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Abstract

This paper revisits the question whether capital in a competitive equilibrium is
overaccumulated from the perspective of the social planner in an incomplete market
economy with risky human capital accumulation. As in Dávila, Hong, Krusell and Ríos-
Rull (2012), we consider a constrained social planner who cannot complete markets, but
can improve welfare by only internalizing how individual allocations affect prices. In a
standard incomplete market economy with exogenous labor income shocks, Dávila et al.
(2012) show that the pecuniary externalities tend to imply that capital in a competitive
equilibrium is underaccumulated in economies with realistically high wealth inequality.
We analytically show that by introducing risky human capital accumulation to this
standard incomplete market model, the implication of pecuniary externalities can be
overturned — the capital-labor ratio in a competitive equilibrium is likely to be too high
from the perspective of the constrained planner. However, a quantitative investigation
shows that an economy with human capital calibrated to match the inequalities of
both wealth and earnings of the US still shows a capital-labor ratio lower than the
optimal ratio. Introducing human capital does not overturn the quantitative result of
Dávila et al. (2012) — underaccumulation of capital, but qualitatively, the result can
be reversed.
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1 Introduction

In a standard incomplete market model with uninsurable idiosyncratic shocks, it is well
known that uninsured risk leads to precautionary saving. Thus, a competitive equilibrium
exhibits overaccumulation of capital in comparison with the first best planner’s allocation
— the solution to the social planner’s problem who maximizes welfare subject to resource
constraint only. From the perspective of the constrained planner who cannot use transfers to
complete the market, however, precautionary saving in a competitive equilibrium does not
directly imply an overaccumulation of capital because the constrained planner also has an
incentive to command precautionary saving in the incomplete market. The only difference
between the household and the constrained planner is that the planner considers how the
allocation changes prices, and in turn, how the change in prices can improve the allocation
of risk and the redistribution of income (so called pecuniary externalities), while a household
cannot. Thus, it is the implication of the pecuniary externalities that determines the over or
underaccumulation of capital compared to the constrained efficient allocation. This paper
analyzes and quantifies these pecuniary externalities in an incomplete market model with
endogenous human capital accumulation.

Recently, Dávila et al. (2012) (hereafter DHKR) analyzed the pecuniary externalities in
a standard incomplete market model with exogenous uninsured idiosyncratic labor income
shocks and its implication on whether capital in a competitive equilibrium is higher than
in the constrained efficient allocation. DHKR show that in a standard incomplete market
model with exogenous labor shock, the answer depends on the magnitude of two channels of
pecuniary externalities, which have opposite effects on the level of capital. The first channel
is the insurance effect. Since the only risk in the economy is labor income shock, a lower wage
and a higher interest rate scale down the stochastic part of the income, implying that a de-
crease in capital can improve the welfare of households by changing prices in these directions.
The second channel is the redistribution effect which arises from the cross-sectional capital
dispersion in the long run. A lower interest rate and a higher wage rate can improve welfare
of capital-poor households, and because consumption-poor households that have relatively
higher marginal utility tend to be capital poor, an increase in capital can improve social
welfare. Thus, over or underaccumulation of capital may arise depending on which channel
of pecuniary externality dominates. DHKR consider three different calibrations and show
that with a calibration that generates realistic wealth dispersion, the redistribution channel
dominates, and thus there is underaccumulation of capital in a competitive equilibrium.

In DHKR, the key mechanism that leads to a higher capital in the constrained efficient
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allocation relative to the competitive equilibrium — the redistribution channel — arises from
wealth dispersion, which is endogenously generated in an economy. On the other hand, labor
dispersion is taken as exogenous in DHKR’s set up, because labor income is determined by
exogenous labor shocks. In reality, however, there is also endogenous dispersion of labor
productivity through accumulation of human capital. For example, Huggett et al. (2011)
show that determinants of endogenous human capital dispersion — initial human capital
and learning ability — are more important than idiosyncratic shocks as a source of lifetime
earnings dispersion (accounting for 61.5 percent of the variation). This endogenous labor
dispersion can create additional redistribution channel, which has an implication opposite to
that of the redistribution channel due to wealth dispersion. That is, the welfare of the human
capital-poor households can be improved with a lower wage and a higher interest rate. Since
the consumption poor also tend to be human capital poor, price changes through decreasing
capital might improve welfare, which is exactly the opposite of the redistribution channel
arising from wealth dispersion. This redistribution channel arising from labor dispersion is
not present in a DHKR economy with exogenous labor shock processes. Thus, in this paper,
we endogenize human capital so that labor income is also endogenously dispersed in the long
run and reinvestigate the under/overaccumulation of capital.

There is another implication of introducing human capital on pecuniary externalities —
the effect of risky returns to human capital on the constrained efficient allocation. If the
return to human capital is risky due to multiplicative shocks to human capital, as is often
assumed in the literature on human capital, an increase in human capital investment will
increase both the mean and variance of the return to human capital. This then leads to a
stronger insurance channel of pecuniary externalities, suggesting that a decrease in capital
may improve social welfare (by decreasing wages and increasing interest rates).

Motivated by these implications, in this paper, we first examine analytically how the in-
troduction of risky human capital accumulation changes the implication of the pecuniary ex-
ternalities — under or overaccumulation of capital, using a two-period model with a CARA-
normal specification. Starting from the baseline economy with exogenous labor shocks, we
proceed with three extensions. First, we show that endogenizing human capital itself does
not change the conclusions of DHKR. The only difference from the exogenous labor case is
that as human capital is also a choice variable, the variable of interest is not the level of cap-
ital, but the capital-labor ratio. Second, we introduce heterogeneity in initial human capital
so that we can generate endogenous human capital dispersion even in a two-period model
and show that the introduction of human capital can overturn the conclusion of DHKR —
from too low to too high capital-labor ratio, if the additional redistribution channel through
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human capital inequality is large enough. Finally, we extend the model by introducing a
multiplicative shock to human capital and show that a stronger insurance effect might also
decrease the optimal capital-labor ratio.

We then investigate the effects of the cross-correlation between wealth and human capital
and human capital inequality on the optimal capital-labor ratio since they are important
determinants of the redistribution channel. Even though the correlation and inequalities
are endogenous objects which depend on many primitives, this analysis can be helpful to
conjecture how the choice of model and primitives affects the constrained efficient allocation.
We analytically show that lower correlation between wealth and human capital and higher
human capital inequality tend to imply that the capital-labor ratio in a competitive equi-
librium is too high from the perspective of the constrained planner, and a simple numerical
example shows that the effect of the correlation can be quantitatively significant. Then, we
discuss how this result can be used to conjecture the effect of more fundamental factors (such
as primitive parameters and modeling specification) on the constrained efficient allocation.

In the final step, using an infinite horizon model, we quantitatively examine whether
DHKR’s conclusion in an economy with exogenous labor process — the underaccumulation
of capital in an economy that generates high wealth inequality — is overturned by introducing
human capital. We find that even though we introduce risky human capital accumulation, an
economy calibrated to generate realistic inequalities of wealth and human capital maintains
the conclusion of DHKR. That is, the steady state capital-labor ratio is still too low in
a competitive equilibrium, even with the introduction of human capital. The degree of
underaccumulation is smaller than that in the DHKR economy. The capital-labor ratio of
the constrained optimum is 3.60 times as large as that of the first-best economy and 2.63
times larger than that of the competitive equilibrium, while in DHKR, the capital-labor
ratio of the constrained efficient allocation is 8.5 times larger than that in the deterministic
economy and 3.65 times larger than that in a competitive equilibrium.

This paper is related to the literature on the constrained efficiency/ineffciency of alloca-
tion in a competitive equilibrium with uninsured shocks. After Diamond (1967) first noted
the possibility of constrained inefficiency in a competitive equilibrium based on pecuniary
externalities, examples of constrained inefficiency were provided in Hart (1975), Diamond
(1980), Stiglitz (1982), Loong and Zeckhauser (1982). Recently, Dávila et al. (2012) address
this constrained inefficiency issue in a standard infinite-horizon neoclassical growth model
with uninsured idiosyncratic shocks, which is the workhorse of the macroeconomic model.
This paper is also related to Gottardi et al. (2012) who investigate whether the introduction
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of linear distortionary taxes or subsidies on labor income and return from saving are welfare
improving in a two-period model. While Dávila et al. (2012) focus on the pure effect of
pecuniary externalities, they extend the analysis to the optimal tax or subsidy in the pres-
ence of pecuniary externalities, including the case in which there are direct insurance and
redistribution provided by the given tax scheme itself as well as indirect welfare improvement
through price changes.

Literature on the endogenous human capital model is also closely related to this paper.
Huggett et al. (2006, 2011) develop a model with endogenous accumulation of human capital
to match many features of earnings distribution, and the model of Huggett et al. (2011) is
the most similar to the model specification used for this paper’s quantitative investigation.
The additive risk and multiplicative risk to human capital return in the theoretical analysis
of our paper is exploited by Singh (2010), even though the purpose of her paper is to analyze
the aggregate effect of market incompleteness in the presence of both risk.

Even though we focus on the pecuniary externalities, since these pecuniary externalities
can be one of the consideration of the government with other frictions and policy tools,
this paper is naturally connected to the optimal taxation analysis with endogenous human
capital formation. Bohacek and Kapička (2008), da Costa and Maestri (2007), Grochulski
and Piskorski (2010) Kapička (2006, ming), and Kapička and Neira (2014) study the effect
of endogenous human capitla on the optimal Mirrleesian taxation, and Krueger and Ludwig
(2013) and Peterman (2012) study optimal Ramsey taxation in the presence of endogenous
human capital.

The rest of the paper is outlined as follows. In section 2, we analytically investigate the
introduction of risky human capital with two-period CARA-normal specification. In section
3, we analyze the implication of the correlation and relative size of wealth inequality and
human capital inequality on the optimal capital-labor ratio. In section 4, we quantitatively
examine infinite-horizon model calibrated to the data to check the optimal level of the
capital-labor ratio. We conclude in section 5.

2 Two-period model with CARA-normal specification

In this section, we theoretically analyze the effects of the introduction of human capital on
the constrained efficient allocations. Specifically, we are interested in how the introduction of
human capital affects the evaluation on the capital-labor ratio in a competitive equilibrium
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— whether the capital-labor ratio is too high or too low relative to that of the constrained
efficient allocation. We first analyze this using a two-period model with a CARA-normal
specification. In this simple set up, we can clearly show through which mechanism the
introduction of human capital might lead to a different conclusion from that of the standard
incomplete market economy with exogenous labor shock (considered by DHKR).

2.1 Baseline: DHKR economy with exogenous labor

We use the economy of DHKR as a baseline for our analysis. In DHKR economy, there is a
continuum of households with measure one. Households live only for two periods. At period
0, a household is born with initial wealth k. Let Γ denote the cross-sectional distribution
of capital k across households. The ex-ante heterogeneity of k in this two-period model is
assumed to approximate the endogenous dispersion of wealth in an infinite horizon model.
In period 0, the household with initial wealth k will decide how much to consume c0 and to
invest in capital k′. At period 1, the household receives an idiosyncratic labor endowment,

L+ e, e ∼ N(0, σ2
e),

and consumes both the labor income and return to capital investment. The labor income is
stochastic due to shock e, while the return to capital is deterministic. In sum, the budget
constraints of the household with initial wealth k are:

c0 + k′ = k

c1(e) = w[L+ e] + rk′,

where w is the wage rate and r is the interest rate.

The household maximizes expected lifetime utility u(c0)+βEe[u(c1)] subject to the budget
constraint, where the period utility takes the form of CARA:

u(c) = − 1
ψ

exp(−ψc),

where ψ is the coefficient of risk aversion.

Competitive firms have the same production function F (K,L), which is strictly increas-
ing and strictly concave in both arguments. Additionally, we assume that the production
function exhibits a constant return to scale.

We first characterize a competitive equilibrium, and then, we will characterize the con-
strained efficient allocation. By comparing the capital-labor ratio, we can evaluate whether
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the capital in a competitive equilibrium is overaccumulated relative to the constrained effi-
cient allocation.

2.1.1 Competitive equilibrium

We start by defining a competitive equilibrium.

Definition 1. A competitive equilibrium consists of an allocation (k′(k)) and prices (r, w)
such that

(i) household chooses k′(k) to maximize expected lifetime utility subject to budget constraint

(ii) K =
∫
k′(k)Γ(dk)

(iii) r = FK(K,L), w = FL(K,L).

Notice that under the CARA-normal specification, a household’s expected utility is given
by

Ee[u(c1)] = Ee[−
1
ψ

exp(−ψc1)] = − 1
ψ

exp
(
−ψ

{
Ee[c1]− ψ

2 V are(c1)
})

,

where Ee[c1] = wL+ rk′, V are(c1) = w2σ2
e ,

and the household’s expected marginal utility is given by Ee[uc(c1)] = −ψEe[u(c1)]. These
properties of CARA-normal specification will be useful when we characterize the constrained
efficient allocation — for the additive decomposition of the pecuniary externalities into two
sources. For notational simplicity, we drop the subscript e of the expectation from now on.

The first order condition of the household problem with respect to k′ is

u′(c0(k)) = βrE[u(c1(k))|k]

⇔ exp (−ψ · c0(k)) = βr exp
(
−ψ

{
E[c1(k)|k]− ψ

2 V ar[c1(k)|k]
})

, (1)

which equates the marginal utility of period 0 and the expected marginal utility of period 1.

We first show that there exists a precautionary saving in a competitive equilibrium. By
taking log on both sides of the equation (1), we obtain the following Euler equation,

E[c1(k)|k]− c0(k) = 1
ψ
log(βr) + ψ

2w
2σ2

e ,
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where ψ
2w

2σ2
e > 0 captures precautionary saving due to idiosyncratic shock.1 Thus, the

level of capital in the competitive equilibrium is higher than that of the complete market
economy. Using the Euler equation and the budget constraints of households, we also obtain
the following closed form solution for saving.

k′(k) = 1
1 + r

[
1
ψ
log(βr) + ψ

2w
2σ2

e − wL+ k

]

We notice that because ∂k′(k)
∂k

= 1
1+r > 0, the initial heterogeneity in k generates inequality

in capital holdings in period 1.

The optimality condition of the firm’s problem implies that the rental prices of capital
and human capital are equal to the marginal productivity of capital and human capital,
respectively:

r = FK(K,L), w = FL(K,L),

where K =
∫
k′(k)Γ(dk).2

2.1.2 Constrained efficient allocation

We first specify the set of allocations from which the constrained planner can choose.
The constrained planner can choose different level of saving k′(k) for each household with
different initial wealth k, while respecting all budget constraints of households and market
clearing conditions and letting firms behave competitively. Because the price in the house-
holds’ budget constraint is determined by the firm’s optimality conditions, the period-one
consumption of the household with initial wealth k and labor shock e will be determined by
c1(k, e) = FL(K,L)(L + e) + FK(K,L)k′(k). By then assuming a utilitarian social welfare
function, the constrained planner’s problem is defined as follows.

maxc0(k),c1(k),k′(k)

∫
k

[u(c0(k)) + βE[u(c1(k, e))|k]] Γ(dk)

s.t. c0(k) = k − k′(k)

c1(k, e) = FL(K,L)(L+ e) + FK(K,L)k′(k)

where K =
∫
k′(k)Γ(dk)

1If the asset market is complete, the Euler equation will be E[c1(k)|k] − c0(k) = 1
ψ log(βr). Thus, we

can see that the additional positive term ψ
2w

2σ2
e in an Euler equation of incomplete market implies higher

saving k′(k) due to precautionary motives.
2In this two-period model, we assume that depreciation rate of capital is 100% for simplicity. Later, in

an infinite horizon model, we use more realistic depreciation rate of capital.
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Notice that the constrained planner cannot complete the market and he has to respect
the budget constraints of all households. The only difference between the constrained social
planner and competitive equilibrium is that the constrained social planner also considers
effects of prices on welfare, which are pecuniary externalities.

We now characterize the constrained efficient allocation focusing on its Euler equation, as
in DHKR. Again, due to the CARA-normal assumption, we can rewrite the social planner’s
problem as follows:

maxk′(k)

∫
u(k − k′(k)) + βE

[
u(FL(L+ e) + FKk

′(k))|k
]

Γ(dk)

= maxk′(k)

∫ [
− 1
ψ

exp
(
−ψ(k − k′(k))

)
− β 1

ψ
exp

(
−ψ

{
FLL+ FKk

′(k)− ψ

2 F
2
Lσ

2
e

})]
Γ(dk),

which chooses the saving of each household with initial wealth k, considering its effect on
the marginal productivity of capital and labor in period 1.

Then, the first order condition with respect to k′(k) is the following Euler equation with
an additional term:

u′(c0) = βFKE[u′(c1)|k] + ∆k, (2)

where ∆k = β
∫
E[u′(c1)|k]

[
FLKL+ FKKk

′(k)− ψFLFLKσ2
e

]
Γ(dk).

By comparing this Euler equation with (1), DHKR show that ∆k is an additional marginal
benefit of saving through the change of prices3, which is not internalized in the household
problem. Thus, ∆k captures so-called pecuniary externalities.

As in DHKR, the sign of ∆k is the key object of the ensuing analysis. If ∆k > 0, the
constrained planner makes everyone save more than he would do in a competitive equilibrium.
Thus, positive ∆k implies an underaccumulation of capital in a competitive equilibrium
relative to the constrained efficient allocation. On the other hand, negative ∆k implies an
overaccumulation of capital in a competitive equilibrium.

In order to sign ∆k, we now decompose ∆k.

∆k = ∆k1 + ∆k2

∆k1 = −ψFLFLKσ2
eβ
∫
E[u′(c1)|k]Γ(dk)

∆k2 = β
∫
E[u′(c1)|k]

[
FLKL+ FKKk

′(k)
]

Γ(dk)

= FKKKβ
∫
E[u′(c1)|k]

[
k′(k)
K
− 1

]
Γ(dk) (using FLKL+ FKKK = 0)

3Note that ∆k does not depend on individual initial wealth level k.
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This decomposition shows that the pecuniary externality emerges from two channels. We call
∆k1 the “insurance effect” and ∆k2 the “redistribution effect”. If there is no labor income risk
(σ2

e = 0), then we can easily see that ∆k1 = 0. Thus, ∆k1 captures the pecuniary externality
due to idiosyncratic risk. On the other hand, if there is no wealth-inequality (k′(k) = K)
for all k, then we can see that ∆k2 = 0. Thus, ∆k2 captures the pecuniary externality due
to wealth inequality. These two sources of pecuniary externalities were already discussed
in DHKR, but we can show the decomposition in additive terms by exploiting the CARA-
normal specification, which will be more helpful for the analysis with endogenous human
capital presented below.

Then, let us look at the sign of each component of ∆k. First, the sign of the insurance
effect is always negative (∆k1 < 0). This negative insurance effect becomes stronger as the
variance of the shock σ2

e increases. On the other hand, the sign of the redistribution effect
is always positive (∆k2 > 0), which can be seen from the following. First, notice that

∆k2 = FKKKβexp(
ψ2

2 F 2
Lσ

2
e)
∫
u′(wL+ rk′(k))

[
k′(k)
K
− 1

]
Γ(dk).

The sign of the integral term is negative because∫
u′(wL+ rk′(k))

[
k′(k)
K
− 1

]
Γ(dk)

=
∫
k′(k)≥K

u′(wL+ rk′(k))
[
k′(k)
K
− 1

]
Γ(dk) +

∫
k′(k)<K

u′(wL+ rk′(k))
[
k′(k)
K
− 1

]
Γ(dk)

< u′(wL+ rK)
∫
k′(k)≥K

[
k′(k)
K
− 1

]
Γ(dk) + u′(wL+ rK)

∫
k′(k)<K

[
k′(k)
K
− 1

]
Γ(dk)

= u′(wL+ rK)
∫ [

k′(k)
K
− 1

]
Γ(dk) = 0,

and the sign of the term premultiplying the integral is also negative. Thus, in sum, the sign
of ∆k2 is positive.

We now discuss the intuition of the sign of ∆k, turning first to ∆k1. In this economy,
idiosyncratic labor shock is the only shock. Thus, labor income is risky, but capital income
is not. If the planner decreases the wage rate and increases the interest rate, the risky part
of the household income is scaled down, improving the welfare of risk-averse households.
By decreasing capital the planner can decrease the wage rate and increase the interest rate.
Thus, ∆k1 is always negative.

Second, the intuition of the positive ∆k2 follows. In period 1, there is dispersion of capital
due to different amounts of k′ across households. Then, the welfare of the capital-poor
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household can be improved by decreasing the interest rate and increasing the wage rate.
Because the marginal utility of consumption-poor households is relatively higher and capital-
poor households tend to be consumption poor in this economy, the planner with a utilitarian
social welfare function wants to increase capital so that he can decrease the interest rate.

We see that the two channels through which the pecuniary externalities emerge have
opposite implications for the level of capital. Thus, the sign of ∆k depends on which effect
dominates. DHKR carry out three different calibrations, and conclude that in a calibration
that generates a realistic wealth dispersion for the US, the redistribution effect dominates
(∆k > 0) and thus there is underaccumulation of capital in a competitive equilibrium, relative
to the constrained efficient allocation.

From the above analysis, we see that the key mechanism leading to a positive ∆k is capital
inequality in period 1, which results from endogenous saving decisions of households. On the
other hand, labor income inequality in period 1 is exogenous, since labor income is determined
by the shock. This endogenous dispersion of capital and fixed labor income inequality in the
two-period model reflects the key mechanism behind the DHKR’s quantitative result: for
the earning process that generates highly dispersed wealth in the steady state, capital in a
competitive equilibrium is underaccumulated relative to the constrained efficient allocation.
In the next section, we investigate whether this underaccmulation result crucially depends
on the exogenous labor income and endogenous capital dispersion.

2.2 Introduction of endogenous human capital

We observed that endogenous capital dispersion and exogenous labor income risk result
in DHKR’s quantitative result — underaccumulation of capital in a highly wealth-dispersed
economy. In the real world, not only wealth but also labor productivity is endogenously
dispersed due to human capital accumulation.4 The natural question that then arises is
whether DHKR’s conclusion is overturned by endogenizing human capital. Thus, in this
section, we incorporate human capital accumulation into the model and analyze the over or
underaccumulation of capital in this economy.

We now describe an economy with endogenous human capital accumulation, which will
be used in the remainder of this section. A household is born with initial wealth k, human

4We can also endogenize labor income by introducing labor choice. However, labor choice only affects
labor income within period, whereas the human capital accumulation generates labor productivity dispersion
in the succeeding periods in a multi-period model.
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capital h, and learning ability A. In period 0, a household with (k, h, A) will decide how
much to consume c0, invest in physical capital k′ and invest in human capital xh.5 At period
1, human capital h′ = g(A, h, xh) is produced using the human capital production technology
g, which is increasing in all three arguments and differentiable. Additionally, we assume that
g is concave in h (ghh < 0) and that there is complementarity between h and xh (gxhh>0).
There are two types of idiosyncratic risk to the human capital return, multiplicative risk η,
and additive risk e. For notational simplicity, we denote that s = (e, η). Both shocks are
normally distributed as follows:

η ∼ iid N(1, σ2
η),

e ∼ iid N(0, σ2
e).

Then, the budget constraints of the household with initial (k, h, A) and realized shock
(e, η) will be

c0(k, h, A) + k′(k, h, A) + xh(k, h, A) = k

c1(k, h, A, e, η) = w[ηg(A, h, xh(k, h, A)) + e] + rk′(k, h, A).

The mean and variance of the period 1 consumption in this economy are:

Es[c1] = wg(A, h, xh) + rk′, V ars(c1) = w2[σ2
ηg(A, h, xh) + σ2

e ]

In this subsection and the next (2.2 and 2.3), we abstract away from the multiplicative
shock to directly compare the analysis with that of the DHKR economy. Then, we analyze
the effects of the multiplicative shock in section 2.4.

In this subsection, we also assume that there is no heterogeneity in (h,A) in order to
focus on the pure effect of endogenizing human capital — the effect of simply making human
capital a choice variable, abstracting from human capital dispersion. This assumption is
relaxed in the next subsection.

2.2.1 Competitive Equilibrium

The household’s problem for given initial k is as follows.

V (k) = max
xh,k′
− 1
ψ

exp
(
−ψ(k − k′ − xh)

)
− β 1

ψ
exp

(
−ψ

{
wg(A, h, xh) + rk′ − ψ

2w
2σ2

e

})
5In a two-period model, we use this money investment model, but the main result is robust to the time

investment model.
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For simplicity, we do not impose any lower bound condition on k′ and xh. The first order
conditions with respect to k′ and xh are as follows.

u′(c0(k)) = βrE[u′(c1)|k] (3)

u′(c0(k)) = βwgxh(A, h, xh)E[u′(c1)|k] (4)

By dividing (3) by (4), we obtain the following no arbitrage condition.

r = wgxh (5)

Notice that r is the marginal return to physical capital investment k′, and wgxh is the
marginal return to human capital investment xh. From (5), we can see that the human
capital investment xh(k) does not depend on k, which implies h′(k) = g(h,A, xh(k)) = H,
which does not depend on k. Since there is no heterogeneity in (h,A) in this section, every
household has the same human capital in period 1.

Combining the Euler equation and the budget constraint, we obtain the following closed
form solution for capital investment

k′(k) = 1
1 + r

[
1
ψ
log(βr) + ψ

2w
2σ2

e − wH + k − xh
]
, ∀k.

Thus, we can see that ∂k′(k)
∂k

= 1
1+r > 0, which generates a dispersion of wealth in period one.

The competitive firms have the same production function F (K,H) as in the baseline
economy. The only difference from the baseline economy is that the aggregate human capital
H is no longer exogenous in this endogenous human capital economy. It is H = g(h,A, xh),
which depends on endogenous human capital investment.

Next lemma shows that there exist initial human capital, learning ability, and distribu-
tion of initial wealth such that a competitive equilibrium in the endogenous human capital
economy is identical to that in the DHKR economy.

Lemma 2. The coefficient of risk aversion, discount factor, and variance of shocks are held
constant across economies. Then, there exist a pair of initial human capital and learning
ability (h,A) and a distribution of initial wealth Γ(k) such that the competitive equilibrium
of the endogenous human capital economy is identical to that of the DHKR economy.

Proof We denote human capital investment which satisfies the following equation rDHKR

wDHKR
=

gxh(h,A, xh) by Xh(rDHKR, wDHKR, h, A). Then, there exists a pair of (h,A) that satisfies

12



LDHKR = g(h,A,Xh(rDHKR, wDHKR, h, A)). Then, for given (h,A), we can construct a
distribution of wealth so that it satisfies Γ(k) = ΓDHKR(kDHKR−Xh(rDHKR, wDHKR, h, A)).
Then, we can easily see that the allocations in the two economies are identical. Thus, the
prices in the two economies are also identical. �

With identical competitive equilibrium in both economies, we now analyze the constrained
planner’s problem in the endogenous human capital economy and check whether it has
different implication on the constrained efficient allocation.

2.2.2 Constrained Efficient Allocation

The constrained social planner’s problem in this endogenous human capital economy
amounts to choosing the saving and human capital investment of each household with initial
wealth k.

maxk′(k),xh(k)

∫  − 1
ψ

exp (−ψ(k − k′ − xh))
−β 1

ψ
exp

(
−ψ

{
FHg(h,A, xh) + FKk

′ − ψ
2F

2
Hσ

2
e

}) Γ(dk)

The first order conditions with respect to k′(k), xh(k) are as follows.

k′(k̂) : u′(c0(k̂)) = βFKE[u′(c1)|k̂] + ∆k (6)

where ∆k = β
∫
E[u′(c1)|k]

[
FHKH + FKKk

′(k)− ψFHFHKσ2
e

]
Γ(dk)

x′(k̂) : u′(c0(k̂)) = βFHgxhE[u′(c1)|k̂] + gxh∆h (7)

where ∆h = β
∫
E[u′(c1)|k]

[
FHHH + FKHk

′(k)− ψFHFHHσ2
e

]
Γ(dk)

From the first order condition with respect to capital, we can see that there is an additional
term ∆k due to the pecuniary externality of capital, as in the baseline economy. In addition,
the first order condition with respect to human capital investment also has an additional
term ∆h due to a pecuniary externality of human capital. This implies that from the
perspective of the constrained planner, not only the level of capital but also the level of
human capital is inefficient. Moreover, there is a clear relationship between ∆k and ∆h.
Using FKHK + FHHH = 0 and FHKH + FKKK = 0, we obtain the following relationship
between ∆k and ∆h.

Proposition 3.

∆h = −K
H

∆k

13



Thus, the sign of ∆h is exactly the opposite of the sign of ∆k. That is, if there is an
additional marginal benefit to saving from the perspective of the constrained planner, then
there is an additional marginal cost to investing in human capital. Thus, we can only focus
on the sign of ∆k. We also remark that, from now on, the variable of interest is the capital-
labor ratio (K/H) not the level of capital (K) itself, because labor (H) is also endogenous
variable and it is difficult to make definite statements about absolute levels when both capital
(K) and labor (H) change.

We now analyze our main interest: the effect of introducing human capital on the optimal
level of the capital-labor ratio. Does the endogeneity of human capital change the evaluation
of whether there is overaccumulation of capital in a competitive equilibrium? In the next
proposition, we answer this question in two parts. In the first part, we analyze whether
an agent’s welfare at a competitive equilibrium can be improved by reducing or increasing
a small amount of aggregate capital, which is a local analysis in the neighborhood of a
competitive equilibrium. In the second part, we analyze whether the constrained planner’s
optimal capital-labor ratio is higher than that of competitive equilibrium, which is a global
analysis. If the constrained planner’s problem is globally concave in the saving and human
capital investment of every household, then the global analysis will be in accord with local
analysis.

Before stating the proposition, we establish notation for local analysis. Recall that ∆k

is evaluated at a constrained efficient allocation, which is the marginal benefit of chang-
ing prices by increasing saving at the constrained efficient allocation. We now define ∆CE

k

which evaluates the marginal benefit of changing prices by increasing saving at a competitive
equilibrium:

∆k|CE = β
∫
E
[
u′(cCE1 |k)

]
[FHKHCE + FKKk

′CE(k)− ψFHFHKσ2
e ]Γ(dk),

where FHK , FKK , and FH are evaluated at KCE =
∫
k′CE(k)Γ(dk) and HCE = g(A, h, xCEh ).

We can easily notice that ∆k and ∆CE
k exhibit the same equation but are evaluated at

different allocations (at the constrained efficient allocation and competitive equilibrium).
∆k|CE is essentially the welfare effect of marginally increasing capital accumulation k′(k) of
every household at the competitive equilibrium6, and the sign of ∆CE

k will be the same as the

6Let’s denote the welfare at an allocation ((k′(k))k, xh) by W ((k′(k))k, xh). Then∫
d

dk′(k)W
((

k′CE(k)
)
k
, xCEh

)
Γ(dk) =

∫
dW

dk′(k)

∣∣∣∣
(rCE ,wCE)

Γ(dk) + ∆k|CE

= ∆k|CE ,
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sign of ∆k if the planner’s problem is globally concave. With this notation, we now present
the proposition.

Proposition 4. Suppose that the competitive equilibria in both endogenous human capital
economy and DHKR economy are identical. Then,

(i) sign(∆k|CE) = sign(∆DHKR
k |CE)

(ii) If the constrained planner’s problems are globally concave in k′(k) and xh in both
economies, then sign(∆k) = sign(∆DHKR

k ).

Proof

(i) The competitive equilibrium allocations of the two economies are equivalent. Thus,
∆k|CE = ∆DHKR

k |CE.

(ii) Because the constrained planner’s problem in the endogenous human capital economy is
globally concave in k′(k) and xh, we know that if dU

dK

∣∣∣
CE

= ∆k|CE > 0, then the capital
allocation of the constrained planner’s problem is higher than that of competitive
equilibrium, which implies ∆k > 0. Similarly, if ∆DHKR

k |CE > 0, then ∆DHKR
k > 0.

Since sign(∆k|CE) = sign(∆DHKR
k |CE) by (i), we obtain sign(∆k) = sign(∆DHKR

k ).
�

Proposition 4 shows that the evaluation on the overaccumulation of capital does not change
by simply endogenizing human capital. The intuition is as follows. Regardless of the intro-
duction of human capital, the only way the planner can improve welfare is by changing prices
— by either increasing r and decreasing w or increasing w and decreasing r. Moreover, by
assuming no initial heterogeneity in (h,A), there is no endogenous dispersion of human cap-
ital in this two-period model, and by Lemma 2, there exist (h,A) and Γ(k) such that the
competitive equilibria in the economies with human capital and without human capital are
equivalent. Thus, the planner can improve welfare in both economies that have the same
competitive equilibrium allocations by changing the prices in the same way (either increasing
r and decreasing w or vice versa). The only difference is that, in the DHKR economy, this
price correction can only be achieved by changing capital, while in an endogenous human
capital economy, the price correction is obtained by changing both capital and human cap-
ital (which is seen in the presence of ∆h). Thus, the constrained planner’s optimal level of

where the second equality follows from the optimality condition of household problem for given prices.
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capital will be different in both economies, but the direction of change from the competitive
equilibrium will be the same. In sum, endogenizing human capital itself does not overturn
the under or overaccumulation result of DHKR.

2.3 Initial heterogeneity in human capital

In the previous section, we showed that endogenizing human capital itself does not overturn
the conclusion of DHKR. The reason why we obtain the same conclusion is that even though
we endogenize human capital, there is no endogenous human capital dispersion when there
is no initial heterogeneity in human capital and learning ability, (h,A) in this two-period
model. Recall that in section 2.2, we made this assumption — no heterogeneity in (h,A) — to
focus on the effect of endogenizing human capital abstracting from human capital dispersion.
However, in an infinite horizon, there will be endogenous human capital dispersion due to the
shocks to human capital and productivity of human capital investment, which depends on
the human capital stock. As we assumed heterogeneity in initial wealth k in order to capture
endogenous wealth dispersion, we now introduce heterogeneity in initial human capital h,
so that we can capture the endogenous human capital dispersion of the infinite horizon
model in a two-period model, while obtaining an explicit analytical insight. Heterogeneity
in the initial learning ability A will also help endogenous human capital dispersion, but for
simplicity, we abstract from this feature in this section.

2.3.1 Competitive Equilibrium

The first order conditions of the household problem are equal to those of section 2.2 — (3)
and (4) except that consumption is now expressed as function of (k, h), because there is also
heterogeneity in h. From these first order conditions, we obtain the no-arbitrage condition
r − wgxh = 0. By applying the implicit function theorem to this no-arbitrage condition, we
can easily show that ∂xh

∂h
> 0.7 We then obtain ∂h′

∂h
= gxh

∂xh
∂h

> 0. Thus, initial inequality in
h generates human capital inequality in period 1. By the same argument as above, we also
obtain ∂k′

∂k
= 1

1+r > 0, which results in the endogenous dispersion of capital in period 1.

7We can write the no-arbitrage condition, G(xh) = r − wgxh
= 0. Then, from the implicit function

theorem,
∂xh
∂h

= −
∂G
∂h
∂G
∂xh

= − wgxhh

wgxhxh

> 0
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2.3.2 Constrained Efficient Allocation

The constrained social planner’s problem is as follows.

maxk′(k,h),xh(k,h)

∫
k,h

 − 1
ψ

exp (−ψ(k − k′ − xh))
−β 1

ψ
exp

(
−ψ

{
FHg(h,A, xh) + FKk

′ − ψ
2F

2
Hσ

2
e

}) Γ(dk, dh)

The first order conditions with respect to k′(k̂, ĥ) and xh(k̂, ĥ) are equal to those of section
2.2 — (6) and (7) except that consumption is now a function of (k̂, ĥ), individual human
capital h′(k, h) is not equal to aggregate human capital H, and ∆k is integration over k and
h:

∆k = β
∫
k,h
E[u′(c1)|k, h]

[
FHKh

′(k, h) + FKKk
′(k, h)− ψFHFHKσ2

e

]
Γ(dk, dh).

We can also easily notice that proposition 3 applies to this economy, implying that the sign
of ∆h is always the opposite of the sign of ∆k. Thus, we can focus on the analysis of the sign
of ∆k only in order to evaluate whether the capital-labor ratio is too high in a competitive
equilibrium compared to that of a constrained planner’s problem.

In order to analyze the effects of the introduction of heterogeneity in human capital, we
decompose ∆k into insurance channel ∆k1 and redistribution channel ∆k2 (∆k = ∆k1 +∆k2).

∆k1 = −ψFHFHKσ2
eβ
∫
k,h
E[u′(c1)|k, h]Γ(dk, dh)

∆k2 = β
∫
k,h
E[u′(c1)|k, h]

[
FHKh

′(k, h) + FKKk
′(k, h)

]
Γ(dk, dh)

= FKKKβ
∫
k,h
E[u′(c1)|k, h]

[
k′(k, h)
K

− 1
]

︸ ︷︷ ︸
∆k2,K

+FKKKβ
∫
k,h
E[u′(c1)|k, h]

[
1− h′(k, h)

H

]
︸ ︷︷ ︸

∆k2,H

The introduction of heterogeneity in initial human capital h does not have direct impact
on the insurance channel. Of course, the introduction of heterogeneity could change the
value of ∆k1 indirectly due to a change in consumption inequality. Regardless of the change
in magnitude, however, the insurance effect is always negative.

On the other hand, introducing heterogeneity in h has a direct qualitative impact on the
redistribution channel. We can see that the redistribution channel ∆k2 has an additional
term ∆k2,H relative to that in the absence of heterogeneity in human capital. In the absence
of heterogeneity in h, there is no human capital inequality in period 1. Thus, there is only a
redistribution effect due to capital heterogeneity (∆k2,K). In the presence of heterogeneity in
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h, however, there is also a redistribution effect due to human capital heterogeneity (∆k2,H).
Then, how does the additional term affect the sign of the redistribution channel? As we
showed in section 2.1.2, in the absence of heterogeneity in h, the sign of the redistribution
channel is always positive. However, in the presence of heterogeneity in h, even the redistri-
bution channel could be negative, since the sign of additional term ∆K2,H is negative due to
exactly the opposite reason why ∆k2,K is positive.

Recall that in the case of capital inequality, the welfare of the capital-poor is improved when
the interest rate (r = FK) decreases, that is, when K/H increases. Because the marginal
utility of the consumption poor is relatively high, if the consumption poor tend to be capital
poor, the planner will want to increase K/H, which is the intuition of a positive ∆k2,K . On
the other hand, in the case of human capital inequality, the welfare of the human capital poor
is improved when the wage rate (w = FH) decreases, that is when K/H decreases. Since the
marginal utility of the consumption poor is high, if the consumption-poor tend to be human
capital poor, the planner will want to decrease K, which is the intuition for negative ∆K2,H .
Then, depending on which redistribution channel dominates, the redistribution channel can
be either positive or negative.

The relative inequality of capital and human capital and their correlation with consumption
inequality determine the sign of ∆k2, which can be seen by rewriting ∆k2 in the following
way.

∆k2 = FKKKβ

{
cov

(
E[u′(c1)|k, h], k

′(k, h)
K

)
− cov

(
E[u′(c1)|k, h], h

′(k, h)
H

)}

From this equation, we can directly obtain the next proposition.

Proposition 5. If cov
(
E[u′(c1)|k, h], k

′(k,h)
K

)
< cov

(
E[u′(c1)|k, h], h

′(k,h)
H

)
, then ∆k2 < 0,

thus ∆k < 0.

This proposition shows that the relative size of the correlation between consumption in-
equality and wealth inequality vs. the correlation between consumption inequality and hu-
man capital inequality is the key determinant of the sign of ∆k. We can also notice that
because consumption inequality itself is determined by wealth inequality and human capital
inequality, the sign of ∆k depends on the relative size of wealth inequality to human capital
inequality and the correlation between wealth inequality and human capital inequality. In
section 3, we analyze how these features affect the sign of ∆k more explicitly.
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2.4 Risky return to human capital investment.

We have so far analyzed the constrained efficient allocation when there is only additive
shock to human capital investment to make our analysis directly comparable to that of
DHKR. Most studies in the human capital literature, however, model human capital forma-
tion with multiplicative shock (for example, Huggett et al. (2011), Guvenen et al. (2009))
to capture the properties of risk on human capital return, and this modeling with multi-
plicative shock is consistent with empirical finding that the variation of the human capital
return increases in education.8 Since it is likely that increased risk renders the insurance
channel of pecuniary externality stronger, we analyze how the multiplicative shock changes
the constraint allocation.

We now assume that there are two types of idiosyncratic risk, multiplicative risk η, and
additive risk e, to compare the role of multiplicative shocks to that of additive shocks.9

Multiplicative risk makes an additional human capital investment increase not only the
mean return to human capital but also its variance, while with additive risk only, human
capital investment only affects the mean return to human capital.

Recall that with multiplicative shock, the variance of period-1 consumption is expressed
as V ars(c1) = w2[σ2

ηg(A, h, xh)2 + σ2
e ], showing that it depends on both the variance of the

multiplicative shock (σ2
η) and the human capital investment (xh). Thus, the consumption

risk is endogenous in this economy.

Then, the first order condition of the constrained planner’s problem with respect to k′(k, h)
has the same form as (6) with different ∆k:

∆k = β
∫
k,h
Es[u′(c1)|k, h]

 FHKh
′(k, h) + FKKk

′(k, h)
−ψFHFHK{σ2

ηh
′(k, h)2 + σ2

e}

Γ(dk, dh),

where ∆k is additively decomposed of following two terms.

∆k1 = −βψFHFHK
∫
k,h
Es[u′(c1)|k, h]{σ2

ηh
′(k, h)2 + σ2

e}Γ(dk, dh)

∆k2 = FKKKβ
∫
k,h
Es[u′(c1)|k, h]

[
k′(k, h)
K

− 1
]

Γ(dk, dh)

+FKKKβ
∫
k,h
Es[u′(c1)|k, h]

[
1− h′(k, h)

H

]
Γ(dk, dh)

8For example, table 1 of Palacios-Huerta (2003) shows that human capital investment increases not only
the mean but also the variance of the return to human capital in the US, during 1964 – 1996.

9Singh (2010) calls these shocks to human capital specialization risk (multiplicative risk) and career risk
(additive risk).
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We can notice direct effect of introducing multiplicative shock on ∆k1 — an additional
negative term in ∆k1, −βψFHFHK

∫
k,hEs[u′(c1)|k, h]σ2

ηh
′(k, h)2. This direct effect stems

from the fact that in the presence of the multiplicative shock, the investment of human
capital increases risk. Because of the increased risk, the insurance effect strengthens. The
indirect effects on ∆k1 come from the response of a household to the increased risk. The
household decreases the human capital to reduce the exposure to risk, but increases capital
investment due to increased precautionary incentive. This response to risk will change the
distribution of consumption in period 1, which has ambiguous effects on ∆k1. There are also
indirect effects on ∆k,2 through change of distribution whose directions are ambiguous.

In sum, if the direct insurance effect of introducing multiplicative shock dominates other
indirect effects, the introduction of multiplicative shock will decrease the optimal level of
capital relative to labor in the constrained efficiency.

2.5 Implementation of the constrained efficient allocation

In this section, we briefly discuss how we can implement the constrained efficient alloca-
tion using taxes, to see the implication of pecuniary externalities on optimal tax system.
Of course, the constrained efficient allocation can be attained if the government directly
modifies each consumer’s savings and human capital investments. But, we can also imple-
ment the constrained efficient allocation as a competitive equilibrium using a tax(subsidy)-
transfer(lump-sum tax) system which is history dependent and induces no reallocation of
income across individuals or realization of idiosyncratic shocks.

In the two-period model, history-dependent taxes and transfers are represented by the
initial heterogeneity-dependent taxes and transfers. The tax(subsidy)-transfer(lump-sum
tax) system is then completely characterized by the linear proportional tax rates of capital
income and labor income (τk(k, h), τl(k, h)) and transfers (T (k, h, s)), which are functions of
initial wealth and human capital (k, h) and idiosyncratic shock realization s = (η, e).

Proposition 6. There exists a triple of history-dependent capital income tax rates, labor
income tax rates, and income transfer (τk(k, h), τl(k, h), T (k, h, s)) which implements the
constrained planner’s allocation.

Proof By setting capital income tax rates and labor income tax rates in the following way,
the Euler equation of the competitive equilibrium and the constrained planner’s problem
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become equivalent:
τk(k, h) = − ∆k

β(Fk − δ)Es[u′(c1)|k, h] ,

and τl(k, h) is the solution of the following equation:

ψfHσ
2
ηh
′τl(k, h)2 + (1− 2ψfHσ2

ηh
′)τl(k, h) = − ∆h

βfHEs[u′(c1)|k, h] , ∀(k, h)

Then, the following transfer function which imposes no income transfer across agents imple-
ments the constrained efficient allocation.

T (k, h, s) = τkrk
′(k, h) + τlw[ηh′(k, h) + e]

�
Notice that if there is no multiplicative shock (σ2

η = 0), labor income tax rates are set to
τl(k, h) = − ∆h

βfHE[u′(c1)|k,h] . With this tax system, the underaccumulation of capital implies
subsidy to the capital income and taxes on labor (human capital) income. Subsidy to
capital income is regressive (tax rate is increasing in capital income), but tax on human
capital income is progressive (tax rate is decreasing in human capital return). But, we
want to emphasize that this feature of tax system is the implication of the pure pecuniary
externalities of incomplete market and the tax-transfer system implementing this constrained
efficient allocation is very information-demanding, which requires all of the history of shocks
of each individual.10 If there is some restrictions on the available policy tools, then there can
be additional insurance/redistribution effects arising from tax system itself, then optimal
tax should also consider those effects.

3 Effects of correlation and relative concentration

In section 2.3.2, we could see that the relative size of redistribution channel through wealth
dispersion to that through human capital dispersion depends on the cross-correlation between
wealth and human capital and relative inequalities. In this section, we analyze the effect of
increasing the cross-correlation and increasing earnings inequality on the constrained efficient
allocation, focusing on their impact on ∆k — the additional marginal benefit of saving in
the Euler equation of the constrained efficient allocation.

10In a two-period model, this tax-transfer is not that much information-demanding, but it will be quite
complicated in a multi-period model.
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Cross correlation and inequalities are endogenous objects which are determined by com-
bination of many primitives. Then, why do we focus on the effect of these endogenous
statistics? First, it is not easy to analyze the effect of more fundamental factors (such as
primitive parameters or modeling choices) on the constrained efficient allocation. If we know
how correlation and inequalities affect the constrained efficient allocation, however, then it
can be helpful to conjecture the effect of primitives/model choices on the constrained efficient
allocation by predicting how those factors change inequalities and cross correlation. Second,
inequalities and cross correlation are empirically measurable and available statistics.11 Then,
using these statistics, we might predict how the marginal tax reform from the current tax
system can enhance welfare by considering pecuniary externalities.

In this section, we first investigate the effects of cross correlation and inequalities on the
constrained efficient allocation analytically and numerically, and then we briefly discuss how
this result can be used to conjecture the effect of primitives/model choices on the constrained
efficient allocation.

3.1 Effects of correlation and inequalities on the constrained effi-
ciency

In order to analyze the effect of the correlation and inequalities, we directly impose as-
sumptions on the distribution of wealth and human capital. For the theoretical analysis, we
assume simple joint uniform distribution of wealth and human capital and analytically show
the effect of increasing the correlation and human capital inequalities. Then we provide a
simple numerical example to check quantitative significance of the correlation between wealth
and human capital on the optimal capital-labor ratio. It shows that the two economies with
the same inequalities in wealth and human capital, but with different correlation coeffi-
cient of wealth and human capital, can end up with different conclusions on whether the
capital-labor ratio is too high.

3.1.1 Analytical results with uniform wealth-human capital distribution

We maintain the two-period CARA-normal specification and abstract from multiplica-
tive risk for simplicity. In order to analyze the effect of human capital inequalities and

11Statistics for the inequalities can be obtained easily for most of the countries but the correlation between
wealth and earnings is available for fewer countries.
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the correlation of capital and human capital explicitly, we make an assumption directly on
the period-1 distribution of capital and human capital in a competitive equilibrium. For
theoretical analysis, we assume that joint distribution of capital k′ and human capital h′

at a competitive equilibrium has the bivariate uniform distribution. With this tractable
distribution assumption, we can analytically show how the correlation between capital and
human capital and the relative earnings-Gini to wealth-Gini affect the evaluation, whether
the capital-labor ratio is too high in a competitive equilibrium.

We focus on the local analysis in the neighborhood of a competitive equilibrium. That
is, we consider how the relative inequalities and correlation affect ∆k|CE — the marginal
benefit of changing prices by increasing saving at a competitive equilibrium (defined in
section 2.2.2). The reason we focus on the local analysis at a competitive equilibrium is
that we are interested in how the correlation and inequalities in human capital without
government policies changes the implication of the pecuniary externalities, and the local
welfare effect of increasing a small amount of capital, ∆k|CE is the one that can be expressed
in terms of those statistics at a competitive equilibrium. On the other hand, in a global
analysis, the term ∆k in the constrained planner’s Euler equation is expressed in terms of
statistics of the constrained efficient allocation, which is more involved and does not give
direct interpretation. Thus, we focus on ∆k|CE. As in Proposition 4, if the constrained
planner’s problem is globally concave in saving and human capital investment, then the
sign of ∆k|CE will directly imply the sign of global analysis (the sign of ∆k) : if a small
increase (decrease) in capital at the competitive equilibrium improves welfare, then the
efficient capital-labor ratio will be higher (lower) than that of the competitive equilibrium.

We can start the analysis by rewriting ∆k|CE as the integration over the distribution of
period 1-capital and period 1-human capital in a competitive equilibrium.

∆k|CE = β
∫
k,h
E

u′
 w(h′CE(k, h) + e)

+rk′CE(k, h)

 ∣∣∣k, h

 −ψFHFHKσ2

e + FKKK

×
{
k′CE(k,h)

K
− h′CE(h,k)

H

} Γ(dk, dh)

= β
∫
k′,h′

E

u′
 w(h′ + e)

+rk′

 ∣∣∣k′, h′
 −ψFHFHKσ2

e

+FKKK
{
k′

K
− h′

H

} Γ1(dk′, dh′), (8)

where, Γ1(k′, h′) is the joint distribution of period-1 wealth (k′) and human capital (h′) in a
competitive equilibrium. The period-1 joint density of γ1(k′, h′) in a competitive equilibrium
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is given by

γ1(k′, h′) =



1
2ρ if (k′, h′) = (k′1, h′1)
1
2(1− ρ) if (k′, h′) = (k′1, h′2)
1
2(1− ρ) if (k′, h′) = (k′2, h′1)
1
2ρ if (k′, h′) = (k′2, h′2),

(9)

where k′1 = (1− θk)K, k′2 = (1 + θk)K, h′1 = (1− θh)H, h′2 = (1 + θh)H, θk, θh > 0.

Then, the marginal distributions of k′ and h′ are discrete uniform with probabilities
pr(k′1) = pr(k′2) = 1

2 , and pr(h′1) = pr(h′2) = 1
2 , respectively. With this simple form of

distribution, we can generate various combinations of inequalities and correlation, because
the wealth Gini and human capital Gini computed from this distribution are θk

2 and θh
2 ,

respectively and the correlation between k′ and h′ is 2ρ− 1. Thus, by varying θk, θh, and ρ,
we can get joint distribution with various wealth-inequality, human capital-inequality, and
correlation between wealth and human capital.

With this simple distribution assumption, we can show the effect of correlation and in-
equality on ∆k|CE analytically.

First, we analyze the effect of increasing correlation on ∆k|CE for fixed wealth inequality
and earnings inequality. That is, we analyze the effect of increasing ρ on ∆k|CE for fixed
θk and θh. The next proposition presents the effect of increasing correlation on insurance
channel (∆k1|CE) and redistribution channel (∆k2|CE).

Proposition 7. Suppose that the distribution of period-1 wealth and human capital (k′, h′)
is given by (9), and we assume F (K,H) = KαH1−α. Then,

(i) ∂∆k1|CE
∂ρ

< 0

(ii) If θk ≥ θh and θk
θh
≤ 1−α

α
, then ∂∆k2|CE

∂ρ
> 0

Proof See the Appendix �

The first part of Proposition 7 shows that for fixed wealth-inequality and human capital-
inequality, an increase in the correlation between wealth and human capital strengthens
the insurance channel (more negative insurance channel). The second part of Proposition 7
shows that if the wealth inequality is higher than the human capital inequality and their gap
is not too large, then the increase in the correlation between wealth and human capital will
strengthen the redistribution channel through wealth dispersion. The conditions of (ii) are
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relevant, because in the real world data, wealth is usually more concentrated than human
capital and the second condition — θk

θh
= K−Gini

H−Gini ≤
1−α
α
u 2 — usually holds.12

The intuition for the second part of the proposition 7 is the following. To improve welfare
through the redistribution channel, income decomposition of the consumption poor is the
key, because the consumption poor have relatively higher marginal utility. Since the wealth
inequality is greater than human capital inequality, the consumption poor are likely to be
relatively poorer in wealth than in human capital. Thus, the redistribution channel through
wealth dispersion will dominate the redistribution channel through human capital dispersion,
implying that increasing K/H-ratio is welfare improving. As the correlation coefficient
between wealth and human capital (ρ) increases, the wealth poor tend to be also human
capital poor which reduces their consumption even more, leading to higher marginal utility
and thus reinforcing the redistribution channel through wealth dispersion. Conversely, as the
correlation (ρ) decreases, the wealth poor is less likely to be consumption poor, weakening
the redistribution channel through wealth dispersion.13

An increase in correlation will drive insurance and redistribution channels in opposite
directions, the numerical example below (in section 3.1.2) will show that it is likely that its
impact on redistribution channel will be stronger when wealth inequality relative to human
capital inequality is high enough.

Next, we analyze the effect of increasing human capital inequality on ∆k|CE for a fixed
wealth inequality and correlation. That is, we analyze the effect of increasing θh for fixed
θk and ρ. The next proposition presents the effect of increasing human capital inequality on
the insurance and redistribution channels.

Proposition 8. Suppose that the distribution of period-1 wealth and human capital (k′, h′)
is given by (9), and the production function has the functional form: F (K,H) = KαH1−α.
Assume that θk

θh
< 1−α

α
. Then,

(i) ∂∆k1|CE
∂θh

< 0

12The conditions of (ii) are only sufficient, not necessary.
13DHKR also briefly mention the possibility of stronger redistribution channel for higher correlation,

when discussing the effect of serially correlated earnings shock (on page 2440). In the DHKR economy with
exogenous labor shock, the result of Proposition 7 also holds. In fact, an increase of the cross correlation
is more likely to increase the ∆k2 in the exogenous income shock case, because in human capital model,
there is some counter effect. Increasing ρ reduces the degree of poverty in wealth relative to that in human
capital (captured by the increase of (k

′

K −
h′

H ) for the consumption-poor (in equation (8 )) which weakens
the relative redistribution channel through wealth inequality somewhat, while this effect is absent for the
exogenous shock case.
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(ii) If (1−ρ)(θk+θh)
ρ(θk−θh) >

u(wh′2+rk′2)+u(wh′1+rk′1)
u(wh′1+rk′2)+u(wh′2+rk′1) , then

∂∆k2|CE
∂θh

< 0.

Proof See the Appendix �

Proposition 8 shows that for fixed correlation and wealth inequality, an increase in human
capital inequality decreases ∆k|CE, under the conditions which ensure that the gap between
the wealth inequality and human capital inequality is not too large. As we mentioned above,
θk
θh
< 1−α

α
usually holds in the real world. We can also see that the condition of (ii) is easily

satisfied, if the gap of wealth-inequality and human capital inequality (θk − θh) is not too
big. Thus, for empirically plausible parameterization, an increase in human capital-inequality
have implication toward overaccumulation of capital.

In sum, a low correlation between capital and human capital and a high human capital-
inequality are likely to place the planner’s optimal capital-labor ratio below that of the
competitive equilibrium. In the next subsection, we investigate the quantitative significance
of the correlation on the optimal capital-labor ratio.

3.1.2 Numerical example

Next, we provide a numerical example to check the quantitative significance of correla-
tion and show that two economies with different correlation coefficients can have opposite
conclusions on whether the capital-labor ratio is too high in a competitive equilibrium, even
though the two economies have exactly the same inequalities in wealth and human capital.
Ideally, we want to calibrate the model to different combinations of wealth inequality, human
capital inequality, and correlation between wealth and human capital to see the effect of each
component, but it is not easy to match various targets since these objects are endogenously
determined. Then, it is difficult to decompose the pure effect of increasing the correlation.
Thus, in this section, we simply check the quantitative significance of the correlation by
directly assuming that the endogenous period-1 distribution of wealth and human capital is
bivariate lognormal distribution, so that we can capture various inequalities and correlations
abstractly.

The economic environment of this section is the same as that in section 2.2, except for
the distribution of wealth and human capital. In this section, period-1 wealth and human
capital (k′, h′) have a bivariate lognormal distribution, which is given by

(
log( k

′

K
), log(h

′

H
)
)
∼ N

 µlk

µlh

 ,
 Σkk Σkh

Σhk Σhh

 ,
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where K = E[k′] (µlk = −0.5Σkk) and H = E[h′] (µlh = −0.5Σhh).

The correlation coefficient of wealth and earning is computed as follows:

corr(k′, h′ + e) = corr(k′, h′) = exp(Σkh)− 1√
exp(Σkk)− 1

√
exp(Σhh)− 1

.

Thus, for fixed Σkk and Σhh, the correlation coefficient is determined by Σkh, and by varying
Σkk, Σhh, and Σkh, we can match various combinations of the wealth-Gini, human-capital-
Gini and correlation coefficient between wealth and earnings.14

We now numerically investigate the effect of increasing the correlation coefficient between
wealth and earnings for fixed wealth-Gini and earnings-Gini. By changing the parameters of
(assumed) log-normal distribution (period-1 distribution), we show the possible quantitative
significance of the correlation without considering how this correlation is endogenously gen-
erated. However, we want to understand this simple numerical example in connection with
the infinite horizon model that we study in section 4. For that, we think of the period-1
of this numerical example as the last period of a long-horizon model — that is, the model
period of this numerical example is one year — and set the parameters to mimic some fea-
tures of the US economy. We set the capital-income share α to 1

3 (F (K,H) = KαH1−α),
and choose β = 0.96 and δk = 0.08. The mean of human capital is normalized to 1 and the
mean of capital is chosen so that the annual interest rate is 4 percent. We fix σ2

e = 0.1, and
choose Σkk and Σhh so that wealth-Gini and earnings-Gini are 0.8 and 0.6, respectively.

In Figure 1, we display ∆k|CE by the correlation coefficient for three different values of the
risk aversion parameter, ψ (1, 1.5, 2). We can see that as the correlation coefficient increases,
∆k|CE increases. More importantly, Figure 1 shows that ∆k|CE changes the sign from neg-
ative to positive as the correlation coefficient increases, which implies that two economies
with the same wealth-Gini and human capital-Gini can have the opposite evaluations on
whether capital-labor ratio is too high, depending on the size of the correlation. Figure
2 displays the decomposition of ∆k|CE into insurance channel (∆k1|CE) and redistribution
channel (∆k|CE) for ψ = 1.5, and shows that the effect of correlation on ∆k|CE is driven
by a stronger redistribution channel effect, as we discussed in Proposition 7 with the simple
uniform distribution.

14The wealth-Gini of this lognormal distribution is 2Φ(
√

Σkk/
√

2) − 1, where Φ is the cumulative distri-
bution function of the standard normal. Thus, wealth-Gini is determined by Σkk. On the other hand, the
earnings-Gini of this economy depends on both the variance of e-shock (σ2

e) and the variance of relative
human capital (var(h

′

H ) = exp(Σhh)− 1)), because earnings of this economy are defined by w(h′ + e).
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Figure 1: Effects of correlation on ∆k|CE
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Figure 2: Decomposition of ∆k|CE (ψ = 1.5)
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This numerical example might have some implications in the real world. In the US, the
correlation coefficient between wealth and earnings has been significantly increasing. Díaz-
Giménez et al. (1997) report that the correlation coefficient in 1992 measured by Survey of
Consumer Finances (SCF) was 0.23, and Díaz-Giménez et al. (2011) report that the cor-
relation coefficient in 2007 measured by SCF was 0.48.15 If we take the above numerical
example, the observation that the sign of ∆k|CE based on the 1992 statistics is negative
(implying overaccumulation of capital), while the sign of ∆k|CE based on 2007 statistics is
positive (implying underaccumulation of capital) might imply that the evaluation on the
overaccumulation of capital in a competitive equilibrium has been changed in the US. This
numerical example also sheds some light on the cross-country analysis. Countries that have
very low correlation coefficients, such as Sweden and Spain, are likely to exhibit overaccu-
mulation of capital in a competitive equilibrium.

3.2 Application of the correlation/inequality analysis

So far, we have analyzed how the endogenous correlation and inequalities affect the con-
strained efficient allocation. We now discuss that this analysis might be used to predict
the effect of more fundamental factors that determine these endogenous statistics such as
primitive parameters and the modeling choices on the constrained efficient allocation.

15Even though there has also been some increase of wealth inequality and earnings inequality (the wealth-
Gini increased from 0.78 to 0.82 and the earnings-Gini increased from 0.63 to 0.74), these increase are less
significant than the increase in correlation.
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Variance of ability or variance of shock Let’s first discuss the effects of increasing
the variance of ability or variance of shock on the constrained efficient allocation. If the vari-
ance of ability increases, then it is likely to increase the human capital inequality relative to
the wealth inequality which leads to the stronger redistribution effect through human capital
dispersion, but its impact on the cross correlation is ambiguous. If the redistribution effect
through higher human capital inequality is strong, then we can conjecture that the increase
of the variance of ability is likely to change the implication toward the overaccumulation of
capital in a competitive equilibrium.

On the other hand, increasing the variance of the shock have more ambiguous implications.
There will be stronger insurance effect (implication toward overaccumulation of capital), but
the redistribution effect is ambiguous. This is because we might expect increase in wealth
inequality due to relative less investment in riskier human capital but higher variance of
shock and reduced investment in human capital can have opposite effects on human capital
inequality.

Effects of persistent shock If the persistence of human capital shock increases, the
the correlation between the wealth and human capital is likely to increase which leads to the
implication toward underaccumulation of capital.

Effects of money investment Vs. time investment Next, we discuss the effect of
modeling choice about the human capital formation — money investment versus time in-
vestment. This human capital modeling choice can have impact on the constrained efficiency
by changing the correlation between the wealth and human capital. We discuss the effects
in the presence of iid shock first and then with persistent shock.

In the presence of iid shock, the cross correlation is likely to be lower in the time invest-
ment model compared to the money investment model, because the cost of time investment
depends on shock while the return to human capital investment does not depend on the cur-
rent shock. On the other hand, cost and benefit of the money investment does not depend
on the current shock if the shock is iid. Thus, the wealth-rich who has experienced sequence
of good shocks is likely to have invested less on human capital in the time investment model,
implying that the cross correlation might be lower in the time investment model.

In the presence of persistent shock, the cross correlation is likely to be lower again in
the time investment model, but because of different reason. Now, both cost and return of
time investment depend on the current shock while only return of the money investment
model depends on the current shock. Thus, the wealth-rich who has experienced sequence
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of good shocks is likely to have invested more on human capital in the money investment
case, implying higher correlation in the money investment model.

Thus, time investment model is more likely to imply overaccumulation of capital than the
money investment model for the same inequalities of wealth and human capital, although
the mechanism that leads to this result is different depending on the persistence of shock.

4 Infinite horizon model

We now study the infinite horizon version of the endogenous risky human capital model.
Using a two-period model, we observed that endogenizing human capital dispersion and
risky human capital accumulation may lead to the evaluation that the capital-labor ratio in
a competitive equilibrium is too high. In this section, we quantitatively examine whether
the capital-labor ratio is too high in a risky human capital model from the constrained plan-
ner’s perspective, using the infinite horizon model calibrated to actual data (wealth-Gini and
earnings-Gini). DHKR show that in a standard incomplete market economy with exogenous
labor dispersion (shock) which generates realistic wealth dispersion, capital accumulation in
a competitive equilibrium is lower than that of constrained efficient allocation. We are inter-
ested in whether introducing risky human capital accumulation, which generates endogenous
human capital dispersion, overturns DHKR’s conclusion on the optimal capital-labor ratio.

In this economy, the preferences of infinitely lived households are represented by expected
lifetime utility,

E0

{∑
t

βtu(ct)
}
,

where the period utility u has the constant relative risk aversion (CRRA) form, c1−σ1−σ . Intro-
ducing human capital accumulation into the model, we closely follow Huggett et al. (2011).
Household with invariant learning ability A that has human capital ht in period t and invest
time16 st will have human capital ht+1 at period t+ 1

ht+1 = ηt+1g(ht, st, A),

16This time investment for human capital production is slightly different from money investment in the
two-period model of section 2, but the main result we got in the theoretical analysis does not change. We
adopt this time investment model for infinite horizon quantitative investigation because this is the model of
Huggett et al. (2011), and we use their estimates. In addition, it is much easier to guarantee stationarity in
an infinite horizon with this time investment model than with the money investment model.
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where η is an idiosyncratic (multiplicative) shock to human capital. The human capital
production technology is given by (see e.g., Ben-Porath (1967)):

g(h, s, A) = (1− δh)h+ A(sh)φ.

The only source of risk the household faces, η is i.i.d. across agents and time, and is drawn
from the log-normal distributions every period,

log η ∼ N(µη, σ2
η),

where E[η] = 1. There is initial heterogeneity in learning ability. At period 0, A is drawn
from a log-normal distribution:

logA ∼ N(µA, σ2
A).

The period budget constraint of the household is

ct + kt+1 = kt(1 + r) + w(1− st)ht.

As the budget constraint shows, households can insure against idiosyncratic shock either
by accumulating capital or human capital. We also notice that earnings at period t are
w(1 − st)ht, where ht is human capital at period t and 1 − st is available time allocated to
market work.

Competitive firms have production function f(Kt, Lt), where Kt is aggregate capital and
Lt is aggregate labor. We assume that f is a Cobb-Douglas function f(Kt, Lt) = Kα

t L
1−α
t .

The depreciation rate for capital is denoted by δk. Due to competitive firms, wages (rental
price of human capital) and interest rates (rental price of capital) are determined by the
marginal productivity of labor and the marginal productivity of capital, respectively:

w = fL(K,L), r = fK(K,L)− δk.

We now state household problem recursively. The state variables of the individual house-
hold are (k, h, A), and (k, h, A) ∈ S = K×H×A. The probability measure Φ is defined over
the Borel sets of S. As in DHKR, agents have to know aggregate state variable, Φ in order
to compute prices. The law of motion of the distribution is written as Φ′ = F (Φ).

Then, the household’s problem is,

v(Φ, k, h;A) = max
c,k′,s

u(c) + βEη′v(Φ′, k′, η′g(h, s, A);A)

s.t. c+ k′ = k[1 + r(Φ)] + (1− s)hw(Φ) and Φ′ = F (Φ)
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The solution of the household’s problem is c(Φ, k, h;A), k′(Φ, k, h;A), s(Φ, k, h;A). The
intertemporal conditions the solution satisfies are

u′(c) ≥ β(1 + r(Φ′))Eη′,e′

[
u′(c′)

]
w(Φ)hu′(c) ≤ βgs(h, s, A)w(Φ′)Eη′

[
u′(c′)η′

{
1− s+ gh(h′, s′, A)h′

gs(h′, s′, A)

}]
,

where the equality hold when k′ ≥ 0 and s ≤ 1, respectively.17

Using the decision rules k′(Φ, k, h;A), s(Φ, k, h;A), transition function is computed as
follows.

Q(Φ, k, h, A,B; k′, s) =
∫
η′
f(η′)χk′(Φ,k,h;A)∈Bkχη′s(Φ,k,h;A)∈BhχA∈BAdη

′,

where f(η′) is log normal density of η′, and χ is indicator function. Given this transition
function, we define the updating operator T (Φ, Q) as

Φ′(B) = T (Φ, Q)(B) =
∫
S
Q(Φ, k, h, A,B; k′, s)dΦ.

Then, we can define a recursive competitive equilibrium.

Definition 9. A recursive competitive equilibrium is value function, v(φ, k, h;A), policy
functions c(Φ, k, h;A), k′(Φ, k, h;A), s(Φ, k, h;A), prices r(Φ), w(Φ), and aggregate law of
motion, F s.t.

1. Given w, r, and F , policy functions c, k′, s solve the household’s problem and associated
value function is v.

2. The price functions satisfy r(Φ) = fK(K,L), and w(Φ) = fL(K,L), where K =
∫
kdΦ

and L =
∫

(1− s(Φ, k, h;A))hdΦ.

3. F (Φ) = T (Φ, Q)

A steady state for this economy is an invariant distribution Φ̃, which is fixed point of the
updating operator T .18

17s ≥ 0 does not bind, since lims→0 gs(h, s, a) =∞
18Even though the production technology is constant returns to scale in human capital which is accu-

mulated over time, there is a steady state because, at the individual level, household faces a diminishing
marginal product of human capital (φ < 1).
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4.1 Constrained Efficient Allocation

We now characterize the constrained efficient allocation in an infinite horizon economy.
As in the two-period economy, the constrained social planner cannot complete the market
using transfers, but internalize the price effects. We assume a utilitarian planner, who is
maximizing ex-ante lifetime utility. The planner’s problem is then defined as follows:

Ω(Φ)= max
k′(k, h;A),
s(k, h;A)

∫
S
u
(
k(1 + r(Φ)) + (1− s(k, h;A))hw(Φ)− k′(k, h;A)

)
dΦ + βΩ(Φ′) (10)

s.t. Φ′ = T (Φ, Q(·; k′, s)).

We denote the optimal decision rule by k′∗(Φ, k, h;A) and s∗(Φ, k, h;A). The following
proposition provides the first order conditions of the constrained planner’s problem, which
is analogous the ones we analyzed in a two period model.

Proposition 10. If the distribution Φ admits a density, the first order necessary conditions
of problem (10) are the following functional equation in the decision rule k′∗, s∗: For all
{k, h, A} ∈ S,

1. First order condition with respect to k′ is:

u′
(
k[1 + r(Φ)] + (1− s∗(Φ, k, h;A))hw(Φ)− k′∗(Φ, k, h;A)

)
≥ β[1 + r(Φ′)]Eη′

[
u′
(
c∗(Φ,Φ′, k, h, η′;A)

)]
+ ∆k, where

c∗(Φ,Φ′, k, h, η′;A) = k′
∗(Φ, k, h;A)[1 + r(Φ′)]

+(1− s∗(Φ′, k′∗(Φ, k, h;A), η′g(h, s∗(Φ, k, h;A), A), A);A)η′g(s∗(Φ, k, h;A), h, A)w(Φ′)

−k′∗(Φ′, k′∗(Φ, k, h;A), η′g(h, s∗(Φ, k, h;A), A);A),

∆k = β
∫
S
u′
(
k′[1 + r(Φ′)] + (1− s∗(Φ′, k′, h′;A))h′w(Φ)− k′

)
×
[
k′fKK(K ′, L′)− (1− s∗(Φ′, k′, h′;A))h′fLK(K ′, L′)

]
dΦ′,

where the inequality becomes equality if k′∗(Φ, k, h;A) > 0.

2. First order condition with respect to s is:

w(Φ)hu′
(
k[1 + r(Φ)]) + (1− s∗(Φ, k, h;A))hw(Φ)− k′∗(Φ, k, h;A)

)
≤ βw(Φ′)gs(h, s∗(Φ, k, h;A), A)

×Eη′

u′(c∗(Φ,Φ′, k, h, η′;A))η′


(1− s∗(Φ′, k′∗(Φ, k, h;A), η′g(h, s∗(Φ, k, h;A), A);A))
+ gh(η′g(h,s∗(Φ,k,h;A),A),s∗(Φ′,k′∗(Φ,k,h;A),η′g(h,s∗(Φ,k,h;A),A);A),A)
gs((η′g(h,s∗(Φ,k,h;A),A),s∗(Φ′,k′∗(Φ,k,h;A),η′g(h,s∗(Φ,k,h;A),A);A),A)

×η′g(h, s∗(Φ, k, h;A), A)




+(1− s∗(Φ, k, h;A))gs(h, s∗(Φ, k, h;A), A)∆h,
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where the inequality becomes equality if s∗(Φ, k, h;A) < 1.

3. ∆k = β
∫
S

∫
η′ ∆̃k(Φ,Φ′, k, h, η′;A)dη′dΦ,

∆h = −K
L
β
∫
S

∫
η′ η
′∆̃k(Φ,Φ′, k, h, η′;A)dη′dΦ, where

∆̃k(Φ,Φ′, k, h, η′;A) = u′(c∗(Φ,Φ′, k, h, η′;A))
×
[
k′∗(Φ, k, h;A)fKK(K ′, L′)(1− s∗(Φ′, k′, h′;A)η′g(h, s∗(Φ, k, h;A), A)fLK(K ′, L′)

]

Proof See the appendix. �

From this proposition, we see that the Euler equation of the constrained efficient allocation
in an infinite horizon model is the dynamic generalization of the formula we obtained in the
two-period model, (6) and (7). Thus, the sign of extra term ∆k in the Euler equation
determines whether the capital-labor ratio in a competitive equilibrium is too high.

For the purpose of quantitatively investigating over/underaccumulation, we might want to
simply compare the ratio K

H
between the equilibrium and efficient allocation. Then, why do

we show the first order condition in Proposition 10? From these first order conditions, we can
see that the over/underaccumulation in this infinite horizon model is indeed determined by
the magnitude of the insurance channel and the two redistribution channels of the pecuniary
externalities that we analyzed in section 2 with the two-period model. The Euler equations
also show how the increase (decrease) in saving and human capital compared to a compet-
itive equilibrium is distributed among the rich and poor. If ∆k is positive, the constrained
optimum allocates even more saving to the rich, because marginal utility of consumption
of the rich is small, while the extra marginal benefit of saving ∆k is the same for everyone.
Similarly, we see that if ∆h is positive, the constrained planner allocates even more human
capital investment to the rich.

In the next section, we quantitatively investigate the optimal capital-labor ratio. We
investigate this focusing on the steady state, as in DHKR. It is important, however, to
notice that this steady state analysis is not the result of maximizing steady-state welfare,
but the result of maximizing ex-ante life time welfare including the transition to the steady
state.

4.2 Quantitative analysis

We now quantitatively examine whether the capital-labor ratio in a competitive equilib-
rium is too high compared to that of the constrained optimum, when the model is calibrated
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Table 1: Calibrated parameter values
Category Symbol Parameter Value
Preference u(c) = c1−σ

1−σ σ = 2
β β = 0.9376

Technology Y = KαL1−α α = 0.36
δk δk = 0.08

Human capital h′ = ηg(h, s, A) φ = 0.75
g(h, s, A) = (1− δh)h+ A(hs)φ δh = 0.04

Human capital shock log η ∼ N(µη, σ2
η) ση = 0.111

Initial heterogeneity logA ∼ N(µA, σ2
A) (µA, σA) = (−2.336, 0.222)

to generate realistic dispersion of wealth and human capital. Using this realistic calibration,
we show that despite the introduction of risky human capital accumulation that generates
endogenous dispersion of human capital, capital-labor ratio in a competitive equilibrium is
lower than that of constrained optimum, even though the magnitude of capital-labor ratio
in a constrained optimum is smaller than that of DHKR.

The calibrated parameters are summarized in Table 1. The parameters for preference and
technology are standard. Relative risk aversion σ is 2, and discount factor β is calibrated to
place the equilibrium interest rate at 4 percent, as the calibration of DHKR (originally Díaz
et al. (2003)) does. Capital share α of the Cobb-Douglas production function (KαL1−α)
is equal to 0.36 and the depreciation rate of capital is set to 0.08, which are standard and
exactly equal to that of DHKR.

The return to scale, φ of the human capital production function is set to 0.75, and the
depreciation rate of human capital δh is set to 0.04, which are in the middle of estimates in
the literature.19

The parameters of the human capital shock process are (µη, ση), and the parameters of
the distribution of initial learning ability are (µA, σA). The standard deviation of shock to
human capital ση and the standard deviation of initial learning ability σA are important
parameters that determine the earnings dispersion. ση is set to 0.111, which is the estimate
of the Huggett et al. (2011), and the initial learning ability is calibrated to 0.222, which
generates an earnings Gini index of 0.60 — the target of calibration of DHKR(originally

19Browning et al. (1999) surveyed the estimates of these parameter. Table 2.3 of Browning et al. (1999)
shows that the estimates of φ lie in the range 0.5 to over 0.9, and the estimates of δh lie in the range 0 to
0.089. Huggett et al. (2011) uses φ = 0.7 and δh = 0.
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Díaz et al. (2003)). µη is set to guarantee E[η] = 1, and µA is normalized to set the steady
state output without shock (first best output) to 1.

We first comment on some features of the competitive equilibrium. The competitive
equilibrium of this economy has large precautionary savings. As a result, the aggregate
capital-labor ratio is 1.37 times as large as that of an economy without shocks (first best).
Additionally, this economy can generate a Gini index of wealth of 0.783, which is close to
the U.S data. Another important feature of competitive equilibrium is that the correlation
of wealth and human capital in this economy is 0.706, which is higher than the 0.48 in the
US data20 — which is the the 2007 correlation coefficient measured by SCF and reported
in Díaz-Giménez et al. (2011). Based on our analysis in section 3, this higher correlation
of the model is likely to imply a higher constrained efficient capital ratio, and this implies
that there can be some bias on the evaluation of the capital-labor ratio in a competitive
equilibrium toward the underaccumulation of capital.

The capital-labor ratio of the constrained efficient allocation is higher than that of the
competitive equilibrium in the long run, maintaining DHKR’s conclusion — underaccumu-
lation of capital. The capital-labor ratio of the constrained optimum is 3.60 times as large
as that of the first best (without shock) and 2.63 times larger than that of the competitive
equilibrium. Thus, the capital-labor ratio in the competitive equilibrium is too low relative
to the capital-labor ratio in the constrained efficient allocation, implying underaccumula-
tion of capital. In DHKR’s (section 5.2) economy with exogenous labor income shock, the
capital-labor ratio of a constrained efficiency is 8.5 times larger than that of the deterministic
economy and 3.65 times larger than that of the competitive equilibrium. This implies that
the degree to which the capital-labor ratio in a competitive equilibrium is lower than the
optimal ratio in an economy with endogenous human capital is about 70 percent of that in
an economy with exogenous labor income shock.
Another notable finding is that inequalities in both wealth and human capital of the con-

strained efficient allocation are lower than those of a competitive equilibrium. Earnings-Gini
of the constrained efficient allocation gets lower because negative ∆h has stronger negative
impact on the human capital accumulation of households with lower marginal utility (higher
consumption) who tend to have higher earnings. With this observation, one might conjec-
ture that stronger impact of positive ∆k on wealth accumulation of relatively rich household
would lead to higher wealth inequality. However, decrease of interest rate lowers wealth in-
equality, and this interest rate effect dominates the inequality-generating channel of positive

20We tried various calibrations. However, it turns out that, it is difficult to generate low correlation
between wealth and human capital while matching wealth inequality and human capital inequality with this
standard human capital model.
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Table 2: Steady state for the infinite horizon economy
First Best Competitive Equilibrium Constrained Optimum

Capital-labor ratio 4.070 5.565 14.634
Capital-output ratio 2.465 3.000 5.569

Interest rate 6.660% 4.000% -1.536%
wealth Gini 0.0 0.783 0.738

CVa of wealth 0.0 2.605 1.807
earning Gini 0.0 0.600 0.402

acoefficient of variation

∆k because decreased consumption inequality resulting from decreased earnings inequality
weakens the inequality-generating channel. This feature is different from constrained effi-
ciency of DHKR whose wealth inequality is almost equal to that of a competitive equilibrium.
That is, in an economy with endogenous human capital dispersion, the constrained efficiency
improve ex-ante welfare by changing prices so that it can decrease both wealth inequality
and human capital inequality ex-post.

5 Conclusion

We have analyzed whether the pecuniary externalities of the incomplete market imply
that the capital-labor ratio is too high in a competitive equilibrium with endogenous human
capital dispersion. Analytically, we showed that introducing endogenous human capital dis-
persion and human capital risk into a standard incomplete market economy with exogenous
shock can overturn the implication of pecuniary externalities from under accumulation of
capital to too high capital-labor ratio. Higher human capital inequality and lower correlation
of wealth and human capital tend to have the constrained planner’s evaluation that a com-
petitive equilibrium exhibit too high capital-labor ratio. A quantitative investigation using
calibration that generates realistic wealth inequality and human capital inequality, however,
shows that even if we introduce risky human capital accumulation, the capital-labor ratio of
a competitive equilibrium is lower than that of a constrained efficient allocation in the long
run. Thus, the conclusion of DHKR is not overturned, but the magnitude of this ratio in an
economy with human capital is smaller than that of a standard incomplete market economy
with exogenous labor.
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As we discussed in our quantitative analysis, the correlation of wealth and human capital
of the model economy, which is higher than that found in actual US data, could be the reason
behind the underaccumulation of capital. Thus, developing a model that generates low cor-
relation while maintaining high wealth inequality and earnings inequality and investigating
the optimum level of capital-labor ratio might be called for to get more precise quantitative
evaluation. Also, further analysis on how different types of human capital model can change
the implication of pecuniary externalities might be an interesting future research.
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Appendix

A Proof of proposition 7

We first rewrite the ∆k1|CE and ∆k2|CE, using some simple algebra.

∆k1|CE = −ψFHFHKβexp(
ψ2

2 F 2
Hσ

2
e)
∫
k′,h′

u′(wh′ + rk′)Γ1(dk′, dh′)

= −ψFHFHKβexp(
ψ2

2 F 2
Hσ

2
e)
 ρ

2u
′(wh′1 + rk′1) + 1−ρ

2 u′(wh′2 + rk′1)
1−ρ

2 u′(wh′1 + rk′2) + ρ
2u
′(wh′2 + rk′2)

 ,
∆k2|CE = FKKKβexp(

ψ2

2 F 2
Hσ

2
e)
∫
k′,h′

u′(wh′ + rk′)
[
k′

K
− h′

H

]
Γ1(dk′, dh′)

= FKKKβexp(
ψ2

2 F 2
Hσ

2
e)
 ρ

2u
′(wh′1 + rk′1)

[
k′1
K
− h′1

H

]
+ 1−ρ

2 u′(wh′2 + rk′1)
[
k′1
K
− h′2

H

]
1−ρ

2 u′(wh′1 + rk′2)
[
k′2
K
− h′1

H

]
+ ρ

2u
′(wh′2 + rk′2)

[
k′2
K
− h′2

H

]
 .

(i) By differentiating ∆k1|CE with respect to ρ, we get
∂∆k1|CE

∂ρ
= −ψ

2FHFHKβexp(
ψ2

2 F
2
Hσ

2
e)
 (u′(wh′1 + rk′1)− u′(wh′2 + rk′1))
− (u′(wh′1 + rk′2)− u′(wh′2 + rk′2))

 < 0,

where the last inequality holds because u′ is decreasing (u′′ < 0) and convex (u′′′ > 0).

(ii) By differentiating ∆k2|CE with respect to ρ, we get
∂∆k2|CE

∂ρ
= 1

2FKKKβexp(
ψ2

2 F
2
Hσ

2
e)
 (θk − θh) (u′(wh′2 + rk′2)− u′(wh′1 + rk′1))
−(θk + θh) (u′(wh′1 + rk′2)− u′(wh′2 + rk′1))

 .
Since θk ≥ θh, wh′2 + rk′2 > wh′1 + rk′1, the first term in the bracket is negative. If
θk
θh
≤ 1−α

α
, then wh′1 + rk′2 < wh′2 + rk′1, by the following.

(wh′1 + rk′2)− (wh′2 + rk′1)

=
(

(1− α)KαH1−αh
′
1
H

+ αKαH1−αk
′
2
K
− δkk′2

)
−
(

(1− α)KαH1−αh
′
2
H

+ αKαH1−αk
′
1
K
− δkk′1

)
= KαH1−α [((1− α)(1− θh) + α(1− θk))− ((1− α)(1 + θh) + α(1− θk))]− δk(k′2 − k′1)

< 2KαH1−α [αθk − (1− α)θh] ≤ 0

Thus, u′(wh′1 + rk′2) − u′(wh′2 + rk′1) > 0, and the second term in the bracket is also
negative. Since FKK < 0 and the whole bracket is negative, ∂∆k2|CE

∂ρ
> 0
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B Proof of proposition 8
(i) By differentiating ∆k1|CE with respect to θh, we get

∂∆k1|CE
∂θh

= −ψ2 FHFHKβexp(
ψ2

2 F 2
Hσ

2
e)(1− α)KαH1−α

×
[
ρ (u′′(wh′2 + rk′2)− u′′(wh′1 + rk′1)) + (1− ρ) (u′′(wh′2 + rk′1)− u′′(wh′1 + rk′2))

]
Since u′′ is increasing (u′′′ > 0), and wh′2 + rk′2 > wh′1 + rk′1, the first term in the
bracket is positive. If θk

θh
< 1−α

α
, then wh′2 + rk′1 > wh′1 + rk′2 as we showed in the proof

of proposition 7. Thus, the second term in the bracket is also positive. Thus, we get
∂∆k1|CE
∂θh

< 0.

(ii) By differentiating ∆k2|CE with respect to θh, we get

∂∆k2|CE
∂θh

= FKKKβexp(
ψ2

2 F 2
Hσ

2
e)

×


ρ
2 (u′(wh′1 + rk′1)− u′(wh′2 + rk′2)) + 1−ρ

2 (u′(wh′1 + rk′2)− u′(wh′2 + rk′1))
+ρ

2(θk − θh)(1− α)KαH1−α (u′′(wh′2 + rk′2) + u′′(wh′1 + rk′1))
−1−ρ

2 (θk + θh)(1− α)KαH1−α (u′′(wh′1 + rk′2) + u′′(wh′2 + rk′1))


The first and second terms in the bracket are positive. Thus, if the sum of third and
fourth terms are positive, then ∂∆k2|CE

∂θh
< 0. We can easily show that the sum of third

and fourth terms are positive, if (1−ρ)(θk+θh)
ρ(θk−θh) >

u′′(wh′2+rk′2)+u′′(wh′1+rk′1)
u(wh′1+rk′2)′′+u′′(wh′2+rk′1) = u(wh′2+rk′2)+u(wh′1+rk′1)

u(wh′1+rk′2)+u(wh′2+rk′1) ,
where the last equality holds because u′′(c) = ψ2u(c).

C Proof of proposition 10

Proof We prove the proposition based on a sequential formulation of the constrained-
efficiency problem. We denote a density of the distribution of capital, human capital and
learning ability at period t by φt. Then, given density φt, a sequence of the policy rule
{k′t(φt, k, h;A), st(φt, k, h;A)} of the constrained planner’s problem must solve

maxct,k′t,st
∑
t

βt
∫
S
u(ct)φt(k, h, A)dS

s.t. ct + k′t(φt, k, h;A) = k[1 + fK(K(φt), L(φt))] + (1− st(φt, k, h;A))hfL(K(φt), L(φt))

ht+1 = η′g(h, st(φt, k, h;A), A)

given φ1

where K(φt) =
∫
S
k φtdS, L(φt) =

∫
S
(1− st(φt, k, h;A))h φtdS.

42



Therefore, the planner’s optimal policy rules k′∗ and s∗ that instructs a household with
(k, h, A) today to save k′∗(k, h;A) and invest on human capital s∗(k, h;A) given density of
today φ and k′′ and h′′ (thus, s′) tomorrow must maximize

maxk′,s
∫
S
u
(
k[1 + fK(K(φ), L(φ))] + (1− s)hfL(K(φ), L(φ))− k′

)
φdS

+β
∫
S
u
(
k′[1 + fK(K ′(φ′), L′(φ′))] + (1− s′)h′fL(K ′(φ), L′(φ))− k′′

)
φ′dS

s.t. h′ = η′g(h, s, A)

where φ′ is the density of distribution Φ′ = T (Φ, Q(·; k′, s)) .

Using the change of variable, we can show that it is equivalent to maximizing

maxk′,s
∫
S

 u (k[1 + fK(K(φ), L(φ))] + (1− s)hfL(K(φ), L(φ))− k′)
+β

∫
η′ u (k′[1 + fK(K ′(φ′), L′(φ′))] + (1− s′)h′fL(K ′(φ), L′(φ))− k′′) f(η′)dη′

φdS.
We now derive the first order conditions using variational approach. First, we derive the
first order condition with respect to k′. Variational policy rule,

k′
ε(φ, k, h;A) = k′

∗(φ, k, h;A) + εχh=h0,A=A0,k≥k0

should be suboptimal. Define the welfare with variational policy by

Ψk(ε) =
∫
S

[
u
(
k[1 + fK(K(φ), L(φ)] + (1− s∗(φ, k, h;A))hfL(K(φ), L(φ)− k′ε(φ, k, h, A)

)
+β

∫
η′
u

 k′ε(φ, k, h;A)[1 + fK(K ′(T (φ, k′ε)), L′(φ′))]
+(1− s′)η′g(h, s∗, A)fL(K ′(T (φ, k′ε)), L′(φ′))− k′′

 f(η′)dη′
]
φdS.

Then, derivative with respect to ε at 0 of Φk(ε) must be 0:

d

dε
Ψk(0) =

∫ ∞
k0



−u′
 k[1 + fK(K(φ), L(φ))] + (1− s∗(φ, k, h0;A0))
×h0fL(K(φ), L(φ))− k′∗(φ, k, h0;A0)


+β[1 + fK(K ′(φ′), L′(φ′))]

×
∫
η′ u
′

 k′∗(φ, k, h0;A0)[1 + fK(K ′(φ′), L′(φ′))]
+(1− s′)η′g(h, s∗, A)fL(K ′(φ′), L′(φ′))− k′′

f(η′)dη′


φ(k, h0, A0)dk

+β
∫
S

∫
η′
f(η′)


u′

 k′∗(φ, k, h;A)[1 + fK(K ′(φ′), L′(φ′))]
+(1− s′)η′g(h, s∗, A)′fL(K ′(φ), L′(φ))− k′′


×

 k′∗(φ, k, h;A)fKK(K ′(φ′), L(φ′))
+(1− s′)η′g(h, s∗, A)fLK(K ′(φ′), L′(φ′))

∫∞k0
φ(k̃, h0, A0)dk̃

dη
′φdS

= 0.
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Since the right hand side of the above equation is constant function equal to 0. Thus, its
derivative with respect to k0 must be 0. That is, for all k0, h0, A0,

−u′
(
k0[1 + fK(K(φ), L(φ))] + (1− s∗(φ, k0, h0;A0))h0fL(K(φ), L(φ))− k′∗(φ, k0, h0;A0)

)
+ β[1 + fK(K ′(φ′), L′(φ′))]

∫
η′
u′

 k′∗(φ, k0, h0;A0)[1 + fK(K ′(φ′), L′(φ′))]
+(1− s′)η′g(h, s∗, A)fL(K ′(φ′), L′(φ′))− k′′

 f(η′)dη′

+ β
∫
S

∫
η′
f(η′)

[
u′
(
k′[1 + fK(K ′(φ′), L′(φ′))] + (1− s′)η′g(h, s∗, A)fL(K ′(φ), L′(φ))− k′′

)
×
{
k′
∗(φ, k, h;A)fKK(K ′(φ′), L(φ′)) + η′g(h, s∗, A)fLK(K ′(φ′), L′(φ′))

}]
dη′φdS = 0

That is, for all (k, h, A)

u′
(
k[1 + r(Φ)]) + (1− s∗(Φ, k, h;A))hw(Φ)− k′∗(Φ, k, h;A)

)
= β[1 + r(Φ′)]Eη′

[
u′
(
c∗(Φ,Φ′, k, h, η′;A)

)]
+ ∆k

where ∆k = β
∫
S
u′
(
k′[1 + r(Φ′)] + (1− s∗(Φ′, k′, h′;A))h′w(Φ)− k′∗(Φ′, k′, h′;A)

)
×
[
k′fKK(K ′, L′)− (1− s∗(Φ′, k′, h′;A))h′FLK(K ′, L′)

]
dΦ′

Next, we derive the first order condition with respect to s. The variational policy rule

sε(φ, k, h;A) = s∗(φ, k, h;A) + εχk=k0,A=A0,h≥h0

should be suboptimal. Define

Ψs(ε) =
∫
S


u
(
k[1 + fK(K(φ), L(φ)] + (1− sε(φ, k, h;A))hfL(K(φ), L(φ)− k′∗(φ, k, h, A)

)
+β

∫
η′ u

 k′∗(φ, k, h, A)[1 + fK(K ′(φ′), L′(T (φ, sε)))]
+(1− s′)η′g(h, sε, A)fL(K ′(φ′), L′(T (φ, sε)))− k′′

 f(η′)dη′

φdS,
where s′(sε) is s′ s.t. η′′g(η′g(sε, h, A), s′, A) = h′′.

Then, derivative with respect to ε at 0 of Φs(ε) must be 0.

d

dε
Ψs(0) =

∫ ∞
h0



−u′
 k0[1 + fK(K(φ), L(φ))] + (1− s∗(φ, k0, h;A0))
×hfL(K(φ), L(φ))− k′∗(φ, k0, h;A0)


+βgs(h, s∗, A0)fL(K ′(φ′), L′(φ′))

∫
η′ u
′
(
k′∗[1 + fK(K ′(φ′), L′(φ′))]

+(1− s′)η′g(h, s∗(φ, k0, h;A0), A0)fL(K ′(φ′), L′(φ′))− k′′
)

×η′
{

1− s′ + gh(h′,s′,A0)h′
gs(h′,s′,A0)

}
f(η′)dη′


φ(k0, h, A0)dh

+ β
∫
S

∫
η′
f(η′)

[
u′
(
k′[1 + fK(K ′(φ′), L′(φ′))] + (1− s′))h′fL(K ′(φ), H ′(φ))− k′′

)
×
{
k′
∗(φ, k, h;A)fKL(K ′(φ′), L′(φ′)) + (1− s′)η′g(h, s∗, A)fLL(K ′(φ′), L(φ′))

}
×
∫ ∞
h0

φ(k0, h̃, A0)dh̃
]
η′φdS = 0
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Since the right hand side of the above equation is constant function equal to 0. Thus, its
derivative with respect to h0 must be 0. That is, for all k0, h0, A0,

−u′
(
k0[1 + fK(K(φ), L(φ))] + (1− s∗(φ, k0, h0;A0))h0fL(K(φ), L(φ))− k′∗(φ, k0, h0;A0)

)
+ βgs(h0, s

∗, A0)fL(K ′(φ′), L′(φ′))

×
∫
η′
u′

 k′∗(φ, k0, h0;A0)[1 + fK(K ′(φ′), L′(φ′))]
+(1− s′)η′g(h0, s

∗, A0)fL(K ′(φ′), L′(φ′))

 η′ {1− s′ + gh(h′, s′, A0)h′
gs(h′, s′, A0)

}
f(η′)dη′

+ (1− s∗)gs(h0, s
∗, A0)β

∫
S

∫
η′
f(η′)


u′
(
k′∗(φ, k, h;A)[1 + fK(K ′(φ′), L′(φ′))]

+(1− s′)η′g(h, s∗, A)fL(K ′(φ), L′(φ))− k′′)

×

 k′∗(φ, k, h;A)fKL(K ′(φ′), L(φ′))
+(1− s′)η′g(h, s∗, A)fLL(K ′(φ′), L(φ′))



 dη
′φdS = 0

That is, for all (k, h, A)

u′
(
k[1 + r(Φ)] + (1− s∗(Φ, k, h;A))hw(Φ)− k′∗(Φ, k, h;A)

)
= βgs(h, s∗(Φ, k, h;A), A)w(Φ′)Eη′

[
u′(c∗(Φ,Φ′, k, h, η′;A))η′

{
1− s′ + gh(h′, s′, A)h′

gs(h′, s′, A)

}]
+ (1− s∗)gs(h, s∗(Φ, k, h;A), A)∆h, where

∆h = β
∫
S

∫
η′
f(η′)η′

[
u′
(
k′[1 + fK(K ′(φ′), L′(φ′))] + (1− s′)h′fL(K ′(φ), L′(φ))− k′′

)
×
{
k′
∗(φ, k, h;A)fKL(K ′(φ′), L(φ′)) + (1− s′)η′g(h, s∗, A)fLL(K ′(φ′), L(φ′))

}]
dη′φdS

�
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