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Abstract

This paper disentangles the topological assumptions of classical re-
sults (e.g., Walker (1977)) on existence of maximal elements from ra-
tionality conditions. It is known from the social choice literature that
under the standard topological conditions—with no other restrictions
on preferences—there is an element such that the upper section of
strict preference at that element is minimal in terms of set inclusion,
i.e., the uncovered set is non-empty. Adding a condition that weakens
known acyclicity and convexity assumptions, each such uncovered al-
ternative is indeed maximal. A corollary is a result that weakens the
semi-convexity condition of Yannelis and Prabhakar (1983).

1 Introduction

In the literature on binary relations and maximality, Walker (1977) provides
a necessary condition for existence of maximal elements that is also suffi-
cient under weak topological conditions. The usefulness of this result is that
when the relation in question is viewed as a preference relation, it permits
a non-vacuous theory of choice. The key condition, which I call the “finite-
dominance property,” is that there does not exist a finite set such that every
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alternative is strictly worse than some element of that set; equivalently, for
every finite set, there is an alternative that is weakly preferred to all ele-
ments of that set. Although the latter condition is not totally transparent,
it is separately implied by the intuitive and familiar conditions of acyclic-
ity (e.g., Brown (1973), Bergstrom (1975)) and semi-convexity of preferences
(Yannelis and Prabhakar (1983)). At the same time, a distinct literature has
addressed the possibility of non-existence of maximal elements by recourse to
a covering relation (or “majorization”) induced by the initial relation. It is
known from the social choice literature that under the standard topological
conditions of Walker and others, a maximal element of the covering relation
exists: there is an element such that the upper section of strict preference at
that element is minimal in terms of set inclusion. Adding a condition that
weakens Walker’s finite-dominance property, I show that each such uncov-
ered element is indeed maximal. In sum, this note employs the theory of
the uncovered set to disentangle the standard topological assumptions from
rationality assumptions on preferences and to generalize previous theorems
on existence of maximal elements.

A variety of definitions of covering have been used (see Duggan (2011)
for a review), and the one employed here is defined simply in terms of upper
sections of the strict preference relation: for our purposes, an element is
uncovered if and only if the set of strictly preferred elements is minimal
according to set inclusion compared to all other elements. The identification
of alternatives with minimal strict upper sections as plausible choices can be
traced in spirit to Gillies (1959) and, later, to Fishburn (1977). Of course,
any element at which the upper section of strict preference is empty—i.e.,
any maximal element of the strict preference relation—is uncovered in this
sense, so the uncovered set is a natural extension of the idea of maximality.
In contrast to maximal elements of strict preference, it is known that the
uncovered set is non-empty under very general topological conditions: it is
sufficient that at least one upper section of weak preference is compact and
all lower sections of strict preference are open. Moreover, the uncovered
elements are characterized by a “two-step” principle: z is uncovered if and
only if for every x, either the upper sections of strict preference are equal at x
and z, or there exists y such that z is weakly preferred to y, which is strictly
preferred to x. This solution has received attention in social choice, where
majority voting often fails to produce a Condorcet winner, and where the
uncovered set has been proposed as an upper bound on political processes.
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A trivial sufficient condition, under the above-mentioned topological con-
ditions, for existence of maximal elements of the initial preference relation is
then that every uncovered element is maximal with respect to strict pref-
erence. Perhaps surprisingly, this observation can be used to generalize
Walker’s finite-dominance property, while weakening the assumption that
the set of alternatives is compact. The generalized rationality condition,
which I call the “finite-subordination property,” is that there does not exist
a finite set containing a privileged element z, which is weakly preferred to
all but one element of the set, and such that for every x, there is an element
y of the finite set strictly preferred to x. Thus, the condition precludes the
possibility of certain dominant finite sets, as in Walker (1977), but only those
satisfying further internal structure; namely, one element of the set is weakly
preferred to all but one other member of the set. The proof follows directly
from a version the usual two-step principle (the latter due to Miller (1980))
based on weak topological background assumptions.

An easy corollary of the main result is an extension to relations that,
instead, satisfy a weak version of semi-convexity. Imbedding the set of al-
ternatives in a vector space and assuming it is convex, the latter condition
dictates that no alternative belongs to the convex hull of the set of alterna-
tives strictly preferred to it. I weaken this condition to subordinate convexity,
which requires that no alternative can be written as a convex combination of
a finite set of alternatives with the additional property that some alternative
is weakly preferred to all or all but one element of that set. Thus, we ex-
tend a result of Yannelis and Prabhakar (1983) using the weaker subordinate
convexity condition.

Following the early literature on maximality, a number of papers have
maintained or strengthened the acyclicity condition of Brown (1973) and
Bergstrom (1975), e.g., Mehta (1989), Campbell and Walker (1990), Peris
and Subiza (1994), Tian and Zhou (1995), and Alcantud (2002). Nehring
(1996) and Alcantud (2006) move to the non-binary framework and examine
conditions on general choice functions. Horvath and Ciscar (1996) consider
a partially ordered set of alternatives. In contrast, I maintain the binary ap-
proach without imposing any ordering structure, and I maintain (or slightly
weaken) the usual topological conditions while exploring the extent to which
the finite-dominance property and semi-convexity can be weakened.
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2 Main Result

Given a set X, a relation B on X is irreflexive if for all x ∈ X, not xBx; it is
reflexive if for all x ∈ X, xBx; it is asymmetric if for all x, y ∈ X, not both
xBy and yBx; and it is complete if for all x, y ∈ X, either xBy or yBx (or
both). Trivially, asymmetry implies irreflexivity, and completeness implies
reflexivity. Given an element x, let B(x) = {y | (y, x) ∈ B} be the upper
section of B at x, and let B−1(x) = {y | (x, y) ∈ B} be the lower section
of B at x. Define the inverse of B, denoted B−1, by B−1 = {(y, x) | (x, y) ∈
B}; define the dual of B, denoted B∗, as the complement of the inverse, i.e.,
B∗ = (B−1) = (B)−1; and define the covering relation of B, denoted B•,
as B• = {(x, y) | B(x) ⊆ B(y)}. Note that B = B∗∗, that B is irreflexive
if and only if B∗ is reflexive, and that B is asymmetric if and only if B∗ is
complete. Moreover, the covering relation of B is transitive and reflexive,
even if B fails to possess these properties. An element z is B-maximal if
for all x ∈ X, xBz implies zBx. In case B is asymmetric, z is B-maximal if
and only if there is no x ∈ X such that xBz; and in case B is complete, z is
B-maximal if and only if for all x ∈ X, zBx. An element z is B•-maximal if
and only if the upper section B(z) is minimal among {B(x) | x ∈ X} with
respect to set inclusion, in which case z is B-uncovered, and the set of such
elements is the uncovered set of B.

Now let X be a topological space, let P be an irreflexive binary relation
on X, and let R = P ∗ denote the dual of P . When X is a set of alter-
natives available to a decision maker, we interpret P as a strict preference
relation and R as a weak preference relation. We make use of the following
assumptions: (A1) for all x ∈ X, the strict lower section P−1(x) is open,
(A2) for some x ∈ X, the weak upper section R(x) is compact, and (A3)
for all x ∈ X, R(x) is compact. The first lemma shows that the first two of
these topological conditions—in the absence of transitivity properties of any
sort—are sufficient for the existence of an uncovered element for the relation
B. The result has been proved in slightly less generality by Banks, Duggan,
and Le Breton (2002) and Duggan (2011).1

Lemma 1 Assume (A1) and (A2). There exists a P -uncovered element.

1Banks, Duggan, and Le Breton (2002) establish the result in the proof of their Theorem
3 assuming compactness of X , and Duggan (2011) states the result in Proposition 23
assuming asymmetry of P .
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The proof follows immediately from results of Banks, Duggan, and Le
Breton (2006). By (A1) and Proposition A4 of the latter paper, the covering
relation P • has closed upper sections (it is “upper semicontinuous” in the
terminology of that paper). Moreover, the covering relation is transitive. By
(A2), there is some x such that R(x) is compact. Note that P •(x) ⊆ R(x),
for otherwise there exists y ∈ P •(x) \ R(x), which implies x ∈ P (y) ⊆ P (x),
contradicting irreflexivity of P . Therefore, P •(x) is compact for some x, and
the existence of a P •-maximal element follows from Proposition A1 of the
above-mentioned paper. This completes the proof of the lemma.

A straightforward observation (along the lines of Miller (1980)) is that
an element z belongs to the uncovered set of P if and only if for all x ∈ X,
either P (x) = P (z) or there exists y ∈ X such that zRyPx. Indeed, z is P -
uncovered if and only if P (z) is minimal among {P (x) | x ∈ X}, which holds
if and only if for all x ∈ X, not P (x) ( P (z), which holds if and only if for all
x ∈ X, either P (x) = P (z) or there exists y ∈ P (x) \ P (z) = P (x)∩R−1(z),
as claimed. I refer to this property as a “two-step principle.” The next lemma
employs topological conditions to establish one direction of a simplified two-
step principle. Define a set Y ⊆ X to be finitely dominant if Y is finite
and for all x ∈ X, there exists y ∈ Y with yPx. Given an element z ∈ X,
we say P is finitely subordinated to z if there is a finitely dominant set
Y with z ∈ Y and such that there exists v ∈ Y with Y \ {v} ⊆ R−1(z).2 In
words, P is subordinated to an element if that element belongs to a finitely
dominant set and is weakly preferred to all but one member of that set.

Lemma 2 Assume (A1) and (A2), and consider any z ∈ X such that R(z)
is compact. If z is P -uncovered, then either z is P -maximal, or P is finitely
subordinated to z.

To prove the lemma, suppose z is P -uncovered and is not P -maximal, so
there exists v ∈ P (z). Consider any x ∈ R(z) \ P−1(v). Then v /∈ P (x),
so P (x) 6= P (z), and since z is P -uncovered, the two-step principle yields
y ∈ X with zRyPx. In particular, this implies

R(z) \ P−1(v) ⊆
⋃

y∈R−1(z)

P−1(y).

2Note the implication that vPz.
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Since R(z) is compact by assumption, and P−1(v) is open by (A1), it follows
that R(z)\P−1(v) is compact in the relative topology induced by the topology
on X. Since {P−1(y) ∩ (R(z) \ P−1(v)) | y ∈ R−1(z)} is an open covering of
R(z) \ P−1(v) in the relative topology, by (A1), we conclude that there is a
finite subset {y1, . . . , ym} of R−1(z) such that R(z)\P−1(v) ⊆

⋃m

j=1 P−1(yj).
Then P is finitely subordinated to z by way of the set Y = {z, v, y1, . . . , ym}.
This completes the proof of the lemma.

We can now proceed to the main theorem, which generalizes the result
of Walker (1977) that, under (A1) and compactness of X, the absence of a
finitely dominant set implies the existence of a P -maximal element: rather
than precluding all finitely dominant sets, it is adequate to ban finitely dom-
inant sets for which one member is weakly preferred to all but one other
member, i.e., P is not subordinated to any element; and compactness of X
can be weakened to compact upper sections of weak preferences.

Theorem 1 The following properties are listed in decreasing strength.

(C0) There is a P -maximal element.

(C1) There is no finite, externally stable cycle, i.e., there do not exist ele-
ments y1, . . . , ym ∈ X satisfying y1Pym and yj+1Pyj for all j < m, and
such that for all x ∈ X \ Y , there exists j ∈ {1, . . . , m} with yjPx.

(C2) There is no finitely dominant set.

(C3) There is no element z ∈ X such that P is finitely subordinated to z.

Moreover, under (A1) and (A3), all of the above conditions are equivalent.

That (C0) implies (C1) is clear. That (C1) implies (C2) follows from the
fact that the cycle {y1, . . . , ym} is finitely dominant. Similarly, if P is finitely
subordinated to some element, then there is a finitely dominant set, so (C2)
implies (C3). Now assuming (A1) and (A3), it suffices to prove that (C3)
implies (C0). By Lemma 1, there is a P -uncovered element z, and by (A3),
R(z) is compact. Then Lemma 2 implies that either z is P -maximal or it
is finitely subordinated to z. Since (C3) precludes the latter possibility, we
conclude that z is P -maximal. This completes the proof of the theorem.
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The absence of a finitely dominant set, which I term the finite-dominance
property, has a well-known dual formulation:

(C2′) For every finite set Y ⊆ X, there exists x ∈ X such that for all y ∈ Y ,
xRy.

Similarly, I term (C3) the finite-subordination property, which has the
following dual formulation:

(C3′) For every finite set Y ⊆ X, if there exist z, v ∈ Y with Y \{v} ⊆ R−1(z),
then there exists x ∈ X such that for all y ∈ Y , xRy.

Equivalently, we may formulate this as follows:

(C3′′) For all z ∈ X, all v ∈ P (z), and all finite W ⊆ R−1(z), there exists
x ∈ X such that for all y ∈ W ∪ {v, z}, xRy.

3 Implications

Assuming compactness of X, (A1) automatically implies (A3), and it implies
that the set of P -maximal elements is closed. This suggests the following
corollary.

Corollary 1 Assume X is compact and (A1). If P possesses the finite-
subordination property, then the set of P -maximal elements is nonempty and
compact.

Obviously, acyclicity of P implies (C1), and thus the finite-dominance
property, and it is therefore sufficient for existence of a maximal element
under (A1) and (A3). A different approach to verifying the finite-dominance
property is to impose the structure of convexity. Assuming X is a convex
subset of a vector space, we say P is convex if for all x ∈ X, P (x) is
convex; and it is semi-convex if for all x ∈ X, x /∈ coP (x). By irreflexivity
of P , the former condition implies the latter, and the two are equivalent
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when P is a weak order (i.e., R is complete and transitive). That semi-
convexity, assuming X is a Hausdorff topological vector space and assuming
(A1), implies the finite-dominance property follows by an application of the
KKM theorem of Knaster, Kuratowski, and Mazurkiewicz (1929). Adding
compactness of X, existence of a P -maximal element follows, as established
by Yannelis and Prabhakar (1983).

I use Theorem 1 to weaken the semi-convexity condition of Yannelis and
Prabhakar (1983). To motivate the construction, I recast semi-convexity as
follows: for all x ∈ X and all finite Y ⊆ P (x), it is not the case that x ∈ coY .
I now say P is subordinate convex if for all x ∈ X and all finite Y ⊆ P (x)
such that there exists z ∈ X with |R−1(z) ∩ Y | ≥ |Y | − 1, it is not the case
that x ∈ coY . Subordinate convexity may allow an element to belong to the
convex hull of its strict upper section in some situations, but it cannot be
written as the convex combination of a finite set of strictly preferred elements
if there is an element (possibly in the finite set but not necessarily) weakly
preferred to all or all but one member of the set. The following theorem
generalizes Theorem 4 of Sonnenschein (1971), which assumes compactness of
X and convex upper sections of strict preference, and Theorem 5.1 of Yannelis
and Prabhakar (1983), which replaces convexity with semi-convexity.3 It is
not logically related to Theorem 5.3 of the latter paper, which employs a
different weakening of compactness of X than used here and which assumes
strict upper sections are located within a given compact set.

Corollary 2 Assume X is a convex subset of a Hausdorff topological vec-
tor space, and assume (A1). If P is subordinate convex, then it possesses
the finite-subordination property. Adding (A3), there exists a P -maximal
element.

To prove the corollary, it suffices to deduce (C3′) from subordinate con-
vexity of P under (A1). Consider any finite set Y ⊆ X and elements z, v ∈ Y
with Y \ {v} ⊆ R−1(z). Index Y as {y1, . . . , ym}, assuming |Y | = m without
loss of generality, and let V be the finite-dimensional vector space spanned by

3Furthermore, Sonnenschein (1971) considers choice from a finite-dimensional budget
set, whereas Yannelis and Prabhakar (1983) consider a general subset of a Haudorff topo-
logical vector space. An implication of Schafer and Sonnenschein (1975) is a related result
for the case in which the set of alternatives is finite-dimensional, and the strict preference
relation has open graph and satisfies semi-convexity.
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Y . As a finite-dimensional subspace of a Hausdorff tvs, V is homeomorphic
to finite-dimensional Euclidean space (see Theorem 5.21 of Aliprantis and
Border (2006)). By (A1), {R(y1) ∩ V, . . . , R(ym) ∩ V } is a family of closed
subsets of V . Let I ⊆ {1, . . . , m} be any subset of indices, and consider any
convex combination x ∈ co{yj | j ∈ I}. Since X is convex, we have x ∈ X.
I claim that x ∈ R(yj) for some j ∈ I, for suppose otherwise. Then we have
x ∈

⋂
j∈I P−1(yj). But note that |R−1(z) ∩ {yj | j ∈ I}| ≥ |I| − 1, so subor-

dinate convexity implies that x /∈ co{yj | j ∈ I}, a contradiction. Therefore,
the KKM theorem (see Lemma 17.43 of Aliprantis and Border (2006)) yields
x ∈

⋂m

j=1 R(yj), fulfilling (C3′). This completes the proof of the corollary.
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