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WITH INFINITE-DIMENSIONAL

EXTERNALITIES

PAULO BARELLI AND JOHN DUGGAN

Abstract. We prove existence and purification results for equilibria in which

players choose extreme points of their feasible actions in a class of strategic en-

vironments exhibiting a product structure. We assume finite-dimensional action

sets and allow for infinite-dimensional externalities. Applied to large games, we

obtain existence of Nash equilibrium in pure strategies while allowing a contin-

uum of groups and general dependence of payoffs on average actions across groups,

without resorting to saturated measure spaces. Applied to games of incomplete

information, we obtain a new purification result for Bayes-Nash equilibria that

permits substantial correlation across types, without assuming conditional inde-

pendence given the realization of a finite environmental state. We highlight our

results in examples of industrial organization, auctions, and voting.

1. Introduction

We study a general class of strategic environments exhibiting a product structure

and prove existence of equilibrium in an abstract setting; adding an assumption of

nonatomicity, we further show that every equilibrium can be purified in the sense

that there exists an equivalent equilibrium in which players choose extreme points of

their feasible actions. When the product structure is imposed on the set of players in

a large game, we identify a player with the group she belongs to and a nonatomically

distributed personal characteristic, and we assume payoffs depend on own actions

and the profile of average actions of the groups. The space of groups is general, we

allow for infinite-dimensional externalities across groups, and we obtain existence

of Nash equilibria in which players choose from the extreme sets of their actions.

Ours is the first such result that does not make use of saturated measure spaces;

the cost is that action sets are finite-dimensional. When the product structure is

imposed on type spaces in a Bayesian game, we view a player’s type as consisting of

a general component together with an atomless, conditionally independent, private
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values component. The general component is allowed to be correlated among players,

and we obtain a purification result for games with finitely many actions, the first

such result that allows for substantially correlated information, without assuming

conditional independence given the realization of a finite environmental state.

Examples: Consider a market composed of a large number of firms, where each

firm is characterized by its location t and technological characteristic u. Assume

that there are infinitely many locations and infinitely many technologies. Each firm

(t, u) produces a vector q(t, u) ∈ R
d of commodities belonging to a production set

Y (t, u). Let α(t) = ∫u q(t, u)du denote the aggregate production vector at location

t, averaging over firm technologies u. We assume implicitly that prices are deter-

mined by product and factor market clearing in each location, where consumers

and workers may (at some cost) travel to transact in markets at different locations.

Thus, prices and firm profits depend on the aggregate production function α. For

simplicity, we write the profit of firm (t, u) from production vector q(t, u) given

aggregate production α as π(t, u, q(t, u);α). Assume types and locations lie in com-

plete, separable metric spaces; production sets Y (t, u) are nonempty, compact, and

lower measurable; profits are jointly measurable and continuous in (q(t, u), α); and

that firm types u are nonatomically distributed. Our result for large games (Propo-

sition 1) ensures that a Nash equilibrium exists. The innovation with respect to the

literature (see, for instance, Yu and Zhu (2005)) is in allowing for the information

of infinitely many locations to affect the price received by a given firm.

Next, consider a multi-unit auction for bonds, drilling rights, etc. Assume that

there are n bidders, indexed by j. Each bidder j performs a private investigation to

determine the value of different portfolios, summarized by a multidimensional signal

tj, and submits a menu of bids as a function of holdings, with prices determined

by any order statistic over bids. Although privately observed by the bidder, her

signal potentially contains information relevant to the other bidders, as bidders

may have different signal technologies, and there may be inherent randomness in

testing; so the expected value of the objects for bidder j depends on the entire profile

(t1, . . . , tn). Moreover, assume that bidder j has an additional private characteristic

uj that affects the value of the objects for bidder j only (due, e.g., to aspects of

the bidder’s production technology or product market), and that uj is conditionally

independent given tj. Assume types belong to complete, separable metric spaces;

bids are in discrete (and bounded) monetary amounts, so there are only finitely many

feasible bids, that the distribution of signals tj satisfies the standard diffuseness

condition; and the private value types uj are nonatomically distributed. Our result

for Bayesian games (Proposition 2) ensures existence of Bayes-Nash equilibria, and
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moreover that each equilibrium in mixed strategies can be purified. While existence

of mixed strategy equilibria in this model follows from known results (see Milgrom

and Weber (1985)), the innovation with respect to the literature on purification is

in allowing for very general correlation among the signals (t1, . . . , tn). The implied

existence of pure strategy equilibria extends Athey’s (2001) Theorem 1 for finite

games and McAdams’ (2006) Theorem 1 for multi-unit auctions to settings with a

private-value component: the existence of (possibly non-monotonic) pure strategy

Bayes-Nash equilibria in these settings does not require single-crossing conditions.

Finally, consider a voting game among n voters who must choose between two

alternatives, A and Q, using majority rule or other quota rule. A state variable s

is selected by nature, and conditional on s, each voter j receives a signal tj drawn

(independently conditional on s) from a countable signal space. In addition, each

voter is characterized by a preference parameter uj that is independent of the other

voters’ types. Then the payoff of voter j from outcome x = A,Q, given prefer-

ence parameter uj and state s, is written Uj(x, s, uj). Assuming that states and

preference parameters belong to complete, separable metric spaces and that prefer-

ence parameters are nonatomically distributed, our result for Bayesian games yields

existence and purification of Bayes-Nash equilibria. When the state s is discrete,

the purification theorem of Milgrom and Weber (1985) applies, but we allow for a

continuously distributed state variable. As such, we generalize the existence result

Proposition 1 of Feddersen and Pesendorfer (1997), who assume a one-dimensional

state and finite signal space, and we do so without imposing the monotonicity con-

ditions used to obtain equilibria in cutoff strategies. In fact, our result does not use

the assumption of two alternatives, and so it extends to any number of alternatives

and voting mechanism in which voters choose messages from a finite set.

Analytical framework: Our general framework is formulated abstractly, with-

out an immediate interpretation in terms of a game; there are, for example, no

players and no payoff functions. It can be viewed, rather, as a fixed point theorem

that exploits a special kind of product structure on its domain. This product struc-

ture allows us to apply the iterated integral approach used by Duggan (2011b) to

prove existence of stationary Markov perfect equilibria in noisy stochastic games.

To convey the idea, we define a choice function γ as assigning to each pair (t, u) a

choice in R
d. We then calculate the corresponding average choice function, α, by

taking the marginal, α(t) = ∫u γ(t, u)du, of γ pointwise for each t. We then assign

a choice set M(t, u;α) to each pair (t, u), where by construction these sets depend

only on average choices, and we define a choice equilibrium as a mapping γ such

that for almost all (t, u), γ(t, u) belongs to the choice set M(t, u;α) determined
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by the corresponding average choices. Our existence result for choice equilibria

is non-nested with Theorem 2.2.1 of Balder (2002), who establishes existence of

equilibria in pseudogames that are more general than our model in that his action

sets may be infinite-dimensional, but less general in that he assumes externalities

are finite-dimensional. Beyond existence, assuming u is nonatomically distributed,

we provide a purification result: for every choice equilibrium, there is an extremal

choice equilibrium γ̂ that chooses from the (closure of) extreme points of choice sets

M(t, u; α̂); moreover, γ̂ is equivalent to γ in the sense that it determines the same

average choices and, therefore, the same choice sets for all (t, u). In the general

framework, we impose further product structure on the general component t and

choice sets to obtain Bayesian environments as special cases.

The existence argument takes place in the space of average choice functions. We

define S(α) as the set of selections of the correspondence t ↦ ∫uM(t, u;α)du, and

we prove existence of a fixed point α∗ ∈ S(α∗) that is generated by an equilibrium

choice function γ∗. The fixed point argument surmounts a number of technical

challenges. To ensure sequential upper hemicontinuity of S, we apply results of

Yannelis (1990, 1991) on properties of selections of correspondences, and as the

space of average choice functions is not necessarily (weakly) compact or metrizable,

we apply a recent result of Agarwal and O’Regan (2002) to obtain a fixed point, α∗.

Finally, we employ the theorem of Artstein (1989) to back out an equilibrium choice

function γ∗ consistent with α∗. Our purification argument relies on an application

of a version of Lyapunov’s theorem (see Hildenbrand (1974)) pointwise for each t,

using nonatomicity of u; we then apply Arstein’s theorem again to back out an

extremal choice function. Of note, the latter step relies on a result (Lemma 10,

in the appendix) establishing lower measurability of the extreme points of a lower

measurable correspondence with nonempty, compact values in R
d.

Related literature: Our existence results for Nash equilibria in large games is

non-nested with respect to the results in Martins-da-Rocha and Topuzu (2008) and

Balder (2002), as we allow for infinite-dimensional externalities at the cost of finite-

dimensional action sets. With respect to Khan, Rath, and Sun (1997), we provide a

modeling approach that allows us to handle infinite-dimensional externalities with-

out relying on an infinite-dimensional version of Lyapunov’s theorem. In particular,

letting σ denote a strategy profile and σ(t, u) denote the action of player (t, u),
the standard approach would be to condense externalities to the finite-dimensional

statistic β = ∫(t,u) σ(t, u)d(t, u), which means that two strategy profiles σ and σ̂

with β = β̂ are considered equivalent by all players. In contrast, in our model, it is

the infinite-dimensional statistic α(⋅) = ∫u σ(⋅, u)du on which players condition their
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choices; it is obviously possible to have α ≠ α̂ while β = β̂, so players react to a richer

set of “societal statistics” in our formulation. This modeling strategy at the same

time circumvents the failure of Lyapunov’s theorem in infinite dimensions, without

resorting to saturated (or super-nonatomic) measure spaces, as in Podczeck (2008).

Our existence result for pure-strategy Bayesian equilibrium is non-nested with

the application of Balder’s (2002) results to pure-strategy Bayesian equilibrium. His

Theorem 3.2.1 gives conditions for existence of a pure-strategy Bayesian equilibrium;

in comparison to our result, he allows for a measure space of players and infinite-

dimensional action sets (we assume a finite set of players and finite-dimensional

action spaces), but he assumes a countable set of states of the world, convex action

sets, and concave payoff functions (we allow for a general type component and as-

sume finite action sets). In comparison to the purification results of Migrom and

Weber (1985), Khan, Rath, and Sun (2006), and Balder (2008), we generalize condi-

tional independence of types and drop finiteness of their “environmental variable,”

t0. Instead, we assume a product structure on player types by decomposing player

types into a general component (which are possibly correlated and distributed very

generally) and an atomless, private value component (which is independently drawn

conditional on the profile of general types). Viewing one of the players as Nature,

with trivial action space, we can easily incorporate an environmental variable t0

that lives in a general complete, separable metric space. Compared to the recent

purification results based on saturated measure spaces (Loeb and Sun (2006), Pod-

czeck (2009), and Wang and Zhang (2010)), we obtain similar improvements: only

the private component is assumed conditionally independent, and the environmen-

tal variable need not be finite or countable. There is no need to resort to saturated

measure spaces, as we apply the classical Lyapunov result; but the cost, as before,

is the finite-dimensionality of the action space.

Organization: In Section 2, we present the abstract framework, and Section 3

contains the statement and proofs of our main existence and purification results.

Section 4 provides an application of our general results to large games, and Section

5 takes up the case of Bayesian games. The appendix contains Lemma 10, on the

lower measurability of the extreme points of a correspondence.

2. Abstract Framework

Let (N,N , µ) be a measure space, where N is a complete, separable metric space,

N the Borel sigma-algebra, and µ = (µj)nj=1 a R
n-valued, Borel vector probability

measure on N . Assume:
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(A1) N = T1 × ⋯ × Tn × U , where Tj , j = 1, . . . , n, and U are complete, separable

metric spaces.

Let Tj, j = 1, . . . , n, and U be the respective Borel sigma-algebras. Let T = ⨉n
j=1 Tj

and T = ⊗n
j=1 Tj, with generic element t = (t1, . . . , tn) ∈ T , and note that N = T ⊗ U

(see Theorem 4.44 of Aliprantis and Border (2006), henceforth AB). Let κj denote

the marginal of µj on Tj .

Assume: for each j = 1, . . . , n,

(A2) there is a Borel transition probability νj(⋅∣⋅)∶Tj × U → [0,1] such that for all

Q = R × S ∈ T ⊗ U ,

µj(Q) = ∫
Tj

νj(S∣tj)κj(dtj),
so that νj(⋅∣tj) is a Borel probability measure on U for κj-almost all tj ∈ Tj and

tj ↦ µj(E∣tj) is a Tj-measurable function for all E ∈ U . In particular, the mapping

tj ↦ νj(⋅∣tj) is Borel measurable with the weak* topology on the space of Borel

probability measures on U (see Theorem 19.7 of AB). In terms of standard notation,

µj is the extension of νj(⋅∣⋅) ⊗ κj to N . An implication is that the distribution

of u according to µj is independent of t−j. For each t ∈ T , we therefore write

µ(⋅∣t) = (νj(⋅∣tj))nj=1 as the vector of conditional probabilities.

For each j = 1, . . . , n and (tj , u) ∈ Tj ×U , let Aj(tj , u) ⊆R
d denote a set of feasible

alternatives. A choice function for j is a Tj ×U-measurable mapping γj ∶Tj ×U →R
d

such that for νj(⋅∣⋅) ⊗ κj-almost all (tj , u), we have γj(tj, u) ∈ Aj(tj , u). For each

j = 1, . . . , n, let U j ∈ U contain the atoms of {νj(⋅∣tj) ∶ tj ∈ Tj}, and assume:

(A3) for all (tj, u) ∈ Tj × U , Aj(tj, u) is nonempty and compact; and for each

(tj , u) ∈ Tj ×U j , the set Aj(tj , u) is convex,

(A4) the correspondence Aj ∶Tj × U ⇉ R
d is lower measurable, i.e., for all open

G ⊆R
d, the set {(tj , u) ∈ Tj ×U ∶ Aj(tj, u) ∩G ≠ ∅} is Tj ⊗ U-measurable.

We make use of the following:

Lemma 1: For each j = 1, . . . , n, the mapping (t, u) → sup ∣∣Aj(t, u)∣∣ is N -

measurable.

Proof: Note three observations: with continuity of the Euclidean norm ∣∣ ⋅ ∣∣,
(A6) implies that the correspondence (t, u) ↦ ∣∣Aj(t, u)∣∣ is lower measurable with

nonempty, closed values in R; as a consequence, there is a sequence {fn} of N -

measurable functions fn∶N →R such that for all (t, u), ∣∣Aj(t, u)∣∣ = cl{fn(t, u)} (see

Corollary 18.14 in AB); and the pointwise limit of a sequence of measurable functions
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into a complete, separable metric space is itself measurable (see Lemma 4.29 of AB).

Therefore, (t, u) ↦ sup ∣∣Aj(t, u)∣∣ = sup{fn(t, u)} is N -measurable. This completes

the proof of the lemma.

Let 1 ≤ p <∞ and 1
p
+

1
q
= 1 be fixed for the remainder of the paper. Assume: for

each j = 1, . . . , n,

(A5) for κj-almost all tj , the mapping u↦ sup ∣∣Aj(tj , u)∣∣ is p-integrably bounded,

i.e.,

∫
u
sup ∣∣Aj(tj , u)∣∣pνj(du∣tj) < ∞.

For later use, we record the following strengthening of assumption (A5):

(A5′) the mapping (tj , u)↦ sup ∣∣Aj(tj , u)∣∣ is p-integrably bounded, i.e.,

∫
(tj ,u)

sup ∣∣Aj(tj , u)∣∣p(νj(⋅∣⋅)⊗ κj)(d(tj , u)) < ∞.
When p = 1, assumption (A5′) (and therefore (A5)) is automatically satisfied if the

feasible sets are bounded by a fixed, compact subset of R
d, but we allow in principle

for arbitrarily large action sets A(i). In particular, (A5) does not preclude the

possibility that action sets grow large “quickly” as we vary tj.

A choice function is an ordered n-tuple γ = (γj)nj=1 of choice functions for j =
1, . . . , n. A choice function γj for j determines an average choice function for j,

denoted αj ∶Tj →R
d, as follows: for each tj ∈ Tj , we define

αj(tj) = ∫
u
γj(tj , u)νj(du∣tj)(du),

which is Borel measurable by (A2). More precisely, given γj, define the Tj-measurable

function αj(⋅∣γj)∶Tj → R
d by αj(tj ∣γj) = ∫u γj(tj , u)νj(du∣tj). Then the set of aver-

age choice functions for j consists of any mapping that is equivalent to some αj(⋅∣γj)
up to a set of κj-measure zero:

Aj =
⎧⎪⎪⎨⎪⎪⎩
αj ∶Tj →R

d
∶
αj(tj) = αj(tj ∣γj) for κj-almost all tj ∈ Tj

and for some choice function γj for j

⎫⎪⎪⎬⎪⎪⎭
.

We will sometimes suppress dependence of αj(⋅∣γj) on γj without confusion in the

sequel. An average choice function is an ordered n-tuple α = (αj)nj=1 of average

choice functions for j = 1, . . . , n. Note that because (A5) is stated pointwise for each

tj, it does not imply compactness of the space of average choice functions for j in

the weak topology.

Given any α ∈ A and j = 1, . . . , n, let Mj(⋅;α)∶Tj ×U ⇉R
d be a choice correspon-

dence. Assume: for each α ∈ A and j = 1, . . . , n,
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(A6) for all (tj , u) ∈ Tj ×U , Mj(tj, u;α) ⊆ Aj(tj , u);
(A7) for all (tj , u) ∈ Tj ×U , the set Mj(tj , u;α) is nonempty and compact; and for

all (tj , u) ∈ Tj ×U j , the set Mj(tj, u;α) is convex;

(A8) the correspondence (tj , u) ↦ Mj(tj , u;α) is lower measurable, i.e., for all

open G ⊆ R
d, the set {(tj , u) ∈ Tj × U ∶ Mj(tj , u;α) ∩ G ≠ ∅} is Tj ⊗ U-

measurable;

(A9) the correspondence (tj , u) ↦ Mj(tj , u;α) is uniformly bounded by a p-

integrable correspondence, i.e., there exists a lower measurable correspon-

dence Υj ∶Tj × U ⇉ R
d with compact and convex values such that for all

α ∈ A and all (tj , u) ∈ Tj ×U , we have Mj(tj , u;α) ⊆ Υj(tj, u), and

∫
(tj ,u)

sup ∣∣Υj(tj , u)∣∣p(νj(⋅∣⋅)⊗ κj)(d(tj , u)) < ∞.
Note, in particular, that we impose convexity only on the atoms of U ; if the probabil-

ity measures {νj(⋅∣tj) ∶ tj ∈ Tj} are nonatomic, then (A7) demands only that choice

sets be nonempty and compact. Also note that if we strengthen (A5) to (A5′), as-

sumption (A9) is implied by our other assumptions by taking Υj(tj , u) = Aj(tj , u)
for all (tj , u) ∈ Tj ×U .

We have not as yet shown the existence of average choice functions that are p-

integrable; the existence of such functions does not follow from (A5), because that

assumption does not restrict feasible action sets across tj, but it does follow from

(A6)–(A9). This is established in the next lemma. Henceforth, let A
p
j = {αj ∈ Aj ∶

∣∣αj ∣∣p <∞} denote the subset of p-integrable average choice functions for j.

Lemma 2: For each j = 1, . . . , n, A
p
j is nonempty.

Proof: Since Aj is lower measurable with closed values, it admits a measurable

selection γj (see Theorem 18.13 in AB), and then αj = αj(⋅∣γj) is an average choice

function for j, and α = (αj)nj=1 ∈ A. Then (A7) and (A8) imply thatMj(⋅;α) admits a

measurable selection γ̃j ; (A6) implies that α̃j = αj(⋅∣γ̃j) is an average choice function

for j; and (A9) implies ∣∣α̃j ∣∣p <∞. Therefore, α̃j ∈ A
p
j . This completes the proof of

the lemma.

We endow A
p
j with the topology inherited from the weak topology σ(Lp

j ,L
q
j)

on L
p
j ≡ Lp(Tj ,Tj, κj), where Lp(Tj ,Tj , κj) is the set of κj-equivalence classes of

Tj-measurable mappings αj ∶Tj → R
d such that ∣∣αj ∣∣p ≡ ∫tj ∣∣αj(tj)∣∣pκj(dtj) < ∞.

Convergence in L
p
j is defined with reference to the dual space, Lq

j ≡ Lq(Tj ,Tj , κj),
so that given any net {αν

j }, we have αν
j → αj if and only if for all ϕj ∈ Lq

j , ∫tj ϕj(tj) ⋅
[αν

j (tj) − αj(tj)]κj(dtj) → 0. Let A
p = ⨉n

j=1 A
p
j , and endow this space with the

product topology.
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Finally, we impose the natural assumption that choice sets are (sequentially) up-

per hemicontinuous on the space of p-integrable average choice functions.1 Assume:

for each j = 1, . . . , n,

(A10) for all (tj , u) ∈ Tj × U , the correspondence α ↦ Mj(tj , u;α) is sequentially

upper hemicontinuous on A
p.

Thus, the degree p of integrability controls the tradeoff between our boundedness

assumptions on Aj(tj , ⋅) and Mj(⋅;α) (in (A5) and (A9)) and our continuity as-

sumption on Mj(tj, u; ⋅) (in (A10)); of course, higher p strengthens boundedness

and weakens continuity.

3. Main Result

A choice function γ∗ is a choice equilibrium if γ∗j (tj , u) ∈Mj(tj , u;α∗) for νj(⋅∣⋅)⊗
κj-almost all (tj , u) and α∗j (tj) = ∫u γ∗j (tj , u)νj(du∣tj) for κj-almost all tj, and all

j = 1, . . . , n. An extremal choice equilibrium is a choice equilibrium γ∗ such that for

each j = 1, . . . , n and νj(⋅∣⋅)⊗κj -almost all (tj , u), we have γ∗j (tj , u) ∈ extMj(tj , u;α∗),
where extMj(tj , u;α∗) is the set of extreme points of Mj(tj, u;α∗). We denote by

extMj(tj, u;α∗) the closure of the set of extreme points of the choice correspondence.

Our main theorem asserts existence of a choice equilibrium and a partial purification

result: given any choice equilibrium, there is a choice equilibrium such that choices

are made from the closure of extreme points of choice sets for almost all (tj , u) with

u in the nonatomic part of U j and that is equivalent the choice equilibrium, in the

sense that the equilibria determine the same average actions (and therefore same

choice sets) up to a set of measure zero.

Theorem: Assume (A1)–(A10). (a) A choice equilibrium exists; (b) for every

choice equilibrium γ∗, there exists a choice equilibrium γ̂ such that (i) γ∗ and γ̂

determine equivalent average actions, i.e., for each j = 1, . . . , n and κj-almost all tj,

α∗j (tj) = α̂j(tj); and (ii) γ̂ chooses from the closure of extreme points of choice sets

for the nonatomic part of U , i.e., for each j = 1, . . . , n and νj(⋅∣⋅) ⊗ κj-almost all

(tj , u) ∈ Tj × (U ∖U j), we have γ̂j(tj , u) ∈ extMj(tj , u; α̂).
Obviously, if the probabilities {νj(⋅∣tj) ∶ tj ∈ Tj} are nonatomic and the sets

of extreme points are almost always closed, then extremal choice equilibria exist,

1Given Banach space X and set Y ⊆ X, a correspondence ψ∶Y ⇉ Y is sequentially upper hemi-

continuous if for all weakly closed sets F ⊆ X, the lower inverse ψℓ(F ) = {x ∈ Y ∶ ψ(x) ∩ F ≠ ∅} is

sequentially closed in the weak topology relative to Y , i.e., every sequence in ψℓ(F ) that converges

in the relative topology on Y has limit in ψℓ(F ).
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and we can strengthen part (b) of the theorem to obtain a full purification result.

Closedness of the set of extreme points does not hold generally (see Figure 7.4 of

AB), but it does hold widely.

Corollary: Assume that (A1)–(A10) hold; that for each j = 1, . . . , n, we have

U j = ∅; and for each α ∈ A and for νj(⋅∣⋅) ⊗ κj-almost all (tj , u), extMj(tj , u;α) is

closed. (a) An extremal choice equilibrium exists; (b) for every choice equilibrium,

there exists an extremal choice equilibrium γ̂ that determines equivalent average ac-

tions, i.e., for each j = 1, . . . , n and κj-almost all tj , α
∗
j (tj) = α̂j(tj).

The remainder of this section consists of the proof of the theorem, and we as-

sume throughout that conditions (A1)–(A10) hold. To begin, we define two useful

correspondences. For j = 1, . . . , n, let A∗j ∶Tj ⇉R
d be defined by

A∗j (tj) = ∫
u
Aj(tj , u)νj(du∣tj),

and for each α ∈ A, define M∗
j (⋅;α)∶Tj ⇉R

d by

M∗
j (tj ;α) = ∫

u
Mj(tj , u)νj(du∣tj).

These are, respectively, the Aumann integrals of the feasible action correspondence

Aj(tj , ⋅), and of the choice correspondence Mj(tj , ⋅;α), with respect to u. Note that

(A6) implies that M∗
j (tj ;α) ⊆ A∗j (tj). Also, because we are only interested in almost

everywhere properties, it is without loss to assume that (Tj ,Tj , κj), j = 1, . . . , n, is a

complete measure space. More precisely, (A5) and (A10) ensure that we will work

with integrably bounded measurable functions, so the integrals does not change

when we consider the completion of (Tj ,Tj , κj), j = 1, . . . , n.

The next lemma characterizes the average choice functions for j in terms of

the correspondence A∗j , and it characterizes the almost everywhere selections from

Mj(⋅;β) (for any given average choice function β) in terms of M∗
j (⋅;β).

Lemma 3: For j = 1, . . . , n and each Tj-measurable αj ∶Tj → R
d, (a) αj is a

κj-almost everywhere selection from A∗j if and only if αj ∈ Aj ; (b) for each β ∈ A, αj

is a κj-almost everywhere selection from M∗
j (⋅;β) if and only if there exists a choice

function γj for j with γj(tj , u) ∈ Mj(tj , u;β) for νj(⋅∣⋅) ⊗ κj-almost all (tj, u) such

that for κj-almost all tj, αj(tj) = ∫u γj(tj, u)νj(du∣tj).
Proof: To prove (a), note that the “if” direction is immediate from the definition

of average choice function for j. Indeed, letting αj ∈ Aj be determined as αj =
αj(⋅∣γj) for the choice function γj for j, it follows that for all tj ∈ Tj , γj(tj , ⋅)∶U →
R

d is a selection from Aj(tj, ⋅)∶U ⇉ R
d, and therefore tj ↦ ∫u γj(tj , u)νj(du∣tj)
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is a Tj-measurable selection from A∗j . Since αj(tj) = ∫u γj(tj, u)νj(du∣tj) for κj-

almost all tj, this direction is proved. For the “only if” direction, let αj be a κj-

almost everywhere selection from A∗j . Then the theorem of Artstein (1989) yields a

Tj ⊗ U-measurable mapping γj ∶Tj ×U →R
d such that for κj-almost all tj , we have:

αj(tj) = ∫u γj(tj , u)νj(du∣tj), and for νj(⋅∣tj)-almost all u, γj(tj, u) ∈ Aj(tj , u). In

particular, his assumptions (i)–(vi) are fulfilled, respectively, by (A1) (twice), the

assumption that νj(⋅∣⋅)∶U × Tj → [0,1] is a transition probability, (A3), (A4), and

(A5). Thus, αj is determined as αj = αj(⋅∣γj) for the choice function γj for j. The

proof of (b) is parallel, using Mj(⋅;β) and M∗
j (⋅;β) instead of Aj and A∗j . This

completes the proof of the lemma.

Lemma 4: For j = 1, . . . , n, (a) the correspondence A∗j has nonempty, compact,

and convex values; (b) for each α ∈ A, the correspondence M∗
j (⋅;α) has nonempty,

compact, and convex values.

Proof: Nonemptiness in (a) follows from (A3) and (A4), which imply that Aj

is lower measurable with nonempty, closed values, and so it admits a measurable

selection (see Theorem 18.13 of AB); nonemptiness in (b) follows similarly from

(A7) and (A8). For compactness in (a) and (b), note that (A5) implies that for κj-

almost all tj, the correspondence u↦ Aj(tj , u) is p-integrably bounded with respect

to νj(⋅∣tj). By a version of Fatou’s lemma (see Proposition 7 (p.73) of Hildenbrand

(1974)), the integral A∗j (tj) = ∫uAj(tj , u)νj(du∣tj) of this correspondence is compact.

Similarly, the integral M∗
j (tj) = ∫uMj(tj, u;α)νj(du∣tj) is compact. Now note that

for each tj ∈ Tj ,

A∗j (tj) = ∫
u∉Ūj

Aj(tj , u)νj(du∣tj) + ∫
u∈Ūj

Aj(tj , u)νj(du∣tj),
so convexity in (a) follows because the first term on the right-hand side is convex by

a version of Lyapunov’s theorem (see Theorem 3 (p.62) of Hildenbrand (1974)), and

the second term is convex by (A3). The argument for convexity in (b) is parallel,

using (A7) instead of (A3). This completes the proof of the lemma.

The next lemma elaborates on convexity ifM∗
j (tj ;α). Note that because the latter

set is nested between the integral of extreme points of Mj(tj , u;α) and the integral of

the convex hull, the lemma implies equality of all three sets. A further implication,

since Mj(tj, u;α) is convex for all u ∈ U j by (A7), is that for each j = 1, . . . , n, each

α ∈ A, and each tj ∈ Tj , we have M∗
j (tj ;α) = ∫u coMj(tj , u;α)νj(du∣tj).

Lemma 5: For each j = 1, . . . , n, each α ∈ A, and each tj ∈ Tj , we have

∫
U∖Uj

extMj(tj , u;α)νj(du∣tj) = ∫
U∖Uj

coMj(tj, u;α)νj(du∣tj).
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Proof: Fix α ∈ A and tj ∈ Tj . It is clear that the integral of extreme points of

Mj(tj , u;α) is contained in the integral of the convex hull. For the opposite inclusion,

note that u ↦Mj(tj , u;α) is p-integrably bounded by (A5) and (A6). Then

∫
U∖Uj

extMj(tj, u;α)νj(du∣tj) = ∫
U∖Uj

coextMj(tj , u;α)νj(du∣tj)
= ∫

U∖Uj

coMj(tj , u;α)νj(du∣tj),
where the first equality follows from nonatomicity of νj(⋅∣tj) on U ∖U j and a version

of Lyapunov’s theorem (see Theorem 4 (p.64) of Hildenbrand (1974)),2 and the

second follows from (A7) and the observation that the convex hull of a compact set

C is equal to the convex hull of the extreme points of coC (coC = coextcoC by the

Krein-Milman theorem, Theorem 7.68 of AB), and the fact that C and its convex

hull possess the same extreme points (extcoC = extC). This completes the proof of

the lemma.

Lemma 6: For each j = 1, . . . , n, the set A
p
j is convex and norm-closed.

Proof: Convexity follows from Lemmas 3 and 4, which establish that A consists

of all measurable selections from the convex-valued correspondence A∗j . To prove

norm-closedness, assume the sequence {αm
j } in A

p converges to αj in L
p
j . Then

αm
j → αj in measure (AB, Theorem 13.39), and therefore there is a subsequence

(still indexed by m) and a κj-measure zero set Rj ∈ Tj such that for all tj ∉ Rj ,

αm
j (tj) → αj(tj) (AB, Theorem 13.38). Given any tj ∉ Rj, since αm

j (tj) ∈ A∗j (tj)
for all m, and since A∗j (tj) is compact by Lemma 4, it follows that αj(tj) ∈ A∗j (tj).
Then Lemma 3 yields αj ∈ A

p
j . This completes the proof of the lemma.

Lemma 7: For each tj ∈ Tj , the correspondence α ↦ M∗
j (tj;α) is sequentially

upper hemicontinuous on A
p.

Proof: Fix tj ∈ Tj. Note that for each α ∈ A, we have M∗
j (tj;α) ⊆ A∗j (tj), the

latter compact by Lemma 4. Thus, the correspondence α ↦ M∗
j (tj ;α) has closed

values (by Lemma 4) and compact range, and it suffices to prove sequentially closed

graph on A
p. Furthermore, by Lemma 5, it suffices to show α ↦ ∫u coMj(tj , u;α)

has sequentially closed graph. By Lemma 4, it has nonempty, convex, and closed

values. Furthermore, (A10) implies that for each u ∈ U , the correspondence α ↦
coMj(tj, u;α) is sequentially upper hemicontinuous on A

p (see Theorem 17.35 of

AB). Now, let {αm} be a sequence in converging to α in A
p, and let ym ∈M∗

j (tj , αm)
2Note that Hildenbrand assumes the correspondence is bounded below; see, however, Aumann’s

(1965) discussion following his Theorem 3 to the effect that integrable boundedness is sufficient.
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for each m and ym → y. We apply Theorem 6.5 of Yannelis (1991) to conclude that

y ∈ M∗
j (tj , α). In particular, to fulfill the assumptions of that theorem, we iden-

tify our (U,U , νj(⋅∣tj)) with Yannelis’ finite measure space (T, τ,µ); R
d with his X;

our correspondence u ↦ Υj(tj , u) is his correspondence t ↦ K(t); and our corre-

spondence Mj(tj , ⋅;αm) is his φn. Then lim supM∗
j (tj, αm) is contained in the clo-

sure of ∫u lim supMj(tj , u;αm)νj(du∣tj). By (A10), we have lim supMj(tj , u;αm) ⊆
Mj(tj , u;α) for all u ∈ U . Since M∗

j (tj ;α) is closed, by Lemma 4, we conclude

that y ∈ lim supM∗
j (tj , αm) ⊆ cl ∫u lim supMj(tj , u;αm)νj(du∣tj) ⊆ M∗

j (tj ;α). This

completes the proof of the lemma.

Define Sj ∶A
p ⇉ L

p
j so that Sj(α) consists of all Tj-measurable, κj-almost every-

where selections from M∗
j (⋅;α). The product correspondence S = ⨉n

j=1 Sj will be the

subject of our fixed point argument.

Lemma 8: For each j = 1, . . . , n, the range of Sj, Sj(Ap), is a relatively compact

subset of A
p
j .

Proof: Let S∗j consist of all Tj ⊗ U-measurable, ν(⋅∣⋅) ⊗ κj-almost everywhere

selections from Υj . By Theorem 3.1 and Remark 3.1 of Yannelis (1991) with R
d for

his X, S∗j is compact in Lp
j(Tj×U,Tj×U , νj(⋅∣⋅)⊗κj) endowed with the weak topology

induced by L
q
j(Tj × U,Tj × U , νj(⋅∣⋅) ⊗ κj). Now define the mapping φ∶S∗j → L

p
j by

φ(β)(tj) = ∫u β(tj , u)νj(du∣tj) for all β ∈ S∗. Indeed, the range is well-specified

because

∫
tj
∣∣φ(β)(tj)∣∣pκj(dtj) ≤ ∫

(tj ,u)
∣∣β(tj , u)∣∣p(νj(⋅∣⋅)⊗ κj)(d(t, u)) < ∞,

where the first inequality follows from Jensen’s inequality and the second from (A9).

We claim that φ is continuous. Consider a net {βν} in S∗j such that βν → β ∈ S∗j in

the weak topology, and consider any ϕ ∈ Lq
j . Then

∫
tj
[ϕ(tj) ⋅ (φ(βν)(tj) − φ(β)(tj))]κj(dtj)
= ∫

(tj ,u)
[ϕ(tj) ⋅ (βν(tj, u) − β(tj , u))](νj(⋅∣⋅)⊗ κj)(d(tj , u))

→ 0,

as claimed. Therefore, φ(S∗j ) is a compact subset of Lp
j , and because Sj(α) ⊆ φ(S∗j )

for all α ∈ A
p, it follows that the range Sj(Ap) is relatively compact. That is is a

subset of A
p follows from Lemma 3 and the observation that M∗

j (tj ;α) ⊆ A∗j (tj) for

all tj . This completes the proof of the lemma.

Lemma 9: For each j = 1, . . . , n, Sj has nonempty, closed, convex values and is

sequentially upper hemicontinuous.



14 BARELLI AND DUGGAN

Proof: For nonemptiness, consider any α ∈ A
p, and note that (A7) and (A10) im-

ply that Mj(⋅;α) admits a measurable selection γj (see Theorem 18.13 of AB). Defin-

ing the average choice function βj for j by βj(tj) = ∫u γj(tj, u)νj(du∣tj), Lemma 3

implies βj ∈ Sj(α). To prove that Sj(α) is weakly closed in Lp
j , note thatM∗

j (⋅;α) has

nonempty, compact, and convex values by Lemma 4, and it is p-integrably bounded

by (A9). Then the result follows from Theorem 3.1 and Remark 3.1 of Yannelis

(1991). Convexity follows from Lemma 4. To show sequential upper hemicontinuity,

note that Sj has compact range by Lemma 8, so we must show sequentially closed

graph. Let {αm} be a sequence converging to α in A
p, and let βm ∈ Sj(αm) for

each m and βm → β. We apply Theorem 5.5 of Yannelis (1991) to conclude that

β ∈ Sj(α). In particular, to fulfill the assumptions of that theorem, we equip the set

P = {α} ∪ {αm} with the metric ρ defined as follows: for each m, let ρ(α,αm) = 1
m

,

and for ℓ ≠m, let ρ(αℓ, αm) = ∣1
ℓ
−

1
m
∣; then the sequence {αm} trivially converges to

α in the metric topology on P ; our (Tj ,Tj , κj) is Yannelis’ complete, finite separable

measure space (T, τ,µ); R
d is his X; our correspondence tj ↦ ∫u Υj(tj , u)νj(du∣tj)

is his correspondence t ↦ K(t); and our correspondence (tj , α) ↦ M∗
j (tj;α) is his

(t, p) ↦ ψ(t, p). Note that the latter correspondence has nonempty, closed, convex

values by Lemma 4, and it is sequentially upper hemicontinuous in α from Lemma

7. (Inspection of the proof of Yannelis’ Theorem 5.5 reveals that sequential upper

hemicontinuity is all that is required.) Because α and the sequence {αm} are ar-

bitrary, sequential upper hemicontinuity follows. This completes the proof of the

lemma.

We can now complete the proof of the theorem. For (a), endow Lp ≡ ⨉n
j=1L

p
j with

the product norm, making it a Banach space. We observe that the correspondence

S∶Ap ⇉ Lp satisfies the conditions of Theorem 2.3 of Agarwal and O’Regan (2002).

In particular, Lemma 6 implies that A
p is a nonempty, convex, norm-closed subset

of Lp; Lemma 9 implies that S(α) is nonempty, weakly closed, and convex for

each α ∈ A
p, and that the correspondence is sequentially upper hemicontinuous;

furthermore, Lemma 8 implies that the range of S is a relatively compact subset

of A
p with the weak topology. Then there exists α∗ ∈ A

p satisfying α∗ ∈ S(α∗).
Since α∗j is a selection from M∗

j (⋅;α∗) for each j = 1, . . . , n, Lemma 3 yields choice

functions γ∗j for each j such that α∗ is determined by γ∗ = (γ∗j )nj=1, and therefore γ∗

is a choice equilibrium.

For part (b), let γ∗ be a choice equilibrium with corresponding average choice

function α∗. For each j = 1, . . . , n, define the correspondence M̂j ∶Tj ×U ⇉ R
d by

M̂j(tj , u) =
⎧⎪⎪⎨⎪⎪⎩

extMj(tj , u;α∗) if u ∉ U j

Mj(tj , u;α∗) else.
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By (A7) and Lemma 10 (in the appendix), it follows that extMj(⋅;α∗) is lower

measurable with nonempty, compact values. As the measurable splicing of two such

correspondences, M̂j is lower measurable with nonempty, compact values. Since

(A7) implies extMj(tj , u;α∗) ⊆ extMj(tj , u;α∗) ⊆ coMj(tj , u;α∗), Lemma 5 implies

that

∫
u
M̂j(tj , u)νj(du∣tj)
= ∫

U∖Uj

extMj(tj , u;α∗)νj(du∣tj) + ∫
Uj

Mj(tj , u;α∗)νj(du∣tj)
= M∗

j (tj;α∗),
and therefore for κj-almost all tj , we have α∗j (tj) ∈ ∫u M̂j(tj , u)νj(du∣tj). The cor-

respondence M̂j satisfies the conditions of Artstein’s (1989) theorem, and therefore

there exists a Tj ⊗ U-measurable mapping γ̂j ∶Tj × U → R
d such that for κj-almost

all tj , we have: α∗j (tj) = ∫u γ̂j(tj , u)νj(du∣tj) = αj(⋅∣γ̂j), and for νj(⋅∣tj)-almost all u,

γ̂j(tj, u) ∈ M̂j(tj, u). Then γ̂ = (γ̂j)nj=1 is an extremal choice equilibrium as called

for by the theorem.

4. Large Games

The goal of this section is to formulate a class of large games as a special case of

the abstract framework. We endow the set N of players with a product structure,

so that a player is described by a general component t and a private characteristic

u, where the latter are distributed independently conditional on t in the space of

players. The abstract framework from Section 2 specialized to n = 1 is readily seen

as a large game framework. Given a measure space (T,T , κ), let M(T,T , κ,Rd)
denote the set of κ-equivalence classes of measurable functions mapping T to R

d. A

product large game is described by a tuple (T,U,A,P,κ, ν) such that

● N = T ×U , with sigma-algebra T ⊗ U is the player space,

● A∶N ⇉R
d is the feasible action correspondence,

● P ∶N ×R
d
×M(T,T , κ,Rd)⇉ R

d is the preference correspondence,

● κ is a Borel probability measure on T ,

● ν ∶T × U → [0,1] is a Borel transition probability.

Here, κ is the distribution of general components t in the player space; the transition

probability ν(⋅∣t) gives the distribution of private characteristic u conditional on t;

and µ = ν(⋅∣⋅) ⊗ κ gives the overall distribution of players in the game. Denote a

generic player by i = (t, u) ∈N .
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Given the above, the player space is succinctly described by (N,N , µ) with N =
T ×U and N = T ⊗ U , as in the abstract framework. Assumption (A2), with n = 1,

is already embedded in the definition of a product large game. Letting U contain

the atoms of {ν(⋅∣t) ∶ t ∈ T}, we make the following basic assumption to connect the

large game model to Section 2:

(L1) assumptions (A1), (A3), (A4) and (A5′) from Section 2 hold with n = 1,

A strategy profile is an N -measurable mapping σ∶N → R
d such that σ(i) ∈ A(i)

for µ-almost all players i. Given a strategy profile σ, the implied average action is

a function α∶T →R
d satisfying α(t) = ∫u σ(t, u)ν(du∣t) for κ-almost all t (where we

identify functions equivalent up to sets of measure zero). Let A denote the space

of average actions. A possible interpretation is that players are characterized by

their private characteristics, u, and by the groups to which they belong, t, and the

externality (or “societal responses”) are captured by the average actions α across

groups; thus, the influence of “society” on a player’s outcome, given a strategy σ,

is captured by the infinite dimensional object α. Returning to the example of the

intro, it may be that players are firms, that t is the market in which a firm competes,

and u is a technological characteristic of the firm.

We interpret the set P (i, a;α) as the set of actions that are strictly preferred to

a by player i given externality α.3 Let R∶N ×R
d
×M(T,T , κ,Rd)⇉R

d denote the

weak preference correspondence corresponding to P , i.e., R(i, a;α) = {a′ ∈ R
d
∶ a ∉

P (i, a′;α)}, and let R−1 denote its inverse. Fix player i and externality α. We say

P (i, ⋅;α) is irreflexive if for all a ∈ R
d, we have a ∉ P (i, a;α). Following Duggan

(2011a), we say that a set Y ⊂ A(i) is finitely dominant if it is finite and for all

x ∈ A(i) there exists y ∈ Y with y ∈ P (i, x;α). Given v ∈ A(i), we say that P (i, ⋅;α)
is finitely subordinated to v if there is a finitely dominant set Y with v ∈ Y and such

that there exists z ∈ Y with v ∈ P (i, z;α) and Y /{v} ⊆ R−1(t, u, z;α). We say that

P (i, ⋅;α) satisfies the finite-subordination property if there is no v ∈ A(i) such that

P (i, ⋅;α) is finitely subordinated to v. We make the following further assumptions:

(L2) for all i ∈ N and all α ∈ A, P (i, ⋅;α) is irreflexive and satisfies the finite-

subordination property,

(L3) for all i ∈ T ×U , all a ∈ A(i), and all α ×A, R(i, a;α) ∩A(i) is convex,

3We remark that the formulation of the preference correspondence P is not subject to the

critique in Balder (2000) (see Martins-da-Rocha and Topuzu (2008)). We note also that Martins-

da-Rocha and Topuzu (2008) provide general sufficient conditions on P that yield well-behaved

choice correspondences M . We simply offer a set of such sufficient conditions, without attempting

to generalize other approaches in the literature.
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(L4) for all α ∈ A, the correspondence i ↦ {a ∈ A(i)∶P (i, a;α) = ∅} is lower

measurable,

(L5) for all i ∈N , the set {(a,α) ∈ A(i)×A ∶ P (i, a;α) ≠ ∅} is open in the product

topology, where A is endowed with the weak topology (consistent with p

from (L1)).

For all i ∈ N and all α ∈ A, let M(i;α) = {a ∈ A(t, u) ∶ P (t, u, a;α) ∩A(i) = ∅}
denote the maximal feasible actions for player i given externality α. A strategy

profile σ∗ is a Nash equilibrium if σ∗(i) ∈ M(i;α∗) for µ-almost all i and α∗(t) =
∫u σ∗(t, u)ν(du∣t) for κ-almost all t. This is readily seen as the specialization of a

choice equilibrium from Section 2 for the case n = 1. Assume that (L1)–(L5) hold.

Then we have:

Proposition 1: Assume (L1)–(L5). (a) A Nash equilibrium exists; (b) for ev-

ery Nash equilibrium σ∗, there exists a Nash equilibrium σ̂ such that (i) σ∗ and σ̂

determine equivalent externalities, i.e., for κ-almost all t, α∗(t) = α̂(t); and (ii) σ̂

chooses from the closure of extreme points of choice sets for the nonatomic part of

U , i.e., for µ-almost all i ∈ T × (U ∖U), we have σ̂(i) ∈ extM(i; α̂).
The result follows from the correspondence between product large games and the

abstract framework, with n = 1, upon verifying (A1)–(A10). We have noted (A2),

and remaining assumptions (A1)–(A5′) follow directly from (L1), with (A5′) giving

us (A9) as well. The definition of M(i;α) immediately yields (A6). Nonemptiness

of M(i;α) follows from compactness of A(i) (from (L1)), (L2), (L5), and Theorem 1

of Duggan (2011a); and compactness of M(i;α) follows immediately from the open

graph assumption (L5). Given i ∈ T×U , irreflexivity (from (L2)) and convexity (from

(L3)) of P (i, ⋅;α) yield convexity of M(i;α). Indeed, suppose supposeM(i;α) is not

convex, so there exist distinct x, y ∈M(i;α) and λ ∈ (0,1) such that z = λx+(1−λ)y ∉
M(i;α). Then there exists w ∈ A(i) such that w ∈ P (i, z;α). Since x ∈M(i;α), we

have x ∈ R(i,w;α), and similarly y ∈ R(i,w;α). But then convexity of R(i,w;α)
implies z ∈ R(i,w;α), a contradiction. We conclude that (A7) holds. Then (L4)

implies (A8), and (L5) implies (A10) by standard continuity arguments.

Proposition 1 generalizes Theorem 2 and Remark 2 in Schmeidler (1973) from

the model with a finite number of groups to the general model with a continuum

of groups. More importantly, the assumption that best responses depend on the

distribution across groups of average actions within groups, rather than the overall

average action, puts Proposition 1 in an intermediate position compared to other

results in the literature. The externality α is an infinite-dimensional object, as op-

posed to the finite-dimensional externalities found in the literature, either the overall
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average action as in Rath (1992), or the finite-dimensional image of a function of the

overall average action, as in Balder (2002), Martins-da-Rocha and Topuzu (2008),

and Yu and Zhu (2005).4 So we allow for players to respond to a much richer set of

“societal” variables, weakening considerably the implied notion of anonymity. Be-

cause we restrict the analysis to finite-dimensional action sets, whereas the literature

allows for arbitrary compact action sets, our result is intermediate.

Proposition 1 occupies a non-existent position in Table 1 of Khan, Rath, and Sun

(1997): the rightmost column of that table indicates that in games with uncountable

action spaces and infinite-dimensional externalities, there is no pure-strategy Nash

equilibrium. Here, we do have an uncountable action space and infinite-dimensional

average actions α, the product structure of the player-type space, together with the

result of Artstein (1989), allow us to work around the failure of Lyapunov’s theorem

in infinite dimensions, without having to move into Loeb or super nonatomic measure

spaces (see, among others, Podczeck (2008)).

For completeness, we consider the case that preferences are represented by a

numerical payoff function π∶N ×R
d
×M(T,T , κ,Rd) → R. As before, we simply

offer a (standard) set of sufficient conditions, without attempting to generalize other

approaches in the literature (see Balder (2002) and Martins-da-Rocha and Topuzu

(2008)). Maintaining (L1), assume that for all i ∈ N , π(i, ⋅, ⋅) is jointly continuous

on A(i) ×M(T,Rd); and that for all i ∈ T × U , A(i) is convex and, moreover, for

all α ∈M(T,T , κ,Rd), π(i, ⋅, α) is quasiconcave on A(i). Also assume that for each

(a,α) ∈ R
d
×M(T,Rd), the mapping i ↦ π(i, a,α) is N -measurable. We imbed

this in the product large game framework in the obvious way, defining P (i, a;α) =
{a′ ∈ A(i) ∶ π(i, a′;α) > π(i, a;α)}, so that best responses are the payoff-maximizing

feasible actions:

M(i;α) = {a ∈ A(i) ∶ P (i, a;α) = ∅} = arg max
a′∈A(i)

π(i, a′;α).
Then conditions (L2)–(L5) obtain. Indeed, irreflexivity of P (i, ⋅;α) follows by con-

struction, and the finite subordination property is implied by the fact that P (i, ⋅;α)
is a weak order of the set of feasible actions; thus, (L2) follows. Quasiconcavity

of π on A(i) for all i ∈ T × U implies (L3). From the assumption that the payoff

function π(⋅, ⋅;α) is Carathéodory for each α, and from the assumption that i↦ A(i)
is lower measurable, a measurable version of the maximum theorem (AB Theorem

18.19) implies that the correspondence M(⋅;α)∶N ⇉ R
d is measurable. Thus, it is

4More precisely, the former two papers allow for infinite-dimensional externalities on the purely

atomic part of the player space, while the externality on the non atomic part must be finite-

dimensional. With nonatomicity, externalities do not have any infinite-dimensional component.
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lower measurable (AB, Lemma 18.2), and (L4) follows. Finally, (L5) follows from

continuity of π(i, ⋅; ⋅) for each i ∈ N .

5. Bayesian Games

We now present a general class of Bayesian games that can be obtained as a special

case of the abstract framework of Section 2. The type of a player j has two compo-

nents, tj and uj , the first a general component that may be payoff relevant for all

players, the second a private value component that, conditional on tj, is independent

of the other players’ types. We allow the action sets to be type dependent. Formally,

the class of product Bayesian games is described by a tuple (Tj ,Uj ,Aj , πj , κ, νj)nj=1
indexed by the set {1, . . . , n} of players and such that for each player j = 1, . . . , n,

● Tj ×Uj , with sigma-algebra Tj ⊗ Uj , is j’s type space,

● Aj ∶Tj ×Uj ⇉R
d is j’s feasible action correspondence,

● πj ∶R
nd
× T ×Uj →R is j’s payoff function,

● κ is a Borel probability measure on T = ⨉n
j=1 Tj,

● νj ∶ Tj × Uj → [0,1] is a Borel transition probability,

where T = ⨉n
j=1 Tj is the set of profiles of general types, denoted t = (t1, . . . , tn),

and κ is j’s prior probability measure on T = ⨉n
j=1Tj . As usual, T = ⊗n

j=1 Tj and

U = ⊗n
j=1Uj are the product sigma-algebras. We define the transition probability

ν ∶T ⊗ U → [0,1] as follows: for each t ∈ T and each S = S1 × ⋯ × Sn ∈ U , ν(S∣t) =
⊗n

j=1 νj(Sj ∣tj). Let κj denote the marginal of κ on Tj .

We let µ = ν(⋅∣⋅)⊗κ represent the common prior of the players and µj the marginal

of µ on Tj ×Uj. Note that, conditional on tj , the random variable uj is independent

of (t−j, u−j). Assume: for each j = 1, . . . , n,

(B1) Tj and Uj, j = 1, . . . , n, are complete, separable metric spaces with their

Borel sigma-algebras,

(B2) for all (tj , uj) ∈ Tj×Uj, the feasible set Aj(tj , uj) is a face of the unit simplex

in R
d,

(B3) the correspondence Aj ∶Tj ×Uj ⇉R
d is lower measurable,

(B4) πj(a, t, uj) is Borel measurable in (a, t, uj) and multilinear in a = (aj)nj=1,
(B5) the mapping t↦ sup(a,uj)∈∆n×Uj

∣πj(a, t, uj)∣ is integrable, i.e.,

∫
t

sup
(a,uj)∈∆n×Uj

∣πj(a, t, uj)∣κ(dt) <∞,
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where ∆ is the unit simplex in R
d. An interpretation, suggested by (B2) and (B4),

is that an action aj is a probability distribution over a finite set of pure strategies

corresponding to the vertices of the unit simplex in R
d. Here, we allow for Aj(tj , uj)

to be a lower-dimensional face of the unit simplex (we assume only that the number

of feasible actions is bounded above by d across players and types), in which case

pure strategies corresponding to vertices outside Aj(tj , uj) are necessarily given

probability zero.

Finally, we impose the assumption of absolutely continuous information, intro-

duced by Milgrom and Weber (1985), on the general type component.

(B6) κ is absolutely continuous with respect to ⊗n
j=1 κj .

For each j = 1, . . . , n, a strategy for player j is a Tj ⊗ Uj-measurable function

σj ∶Tj ×Uj → R
d such that σj(tj , uj) ∈ Aj(tj , uj) for κj-almost all (tj , uj). We view

a strategy profile (σ1, . . . , σn) as a mapping σ∶T × U → R
nd defined by σ(t, u) =

(σj(tj , uj))nj=1. Let Σj denote the set of strategies for j and Σ = ⨉n
j=1 Σj the set of

strategy profiles. Player j’s ex ante expected payoff from a profile σ of strategies is

Πj(σ) = ∫
(t,u)

πj(σ(t, u), t, uj)µ(d(t, u)).
A Bayes-Nash equilibrium is a strategy profile σ∗ such that for each j = 1, . . . , n,

Πj(σ∗) = supσj∈Σj
Πj(σj , σ

∗
−j). We say σ∗ is a pure strategy Bayes-Nash equilibrium

if it is a Bayes-Nash equilibrium such that for each j = 1, . . . , n and for µj-almost all

(tj , uj), we have σ∗j (tj , uj) ∈ extAj(tj , uj).
Our main contribution in this section is an existence and purification result for

pure strategy equilibria. To define our notion of equivalence between strategy pro-

files, note that for each j = 1, . . . , n, the expected action of player j determined by

strategy σj, conditional on general component tj, is

αj(tj ∣σj) ≡ ∫
uj

σj(tj , uj)νj(duj ∣tj),
where αj(⋅∣σj) ∈ L1

j by (B2). Let Aj = {αj(⋅∣σj) ∶ σj ∈ Σj} denote the space of

expected actions for player j, and endow it with the weak topology σ(L1
j ,L

∞
j ). By

Fubini’s theorem and multilinearity, from (B4), we have

Πj(σ) = ∫
t
∫

u
πj(σ(t, u), t, uj) n

⊗
k=1

νj(du∣t)κ(dt)
= ∫

t
∫

uj

πj(σj(tj , uj),(∫
uk

σk(tk, uk)νk(duk ∣tk))
k≠j

, t, uj)νj(duj ∣tj)κ(dt)
= ∫

t
∫

uj

πj(σj(tj , uj), α−j(t−j ∣σ−j), t, uj)νj(duj ∣tj)κ(dt),
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where α−j(t−j ∣σ−j) = (αk(tk ∣σk))k≠j . Because the expected payoff depends on σ−j

only through expected actions, we can redefine the ex ante payoff function for player

j as the mapping Πj ∶Σj ×A−j →R given by

Πj(σj, α−j) = ∫
t
∫

uj

πj(σj(tj , uj), α−j(t−j), t, uj)νj(duj ∣tj)κ(dt),
where A−j = ⨉k≠j Ak is endowed with the product topology. Accordingly, we replace

the optimization of Πj(σj , σ
∗
−j) with Πj(σj , α−j(⋅∣σ∗−j)) in the definition of Bayes-

Nash equilibrium. We then say two strategy profiles σ,σ′ are equivalent if they

determine the same expected actions, i.e., for each j = 1, . . . , n and for κj-almost all

tj, we have αj(tj ∣σ) = αj(tj ∣σ′).
Proposition 2: Assume (B1)–(B6). (a) A Bayes-Nash equilibrium exists; (b)

if the probability measures {νj(⋅∣tj) ∶ tj ∈ Tj} are nonatomic for each j = 1, . . . , n,

then for every Bayes-Nash equilibrium σ∗, there exists an equivalent pure strategy

Bayes-Nash equilibrium.

Before proceeding to the proof, several remarks are in order.

Remark 1: We can add a complete, separable metric space T0 of environmental

states at no cost. For this, we simply add an artificial player 0, whose general

type component t0 corresponds to the environmental state, with trivial action set

A(t0, u0) ≡ {0} for all (t0, u0).
Remark 2: The purification result in Proposition 2(b) is, to the best of our

knowledge, the first that allows for a general space of environmental states. From

Remark 1, we generalize the purification result of Milgrom and Weber (1985) by

allowing for an uncountable set of states. Typical results in the literature (e.g.,

Milgrom and Weber (1985), Khan, Rath, and Sun (2006), and Balder (2008)) assume

the existence of an environmental variable t0, taking at most countably many values

and such that player types are independent conditional on t0. Such a result is easily

obtained as a corollary of Proposition 3(b) by trivializing Tj, using the private type

component uj to represent the information of player j, and letting T0 be countable.

Remark 3: We also extend the previous literature on purification by allowing

a non-private values type component that is correlated across players. There is no

need to assume the general type spaces Tj of the players j ≠ 0 are singletons, as in

the last remark; rather, we allow Tj to be a complete, separable metric space, and

we permit arbitrary correlation subject only to the diffuseness condition (B6).

Remark 4: Proposition 2 provides an existence result for mixed strategy Bayes-

Nash equilibria in the framework of Milgrom and Weber (1985). As mentioned,
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we can add a Polish space T0 of states to our framework at no cost. In contrast

to Milgrom and Weber (1985), we assume types have a conditionally independent,

private-value component uj , in addition to the standard component; action sets are

finite-dimensional, rather than complete, separable metric spaces; and we do not

assume equicontinuous payoffs. As a special case, however, the private components

uj may be payoff-irrelevant and uniformly and independently distributed over [0,1],
so they serve only as randomization devices; then any pure strategy equilibrium of

our model (in which player j conditions her action on uj) corresponds to a mixed

strategy equilibrium in the game with no private components. This improves Mil-

grom and Weber (1985) by dropping equicontinuity but assuming finite-dimensional

actions; this result, however, specializes Section 3.4 of Balder (2002).5

The remainder of this section is devoted to the proof of Proposition 2, which

consists of mapping the product Bayesian game model into the abstract framework,

verifying (A1)–A(10), and applying Corollary 1. We first define Ũ = ⊍n
j=1Uj as the

disjoint union of Uj , j = 1, . . . , n, and for notational simplicity, we henceforth treat

the Uj as disjoint subsets of Ũ . We metrize Ũ so that elements of Uj and Uk, j ≠ k,
are at distance one, and we let Ũ be the corresponding Borel sigma-algebra, which

is just finite unions of Borel sets in Uj, j = 1, . . . , n. Defining N = T × Ũ , (A1) is

satisfied. To fulfill (A2), we convert the transition probability νj ∶Tj × Uj → [0,1]
to ν̃j ∶Tj × Ũ → [0,1] in the obvious way: given any S ∈ Ũ , ν̃j(S∣tj) = νj(S ∩ Uj ∣tj).
Thus, when integrating with respect to ν̃j(⋅∣tj), realizations uk, k ≠ j, of the private

value component for other players receive no weight. We then define µ̃ = (µ̃j)nj=1 so

that µ̃j is the extension of ν̃j(⋅∣⋅)⊗ κj to N .

We convert feasible action correspondences Aj ∶Tj × Uj ⇉ R
d to Ãj ∶Tj × Ũ ⇉ R

d

by specifying Ãj(tj , u) = Aj(tj , u) if u ∈ Uj , otherwise set Ãj(tj, u) = {e1}, where

e1 is the first unit coordinate vector, if u ∉ Uj . Then (B2) and (B3) immediately

imply (A3)–(A5). A choice function is then γ = (γj)nj=1, where γj ∶Tj × U → R
d

satisfies γj(tj, u) ∈ Ãj(tj , u) for ν̃j(⋅∣⋅) ⊗ κj-almost all (tj , u). We define expected

actions as above, now integrating over u ∈ Ũ with respect to ν̃j(⋅∣tj), e.g., α̃j(tj ∣γj) ≡
∫u γj(tj , u)ν̃j(du∣tj), and the average choice functions for j determined by γj , de-

noted Ãj , are the mappings that equal α̃j(⋅∣γj) up to a κj-measure zero set. We

imbed Ãj in L1
j with the weak topology, and of course, Ã = ⨉n

j=1 Ãj is endowed with

the product weak topology.

5We allow for action sets to be type-dependent, whereas Balder’s (2002) Theorem 3.4.1 fixes

action sets independently of type; but that extra generality can be achieved using his methods.

Note that his Theorem 3.2.1 generalizes a result of Kim and Yannelis (1997), and his Theorem 3.4.1

generalizes results of Balder (1988) and Balder and Rustichini (1994).
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Given α̃ ∈ Ã, we define the choice correspondence Mj(⋅; α̃)∶Tj × U ⇉ R
d as the

actions maximizing the player’s interim expected payoff conditional on (tj , u). Con-

vert the payoff function πj ∶R
nd
× T × Uj → R to π̃j ∶R

nd
× T × Ũ → R by specifying

π̃j(a, t, u) = πj(a, t, u) if u ∈ Uj , and otherwise set π̃j(a, t, u) = 0 if u ∉ Uj. Since T is

a complete, separable metric space, Theorem 5.3.7 of Rao (1993) allows us to choose

a regular conditional probability κ∶Tj×T−j → [0,1], i.e., a transition probability such

that for all tj outside a κj-measure zero set T ′j , κ(⋅∣tj) is a conditional probability

on T−j. Note that (B6) implies that for tj outside a κj-measure zero set T ′′j , κ(⋅∣tj)
is absolutely continuous with respect to ⊗k≠j κk. Note further that (B5) implies

∫
t

sup
(a,uj)∈∆n×Uj

∣π̃j(a, t, uj)∣κ(dt) = ∫
tj
∫

t−j

sup
(a,u)∈∆n×Ũ

∣π̃j(a, t, u)∣κ(t−j ∣tj)κj(dtj)
< ∞,

where we use the generalization of Fubini’s theorem in Proposition 2.3.2 of Rao

(1993). Thus, ∫t−j
supa∈∆n ∣π̃j(a, t, u)∣κ(t−j ∣tj) < ∞ for all tj outside a κj-measure

zero set T ′j ∪ T
′′′
j and all u ∈ Ũ . For future use, define T̃j = T ′j ∪ T

′′
j ∪ T

′′′
j .

Our arguments will apply to tj ∈ Tj ∖ T̃j , fixing choice sets arbitrarily for tj ∈ T̃j .

Thus, define interim expected payoffs as Π̃j(⋅; α̃)∶Rd
× Tj × Ũ →R by

Π̃j(aj , tj , u; α̃) = ∫
t−j

π̃j(aj , α̃−j(t−j), t, u)κ(t−j ∣tj),
and define the corresponding choice correspondence Mj(⋅; α̃)∶Tj × Ũ ⇉ R

d as

Mj(tj , u; α̃) = argmax{Π̃j(aj , tj , u; α̃) ∶ aj ∈ Ãj(tj , u)}
when tj ∈ Tj ∖ T̃j, and otherwise define Mj(tj , u; α̃) to consist of the first unit co-

ordinate vector when tj ∈ T̃j . Then (A6) and (A9) are trivially satisfied, and (B4)

immediately implies (A7).

Before establishing (A8), we claim that Π̃j(⋅; α̃) is Borel measurable. Indeed, de-

fine κ̃(⋅∣tj , u) by extending κ(⋅∣tj) to T ⊗ Ũ with unit mass on (tj , u), i.e., given Q =
R×S = (⨉n

j=1Rj)×S ∈ T ⊗ Ũ , we specify κ̃(Q∣tj , u) = κ(R−j ∣tj) if (tj , u) ∈ Rj×S, and

otherwise κ̃(R×S∣tj , u) = 0 if (tj , u) ∉ Rj ×S. Then κ̃(⋅∣⋅)∶ (Tj ×U)× (T ⊗ Ũ)→ [0,1]
is a transition probability. By Theorem 19.12 of AB, the mapping (tj , u)↦ κ̃(⋅∣tj , u)
is Borel measurable with the weak* topology on the space of Borel probability

measures on T × U , and Theorem 19.7 of AB implies that for every bounded,

Borel measurable f ∶T ×U → R, the mapping (tj , u) ↦ ∫(t,u) f(t, u)κ̃(d(t, u)∣tj , u) =
∫t−j

f(t, u)κ(dt−j ∣tj) is Tj⊗Ũ-measurable. By (B5), π̃j(aj , α̃−j(t−j), t, u) is ν̃j(⋅∣⋅)⊗κ-
integrable, and therefore it is approximated pointwise by the sequence {fm} of trun-

cations defined by fm(t, u) = min{m,max{−m, π̃j(aj , α̃−j(t−j), t, u)}}. For each m,

the mapping (tj , u)↦ ∫(t,u) fm(t, u)κ(dt−j ∣tj) is Tj⊗Ũ-measurable, and therefore, so



24 BARELLI AND DUGGAN

is the pointwise limit (see Theorem 4.27 of AB), which is Π̃j(aj , ⋅; α̃) by Lebesgue’s

dominated convergence theorem. This argument holds when aj is any unit coordi-

nate vector, eℓ, ℓ = 1, . . . , d, and in general (B4) yields

Π̃j(aj , tj , u; α̃) = d

∑
ℓ=1

pℓΠ̃j(eℓ, tj , u; α̃),
where aj = (pℓ)dℓ=1. As the composition of a linear function with a finite number

of measurable functions, Π̃j(aj, tj , u; α̃) is Borel measurable, as claimed. Clearly,

the interim expected payoff of player j is in fact continuous in aj, so Π̃j(⋅; α̃) is

a Carathéodory function. Finally, we can now apply a measurable version of the

maximum theorem (see Theorem 18.19 of AB) to conclude that Mj(⋅; α̃) is lower

measurable, fulfilling (A8).

The last assumption to verify is (A10). Fix (tj, u) ∈ Tj ×Ũ . Obviously, Mj(tj, u; ⋅)
is sequentially upper hemicontinuous when tj ∈ T̃j. So suppose tj ∈ Tj ∖ T̃j . Let-

ting Z = {1, . . . , d} and zj ∈ Z, we claim that for each unit coordinate vector ezj ,

Π̃j(ezj , tj , u; α̃) is continuous in α̃. Indeed, consider any net {α̃ν} converging weakly

to α̃ in Ã. We apply results of Balder (1988) for transition probabilities by viewing

the unit simplex in R
d, ∆, as the set of probability distributions over Z and viewing

expected actions β̃k ∶Tk × 2Z → [0,1], k = 1, . . . , n, as transition probabilities. Let

Rk ∈ Tk and (continuous) g∶Z → R be given. Using the equivalent vector repre-

sentations g = (gℓ)dℓ=1 ∈ R
d, α̃ν

k(tk) = (α̃ν
k(tk)ℓ)dℓ=1, and α̃k(tk) = (α̃k(tk)ℓ)dℓ=1, note

that

∫
tk∈Rk

∫
zk

g(zk)α̃ν
k(tk, dzk)κk(dtk) = ∫

tk∈Rk

g ⋅ α̃ν
k(tk)κk(dtk)

→ ∫
tk∈Rk

g ⋅ α̃k(tk)κk(dtk) = ∫
tk∈Rk

∫
zk

g(zk)α̃k(tk, dzk)κk(dtk).
By part (c) of Balder’s (2002) Theorem 2.2, because Rk and g were arbitrary, it

follows that convergence of expected actions {α̃ν
k} to α̃k in the weak topology on

Ãk implies convergence in the narrow topology (also called the “weak topology”) on

transition probabilities.

Given any expected actions (β̃k)k≠j for players other than j, we can define the

product transition ⊗k≠j β̃k ∶T × 2Zn → [0,1] as follows: for all t ∈ T and all Y =
⨉k≠j Yk ⊆ Zn, (⊗k≠j β̃k)(t, Y ) = ∏k≠j β̃k(tk, Yk). Balder’s (1988) Theorem 2.5 im-

plies that the product mapping (β̃k)k≠j ↦⊗k≠j β̃k is continuous in the narrow topol-

ogy, where the range is the set of transition probabilities from T−j , endowed with the

product measure ⊗k≠j κk, into the probability distributions on Zn. Returning to the

continuity argument, the net {⊗k≠j α̃
ν
k} of product transitions therefore converges

in the narrow sense to ⊗k≠j α̃k. Using (B6) and the assumption that tj ∉ T̃j , κ(⋅∣tj)
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has density h(⋅∣tj)∶T−j →R with respect to ⊗k≠j κk, so we have

Π̃j(ezj , tj , u; α̃
ν) = ∫

t−j

π̃j(ezj , α̃ν
−j(t−j), t, u)h(t−j ∣tj)⊗

k≠j

κk(dt−j).
We represent a profile of pure strategies for players other than j by an (n− 1)-tuple

z−j = (zk)k≠j ∈ Zn−1, and we write φj(z−j , t, u) = π̃j(ezj , (ezk)k≠j, t, u) for the vector

of player j’s payoff when, given (t, u), j chooses zj and the other players choose z−j .

By multilinearity, from (B4), and Fubini’s theorem, we then have

Π̃j(ezj , tj , u; α̃
ν) = ∫

t−j
∫

z−j

φj(z−j , t, u)h(t−j ∣tj)⊗
k≠j

α̃ν
k(t−j, dz−j)⊗

k≠j

κk(dt−j).
Note that the integrand φj(z−j , t, u)h(t−j ∣tj) above is (trivially) continuous in z−j

and jointly measurable in (t−j , z−j). Furthermore, we have ∣φj(z−j , t, u)h(t−j ∣tj)∣ ≤
sup(a,u)∈∆n×Ũ ∣π̃j(a, t, u)h(t−j ∣tj)∣ for all (t−j , z−j) and by tj ∉ T̃j , we have

∫
t−j

sup
(a,u)∈∆n×Ũ

∣π̃j(a, t, u)h(t−j ∣tj)∣⊗
k≠j

κk(dt−j) = ∫
t−j

sup
(a,u)∈∆n×Ũ

∣π̃j(a, t, u)∣κ(dt−j ∣tj)
< ∞.

Therefore, it is a Carathéodory integrand (Balder (1988)), and by definition of the

narrow topology, we have

Π̃j(ezj , tj , u; α̃
ν) → ∫

t−j
∫

z−j

φj(z−j , t, u)h(t−j ∣tj)⊗
k≠j

α̃k(t−j , dz−j)⊗
k≠j

κk(dt−j)
= Π̃j(ezj , tj , u; α̃),

establishing continuity of Π̃j(ezj , tj , u; α̃) in α̃, as claimed. For joint continuity, recall

that in general,

Π̃j(aj , tj , u; α̃) = ∑
zj∈Z

pℓΠ̃j(ezj , tj , u; α̃),
where aj = (pℓ)dℓ=1, which is continuous in (aj , α̃).

To finish the argument for (A10), consider any sequence {α̃m} converging weakly

to α̃ in Ã, and any sequence {am
j } converging to aj in Ãj(tj, u). Since Mj(tj, u; ⋅)

has compact range, by (B2), it suffices to show that aj ∈ Mj(tj , u; α̃). Since

Π̃j(aj , tj , u; α̃) is jointly continuous in (aj , α̃), this follows immediately from the-

orem of the maximum (AB, Theorem 17.31).

To prove (a), we apply Theorem 1 to select a choice equilibrium γ∗ = (γ∗j )nj=1 in

the abstract framework. From γ∗j ∶Tj × Ũ → R
d, j = 1, . . . , n, we define the strategy

σ∗j ∶Tj ×Uj → R
d in the obvious way by σ∗j (tj, uj) = γ∗j (tj , uj) for all (tj, uj) ∈ Tj ×Uj ,

i.e., σ∗j is simply the restriction of γ∗j to Tj × Uj . We claim that the corresponding

strategy profile σ∗ = (σ∗j )nj=1 is a Bayes-Nash equilibrium. If not, then there is some
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player j with a strategy σj such that Πj(σj , σ
∗
−j) > Πj(σ∗). Letting α∗ = α(⋅∣σ∗) and

α̃∗ = α̃(⋅∣γ∗) be the corresponding expected actions, and letting γj be any extension

of σj to Tj × Ũ , we have

Πj(σj , α
∗
−j) = ∫

t
∫

u
π̃j(γj(tj, u), α̃∗−j(t−j), t, u)ν̃j(du∣tj)κ(dt)

> ∫
t
∫

u
π̃j(γ∗j (tj , u), α̃∗−j(t−j), t, u)ν̃j(du∣tj)κ(dt)

= Πj(σ∗j , α∗−j).
Moreover, using Proposition 2.3.2 of Rao (1993), we can decompose Πj(σj , α

∗
−j) as

∫
t
∫

u
π̃j(γj(tj, u), α̃∗−j(t−j), t, u)ν̃j(du∣tj)κ(dt)

= ∫
(tj ,u)

∫
t−j

π̃j(γj(tj, u), α̃∗−j(t−j), t, u)h(t−j ∣tj)κ(dt−j ∣tj)(ν̃j(⋅∣⋅)⊗ κj)(d(tj , u))
= ∫

(tj ,u)
Π̃j(γj(tj , u), tj , u; α̃∗)(ν̃j(⋅∣⋅)⊗ κj)(d(tj , u)),

with a similar decomposition for Πj(σ∗j , α∗−j). But then there is a set of Q ∈ Tj ⊗ Ũ
with positive ν̃j(⋅∣⋅)⊗ κj-measure such that for all (tj , u) ∈ Q, we have tj ∉ T̃j and

Π̃j(γj(tj, u), tj , u; α̃∗) > Π̃j(γ∗j (tj , u), tj , u; α̃∗).
Thus, for all (tj , u) ∈ Q, we have γ∗j (tj , u) ∉Mj(tj, u; α̃∗), contradicting the fact that

γ∗ is a choice equilibrium. This establishes (a).

For (b), assume that {νj(⋅∣tj) ∶ tj ∈ Tj} are nonatomic, which implies {ν̃j(⋅∣tj) ∶ tj ∈
Tj} are as well. Let σ∗ be any Bayes-Nash equilibrium, and define the choice function

γ∗ = (γ∗j )nj=1 by extending σ∗j to Tj × Ũ , j = 1, . . . , n, arbitrarily. By arguments

similar to the above, γ∗ is a choice equilibrium. Then Corollary 1 yields an extremal

choice equilibrium γ̂ that is equivalent to γ∗. Finally, defining the strategy profile

σ̂ = (σ̂j)nj=1 by restricting each γ̂j to T × Uj , the resulting strategy profile is a pure

strategy Bayes-Nash that is equivalent to σ∗, as required.

Appendix A. Lower Measurability of Extreme Points

This appendix contains a lemma establishing, among other things, lower measur-

ability of the closure of extreme points of a correspondence. Note that by Lemma

18.3 of AB, this result extends to the correspondence extϕ(⋅) of extreme points as

well (although this correspondence may not have closed values).

Lemma 10: Let (S,Σ) denote a measurable space, and assume ϕ∶S ⇉ R
d is

lower measurable with nonempty and compact values. Then the correspondence s↦
extϕ(s) is lower measurable with nonempty and compact values.
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Proof: Nonempty and compact values follow from compactness of ϕ(s). To

prove lower measurability, let ψ(s) = coϕ(s), and note that these sets possess the

same extreme points, i.e., extψ(s) = extϕ(s). Thus, it suffices to show that the

correspondence s ↦ extψ(s) is lower measurable. Let {xm} be a countable, dense

subset of R
d, and for each m, define the continuous mapping dm∶R

d →R by dm(x) =
∣∣xm
−x∣∣. By a measurable version of the maximum theorem (see Theorem 18.19 of

AB), the correspondence Φm
∶S ⇉R

d defined by

Φm(s) = argmax{dm(x) ∶ x ∈ ψ(s)}
is lower measurable. By Corollary 7.87 of AB, Φm(s) is contained among the ex-

posed points of ψ(s), and therefore Φm(s) ⊆ extψ(s).6 By Lemma 18.4 of AB, it

follows that the correspondence Φ∶S ⇉ R
d defined by Φ(s) = ⋃∞m=1 Φm(s) is lower

measurable.

Given any s ∈ S, we claim that Φ(s) is dense among the exposed points of ψ(s).
Let y be any exposed point of ψ(s), and let f ∶Rd → R be a linear function such

that argmax{f(x) ∶ x ∈ ψ(s)} = {y}, i.e., letting p be the gradient of f normalized

so that ∣∣p∣∣ = 1, we have p ⋅ x < p ⋅ y for all x ∈ ψ(s) with x ≠ y. Consider any

ǫ > 0, and define zn = y − np. We will prove that for n > 0 large enough, we have

argmax{∣∣zn −x∣∣ ∶ x ∈ ψ(s)} ⊆ Bǫ(y). If not, then for arbitrarily large n, there exists

vn ∈ ψ(s) ∖Bǫ(y) such that ∣∣zn − vn∣∣ ≥ ∣∣zn − y∣∣ = n. By compactness of ψ(s), we

may assume vn → v ∈ ψ(s). Since y uniquely maximizes f on ψ(s) and y ≠ v, there

exists a > 0 such that p ⋅ v + a < p ⋅ y. Setting w = y − ap, we have p ⋅ v = p ⋅w, and in

particular, the vectors v −w and w − zn are orthogonal. It follows that

∣∣zn − v∣∣ = √∣∣zn −w∣∣2 + ∣∣v −w∣∣2 = √(n − a)2 + ∣∣v −w∣∣2,
which is strictly less than n for n great enough. This implies v ∈ Bn(zn) for high

enough n. Furthermore, the sequence {Bn(zn)} is increasing in the sense of set

inclusion, for given any x ∈ Bn(zn), we have ∣∣zn+1−x∣∣ ≤ ∣∣zn+1−zn∣∣+ ∣∣zn−x∣∣ ≤ n+1,

implying Bn(zn) ⊆ Bn+1(zn+1). We conclude that ∣∣zn − vn∣∣ < n for high enough n,

a contradiction. Thus, argmax{d∣∣zn − x∣∣ ∶ x ∈ ψ(s)} ⊆ Bǫ(y) for some n. Since

{xm} is dense in R
d, we may approximate zn to an arbitrary degree by elements

xm, and then the theorem of the maximum (Theorem 17.31 of AB) implies that

Φm(s) ⊆ Bǫ(y) for some m, and therefore Φ(s) ∩Bǫ(s) ≠ ∅. We conclude that Φ(s)
is dense among the exposed points of ψ(s), as claimed.

Finally, Theorem 7.89 of AB implies that the exposed points of ψ(s) are dense

among the extreme points of ψ(s), and therefore Φ(s) = extψ(s) for all s ∈ S. Then

6Given a set A ⊆ R
d, we say x ∈ R

d is a strongly exposed point of A if it is the unique maximizer

over A of a linear function.
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lower hemicontinuity of s ↦ extψ(s) follows from Lemma 18.3 of AB. This completes

the proof of the lemma.
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