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Abstract

We extend Armstrong’s [2] result on exclusion in multi-dimensional screening mod-

els in two key ways, providing support for the view that this result holds true in a large

class of models and is applicable to many different markets. First, we relax the strong

technical assumptions he imposed on preferences and consumer types. Second, we ex-

tend the result beyond the monopolistic market structure to some oligopoly settings.

We illustrate the results with several examples and applications.

JEL Codes: C72, D42, D43, D82

Key words: Multi-dimensional screening, exclusion, regulation of a monopoly,

involuntary unemployment.

1 Introduction

When considering the problem of screening, where sellers choose a sales mechanism and buy-

ers have private information about their types, it is well known that the techniques used in

the multi-dimensional setting are not as straightforward as those in the one-dimensional set-

ting. As a consequence, while we have a host of successful applications with one-dimensional

types, to date we have only a few scattered papers that allow for multi-dimensional types.
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This is unfortunate because in many, if not most, economic applications multi-dimensional

types are needed to capture the basic economics of the environment, and the propositions

coming from the one-dimensional case do not necessarily generalize to the multi-dimensional

case.1

One intriguing result in the theory of multi-dimensional screening comes from Arm-

strong [2], who shows that a monopolist will find it optimal to not serve some fraction of

consumers, even when there is positive surplus associated with those consumers. That is,

in settings where consumers vary in at least two different ways, monopolists will choose a

sales mechanism that excludes a positive measure of consumers. The intuition behind this

result is rather simple: consider a situation where the monopolist serves all consumers; if

she increases the price by ε > 0 she earns extra profits of order O(ε) on the consumers who

still buy the product, but will lose only the consumers whose surplus was below ε. If m > 1

is the dimension of the vector of consumers’ taste characteristics, then the measure of the

set of the lost consumers is O(εm). Therefore, it is profitable to increase the price and lose

some consumers. In principle, this result has profound implications across a wide range of

economic settings. The general belief that heterogeneity of consumer types is likely to be

more than one-dimensional in nature, for many different commodities, and that these types

are likely to be private information, underlines the significance of Armstrong’s result.2

However, the result itself was derived under a relatively strong set of assumptions that

could be seen as limiting its applicability, and subsequent research has identified conditions

under which the result does not hold. In particular, Armstrong’s original analysis assumes

that the utility functions of the agents are homogeneous and convex in their types, and

that these types belong to a strictly convex and compact body of a finite dimensional space.

Basov [7] refers to the latter as the joint convexity assumption and argues that, although

convexity of utility in types and convexity of the types set separately are not restrictive and

can be seen as a choice of parametrization, the joint convexity assumption is technically

restrictive.

The joint convexity assumption has no empirical foundation and is nonstandard. For

instance, the benchmark case of independent types fails joint convexity because the type

space is the not strictly convex multi-dimensional box. There is, in general, no theoretical

justification for a particular assumption about the curvature of utility functions with respect

1See Rochet and Stole [24] and Basov [7] for surveys of the literature.
2The type of an economic agent is simply her utility function. If one is agnostic about the preferences

and does not want to impose on them any assumptions beyond, perhaps, monotonicity and convexity, then

the most natural assumption is that the type is multi-dimensional.
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to types, as opposed to, say, quasi-concavity of utility functions with respect to goods. In

the same line, in general, there is no justification, other than analytical tractability, for type

spaces to be convex, and for utility functions to be homogeneous in types. Both Armstrong [4]

and Rochet and Stole [24] found examples outside of these restrictions where the exclusion

set is empty.

We show that these counter-examples are knife-edge cases. Exclusion is generically opti-

mal for a monopolist in the family of models where utility functions are smooth and monotone

in types, and types belong to sets of locally finite perimeter. The class of sets of locally finite

perimeter is a class of sets that includes all of the examples the authors are aware of in the

literature, and we stress, includes type spaces that are nowhere close to being convex. That

is, exclusion is generically optimal in a large class of models.

Once this is established, a natural question to address is whether market power is crucial

for the result. That is, whether the result hinges on the seller being a monopolist. We show

that a similar exclusion result holds in a symmetric equilibrium in an industry composed

of finitely many firms, provided that in such an equilibrium each firm retains some market

power. So, yes, the result hinges on market power, but it is compatible with forms of

competition that do not mitigate an individual firm’s power. We show our result by first

formulating the problem of a firm in an oligopoly setting in an analogous way to the problem

of a monopolist firm. This is done by including the option of purchasing from other firms

as one of the outside options of a consumer, from the perspective of a given firm. Second,

we note that the exclusion result in the monopoly setting can be interpreted as follows:

the consumers that are excluded are those who do not benefit from the presence of the

monopolist, as they are better off sticking to their outside option. In an oligopolist setting,

from the perspective of one firm, the excluded consumers are those that do not benefit from

the presence of that one firm, as they are better off sticking to their outside option, which may

well be to purchase from other firms. We then show that, under the additional assumption of

strict supermodularity of utility functions, the exclusion result extends to the oligopoly case

where individual firms retain some market power in equilibrium. The particular formulation

that we choose has firms choosing their capacities first, and then competing in non-linear

tariffs. Other formulations that preserve individual market power would produce similar

results. We conclude that in a large class of models, generically a positive set of consumers

will be excluded from a given firm in an oligopoly, in a symmetric equilibrium of the game

played by the firms.

We illustrate the generality of the results with a few examples and two applications,
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namely the regulation of a monopolist with unknown demand and cost functions, and the

emergence of involuntary unemployment as a result of screening by employers. The former

application picks up of the analysis in Armstrong [4], where he reviews Lewis and Sapping-

ton [18] and conjectures that exclusion is probably an issue in their analysis. At the time,

Armstrong could not prove the point, due to the lack of a more general exclusion result. With

our results in hand, we are able to prove Armstrong’s conjecture. The latter application is a

straightforward way of showing that, when workers have multi-dimensional characteristics,

it is generically optimal for employers (with market power in the labor market) to not hire

all the workers.

In sum, the paper provides evidence to the proposition that private information leads to

exclusion in many realistic settings. To avoid it, one must either assume that all allowable

preferences lie on a one-dimensional continuum, or construct very specific type distributions

and preferences, or have very strong forms of competition among firms.

The remainder of this paper is organized as follows. In Section 2 we present the monopoly

problem with consumers that have a type-dependent outside option and then derive condi-

tions under which it is generically optimal to have exclusion. In Section 3 we generalize the

results for the case of oligopoly and a market with free entry. Examples and applications

are presented in Section 4. The Appendix presents some relevant concepts from geometric

measure theory.

2 Exclusion in a Monopolistic Screening Model

Consider a firm with a monopoly over n goods. The tastes of the consumers over these goods

are parametrized by a vector α ∈ Rm. The utility of a type α consumer consuming a bundle

x ∈ Rn
+ and paying t ∈ R to the firm is

v(α, x, t)

where v is strictly increasing and strictly concave in x, and strictly decreasing in t. Our

focus is not on relaxing the smoothness assumptions on v, so we will assume that v is twice

continuously differentiable, with vt(α, x, t) ≡ ∂v(α,x,t)
∂t

Lipschitz continuous and bounded away

from zero.

The total cost c(·) of producing bundle x is given by c(x), where c(·) is a convex function

(possibly linear). The firm is not able to observe the consumer’s type, but has prior beliefs
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over the distribution of types, described by the density function f(α), with compact support

supp(f) = Ω, where Ω ⊂ Rm is the space of types, and Ω is its closure. We assume that

Ω ⊂ U is an open set with locally finite perimeter in the open set U , and that f is Lipschitz

continuous.3 Intuitively, a set has locally finite perimeter if its characteristic function is a

function of bounded variation, hence it is a large class of open sets that includes the class of

open convex sets as a very small subclass.4 Also, we assume that ν(·, x, t) can be extended

by continuity to Ω. Consumers have an outside option of value s0(α), which is assumed to

be continuously differentiable, implementable and extendable by continuity to Ω.5 Let x0(α)

be the outside option implementing s0(α) for type α.

The firm looks for a selling mechanism that maximizes its profits. The Taxation Principle

(Rochet [21]) implies that one can, without loss of generality, assume that the monopolist

simply announces a non-linear tariff t : Rn
+ → R.

The above considerations can be summarized by the following model. The firm selects a

function t : Rn
+ → R to solve

max
t(·)

∫

Ω

(t(x(α))− c(x(α)))f(α)dα, (2.1)

where x(α) satisfies

{

x(α) ∈ argmaxx≥0 v(α, x, t(x)) if maxx≥0 v(α, x, t(x)) ≥ s0(α)

x(α) = x0(α) otherwise.
(2.2)

Define the net utility as the unique function u(α, x) that solves

s0(α) = v(α,x, u(α, x)) (2.3)

The economic meaning of u(α, x) is the maximal amount type α is willing to pay for the

bundle x. Note that the optimal tariff paid by type α satisfies

t(x(α)) ≤ u(α, x(α)). (2.4)

Let s(α) denote the surplus obtained by type α:

3See Evans and Gariepy [13] and Chlebik [11] for the relevant concepts from geometric measure theory.

For convenience, a brief summary is presented in the Appendix.
4A set of finite perimeter can have many “holes” and its boundary can be quite “rough”.
5For conditions of implementability of a surplus function see Basov [7].
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s(α) =

{

maxx≥0 v(α, x, t(x))− s0(α) if maxx≥0 v(α, x, t(x)) ≥ s0(α)

0 otherwise.
(2.5)

Accordingly, we have the envelope condition

∇s(α) = ∇αv(α, x(α), t(x(α)))−∇s0(α)

that holds for almost every α with x(α) 6= x0(α). From (2.3) we have

∇s0(α) = ∇αv(α, x(α), u(α, x(α))) + vt(α, x(α), u(α, x(α)))∇αu(α, x(α)),

so the envelope condition can be written as

λ(α)∇s(α) = ∇αu(α, x(α)) (2.6)

for almost every α with x(α) 6= x0(α), where λ(α) = |vt(α, x(α), u(α, x(α)))|−1 is positive

and bounded away from zero.

We are interested in the the set of excluded consumers, given by

{α ∈ Ω : x(α) = x0(α)},

that is, the set of types that optimally choose to not participate.

Assumption 2.1. u(·, x) is strictly increasing in α for each x 6= x0(α).

For a, b ∈ Rm let (a · b) denote the inner product of a and b.

Assumption 2.2. There exists K > 0 such that u(α, x) ≤ K(α · ∇αu(α, x)) for every

(α, x) ∈ Ω× Rn
+.

Assumptions 2.1 and 2.2 are regularity conditions, requiring that the net utility be strictly

increasing in α and bounded. Note that v(·, x, t) is allowed to be decreasing in α, as long as

Assumptions 2.1 and 2.2 are satisfied.

For any Lebesgue measurable set E ⊂ Rm let Lm(E) denote its Lebesgue measure and

Hs(E) denote its s-dimensional Hausdorff measure. For s = m, the Hausdorff measure of a

Borel set coincides with the Lebesgue measure, while for s < m it generalizes the notion of

the surface area.6

6For a definition of the Hausdorff measure, see Chlebik [11].
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Let ∂eΩ denote the measure theoretic boundary of Ω. Because Ω has locally finite perime-

ter, the measure theoretic boundary can be decomposed into countably many smooth pieces

and a residual set with measure zero. That is,

∂eΩ =
∞
⋃

i=1

Ki ∪N,

where Ki is a compact subset of a C1-hypersurface Si, for i ≥ 1, and Hm−1(N) = 0.

We now describe the underlying space of all type spaces. It is given by (Ωβ)β∈B, where B
is an index set. For each β ∈ B, Ωβ is an open set with locally finite perimeter in some open

set Uβ and its boundary structure is given by

∂eΩβ =
∞
⋃

i=1

Ki,β ∪Nβ

where

Ki,β = {α ∈ Ωβ : gi(α, β) = 0}

for i > 0, with gi : Rm × B → R smooth, and Nβ is a set of Hm−1-measure zero. We make

the following assumption about (Ωβ)β∈B:

Assumption 2.3. (i) B is a smooth finite dimensional open manifold; (ii) the correspon-

dence ϕ : B ⇉ Rm, given by ϕ(β) = Ωβ, has open graph; (iii) there exist β̂ ∈ B such

that

∇αgi(α, β̂) � 0

for all α ∈ Rm and all i > 0.

That is, the parameters β ∈ B determine the underlying set of type spaces (Ωβ)β∈B

that we consider. Requirements (i) and (ii) are mild technical requirements so that we can

apply transversality ideas. In fact, one can argue that the correspondence ϕ must be a

continuous correspondence, so that proximity in B implies proximity of the corresponding

type spaces. Nevertheless, all that is need for the main argument is the weaker requirement

(ii). Requirement (iii) is also quite mild: in two dimensions (m = 2), it is satisfied as long

as a “slanted right-ward diamond” is included as a member of the allowed types spaces.

A seemingly more important requirement is the finite dimensionality of B. But this is

just for the a cleaner presentation of our ideas. In Lemma 2.7 below we make use of the

standard Transversatiliy Theorem, which is valid in a finite dimensional environment. It is
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well known that there exist general versions of the Transversality Theorem that allow for

infinite dimensions.7 One can generalize Assumption 2.3 allowing for an infinite dimensional

B and adapt Lemma 2.7 below with a more powerful Transversality Theorem. We leave this

task to the interested reader.

Let K(Rm) be the hyperspace of compact sets in Rm, endowed with the topology induced

by the Hausdorff distance dH , given by

dH(E,F ) = inf{ε > 0 : E ⊂ F ε, F ⊂ Eε},

where

Eε =
⋃

α∈E

B(α, ε)

and B(α, ε) is the open ball centered at α and with radius ε > 0. Because

lim
ε→0+

Lm(Eε) = Lm(E), lim
ε→0+

Hs(Eε) = Hs(E)

for all s ≥ 0, both Lm and Hs are upper semicontinuous functions in K(Rm) (Beer [9]).

The Generalized Gauss-Green Theorem states that for any Ω with locally finite perimeter

in U ⊂ Rm, and any Lipschitz continuous vector field ϕ : U → Rm with compact support in

U there is a unique measure theoretic unit outer normal τΩ(α) such that

∫

Ω

divϕdα =

∫

U

(ϕ · τΩ)dHm−1

where

divϕ =
m
∑

k=1

∂ϕk

∂αk

is the divergence of the vector field ϕ.

The main result of this section is Theorem 2.4 below. It is stated without reference to

the well known sufficient conditions for implementability and differentiability of s(·) in order

to focus on the conditions that highlight the nature of the contribution being made.

Let us write Ω0,β = {α ∈ Ωβ : s(α; β) = 0}, where s(α; β) is the surplus function

obtained by type α when the underlying type space is Ωβ. Likewise, we shall make explicit

the dependence of the relevant object on the underlying type space indexed by β ∈ B, viz.
7See Golubitsky and Guillemin [14] for the relevant concepts in the theory of transversality.
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x(α; β), x0(α; β), etc. Extending s(·; β) by continuity to ∂Ωβ, let Ω0,β = {α ∈ Ωβ : s(α; β) =

0}.

Theorem 2.4. Consider the problem (2.1)-(2.2), and assume that it has a finite solution

yielding an allocation x(α; β) and surplus s(α; β) which are continuous at each (α, β) in the

graph of ϕ. Then, under Assumptions 2.1, 2.2 and 2.3, for each model β in an open and

dense subset of B, the set of excluded consumers at the solution has positive measure.

Proof. We divide the proof into several intermediate steps.

Lemma 2.5. Let E ∈ K(Rm) be such that Lm(E) = Hs(E) = 0, for some s ≥ 0, and let

(Ek)k≥1 be a sequence in K(Rm) such that Ek → E. Then Lm(Ek) → 0 and Hs(Ek) → 0.

Proof of Lemma. Because Lm is a non negative upper semicontinuous set function, we have

lim inf
Ek→E

Lm(Ek) ≥ 0 = Lm(E) ≥ lim sup
Ek→E

Lm(Ek),

so Lm(Ek) → 0, and analogously for Hs.

Lemma 2.5 establishes continuity of Lebesgue and Hausdorff measures at zero.

Lemma 2.6. Under Assumption 2.1, Lm(Ω0,β) = 0 implies Ω0,β ⊂ ∂Ωβ.

Proof of Lemma. If Ω0,β * ∂Ωβ, there is α ∈ Ω0,β and an ε > 0 with B(α, ε) ⊂ Ω. Then

Lm({α̂ ∈ Ωβ : α̂ ≤ α} ∩ B(α, ε)) > 0.

Because of Assumption 2.1, we cannot have s(α̂; β) > 0 for any α̂ ≤ α, for otherwise

s(α; β) > 0 as well. So

{α̂ ∈ Ωβ : α̂ ≤ α} ∩ B(α, ε) ⊂ Ω0,β,

contradicting Lm(Ω0,β) = 0.

Lemma 2.6 states that if the exclusion set has Lebesgue measure zero it should be part

of the topological boundary of the type set. Assumption 2.1 is crucial for this result. If it

does not hold it is easy to come up with counter-examples even in the one-dimensional case.

For examples, see Jullien [15].

Lemma 2.7. Under Assumption 2.3, if Lm(Ω0,β) = 0 for all β in some open subset V ⊂ B,
then there exists β′ ∈ V such that Hm−1(Ω0,β′) = 0.
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Proof of Lemma. By Lemma 2.6, Ω0,β ⊂ ∂Ωβ for all β ∈ V . Because Hm−1(∂Ωβ\∂eΩβ) = 0,

consider Ω0,β ∩ ∂eΩβ, which is given by

Ω0,β ∩ ∂eΩβ =
∞
⋃

i=1

Ω0i,β ∪ (Nβ ∩ Ω0,β)

where

Ω0i,β = {α ∈ Ωβ : gi(α, β) = 0, s(α; β) = 0},
for i > 0. Now Assumptions 2.1 and 2.3(ii) ensure that there is β̂ ∈ B for which the

level sets of u(α, x; β) are transversal to gi(α, β̂), at the solution x(α; β) for all i > 0. The

Transversality Theorem then implies that the level sets of u(α, x; β) are transversal to the

level sets of gi(α, β
′) for an open and dense subset of β′ and all i > 0. By continuity

of x(α; β) in β, for any neighborhood of β, there exists a model β′ with the level sets of

u(α, x; β′) transversal to the level sets of gi(α, β
′) for all i > 0, at the solution x(α, β′). Note

that β′ ∈ V .

By the Implicit Function Theorem, Ω0i,β′ is a manifold of dimension of (m − 2). So

Hm−1(Ω0i,β′) = 0. Hence

Hm−1(Ω0,β′ ∩ ∂eΩβ′) ≤
∞
∑

i=1

Hm−1(Ω0i,β′) +Hm−1(Nβ′ ∩ Ω0,β′) = 0,

as we wanted to show.

Lemma 2.7 provides the basic step in establishing denseness of the set of models where

exclusion occurs with positive probability. It is a straightforward application of the standard

Transversality Theorem. Nevertheless, it shows that Assumptions 2.1 and 2.3 are potent,

albeit being quite weak.

Lemma 2.8. For any β ∈ B, the Lebesgue measure of the set Dβ = {α ∈ Ω0,β : x(α; β) 6=
x0(α; β)} is zero.

Proof of Lemma. If Ω0,β = ∅ then there is nothing to prove. So assume it is not empty,

pick α ∈ Ω0,β and say that there is α̂ ∈ Ω0,β with α̂ ≤ α and x(α̂; β) 6= x0(α̂; β). Then

u (α̂, x (α̂; β)) = t (x(α̂; β)) because v(α̂, x(α̂; β), t (x(α̂; β))) = s0(α̂; β) and by Assumption

2.1,

u (α, x (α̂; β)) > u (α̂, x (α̂; β))

and, because v is strictly decreasing in t,

s0(α; β) = v(α, x(α̂; β), u(α, x(α̂; β))) < v(α, x(α̂; β), t (x(α̂; β)))
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contradicting the optimality of x(α; β) for type α. Therefore we must have x(α̂; β) = x0(α̂; β)

for all α̂ ≤ α. The same argument shows that if α ∈ Ω0,β and x(α; β) 6= x0(α; β), then

α̂ /∈ Ω0,β whenever α̂ ≥ α. So for any pair (α, α̂) in Ω0,β with x(α; β) 6= x0(α; β) and x(α̂; β) 6=
x0(α̂; β) we must have α � α̂ and α̂ � α. Now consider any countable family of rectangles

{Rk} covering Dβ, i.e, with Dβ ⊂ ⋃k Rk. By picking a point αk in Dβ ∩ Rk for each k, and

excluding from Rk the points that are strictly greater and strictly smaller than αk, we can

construct another countable cover of Dβ by rectangles {R′
j} with

∑

j I(R
′
j) ≤ 1

2

∑

k I(Rk),

where I(R) is the volume of a rectangle R in Rm. It follows that Lm(Dβ) = 0.

Let E ⊂ B be the set of models where the set of excluded consumers has positive measure:

E = {β ∈ B : Lm(Ω0,β) > 0}}.

Lemma 2.9. E is open in B.

Proof of Lemma. Note that Ω0,β can be expressed as

Ω0,β = {α ∈ Ω : ŝ(α; β) ≤ s0(α; β)}

where ŝ(α; β) solves the monopolist problem without the participation constraint and coin-

cides with the optimal solution in the participation region. Now decompose it as

Ω0,β = Ω
1

0,β ∪ Ω
2

0,β

where Ω
1

0,β = {α ∈ Ωβ : ŝ(α; β) < s0(α; β)} and Ω
2

0,β = {α ∈ Ωβ : ŝ(α; β) = s0(α; β)}.

By continuity of ŝ(·; β) and s0(·; β), Ω1

0,β is an open set. By Lemma 2.8, Ω
2

0,β = {α ∈
Ω0,β : x(α; β) 6= x0(α; β)} has zero Lebesgue measure. If E = ∅ there is nothing to prove,

so assume it is not empty. Take β ∈ E , and note that Ω
1

0,β 6= ∅. Pick δ > 0 such that

the set Cβ = {α ∈ Ωβ : ŝ(α; β) − s0(α; β) < −δ} ⊂ Ω
1

0,β has positive Lebesgue measure.

We claim that there must exist ε > 0 such that whenever β′ is ε-close to β, we have

ŝ(α; β′)− s0(α; β
′) < 0 for all α ∈ Cβ. If not, then there would exist a net βε → β as ε → 0,

and (by assumption 2.3(ii)) an α(βε) ∈ Cβ for each βε with ŝ(α(βε); βε)− s0(α(βε); βε) ≥ 0,

whereas ŝ(α(βε); β)−s0(α(βε); β) < −δ, which is impossible because ŝ and s0 are continuous

functions. It follows that Cβ ⊂ Ω0,β′ , and hence Lm(Ω0,β′) > 0, for every β′ ε-close to β, as

we wanted to show.

Lemma 2.10. For each given β ∈ B, there is an equivalent metric in Rn for which x(α; β),

and hence s(α; β) and λ(α; β), are Lipschitz continuous functions.
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Proof of Lemma. Let || · ||n and || · ||m be the Euclidean norms in Rn and Rm, respectively.

Let d1(α, α
′) = ||α−α′||n+ ||x(α; β)−x(α′; β)||m. Then ||x(α; β)−x(α′; β)||m < d1(α, α

′), so

x(·; β) is Lipschitz continuous. The metric d1 is equivalent to the Euclidean metric (Aliprantis

and Border [1], Lemma 3.12). Also, any Lipschitz continuous function under the Euclidean

metric in Rn (as the density f) is also Lipschitz continuous under d1. In fact, |f(α)−f(α′)| ≤
c||α− α′||n = cd1(α, α

′)− c||x(α; β)− x(α′; β)||m ≤ cd1(α, α
′), for some real number c.

We are now ready to conclude the argument. We shall show that E is a dense subset of

B, which, in light of Lemma 2.9, establishes the result.

By way of contradiction, assume that Lm(Ω0,β) = 0 for all β in some open set V ⊂ B.
For any natural number k, let πk,β be the profit obtained by selling to the types in

Ωk,β = {α ∈ Ωβ : s(α; β) ≤ 1

k
}.

Because c(·) is non-negative, we must have

πk,β ≤
∫

Ωk,β

t(x(α; β))f(α)dα,

and from (2.4) we have

πk,β ≤
∫

Ωk,β

u(α, x(α; β))f(α)dα.

Assumption 2.2 and the envelope condition (2.6) (with Lm(Ω0,β) = 0, we have Lm(Ωk,β) =

Lm(Ωk,β\Ω0,β), so the envelope condition holds for almost all types in Ωk,β) yield

πk,β ≤ K

∫

Ωk,β

(α · ∇s(α; β))λ(α; β)f(α)dα.

Applying the Generalized Gauss-Green Theorem to the Lipschitz continuous vector field

ϕ(α) = αs(α; β)λ(α; β)f(α) we get

πk,β ≤ K

∫

Uβ

s(α; β)λ(α; β)f(α)(α · τΩ(α))dHm−1(α)

−K

∫

Ωk,β

s(α; β)div(αλ(α; β)f(α))dα.

The functions s(α; β), λ(α; β), f(α), (α·τΩ(α)) and div(αλ(α; β)f(α; β)) are bounded in Ωk,β,

so we can find a common upper bound B. Because s(α; β) ≤ 1
k
in Ωk,β and supp(f) = Ωβ,

we have

πk,β ≤ 1

k
B(Hm−1(Ωk,β) + Lm(Ωk,β)).
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Now consider increasing the tariff by 1
k
. The consumers in the set Ωk,β will exit, and πk,β will

be lost, but each other consumer will pay 1
k
more. Because the total number of consumers

that exit is bounded by BLm(Ωk,β), the change in profit is

∆πβ ≥ 1

k
[(1− BLm(Ωk,β))− B(Hm−1(Ωk,β) + Lm(Ωk,β))].

From Lemma 2.7, there exists β′ ∈ V with Hm−1(Ω0,β′) = 0, and hence from Lemma

2.5 we have Lm(Ωk,β′) → 0 and Hm−1(Ωk,β′) → 0, because, by continuity of s(·; β′) and the

compact support of f(·), each Ωk,β′ is compact. But then for large k, ∆πβ′ must be positive,

contradicting the optimality of the tariff. Therefore, we have Lm(Ω0,β′) > 0. As V was

arbitrary, E is dense, as we wanted to show.

Remark that Lemma 2.8 ensures that the set of positive measure is the set of types that

choose the outside option, that is, the set of excluded types. The types that obtain zero

surplus and yet choose to participate form a neglible set.

Let us note that it is standard in the literature to work with a quasilinear framework,

where v(α, x, t) = υ(α, x) − t and the net utility is u(α, x) = υ(α, x) − s0(α). Also, some-

times s0(α) is assumed to be equal to zero for every α. In fact, this is the setting used by

Armstrong [2]. In his setting, Assumptions 2.1 and 2.2 are implied by his assumption that

υ is strictly increasing and homogeneous of degree 1 in α, and Assumption 2.3 is implied by

his assumption that Ω is strictly convex and υ is strictly convex in α. Clearly, Assumptions

2.1-2.3 are substantially weaker than the standard assumptions in the literature.

3 Exclusion in an Oligopolistic Screening Model

We now extend the framework of Section 2 to the case of a market served by L > 1 firms. For

simplicity, we assume quasilinearity of the consumer’s utility function and a type-independent

outside option normalized to 0. The production cost is identical among the firms. The

firms simultaneously choose non-linear tariffs, and obtain profits after the consumers make

their choices. Consumers choose their optimal bundle after observing the choices of the

firms. Consumers’ choices may well involve buying goods produced by several firms. A pure

strategy of firm ℓ is a non-linear tariff, i.e. a mapping tℓ : Rn
+ → R. Consider a symmetric

Nash equilibrium at which all firms charge the same tariff. We shall show that, generically,

at any such equilibrium where firms retain some market power a positive measure of the

consumers is not served.
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For concreteness, we will present a formulation where individual firms retain some market

power in a symmetric equilibrium. Each firm ℓ first produces a quantity x̄ℓ at cost c(x̄ℓ),

and then competes with the other firms by choosing a non-linear tariff to sell x̄ℓ to the

consumers.8 Hence it solves

max
tℓ(·),x̄ℓ

∫

tℓ(xℓ(α))f(α)dα− c(x̄ℓ)

subject to:











∫

xℓ(α)f(α)dα = x̄ℓ

x(α) ∈ argmaxx≥0 υ(α, x)− t(x) if maxx≥0 υ(α, x)− t(x) ≥ s0,ℓ (α)

x(α) = 0 otherwise

where










t(x) = min
∑

µ

tµ(xµ)

s.t.
∑

µ

xµ = x, xµ ≥ 0
, (3.1)

and

s0,ℓ(α) = max{s∗0(α), max
x≥0,xℓ=0

(υ(α, x)− t−ℓ(x))} (3.2)

and t−ℓ(x) solves problem (3.1) subject to the additional constraint xℓ = 0. Equation

(3.2) states that the outside option of a consumer seen from the point of view of firm ℓ is

determined either by her best opportunity outside the market, s∗0(α), or by the best bundle

she may purchase from the competitors, maxx≥0,xℓ=0(υ(α, x)− t−ℓ(x)). We assume that the

capacity of firm ℓ, x̄ℓ, is decided first, and after that the firm picks the best non-linear tariff

tℓ to distribute x̄ℓ to consumers.

Define

u(α, xℓ) = υ(α, xℓ +
∑

µ 6=ℓ

xµ(α))−
∑

µ 6=ℓ

tµ(xµ(α))− s0,ℓ(α),

where xµ(α) is the equilibrium quantity purchased by the consumer of type α from firm

µ 6= ℓ and s0,ℓ(α) is given by (3.2). Then firm ℓ’s problem becomes:

max
tℓ(·),x̄ℓ

∫

tℓ(xℓ(α))f(α)dα− c(x̄ℓ),

subject to:

8It is well-known that such a formulation preserves the market power of individual firms. See Kreps and

Sheinkman [16].
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∫

xℓ(α)f(α)dα = x̄ℓ

xℓ(α) ∈ argmaxx≥0 u(α, xℓ)− tℓ(xℓ) ifmaxx≥0 u(α, xℓ)− tℓ(xℓ) ≥ 0

xℓ(α) = 0 otherwise.

In the formulation above, u(α, xℓ) is endogenous, so we cannot impose Assumptions 2.1

and 2.2 on it. It turns out that restricting υ(α, x) to the class of functions satisfying strict

“supermodularity” in (α, x) is enough to ensure the required properties of u(α, xℓ).

Assumption 3.1. For every i = 1, ...,m, p = 1, ..., n and x 6= 0 we have

∂2υ

∂αi∂xp

> 0.

Proposition 3.2. Under Assumption 3.1 we have: (a) u(α, xℓ) is strictly increasing in α

for all xℓ ∈ Rn
+; (b) There exists B > 0 such that u(α, xℓ) ≤ B(α · ∇αu(α, xℓ)) for every

(α, xℓ) ∈ Ω× Rn
+, and each ℓ = 1, ..., L.

Proof. For (a), note that

∂u(α, xℓ)

∂αi

= [
∂υ(α, x)

∂αi

− ∂s0,ℓ(α)

∂αi

] +
∑

µ 6=ℓ

∑

p

(
∂υ

∂xµ,p

− ∂tµ
∂xµ,p

)
∂xµ,p

∂αi

= [
∂υ(α, x)

∂αi

− ∂s0,ℓ(α)

∂αi

]

because the consumer chooses optimally from the other firms. When the relevant alternative

from buying from firm ℓ is to buy from other firms, we have

∂υ(α, x)

∂αi

=

∂υ(α, xℓ +
∑

µ 6=ℓ

xµ(α))

∂αi

,

while

∂s0,ℓ(α)

∂αi

=

∂υ(α, 0 +
∑

µ 6=ℓ

xµ(α))

∂αi

,

where xµ(α) is the optimal quantities purchased by firm µ 6= ℓ. So ∂u(α,xℓ)
∂αi

> 0 for every

i = 1, ...,m and every x 6= 0.

Turn now to (b), and define

h(α, xℓ) =
u(α, xℓ)

α · ∇αu(α, xℓ)
, if xℓ 6= 0

h(α, xℓ) = lim
xℓ→0

sup
u(α, xℓ)

α · ∇αu(α, xℓ)
, if xℓ = 0.
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Observe that

lim
xℓ,p→0,xℓ,q=0

sup
u(α, xℓ)

α · ∇αu(α, xℓ)
=

∂u/∂xℓ

n
∑

q=1

∂2v/∂xℓ,q∂αi

.

Let X =
n
∏

k=1

[0, x∗
k], where x∗

k is the efficient (i.e. the outcome of a perfectly competitive

market) value of xk and define

B = max
X×Ω

h(α, xℓ),

which is well defined because the set X×Ω is compact and h is a continuous function. Then

u(α, xℓ) ≤ B(α · ∇αu(α, xℓ)),

for all (α, x) ∈ Ω×X, for each ℓ = 1, ..., L.

Theorem 3.3. Consider a symmetric equilibrium of the oligopoly game described above, and

assume that the resulting allocation for the entire industry is continuous at each (α, β) in

the graph of ϕ. Then, under Assumptions 3.1 and 2.3, the set of excluded consumers has

positive measure for an open and dense set in B.

Proof. Note first that we need only s(α; β) Lipschitz continuous: under quasilinearity, we

need not worry about continuity of λ as we did in Theorem 2.4, since λ is always equal

to 1. Because the allocation for the entire industry is continuous, as in Theorem 2.4, the

same argument will now yield a Lipschitz continuous s(α; β). Now consider firm ℓ. Given

the behavior of the competitors and their fixed capacity x̄−ℓ, the problem described in the

formulation above is isomorphic to the problem of a single firm with monopoly power. In

fact, if firm ℓ is to increase its tariff by 1/k as in the last part of Theorem 2.4, then types

with surplus for firm ℓ, sℓ, greater than 1/k will not move to firm ℓ’s competitors, as these

are already selling their capacity. Such types will keep purchasing from firm ℓ, so the

deviation will be profitable if the set of excluded types has measure zero, contradicting the

assumption of an equilibrium. That is, the argument in Theorem 2.4 applies and each firm

ℓ will optimally exclude a positive measure of consumers, for an open and dense subset of

B. By symmetry, so will every other firm. Finally, by symmetry again, the set of excluded

consumers is the same for all firms, so the intersection of the sets of excluded consumers has

positive measure.

We remark that our formulation with firms choosing their capacities first and then com-

peting in non-linear tariffs is one such formulation that ensures that each firm retains some
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market power in a symmetric equilibrium. Another such formulation would be to assume

that the common cost function is strictly convex. In all, what we really want to avoid is

linear costs with no capacity constraint, which can lead to an equilibrium with marginal cost

pricing, where no exclusion occurs.

Let us also remark that, in the formulation above, we can allow or entry, as long as

there is a positive entry cost F > 0. It is easy to see that this problem can be reduced

to the previous one, since equilibrium number of the producers is always finite. Indeed,

with K producers the profits of an oligopolist in a symmetric equilibrium are bounded by

πm/K, where πm are the profits of a monopolist. Therefore, at equilibrium K ≤ πm/F and

a positive measure of the consumers will be excluded from the market.

3.1 Existence of Equilibrium in the Oligopoly Game

Theorem 3.3 is derived under the assumption that a symmetric Nash equilibrium exists for

the game played by the firms. Champsuar and Rochet [10] note that the profit functions of

the firms might be discontinuous when there are bunching regions. Even though Basov [7]

shows that bunching in the multi-dimensional case is not as typical as suggested by Rochet

and Chone [22], existence of an equilibrium has to be established. That’s what we do next.

We focus on the continuation game after the capacity choices {x̄ℓ}Lℓ=1 are made. This is

the game where discontinuities might be a problem. Assume that the space T of allowed

tariffs is the space of all bounded monotonic functions from X to [0,M ], where X = [0, x̄ℓ] ⊂
Rn

+ is the compact subset of feasible bundles and M is a bound on the net utility function,

hence it is also a bound on the tariffs. The space T is the common strategy space of each

producer ℓ = 1, ..., L (by symmetry, x̄ℓ = x̄µ for all ℓ, µ = 1, ..., L.) By Helly’s theorem,

every sequence of tariffs in T has a pointwise convergent subsequence, so T is compact in

the topology of a.e. pointwise convergence (where a.e. refers to the Lebesgue measure Lm.)

Let ∆(T ) denote the space of Borel probability measures on T , endowed with the weak*

topology, so it is a compact, convex space.

Assume that when firms choose a symmetric profile (t, ..., t) of tariffs, they obtain the

same expected profit: πℓ(t, ..., t) = π(t, ..., t) for ℓ = 1, ..., L.9 Hence the one-shot game

(T × · · · × T, π, ..., π) played by the firms is symmetric, and so is its mixed extension, where

9Either because the consumer chooses optimally to buy a fraction 1

L
of the optimal bundle from each

firm, or because she visits each firm with probability 1

L
, depending on the shape of the commonly offered

non-linear tariff t.
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firms choose σ ∈ ∆(T ) and payoffs are extended to mixtures by taking expectations. For ease

of notation, let (σ̂, σ) denote the profile (σ, ..., σ̂, ..., σ) of strategies where one firm chooses

σ̂ and the others all choose σ. Use π(σ̂, σ) to denote the expected profit of the firm choosing

σ̂.

Proposition 3.4. The compact, convex and symmetric game described above has a symmet-

ric mixed strategy Nash equilibrium.

Proof. We show that the game is diagonally better reply secure (Reny [20]). Let (σ, σ) be

a non equilibrium profile, and consider π∗ = lim π(σn, σn) for some sequence with σn → σ.

For any ε > 0, there exists a strictly increasing tε with π(tε, σ) > π(σ, σ), as (σ, σ) is not an

equilibrium. Because tε is strictly increasing, π(tε, ·) is continuous at σ. If π∗ = π(σ, σ), then

diagonal better reply security is verified. If not, then we have discontinuities at (σ, σ). Along

any sequence σn converging to σ, there is at least one firm whose profit drops at the limit,

and this firm can obtain a profit strictly higher than π∗ by using tε instead of σn, for large

n. Hence diagonal better reply security is again verified due to continuity of π(tε, ·).

Observe that Theorem 3.3 remains valid at a symmetric mixed strategy equilibrium. As

long as the surplus function is Lipschitz continuous, the formulation of the oligopoly game

allows us to ascertain that a small increase in every t in the support of σ will be profitable

if the capacities are held fixed and the measure of excluded types is not positive.

4 Examples and Applications

Let us begin with some examples illustrating Assumptions 2.1, 2.2 and 2.3.

Example 4.1. Consider a consumer who lives for two periods. Her wealth in the first

period is w and in the second period her wealth can take two values, wH or wL. Let p be

the probability that w = wH , and let δ ∈ (0, 1) be the discount factor, so that the private

information of the consumer is characterized by a two-dimensional vector α = (1− p, 1− δ).

The consumer’s preferences are given by:

V (c1, c2) = υ(c1) + δEυ(c2)

where c1 and c2 are the consumption levels in periods 1 and 2 respectively, and υ(·) is in-

creasing with its derivative υ′ bounded away from zero. Assume that wealth is not storable
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between periods. Instead, the consumer can borrow x from a bank in period 1, and repay t in

period 2 if w = wH , and to defaut if w = wL in period 2. If the consumer does not borrow,

her expected utility will be:

s0(α) = υ(w) + δ(pυ(wH) + (1− p)υ(wL))

which is the type dependent outside option. If she borrows x and repays t, the expected utility

will be

v(α, x, t) = υ(w + x) + δ(pυ(wH − t) + (1− p)υ(wL))

which is strictly increasing in x and strictly decreasing in t. Let Ω1 = (0, 1)2 be the type

space, with boundary captured by gi(α, β1), i = 1, ..., 4, with ∇αgi(α, β1) = (0, 1) for i = 1, 2

and ∇αgi(α, β1) = (1, 0) for i = 3, 4. Let Ω2 be another type space, included in the underlying

space of type spaces, with boundary given by gi(α, β2), i = 1, ..., 4, with ∇αgi(α, β2) = (−ε, 1)

for i = 1, 2 and ∇αgi(α, β2) = (1,−ε) for i = 3, 4, for some ε > 0. Assumption 2.3 is thus

met.

As

∇αu (α, x) =

(

∆υ

pυ′
,
∆υ

δυ′

)

where ∆υ = υ(wH)− υ(wH − u (α, x)) > 0, Assumptions 2.1 and 2.2 are met as well.

Example 4.1 is a natural setting to discuss unavailability of credit to some individuals,

which is important to justify monetary equilibria in the search theoretic models of money.10

The next example comes from the theory of industrial organization.

Example 4.2. Suppose a monopolist produces cars of high quality. The utility of a consumer

is quasilinear, v(α, x, t) = υ(α, x)− t, with

υ(α, x) = A+
n
∑

i=1

αixi (4.1)

where A > 0 can be interpreted as utility of driving a car, and the second term in (4.1) is a

quality premium. Suppose a consumer has three choices: to buy a car from the monopolist,

to buy a car from a competitive fringe, and to buy no car at all. We will normalize the utility

of buying no car at all to be zero. Assume the competitive fringe serves cars of quality −x0,

where x0 ∈ Rn
++ at price p. That is, the consumers experience disutility from the quality of

10See, for example, Lagos and Wright [17].
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the cars of the competitive fringe, and the higher their type, the higher the disutility. The

utility of the outside option in this case is given by:

s0(α) = max(0, A− p−
n
∑

i=1

αix0i)

and is decreasing in α. Therefore, Assumptions 2.1 and 2.2 hold, because in a quasilinear

setting the net utility is u(α, x) = υ(α, x)−s0(α). As for Assumption 2.3, a type space of the

kind of Ω2 in Example 4.1 above suffices. Observe that all that is required is the following.

Say that we start off with Ω being the unit square in Rn. We then parametrize each of the

edges, and consider models obtained by small perturbations of the parameters, hence the edges

(like for instance small rotations of the unit square). When such type spaces are included in

B, Assumption 2.3 is met.

Observe that Examples 4.1 and 4.2 can easily be extended to the oligopoly case considered

in Section 3. In the former, banks would first earmark a fixed amount of consumer credit

and then compete with non-linear lending schedules, and in the latter producers would first

determine the quantity of high quality cars and then compete in non-linear tariffs.

Now let us turn to models that do not satisfy Assumptions 2.1, 2.2 and 2.3. First,

consider any model that yields an excluded set Ω0 with positive measure, and modify the

problem considering only the types in Ω\Ω′, where Ω0 ⊂ Ω′. Would the modified problem

have no exclusion? Though this will indeed be the case if Ω′ = Ω0,
11 it will not hold for a

generic superset Ω′. This would only be the case if the shape of Ω0 stood in a tight relation

with the shape of Ω′, a non generic situation. That is, even if Ω0 stood in the particular

tight relation with Ω′, a slight change in the boundary structure of Ω′ would suffice for us to

have exclusion in the modified model.

In the same vein, Rochet and Stole [24] provided an example where the exclusion set is

empty.12 In their quasilinear example υ : Ω×R+ → R has the form

υ(α, x) = (α1 + α2)x

and Ω is a rectangle with sides parallel to the 45 degrees and −45 degrees lines. They argued

that one can shift the rectangle sufficiently far to the right to have an empty exclusion region.

11We are grateful to an anonymous referee for this observation.
12Another example along similar lines is provided by Deneckere and Severinov [12]. Though it is a bit

more intricate and the authors provide sufficient conditions that ensure full participation in the case of one

quality dimension and two-dimensional characteristics, their condition also does not hold generically.
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Their result is driven by the fact that they allow only very special collections of type spaces,

rectangles with parallel sides. Formally, the model used in this case cannot be used in Lemma

2.7 because ∇αgi(α, β) = (1, 1) for i = 1, 3 and ∇αgi(α, β) = (−1, 1) for i = 2, 4, so that

(using u(α, x) = υ(α, x) because s0(α) = 0)

(

∇αu(α, x)

∇αgi(α, β)

)

=

(

x x

1 1

)

⇒ rank

(

∇αu(α, x)

∇αgi(α, β)

)

= 1

for i = 1, 3.

Observe that a very small change in the type set changes that result. Consider, for

example, a slightly perturbed type space, with ∇αgi(α, β0) = (1, 1 + ε), for i = 1, 3, where ε

is a small positive real number. Then, for all x 6= 0 and i = 1, ..., 4

rank

(

∇αu(α, x)

∇αgi(α, β0)

)

= 2

as required in Lemma 2.7.

We stress that our result does not guarantee a non-empty exclusion region for every multi-

dimensional screening problem. Rather, it asserts that problems for which the exclusion

region is empty can be slightly perturbed and transformed into problems with a positive

measure of excluded consumers. To understand the results intuitively, assume first that,

in equilibrium, all consumers are served. First, note that at least one consumer should be

indifferent between participating and not participating, since otherwise the tariffs can be

uniformly increased for everyone by a small amount, increasing the monopolist’s profits.

Now, consider increasing the tariff by ε > 0. The consumers who used to obtain surplus

below ε will drop out. The measure of such consumers is O(ε), unless the iso-surplus hyper-

surfaces happen to be parallel to the boundary of the type space. Under Assumption 2.3,

there will be a model where the iso-surplus hyper-surfaces will not only not be parallel to the

boundary of Ω, they will be transversal. The knife-edge cases of iso-surplus hyper-surfaces

parallel to the boundary of Ω may still occur endogenously, which is the reason why our

result holds for almost all, rather then for all, screening problems. One class of problems,

for which full participation may occur are models with random outside options. They were

first considered by Rochet and Stole [23] for both monopolistic and oligopolistic settings and

generalized by Basov and Yin [8] for the case of risk averse principal(s). Armstrong and

Vickers [5] considered another generalization, allowing for multidimensional vertical types.

In this type of models, the type consists of a vector of vertical characteristics, α ∈ Ω ⊂ Rm,

and a parameter γ ∈ [0, 1] capturing horizontal preferences. The type space is given by the
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Cartesian product Ω × [0, 1] and γ is assumed to be distributed independently of α. The

utility of a consumer is given by:

v(α, x; γ) = υ(α, x)− tγ,

where t is a commonly known parameter. Let υ(α, 0) = 0 so that the iso-surplus hyper-

surface corresponding to zero quality is tγ = constant, which is parallel to the vertical

boundary of type space, γ = 0. Therefore, in such a model there is the possibility of

full participation. The model was also investigated in an oligopolistic setting, where t was

interpreted as a transportation cost for the Hotelling model. Conditions for full participation

under different assumptions on the dimensionality of α and the monopolist’s risk preferences

were obtained by Armstrong and Vickers [5], Rochet and Stole [23], and Basov and Yin [8].

Let us assume that the boundary of set Ω is described by the equation

g0(α) = 0

and embed our problem into a family of problems, for which boundary of the type space is

described by the equation

g(α, γ; β) = 0,

where g(·, β) : Ω× [0, 1] → R is a smooth function with

g(α, γ; 0) = g0(α)(g0(α)− b)γ(γ − 1),

for some constant b. For instance, when β = 0 the type space becomes the cylinder over

the set Ω considered by Armstrong and Vickers [5]. Our result is that for almost all β the

exclusion region is non-empty. However, as we saw above, for β = 0 the exclusion region

may be empty.

We now consider another class of models, where full participation is possible. The exam-

ple will also be interesting, since it will allow us to investigate how the relative measure of

excluded consumers changes with the dimension of Ω.

Example 4.3. Let consumer’s preferences be given be quasilinear with:

υ(α, x) =
n
∑

i=1

αi

√
xi,

and the monopolist’s cost be given by

c(x) =
1

2

n
∑

i=1

xi.
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The type space is intersection of the region between balls with radii a and a+ 1with Rn
+, i.e.

Ω = {α ∈ Rn
+ : a ≤ ‖α‖ ≤ a+ 1}, (4.2)

where ‖·‖ denotes the Euclidean norm

‖β‖ =

√

√

√

√

n
∑

i=1

β2
i .

To solve for the optimal nonlinear tariff with a fixed number of characteristics, consider the

consumer surplus:

s(α) = max
x

(
n
∑

i=1

αi

√
xi − t(x)).

By symmetry, we look for a solution of the form

s = s(‖α‖)

In the “separation region”’ it solves
{

1
rn−1

∂
∂r
(rn−1s′(r)) + s′(r)f

′

(r)
f(r)

= n+ 1 + rf ′(r)
f(r)

s′(a+ 1) = a+ 1
(4.3)

where r ≡ ‖α‖ and we used the envelope theorem to obtain

√
xi =

∂s

∂αi

.

The monopolist’s problem can now be written as

max
s

∫

[α · ∇s(α)− c(∇s(α))− s(α)]dα

s.t. s(·)-convex, s ≥ 0.

(see Rochet and Chone [22].) Ignoring for now the convexity constraint, we have a standard

calculus of variations problem with free boundary. Therefore, in the participation region (i.e.,

the points with s > 0) we have:

n
∑

i=1

∂

∂αi

∂L

∂si
=

∂L

∂s

n
∑

i=1

αi

∂L

∂si
= 0 (4.4)

23



(see Basov [7]), where si denotes the ith partial derivative of s and

L = α · ∇s(α)− c(∇s(α))− s(α)

Observe that this is exactly the system (4.3). Assume that types are distributed uniformly on

Ω, so the derivative of the type distribution vanishes. Then, solving (4.3) we get:

xi(α) = [max(0,
αi

n
(n+ 1− (

a+ 1

r
)n))]2.

The corresponding iso-surplus hyper-surfaces are given by the intersection of a sphere of

appropriate dimension with Rn
+. They are parallel to the boundary, hence it is possible that

the exclusion region is empty. Note that the exclusion region is given by

Ω0 = {α ∈ Ω : ‖α‖ ≤ a+ 1
n
√
1 + n

},

so it is non-empty if
a+ 1
n
√
1 + n

> a.

Observe that if n = 1 the exclusion region is empty if and only if a > 1, if n = 2 it is empty

if and only if a > 1/(
√
3− 1) ≈ 1.36, and since

lim
n→∞

1
n
√
1 + n

= 1,

the exclusion region is non-empty for any a > 0 for sufficiently large n. The relative measure

of the excluded consumer’s (the measure of excluded consumers if we normalize the total

measure of consumers to be one for all n) is:

ζ =
(a+ 1)n/(n+ 1)− an

(a+ 1)n − an
.

It is easy to see that as n → ∞ the measure of excluded consumers converges to zero as

1/n goes to zero, i.e. as exclusion becomes asymptotically less important. This accords with

results obtained by Armstrong [3]. The convergence, however, is not monotone. For example,

if a = 1.3 the measure of excluded customers first rises from zero for n = 1 to 11.6% for

n = 5, and falls slowly thereafter. For a = 2 maximal exclusion of 8.3% obtains when n = 11

and for a = 0.7 maximal exclusion of 19.7% obtains when n = 2.

Also observe that, although an asymptotically higher fraction of consumers gets served as

n → ∞, this does not mean that the consumers become better off. Indeed, as n → ∞ the

radius of the exclusion region converges to (a+ 1). That is, almost all served consumers are

located near the upper boundary. This means that the trade-off between the efficient provision

of quality and minimization of information rents disappears. Asymptotically, the monopolist

provides the efficient quality but is able to appropriate almost the entire surplus.
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4.1 An Application to the Regulation of a Monopolist with Un-

known Demand and Cost Functions

Armstrong [4] reviews Lewis and Sappington’s [18] analysis of optimal regulation of a mo-

nopolist firm when the firm’s private information is two dimensional. In this analysis, a

single product monopolist faces a stochastic demand function given by q (x) = a + θ − x,

where x is the product’s price, a is a fixed parameter and θ is a stochastic component to

demand, taking values in an interval
[

θ, θ
]

⊂ R+. The firm’s cost is represented by the func-

tion C (q) = (c0 − c) q+K, where q is the quantity produced, c0 and K are fixed parameters

and c is a stochastic component to the cost, taking values in an interval13 [−c,−c] ⊂ R−.

The firm observes both the demand and the cost functions, but the regulator only knows

that α = (θ, c) is distributed according to the strictly positive continuous density function

f (θ, c) on the rectangle Ω =
[

θ, θ
]

× [−c,−c]. For the sake of feasibility we assume that

a+ θ > c0 − c for all α = (θ, c) ∈ Ω, i.e., the highest demand exceeds marginal costs, for all

possible realizations of the stochastic components of demand and costs.

The regulator wants to maximize social welfare and presents to the monopolist a menu

of contracts {(x, t (x))}. If the firm chooses contract (x, t (x)) it sells its product at price x

and pays a tax t (x) from the regulator.

Therefore, the regulator’s problem is to select a continuous subsidy schedule t (·) : R+ →
R to solve:

max
t(·)

∫

Ω

(t(x(α))− c(x(α)))f(α)dα,

where x(α) satisfies

{

x(α) ∈ argmaxx≥0 u(α, x)− t(x) if maxx≥0 u(α, x)− t(x) ≥ 0

x(α) = a+ θ otherwise

where

u (α, x) = (a+ θ − x) (x− c0 + c)−K

c (x) = −1

2
(a+ θ − x)2 ,

13In the original model C (q) = (c0 + c) q + K with c ∈ [c, c] ⊂ R+. We substitute c by its negative for

convenience.
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so that “cost” is the negative of the consumer’s surplus. The choice of x (α) by the monopolist

depends on whether she can derive nonnegative returns when producing. If that is not

possible, she will choose x(α) = a + θ and there will be zero demand, i.e., the firm shuts

down.

A fundamental hypothesis in Lewis and Sappington’s [18] analysis is that the parameter

a can be chosen sufficiently large relative to parameters K and c0 so that a firm will always

find it in its interest to produce, even for the very small values of θ. However, Armstrong [4]

shows that such a hypothesis cannot be made when Ω is the square Ω =
[

θ, θ
]

× [−c,−c] =

[0, 1]× [−1, 0] . Furthermore, when Ω is a strictly convex subset of that square, Armstrong [4]

uses the optimality of exclusion theorem in Armstrong [2] to show that some firms will

necessarily shut down under the optimal regulatory policy, in equilibrium. Armstrong [4]

then adds “... I believe that the condition that the support be convex is strongly sufficient

and that it will be the usual case that exclusion is optimal, even if a is much larger than the

maximum possible marginal cost.” That insight could not be pursued further due to a lack

of a more general result, and Armstrong [4] switched to a discrete-type model in order to

check the robustness of the main conclusions in Lewis and Sappington [18].

Note that the regulator’s problem is essentially the standard problem solved in Section 2

of this paper. In order to apply Theorem 2.4, first note that it is sufficient that Assumptions

2.1–2.3 hold at the relevant ranges of the choice variables.

Now notice that u (α, x) is strictly increasing in c, as long as a + θ − x > 0. But this is

always the case for x (α), since a+ θ−x (α) is a demand curve. Moreover, u (α, x) is strictly

increasing in θ, as long as x − c0 + c > 0. This is again the case for x (α) since this is the

difference between price and marginal cost. Therefore, u (α, x) is strictly increasing in α and

bounded for the relevant choice of price x. Assumption 2.3 is also met, as long as we include

type spaces that are not parallel shifts of [0, 1] × [−1, 0], which we can clearly do. In fact,

it suffices to include the simple rotation of the unit square Ω2 presented in Example 4.1 as

one of the allowed type spaces. All the hypothesis of Theorem 2.4 are satisfied, so we may

conclude that a set of positive firms will generically be excluded from the regulated market,

i.e., will not produce at all. Armstrong’s [4] conjecture is therefore confirmed.

4.2 An Application to Involuntary Unemployment

Consider a firm in an industry that produces n goods captured by a vector x ∈ Rn
+. The

firm hires workers to produce these goods. A worker is characterized by the cost she bears
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in order to produce goods x ∈ Rn
+, which is given by the effort cost function e (α, x). The

parameter α ∈ Ω ⊂ Rm is the worker’s unobservable type distributed on an open, bounded

set Ω ⊂ Rm according to a strictly positive, continuous density function f(·).

Therefore, if a worker of type α is hired to produce output x and receives wage ω (x),

her utility is ω (x)− e (α, x) , where e(α, ·) is cost of effort, which depends on the type of the

worker. If the worker is not hired by the firm, she will receive a net utility s0 (α), either by

working on a different firm, or by receiving unemployment compensation.

Suppose the firm sells its products for competitive international prices, p (x). Then, the

firm’s problem is to select a wage schedule ω (·) : Rn
+ → R to solve:

max
ω(·)

∫

Ω

[p (x (α)) x (α)− ω (x (α))] f(α)dα

where x(α) satisfies

{

x(α) ∈ argmaxx≥0 ω(x)− e(α, x) if maxx≥0 ω(x)− e(α, x) ≥ s0 (x)

x(α) = 0 otherwise

Consider the following change in variables: t (x) = −ω (x), v(α, x) = −e(α, x), c(x) =

−p (x) x, then the firm’s problem can be rewritten as:

max
t(·)

∫

Ω

(t(x(α))− c(x(α)))f(α)dα,

where x(α) satisfies:

{

x(α) ∈ argmaxx≥0 v(α, x)− t(x) if maxx≥0(v(α, x)− t(x)) ≥ s0 (x)

x(α) = 0 otherwise

Therefore, the same arguments that have been presented for the monopolist can also be

extended for the hiring decision of the firm. In particular, the firm will generically find it

optimal not to hire a set of positive measure. If the firm is a monopsonist in the sense that

agents can work only at that firm, then Theorem 2.4 provides a rationale for involuntary

unemployment. Note that, according to Theorem 3.3, the result can be extended to envi-

ronments with several firms hiring for the production of goods x ∈ Rn
+, so that there is an

oligopsony for workers, as long as the corresponding industry is the only source of formal
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work.14 This is true even in the case of free entry in that industry, according to the comment

following Theorem 3.3. Finally, if one includes the category of informal work (underemploy-

ment) as unemployment, the present model suggests that an informal sector will generically

exist in equilibrium.15

5 Conclusions

We showed that Armstrong’s [2] exclusion result holds generically under weak assumptions

on the underlying economic model. And in particular it holds beyond the monopoly case.

So one can say that it is a robust result. Because it applies to a diverse set of markets in the

economy, it offers a deep insight into the workings of market economies. In general, outside

of very special cases of strong competition that mitigates the market power of individual

firms, complete or one-dimensional private information, we should expect that a positive

measure of types will be excluded. We have explored some settings to illustrate this finding.

Further applications, and further depth on these applications, seem warranted for future

research.16

A Appendix

Some Geometric Measure Theory Concepts

Let U ⊂ Rm be a domain, i.e. an open, simple connected set. A set Ω ⊂ Rm has a has

finite perimeter in U if Ω ∩ U is measurable and there exists a finite Borel measure µ on U

and a Borel function v : U → Sm−1 ∪ {0} ⊂ Rm with

∫

Ω

divϕdx =

∫

U

ϕ · vdµ

for every Lipschitz continuous vector field ϕ : U → Rm with compact support, where Sm−1

14The formulation with capacity constraints will then represent firms first opening a certain number of

vacancies and then competing for workers using non-linear wage schedules.
15This application is, to the knowledge of the authors, the first explanation of involuntary unemployment

based on the adverse selection problem, whereby firms decide to offer a wage schedule that excludes some

less productive workers so they can require higher output levels from the more productive ones.
16Another interesting extension is the auction-theoretic setting considered in Monteiro, Svaiter, and

Page, [19].
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is the m− 1 dimensional unit sphere. The perimeter of Ω in U is defined as:

P (Ω, U) = sup

∫

U

divϕdx,

where supremum is taken over all Lipschitz continuous vector fields with compact support

and such that ‖ϕ‖L∞ ≤ 1. A set Ω ⊂ Rm is of locally finite perimeter if P (Ω, V ) < ∞ for

every open proper subset of U .

The measure theoretic boundary of Ω is given by

∂e(Ω) = {x ∈ Rm : 0 < Lm(Ω ∩ Bε(x)) < Lm(Bε(x)), ∀ε > 0}

where Lm is the mdimensional Lebesgue measure and Bε(x) is the open ball centered at x

with radius ε > 0. When Ω has locally finite perimeter we have ∂eΩ =
⋃∞

i=1 Ki∪N , where Ki

is a compact subset of a C1 hypersurface Si, for i = 1, 2, ..., and Hm−1(N) = 0 where Hm−1 is

the m− 1 dimensional Hausdorff measure, and a C1 hypersurface S ⊂ Rm is a set for which

∂S is the graph of a smooth function near each x ∈ ∂S. The measure theoretic unit outer

normal vΩ(x) of Ω at x is the unique point u ∈ Sm−1 such that θm(O, x) = θm(I, x) = 0,

where O = {y ∈ Ω : (y − x) · u > 0} and I = {y /∈ Ω : (y − x) · u < 0}, and θm(A, x) is the

m-dimensional density at x. The reduced boundary ∂∗Ω is the set of points x for which Ω

has a measure theoretic unit outer normal at x. For a set of locally finite perimeter Ω the

three boundaries ∂Ω, ∂eΩ and ∂∗Ω are up to Hm−1 null-sets the same.
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