of the Pareto boundary is added. It may rep-
resent claims that agents have, promises that may have been made to them,
or the settlement reached on a previous occasion, when opportunities were
better and on which their expectations may depend, or an exogenous upper
bound on payoffs. We then obtain a bargaining problem with claims
(Chun and Thomson, 1992). This model (Bossert, 1992; 1993; Gerber, 1997,
2005; Herrero, 1998, 1995; Gächter and Riedl, 2005; Lombardi and Yoshi-
hara, 2008) can also be thought of as a non-transferable utility generalization
of the model of bankruptcy (O’Neill, 1982; for a survey, see Thomson, 2003).
The special case when an extra point is specified on the boundary has also
been considered (Brito, Buoncristiani and Intriligator, 1977). A model in
which the disagreement point is replaced by a claims point is studied by
Mariotti and Villar (2005).

• A reference point is added to the feasible set, and this point may or may
not be feasible (Rubinstein and Zhou, 1999; Pfingsten and Wagoner, 2003).

• The disagreement point is dropped altogether. We then obtain what is
sometimes called a “social choice problem” (Harsanyi, 1955; Thomson, 1981c;
Klemisch-Ahlert, 1991; Conley McLean, and Wilkie, 1997; Vartiainen, 2007).

• A list of disagreement points is specified, indexed by agents, each of
these points being interpreted as the payoff vector that obtains if the corre-
sponding agent is responsible for the breakdown of negotiations. One would
indeed expect the outcome eventually chosen to depend on who that agent
is (Kıbrıs and Gürsel, 2005a, b).

• The disagreement point is replaced by a set of disagreement points, no
probabilistic structure being placed on this set (Basu, 1996).

26



• The disagreement point is random and its probability distribution is
known (Smorodinsky, 2005; Livne, 1988).

• The disagreement point is written as a function of the feasible set (Es-
teban and Sákovics, 2007).

• The feasible set evolves over time (Livne, 1987; O’Neill, Samet, Wiener,
and Winter, 2003).

• Information is added about what groups of agents can achieve: Nash’s
formulation only specifies a feasible set for the entire set of agents, and a
payoff that each agent can guarantee himself. These are the feasible sets
for the “grand coalition” and the individual agents. In richer multi-agent
interactions, other groups may also be able to achieve something. How to
take into account the opportunities open to all groups is the subject of the
theory of coalitional games.7 A number of authors have been particularly
interested in developing solutions to this class of games that extend solutions
to bargaining problems (Harsanyi, 1959, 1963).

• A higher-level perspective can be taken, and one can imagine that agents
bargain not so much about specific payoff profiles but rather about solutions
themselves. Then the model would include their preferences over solutions
(Border and Segal, 1997; Segal, 2000; Pivato, 2008).

10.3 Adding information about physical outcomes

A more radical reformulation is obtained by including information about the
set of underlying physical outcomes. Such information is ignored in Nash’s
welfarist formulation: two conflict situations may have the same representa-
tion in utility space and yet differ in ways that intuitively one feels matters.
Economic conflicts are typically described with a variety of additional detail
that could and perhaps should be taken into account. The spaces of feasible
alternatives (they are allocations then) have convex, order, and topological
structures that suggest restrictions on preferences and properties of alloca-
tion rules that are not meaningful otherwise, and allow constructing rules
that would not be well-defined for a model formulated in utility space.

• Responsiveness to risk. A question that can be addressed in this frame-
work is how solutions respond to changes in the agents’ risk aversion. Is
it preferable to face a more risk-averse opponent? To study this issue we
need to explicitly introduce the set of underlying physical alternatives (for

7For a treatment of the theory, see Peleg and Sudhölter (2007).
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background references on concepts of risk aversion, see Pratt, 1964, Yaari,
1969). An n-person concrete problem is a list (C, e, u), where C is a set
of certain options, e ∈ C, and u = (u1, . . . , un) is a list of von Neumann-
Morgenstern utility functions defined over C. The abstract problem as-
sociated with (C, e, u) is the pair (S, d) ≡ ({u(`)|` ∈ L}, u(e)).

The first property we formulate focuses on the agent whose risk-aversion
changes. According to his old preferences, does he necessarily lose when his
risk-aversion increases? If yes, the solution is risk-sensitive. Strong risk-
sensitivity focuses on the agents whose preferences are kept fixed. It says
that all of them should benefit from the increase in some agent’s risk-aversion.

A concrete problem is basic if each of the Pareto-optimal alternatives
of its associated abstract bargaining problem is the image of a sure physical
alternative. If a problem is basic and agent i’s utility is replaced by a more
risk-averse utility, then the new problem still is basic. On the domain of basic
problems, the Nash solution is risk-sensitive but not strongly risk-sensitive.
On this domain, the Kalai-Smorodinsky solution is strongly risk sensitive
(Kihlstrom, Roth and Schmeidler 1981, Nielsen 1984).

The following are interesting logical relations. If a solution is Pareto-
optimal and risk sensitive, then it is scale invariant. If a solution is Pareto-
optimality and strongly risk sensitive, then it is scale invariant (Kihlstrom,
Roth, and Schmeidler 1981). For two agents, additional relations also exist
between risk sensitivity and twisting (Tijs and Peters 1985) and between risk
sensitivity and midpoint domination (Sobel 1981). Further results appear in
Wakker, Peters, and van Riel (186), Koster, Peters, Tijs and Wakker (1983),
Peters (1987a), Peters and Tijs (1981, 1983, 1985a), Tijs and Peters (1985),
and Klemisch-Ahlert (1992a).

For non-basic problems, two cases should be distinguished. If the dis-
agreement point is the image of one of the basic alternatives, what matters
is whether the solution is appropriately responsive to changes in the dis-
agreement point (Section 8). Suppose C = {c1, c2, e} and let F be a solu-
tion on Σ2

d satisfying Pareto-optimality, scale invariance, and disagreement
point monotonicity. Then, if ui become more risk-averse, agent j gains if
ui(`) = min{ui(c1), ui(c2)} and not otherwise (based on Roth and Rothblum
1982 and Thomson 1987a)

The n-agent case is studied by Roth (1988). Situations when the disagree-
ment point is obtained as a lottery are considered by Safra, Zhou, and Zilcha
(1990). For a model based on Yaari’s dual theory of choice under risk, see
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Volij and Winter (2002), and for the case when agents have rank-dependent
utilities, see Denicolò (2000) and Köbberling and Peters (2003). An applica-
tion to insurance contracts is discussed in Kihlstrom and Roth (1982), and to
the reallocation of individual endowments by Klemisch-Ahlert (1992). How
an agent ranks his opponents in terms of their risk aversion is studied in a
special case by Cressman and Gallego (2009).

• Resource allocation. Our canonical allocation rule in economics, the
Walrasian equilibrium, cannot be discussed without information about com-
modities, endowments, and preferences over commodity bundles. In the last
ten years, the axiomatic program has considerably developed so as to accom-
modate this supplementary information. One may still work with solutions
defined on images in utility space of some underlying set of physical alter-
natives, but consider changes in the components a problem that are due
to changes in the underlying data. For instance, a counterpart of strong
monotonicity is obtained by requiring that if the physical resources available
increase, then no agents’ payoff should decrease. Chun and Thomson (1988)
study this and related properties and show that the number of goods is crit-
ical for solutions to respond appropriately. Although these properties are
often satisfied in the one-good case, they generally do not as soon as there
are two goods, and of course if there are more than two goods. Whether solu-
tions are immune to the transfer problem or to manipulation by destruction
of part of one’s endowment is studied by Chun (1996) and Cho and Chun
(2000) in economies with or without production. Here also, two is the critical
number of goods beyond which violations occur.

Roemer (1986a,b, 1988, 1990) has criticized the welfarist assumption un-
derlying Nash’s model, and after transcribing axioms to a concretely spec-
ified setting of resource allocation, has patterned characterizations of all of
the solutions that have been central in the theory. His formulation includes
utilities over commodity bundles, and a important axiom in his work is a
requirement of invariance with respect to variations in the number of goods.
See also Nieto (1992), Iturbe-Ormaetxe and Nieto (1996), Segal (2000), Rotar
and Smirnov (1992), and Chen and Maskin (1999), the latter two references
including production sets in the model. A model with claims formulated to
address similar issues is studied by Herrero (1998).

Experimental work supporting non-welfarist formulations is reported by
Roth and Malouf (1979), and Yaari and Bar-Hillel (1984). Further experi-
mental studies are by Roth and Murningham (1980), Felsenthal and Diskin
(1982), and Klemisch-Ahlert (1996). An application of bargaining solutions
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to a labor market problem is studied by Gerber and Upmann (2005) and
to a problem of reallocation of endowments by Klemisch-Ahlert and Peters
(1994) .

As challenges to the standard von Neumann-Morgenstern theories of de-
cision under uncertainty have mounted in the last few years and alternate
theories developed, the need and the possibility of revisiting the bargaining
problem has increased. The literature is also developing in this direction.
An early contribution to the issue is by Rubinstein, Safra, and Thomson
(1992) who propose a definition and a characterization of an ordinal ver-
sion of the Nash solution in this context. Follow-up papers are by Burgos
(1993, 1995), Hanany and Safra (1998), Grant and Kajii (1995), Safra and
Zilcha (1993), Valenciano and Zarzuelo (1994, 1997), Houba, Tieman, and
Brinksman (1998), Denicolò (2000), Burgos, Grant, and Kajii (2002), Shalev
(2002), Zhou (2007), Hanany (2007, 2008), and de Clippel (2008).

Taking a step further, Moulin and Thomson (1998) consider an entirely
ordinal formulation, and ask about monotonicity in welfares as a response to
an increase in the social endowments of goods. A considerable expansion of
the axiomatic program has occurred in the last twenty years. These mod-
els bear little relation to Nash’s original model but the same general ideas
of monotonicity and independence often underlie the central axioms. This
program can be titled the “axiomatics of resource allocation”.

11 Strategic issues

Many authors have discussed Nash’s contributions to strategic analysis, but
a few words are necessary here to link Nash’s axiomatic and strategic models.
A presentation of the basic approaches can be found in Binmore (1987a, b).

11.1 Strategic games of proposals and solutions.

• The strategic game that Nash (1953) proposed to append to his abstract
description of the bargaining problem is simple and natural: each agent
announces a payoff for himself, and the outcome is the profile of these payoffs
if it is feasible, and the disagreement point otherwise. Nash proved that if a
small amount of uncertainty is added in the specification of a problem, the
Nash equilibrium payoff vector of the game is close to the outcome selected
by the Nash bargaining solution. A related formulation by Anbar and Kalai
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(1978) also delivers the Nash solution outcome. At an equilibrium of the
sequential game proposed by Bossert and Tan (1995), the egalitarian outcome
is obtained.

• Instead of allowing any payoff demand, one may want to discipline the
process by requiring that demands be rationalizable by some well-behaved
solution. One can imagine agents having agreed that a solution in some rea-
sonable class should be used. The class could be defined by enumeration, or
by the axioms that all of its members should satisfy. Then, a strategy choice
for an agent is a member of that family. A sequential procedure in which
the feasible set is repeatedly truncated by eliminating all points at which an
agent receives more than the payoff the solution he proposed would assign to
him, is defined, and the solutions are reapplied. For a plausible family of ad-
missible solutions, convergence of the two proposals to a single point occur.
Thus, the process defines a strategic game in which strategies are bargaining
solutions. At an equilibrium, only the Nash cooperative outcome is obtained
(van Damme, 1986). An equally plausible reformulation however leads to the
Kalai-Smorodinsky solution (Chun, 1984). See also Naeve-Steinweg (1997,
1999). Non-strategic formulations of such recursive processes are studied by
Thomson (2008), Anbarci and Yi (1992), Marco, Peris, and Subiza (1995),
and Naeve-Steinweg (2004).

• Stahl (1977) and Rubinstein (1982) formulate a sequential game in
which agents take turns making offers, and calculate their equilibrium out-
comes. They too obtain the Nash outcome at the limit. Precursors of the
approach are Zeuthen (1930), Harsanyi (1956, 1958), and Saraydar (1965).
This result is often thought of as another vindication of the Nash solution
and in fact, those who do not adhere to the axiomatic approach or do not find
Nash’s strategic story compelling, may think of it as a more convincing way
to justify the solution. Of course, the limit of the equilibrium correspondence
of these games satisfy Nash’s axioms, and if one is uncomfortable with the
axioms, one should be concerned with a model that unwittingly put them in.
Moreover, these conclusions turn out not to be as robust as one could have
wished, especially for more than two agents. They depend on the particular
way in which the non-cooperative game is specified, (who speaks when and
says what, and what rules determine termination of negotiations and the final
payoffs). Important follow-up contributions are Binmore (1987a,b). Addi-
tional papers are by Crawford (1980), Binmore (1987), Anbarci (1989, 1992,
1993, 1997), Peleg (1997), Spinnewijn and Spinnewijn (2007), and Anbarci
and Boyd (2008). Calvo and Gutiérrez (1994) is in a somewhat different
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spirit. Krishna and Serrano (1996) show the relevance of consistency to the
analysis of certain strategic games.

11.2 Manipulation.

In order to calculate the payoff vector recommended by a solution, we need to
know how agents evaluate decisions. By misrepresenting his utility, an agent
may be able to enforce an outcome that he prefers to the one that would
have been achieved if he had not done so. Of course, the other agents may
be in that position too, and the question then is predicting what happens
when they all attempt to do so. For that purpose, a manipulation game
has to be associated with the solution and its equilibria identified. When
the Nash solution is applied to solve one-commodity allocation problems, a
dominant strategy for each agent is to announce a linear utility. Then, when
all agents play their dominant strategies, equal division results (Crawford and
Varian, 1979). The multi-commodity case is more delicate. If preferences are
known and agents can only misrepresent their utilities, at equilibrium, each
agent announces the least concave numerical function that represents his
preferences (Kannai, 1977). If preferences are unknown, and for a number of
solutions, Walrasian allocations from equal division for the true preferences
are obtained at equilibrium (Sobel, 1981, 2001; Kıbrıs, 2002a). Another
contribution to this issue is Gómez (2003).

11.3 Implementation.

Supposing that some solution has been selected as embodying society’s ob-
jectives, does there exist a game form with the property that for each pref-
erence profile, when the game form is played by agents with these prefer-
ences, the equilibrium outcomes are the ones selected by the solution for
that profile? If yes, the solution is implementable (Maskin, 1979; Hur-
wicz, 1979). Whether a solution is implementable depends on the type of
game forms that are used, and on the behavioral assumptions made about
how agents confronted to such games behave. For implementation by normal
form games and when agents calculate best responses taking as given the
choices made by the other agents, a critical property for what is then called
Nash-implementability is Maskin-monotonicity (actually an invariance
property with respect to enlargements of lower contour set at the chosen al-
ternative). Most solutions are not Maskin-monotonic and therefore not Nash
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implementable by normal form games. However, an implementation of the
Kalai-Smorodinsky solution by a sequential game is possible (Moulin, 1984).
Later contributions delivered the Nash solution (Howard, 1992), the egalitar-
ian solution (Bossert and Tan, 1992), and an extension of the Nash solution to
non-convex problems (Conley and Wilkie, 1996b). Serrano (1997b), Trockel
(1998, 199a, 2000, 2002a,b, 2003), and Naeve (1999) are other contributions.
For subgame perfect implementation, a general theorem is offered by Miya-
gawa (2002). It covers all solutions obtained, after normalizing problems so
that the ideal point has equal coordinates, by maximizing a monotone and
quasi-concave function of the agents’ payoffs. Implementation is by means
of a stage game and the equilibrium notion is subgame perfection. The most
recent entry is Vartiainen (2008).

12 Conclusion

Nash’s model in his 1950 paper has been an ideal laboratory for the devel-
opment of the axiomatic program. For this model, a conceptual apparatus
and proof techniques were elaborated, and a set of results obtained that are
unparalleled in game theory and social choice, except perhaps in the abstract
Arrovian theory of social choice. It is of course partly a mathematical acci-
dent. Nash’s model happens to have the “right richness”: It is sufficiently
rich to permit the elaboration of a non-trivial theory, and it is not so rich as
to be intractable.8

It is mainly on the basis of monotonicity properties that the Kalai-
Smorodinsky solution should be seen as an important challenger to the Nash
solution, the egalitarian solution presenting another appealing choice. This
latter solution enjoys even stronger monotonicity requirements and like the
Nash solution, it satisfies strong independence conditions. Unlike both the
Nash and Kalai-Smorodinsky solutions, it requires interpersonal comparisons
of utility however, which, depending upon the context, may be seen as a de-
sirable feature it has, or a limitation.

8In particular, it allows a great many single-valued solutions to be defined. Almost all
other models require that multi-valued be allowed. This almost always lead to complica-
tions at both the conceptual level (this forces choices of quantification in the relational
axioms that are not always compelling), and the technical level.
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—— (1995), “Non-conflict without commitment yields the Kalai-Smorodinsky so-

lution”, University of Alicante mimeo.
Burgos, A., S. Grant, and A. Kajii (2002), “Bargaining and boldness”, Games and

Economic Behavior 38, 28-51. Corrigendum, (2002) Games and Economic
Behavior 41, 165-168.

Butrim, B. I. (1976), “A modified solution of the bargaining problem”, (in Rus-
sian), Zhurnal Vychistitel’noi Matematiki Matematicheskoi Fiziki 16, 340-
350.

Calvo, E. and E. Gutiérrez (1994a), “Extension of the Perles-Maschler solution
to N -person bargaining games”, International Journal of Game Theory 23,
325-346.

—— and —— (1994b), “Comparisons of bargaining solutions by means of altruism
indexes”, University of the Basque Country, mimeo.

Calvo, E. and H. J. M. Peters (1998), “Dynamics and axiomatics of the equal area
bargaining solution”, International Journal of Game Theory 29, 81-92.

—— and —— (2005), “Bargaining with cardinal and ordinal players”, Games and
Economic Behavior 52, 20-33.

Cao, X. (1982), “Preference functions and bargaining solutions”, IEEE 164-171.
Chae, S. and P. Heidhues (2004), “A group bargaining solution”, Mathematical

Social Sciences 48, 37-53.
Chang, C. and M.-Y. Liang (1998), “A characterization of the lexicographic Kalai-

Smorodinsky solution for n = 3,” Mathematical Social Sciences 35, 307-319.
Chang, C. and Hwang Y.-A. (1999), “A characterization of the leximin solution of

the bargaining problem”, Mathematical Methods of Operations Research 49,
395-400.

—— and —— (2001), “Two characterizations of the lexicographic egalitarian so-
lution”, International Game Theory Review 3, 315-323.

Chen, M. (2000), “Individual monotonicity and the leximin solution”, Economic
Theory 15, 353-365.

Chen, M. and E. Maskin (1999), “Bargaining, production, and monotonicity in
economic environments”, Journal of Economic Theory 89, 140-147.

Cho, Y. and Y. Chun (2000), “Paradoxes of bargaining solutions when applied to
economic problems of fair division”,Seoul Journal of Economics 39, 477-495.

Chun, Y. (1984), “Note on ‘The Nash bargaining solution is optimal,’” University
of Rochester mimeo.

—— (1988a), “The equal-loss principle for bargaining problems,” Economics Let-
ters 26, 103-106.

—— (1988b), “Nash solution and timing of bargaining,” Economics Letters 28,
27-31.

36



—— (1989), “Lexicographic egalitarian solution and uncertainty in the disagree-
ment point,” Zeitschrift für Operations Research 33, 259-266.

—— (1990), “Minimal cooperation in bargaining,” Economics Letters 34, 311-316.
—— (1996), “Transfer paradox and bargaining solutions,” Seoul Journal of Eco-

nomics 9, 181-190.
—— (2000), “Two impossibility results on the converse consistency principle in

bargaining”, Seoul National University mimeo.
—— (2002), “The converse consistency principle in bargaining,” Games and Eco-

nomic Behavior 40, 25-43.
—— (2005a), “The replacement principle in bargaining”, Social Choice and Wel-

fare 25, 141-154.
—— (2005b), “The separability principle in bargaining,” Economic Theory 26,

227-235.
Chun, Y. and H. J. M. Peters (1988), “The lexicographic egalitarian solution”,

Cahiers du CERO 30, 149-156.
—— and —— (1989), “Lexicographic monotone path solutions”, O.R. Spektrum

11, 43-47.
—— and —— (1991), “The lexicographic equal-loss solution”, Mathematical Social

Sciences, 22, 151-161.
Chun, Y. and W. Thomson (1988), “Monotonicity properties of bargaining solu-

tions when applied to economics”, Mathematical Social Sciences 15, 11-27.
—— and —— (1989), “Bargaining solutions and relative guarantees”, Mathemat-

ical Social Sciences 17, 285-295.
—— and —— (1990a), “Bargaining with uncertain disagreement points”, Econo-

metrica 58, 951-959.
—— and —— (1990b), “Egalitarian solutions and uncertain disagreement points”,

Economics Letters 33, 29-33.
—— and —— (1990c), “Nash solution and uncertain disagreement points”, Games

and Economic Behavior 2, 213-223.
—— and —— (1992), “Bargaining problems with claims”, Mathematical Social

Sciences 24, 19-33.
Conley, J., R. McLean, and S. Wilkie (1994), “The duality of bargaining theory

and multi-objective programming, and generalized choice problems”, Bell
Communications Research mimeo.

——, ——, and —— (1997), “Reference functions and possibility theorems for
cardinal social choice problems”, Social Choice and Welfare 14, 65-78.

Conley, J. and S. Wilkie (1991), “The bargaining problem without convexity”,
Economics Letters 36, 365-369.

—— and —— (1996a), “An extension of the Nash bargaining solution to non-
convex problems,” Games and Economic Behavior 13, 26-38.

37



—— and —— (1996b), “Implementing the Nash extension to nonconvex bargain-
ing problems,” Economic Design 1, 205-216.

Crawford, V. (1980), “A note on the Zeuthen-Harsanyi theory of bargaining,”
Journal of Conflict Resolution 24, 525-535.

Crawford, V. and H. Varian (1979), “Distortion of preferences and the Nash theory
of bargaining,” Economics Letters 3, 203-206.

Cressman, R. and M. Gallego, (2009), “On the ranking of bilateral bargaining
opponents”, Mathematical Social Sciences 58, 64-83.

Dagan, N., O. Volij, and E. Winter (2002), “A characterization of the Nash bar-
gaining solution”, Social Choice and Welfare 19, 811-823.

van Damme, E. (1986), “The Nash bargaining solution is optimal,” Journal of
Economic Theory 38, 78-100.

Dasgupta, P., and E. Maskin (1988), “Bargaining and destructive powers,” mimeo.
de Clippel, G. (2007), “An axiomatization of the Nash bargaining solution”, Social

Choice and Welfare 29, 201-210.
—— (2008), “Axiomatic bargaining in economic environments with lotteries”,

Brown University, mimeo.
Dekel, E. (1982), Harvard University, untitled mimeo.
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Gächter, S. and A. Riedl (2005), “Moral property rights in bargaining with infea-

sible claims”, Management Science 51, 249-263.

38



Gaertner, W., and M. Klemisch-Ahlert (1992), Social Choice and Bargaining Per-
spectives on Distributive Justice, Springer Verlag, Berlin-Heidelberg-New
York.

Gerber, A. (1997), “An extension of the Raiffa-Kalai-Smorodinsky solutions to
bargaining problems with claims,” University of Bielefeld Mimeo, June.

—— (1999), “The Nash solution and the utility of bargaining: a corrigendum”,
Econometrica 67, 1239-1240.

—— (2005), “Reference functions and solutions to bargaining problems with and
without claims,” Social Choice and Welfare 24, 527-541.

Gerber, A. and T. Upmann (2006), “Bargaining solutions at work: qualitative
differences in policy implications”, Mathematical Social Sciences 52, 162-
175.

Gillies, D.B. (1959), “Solutions to general non-zero sum games”, (Contribution to
the Theory of Games IV, R. Tucker and D.Luce, eds), Princeton University
Press, Princeton, 47-85.
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Denicolò, 25, 29, 30
dictatorial solution, 10

lexicographic, 10
directional solution, 21
disagreement point concavity, 21

weak, 21
disagreement point monotonicity, 19

strong, 19
Diskin, 29
domination, 15
domination-separability, 25
Donaldson, 11, 24, 25
Douven, 19
Dubra, 15

egalitarian solution, 8
lexicographic, 9
weighted, 8

Ehtamo, 16
Engwerda, 19
equal area solution, 11
equal length solution, 11
equal loss solution, 9

lexicographic, 9
Esteban, 27
expansion independence, 13

54



Felsenthal, 29
Freimer, 9
Furth, 20
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