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Figure 1: Patent US6281. Walter Hunt’s patent for the safety pin.

1 Introduction

New ideas are the seeds for economic growth. Rising living standards depend on the effectiveness

of transforming new ideas into consumer products or production processes. Incarnating an idea into

a product or a production process is by no means immediate. Someone must have a vision or an

application for the idea and the know-how to implement it. These are often people who work in

areas related to the end-use of an idea.

For example, in 1849 Walter Hunt was granted a patent for the safety pin. In the abstract for the

patent, Walter Hunt wrote “(t)he distinguishing feature of the invention consist in the construction

of a pin made of a piece of wire or metal combining a spring, and a clasp or catch, in which catch the

point of the said pin is forced and by its own spring securely retained”—see Figure 1 for his patent

application.1 Hunt was a mechanic by trade and filed patents for various things, such as ice boats,

machines for cutting nails, and repeating guns. What is interesting about this innovation is that

Hunt sold his patent to W. R. Grace and Company for about $10,000 (in today’s dollars). W. R.

Grace and Company mass-produced the safety pin and made millions.

Walter Hunt by no means was an exception. Firms often develop patents that are not close to their

primary business activity.2 Recently released data on the U.S. market for patents indicate that a large

fraction of patents are sold by firms, which developed the ideas, to other firms. Specifically, among

all the patents registered between 1976 and 2006 in the United States Patent and Trademark Offi ce

(USPTO), 16% are traded and this number goes up to 20% among domestic patents.3 For economic

1Patents are publicly disclosed and filed at the United States Patent and Trademark Offi ce. Each patent application

has a full description of the invention and drawings to illustrate the embodiments.
2Some background material on this is presented in Supplemental Appendix 10.
3These numbers do not include patent transfers due to mergers and acquisitions (M&A) and licensing. They include

only firm-to-firm patent transfers and exclude within-firm patent transfers as well as patents sold by individuals. See
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progress, not only the possibility of exchange, but also the speed of that process is important. USPTO

data shows that new patents are sold among firms on average within 5.48 years (with a standard

deviation of 4.58 years).

An analysis of the patent data in Section 3 uncovers some important facts about the nature of

these exchanges. A notion of technological propinquity between a patent and a firm is developed.

The key findings are:

1. A patent contributes more to a firm’s stock market value if it is closer to the firm in terms of

technological distance.

2. A patent is more likely to be sold the more distant it is to the inventing firm.

3. A patent is technologically closer to the buying firm than to the selling firm.

The above observations raise important questions that have been left unanswered by the existing

literature: How sizeable is the misallocation of ideas across firms? How does effi ciency in the market

for ideas affect economic growth? Do frictions in the market for ideas lead to more in-house R&D

or do they discourage innovation overall? This paper attempts to answer these questions.

1.1 The Analysis

To analyze the impact that a market for patents has on the macroeconomy, a search-theoretic growth

model is built. The framework is developed in Section 2. Each period firms invest in research and

development (R&D). Sometimes this process generates an idea, other times it doesn’t. Each firm

operates within a particular technology class, which is fixed over time. An idea increases a firm’s

productivity. In the current analysis, the extent to which a firm uses an idea to push forward its

productivity depends on the propinquity of the idea to the firm’s technology class. A firm may wish

to sell an idea that isn’t close to its own class. It can do so by using a patent agent. Analogously,

the firm might want to purchase an idea through a patent agent if it fails to innovate. Due to search

frictions it may take time for a patent agent to find a buyer for a patent. Also, a patent may not

be the perfect match for a buyer. R&D by firms leads to growth in the model. Additionally, there

is a spillover effect from ideas. A balanced growth path for the model is explicitly characterized. A

unique invariant firm-size distribution exists despite the fact that the distribution for productivity

across firms is continually fanning out.

The model is calibrated in Section 4 so that it matches certain features of the U.S. aggregate

economy, such as the average rate of growth, the long-run interest rate, the share of R&D in GDP, etc.

It is also fit to match some facts, presented in Section 3, from the micro data on patents for U.S. public

Appendix 9 (online) for data construction.
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firms. Three such facts are descriptive: the share of patents that are sold, the empirical duration

distribution, and the reduction in distance between a patent and its owner’s line of business following

a sale. Additionally, some facts from panel-data regression analysis are assembled and targeted using

an indirect inference strategy. First, it is shown that a firm’s market value is positively related to its

stock of patents, controlling for size and other things. Presumably, patents are valuable because they

protect important ideas. Second, the closeness of the patents in a firm’s portfolio to the firm’s line

of business matters for market value. Third, the more distant a patent is to a firm’s line of business

the more likely it is to be sold.

Clearly, a market for patents affects the incentive to do R&D. On the one hand, the fact that

an idea, which is not so useful for the innovator’s own production, can be sold raises the return

from engaging in R&D. On the other hand, the fact that a firm can buy an idea reduces the reward

from doing R&D. A goal of the analysis is to examine how a patent market affects R&D and, hence,

growth. This is done in Section 5.

To gauge the importance of the patent market for economic growth and welfare, a sequence of

structured thought experiments is undertaken in Section 5. First, the rate of contact between buyers

and sellers in the market is reduced to zero, which is equivalent to shutting down the market. In

the absence of the patent market, the equilibrium steady-state growth rate goes from its benchmark

value of 2.08% down to 2.02%, resulting in a welfare reduction of 1.18% in consumption equivalent

terms. Next, the effi ciency of the patent market is successively increased. It is shown that a faster

rate of contact between buyers and sellers, where a buyer can find a seller without any delay, increases

the growth rate up to 2.46% and leads to a welfare gain of 5.97% relative to the benchmark economy

(measured in terms of consumption). In addition, if each seller is matched with the perfect buyer

for their patent, then the growth rate increases to 3.05% and a welfare improvement of 14.3%

materializes. Last, if the ideas that firms produce are perfectly suited for their own production

process (this corresponds to a situation where there is no mismatch between a firm and the idea that

it generates) then the growth rate is 3.38%, which results in a welfare gain of 17.8% compared with

the baseline model. So, effi ciency in the market for patents matters.

Two concerns arise with the focus on patents. First, ideas may be transferred via other means,

in particular licensing. The empirical analysis conducted in Section 3 controls for this, to the extent

possible. Additionally, the model simulation is redone in Section 6 to allow for ideas to be transferred

through licensing as well as patents. The results are not affected in a significant way. Second,

perhaps some patents are bought and sold for reasons surrounding litigation. Such sales may have

little to do with the transfer of knowledge or increasing productivity. A firm may buy an intrinsically

worthless patent to fend off potential litigation, or perhaps to earn profits by threatening litigation

(patent trolls). The empirical analysis in Section 3 also attempts to control for this. Additionally,
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as a robustness check, the model is re-simulated in Section 6 using data from low-litigation sectors.

Again, the results appear to be immune to this.

The market for patents is often thought of as being ineffi cient and illiquid. Buying and selling

intellectual property is a diffi cult activity. Each patent is unique. It may not be readily apparent

who the potential buyers and competing sellers even are, especially in situations where enterprises

desire to keep their business strategies secret. Buyers and sellers may have very different valuations

about the worth of a patent. Patents are often sold through intermediaries. This motivates the

search-theoretic framework presented here.

Historically patent agents were often lawyers. Dealing with both patent buyers and sellers, they

understood both sides of the market. Inventors used them to file patent applications. So, the lawyers

became acquainted with the new technologies that were around. Buyers used them to vet the merits

of new technologies. Hence, the lawyers were familiar with the types of patents that were likely

to be marketable. This led naturally to lawyers acting as intermediaries in patent sales. Edward

Van Winkle typifies the business. He was a patent agent at the beginning of the 20th century.

Van Winkle was a mechanical engineer who acquired a law degree by correspondence course. He

was well suited to provide advice on the legal and technical merits of inventions for his clients on

both sides of the market. Van Winkle cultivated a network of businessmen, inventors, and other

lawyers. Lamoreaux and Sokoloff (2002) detail how he brokered various types of deals with the

buyers and sellers of patents. They also document for the period 1870 to 1910 an increased tendency

for inventors (especially the more productive ones) to use specialized registered patent agents to

handle transactions associated with their patents.

While today’s market for patents is sizeable it can be regarded as being thin due to the special-

ized nature of the knowledge that is embodied in each patent. Thus, the patent market is highly

specialized. To date, online intellectual property platforms have failed to arbitrage the market. The

sensitivity of intellectual property makes potential buyers and sellers reluctant to reveal informa-

tion online; they prefer face-to-face dealings with the other party. Also, some buyers may perceive

a lemons problem: if the patents were truly valuable, then the sellers should be able to profit by

developing the idea themselves or by selling it directly to interested parties.

1.2 Relationship to the Literature

How does the current paper relate to the literature? This is discussed now. On the theory side,

the model developed here is in a class of its own, but like all work it is inspired by some important

predecessors. The paper contributes to the endogenous growth literature. Ever since Romer’s (1986)

classic paper, economists have been concerned with how knowledge affects economic growth. The

cue for a spillover effect from ideas is in the Romer (1986) growth model. The notion that a firm can
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push forward its productivity by incorporating new ideas in its production process is in Aghion and

Howitt (1992). Unlike Aghion and Howitt (1992), this is done here in a competitive environment.

Recent attention has been directed to developing the micro-foundations of how new ideas spread in

an economy. Some work stresses technology diffusion via innovation and imitation [e.g., Jovanovic and

MacDonald (1994), and König, Lorenz, and Zilibotti (2012)]. Other research emphasizes matching

and other frictions in the transfer of ideas. [See for instance, Benhabib, Perla, and Tonetti (2013),

Chiu, Meh, and Wright (2011), Lucas and Moll (2013), and Perla and Tonetti (2013)]. The work

here emphasizes matching frictions. It differs from the above papers in a number of significant ways.

First, the focus is on an economy where growth is driven by heterogeneous ideas that are invented

by firms. A firm may not be able to make the best use of the idea it discovers. Second, firms can

trade their ideas in a market subject to matching frictions. Third, while the growth literature has

mainly been theoretical, the current research uses micro data on patent reassignments to motivate

and discipline the analysis.4

The present paper highlights the importance of complementarity (as measured by distance) be-

tween the existing knowledge stock of the firm and new patents. These findings naturally relate to

work on diversification. In a classic study on diversification and integration, Gort (1962, p. 108)

states “when faced with a choice among activities that would be equally attractive if they were tech-

nologically equidistant from the primary one, a firm will usually undertake those for which technical

propinquity to the primary activity is greatest.”Gort (1962) provides some early evidence in support

of this hypothesis. Figueroa and Serrano (2013) examine the empirical significance of this idea for

patenting and licensing activities.

On the empirical side, the data employed here was first used by Serrano (2010, 2015). He uses

the fraction of self-citations as a proxy for the fit of an idea to an inventing firm and documents that

patents that are not a good fit are more likely to be sold on the market by the inventing firm. A new

metric for measuring the distance between ideas and firms is proposed here. Serrano (2010, 2015)’s

findings are confirmed. Additionally, new facts on the relationship between a firm’s market value

and its distance-adjusted patent portfolio are presented. Also, it is shown how the distance between

an idea and its owner changes upon sale. The micro data facts that are obtained from the U.S. data

are then used here to discipline a search-based endogenous growth model. The model is employed to

quantify the misallocation of ideas in the U.S. economy and the contribution of the patent market

4Perhaps the closest theoretical work to the current research is by Chiu, Meh, and Wright (2011). Ideas are

homogeneous in their framework, so there cannot be any misallocation. They are produced by inventors who cannot

commercialize them, so all ideas are sold. Firms cannot do R&D, hence they must purchase an idea to produce. There

are search frictions in their setup: an inventor must find a entrepreneur in order to sell his idea. Their work emphasizes

financial frictions. In particular, an entrepreneur must have cash on hand to buy an idea. Last, no empirical or

quantitative work is done.
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to economic growth.

The focus on mismatch in ideas connects with recent work on misallocation [see for instance,

Acemoglu, Akcigit, Bloom, and Kerr (2013), Guner, Ventura, and Xu (2008), Hsieh and Klenow

(2009), and Restuccia and Rogerson (2008)]. That literature has mainly focused on factor misal-

locations, particularly the allocation of capital and labor across establishments. The current work

complements this literature by focusing on differences in total factor productivity that may arise due

to a misallocation of ideas, which are a direct ingredient in productivity. Ideas are not necessarily

born to their best users. The existence of a market for ideas and its effi ciency can have a major im-

pact on mitigating any initial misallocation. Thus, the presence of a market for ideas may contribute

significantly to productivity growth. Addressing this question is the focus of the current paper.

2 Model

The theoretical model with perfectly competitive firms is introduced now. The goal is to focus on

the potential misallocation of ideas and its consequences for growth and welfare; therefore, the model

abstracts from monopoly distortions. Another interesting feature of this setting is that patents serve

a new role in this economy: the possibility for trading ideas. Some ideas are better than others for

a firm. In the analysis there are two types of ideas: to wit, d-type and n-type. The worth of a

d-type idea depends on the distance of the idea to a firm’s main line of business. The closer the

idea, the more valuable it is. The worth of an n-type idea is unrelated to the distance between the

idea and the firm’s line of business. To obtain a d-type idea a firm must invest resources, either

through R&D or by buying a patent on the market. By contrast, a firm may discover an n-type idea

through serendipity for free. The productivity of both types of ideas depends upon the general pool

of knowledge in the economy; that is, through osmosis some component of ideas become part of the

ether in technology space.5

2.1 Environment

Consider an economy, where time flows discretely, with a continuum of firms of unit measure. The

firms produce a homogeneous final good using capital and labor. Each firm belongs permanently to

some technology class j that resides on a circle with radius 1/π. At each point on the technology

circle there are firms of density 1/2. A firm enters the period with a level of productivity z. At the

beginning of a period each firm develops a d-type idea with an endogenous probability i. The d-type

5A simplified version of the model that connects in a more elementary manner the effi ciency of the patent market,

and the propinquity of an idea with the firm’s line of business, to economic growth is presented in Supplemental

Appendix 12.
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innovation will be patented and belongs to some technology class k on the circle. The distance

between the firm’s own technology class, j, and the innovation, k, is denoted by d(j, k). This

represents the length of the shortest arc between j and k. Transform this distance measure into a

measure of technological propinquity, x = 1− d(j, k), defined on [0, 1]. A high value for x indicates

that the innovation is close to the firm’s technology class. The firm will keep or sell the d-type patent

depending on the value for x. The higher x is, the bigger will be the boost to the z, if the firm decides

to keep the idea. The value of x is drawn from the distribution function X(x). The technology circle

is illustrated in Figure 2. Just before production begins, an n-type idea arrives with an exogenous

probability p. The worth of an n-type idea is unrelated to a firm’s technology class. The analysis

will focus on a symmetric equilibrium around the technology circle. In a symmetric equilibrium, at

each point on the circle the distribution of firms is the same. Analyzing one point on the circle is

the same as analyzing any other, so there is no need to carry around a location index.

Firms produce output, o, at the end of a period according to the production process

o = (e′z′)ζkκlλ, with ζ + κ+ λ = 1, (1)

where k and l are the amounts of capital and labor used in production and z′ is its end-of-period

productivity. The variable e′ is a firm-specific idiosyncratic production shock. It is drawn at the end

of each period from a log-normal distribution with E[e′] = 1 and a standard deviation represented by

STD(ln e′).6 Labor is hired at the wage rate w. There is one unit of labor available in the economy.

Capital is hired at the rental rate r̃. Observe that there are diminishing returns in capital and

labor. Hence, there are profits from producing. These rents are increasing in the firm’s productivity,

z′. This provides an incentive to do R&D to improve z′. The exponent ζ on e′z′ is an innocuous

normalization that results in profits being linear in e′z′, as is shown below.

A firm’s end-of-period productivity, z′, evolves according to the law of motion

z′ = L(z, x, b; z) = z + γdxz+ γnbz. (2)

Here z is the firm’s initial productivity level. The second term gives the increment to productivity

from obtaining a d-type patent, where x is the technological propinquity of the patent to the firm and

z is mean of the productivity distribution in the economy at the beginning of the period. The closer

a d-type innovation is to a firm’s own technology class, as represented by a larger x, the bigger will

be the increase in productivity, γdxz. The third term gives the gain in productivity from acquiring

an n-type idea, where b ∈ {0, 1}. The expected value of b is given by E[b] = p. Once an idea is

blended into a firm’s production process, within the firm’s permanent technology class, it loses its

6The e′ shock implies that employment, l, will not be a perfect predicator of a firm’s market value. This property

is important for the quantitative analysis and is discussed in Section 4.
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individual identity. This assumption implies that there is no need to keep track of a firm’s portfolio

of patents, which would vary by technology class and age; doing so would be an insurmountable task.

The higher is the economy-wide baseline level of productivity, z, the more valuable a patent is

for increasing productivity. This is true for both d-type and n-type patents. Note that z introduces

a knowledge externality in this economy. Although not modeled formally, this could be because

either some forms of knowledge can only be imperfectly protected or because the patents protecting

them have expired so that the knowledge formerly embodied in the patents is now freely available

for all. Since n-type patents arrive with exogenous probability p the firm will benefit from spillovers

in a probabilistic sense, even if the firm does not invest any resources in R&D. This is not true for

d-type patents, as will be seen. Later, the notation L(z, 0, b; z) will be used to signify the situation

where the firm’s productivity is not incremented by a d-type innovation in the current period, which

is equivalent to setting x = 0. One might think that firm would try to discover a d-type idea that

is close to its line of business. As was mentioned, the propinquity of a d-type idea to the firm, x,

is drawn from the distribution X(x). In the quantitative analysis this is taken to be the empirical

distribution. Hence, the propinquity of ideas to their inventors will be the same as in the data. It

turns out that z is also the aggregate state variable in this economy, a fact shown later. That is, only

the mean of the distribution for the z’s across firms and the evolution of this mean over time matter

for the analysis. Assume that z evolves according to the deterministic aggregate law of motion

z′ = T(z). (3)

Now, at the beginning of a period, firms pick the probability of discovering a d-type idea, i. They

do this according to the convex cost function

C(i; z) = χzζ/(ζ+λ)i1+ρ/(1 + ρ). (4)

Cost rises in lock-step fashion with average productivity, z, in the economy. It will be established

later that wages, w, are proportional to z and grow along a balanced growth path at the same rate as

zζ/(ζ+λ). As will be seen, this ensures that along a balanced growth path the ratio of aggregate R&D

expenditures to GDP remains constant. Aggregate productivity will be a function of the aggregate

state of the world represented by z. A firm that successfully innovates can either keep or sell its idea

to a patent agent. A firm that does not innovate can try to buy a patent from an agent. A patent on

the market survives over time with probability σ. In the analysis σ will be set so that patents have

the same expected life as in the U.S. data. But, by letting a patent die stochastically in this fashion,

instead of deterministically, there is no need to keep track of a patent’s age, a huge simplification.

d-type ideas can be bought and sold on a patent market. A firm that fails to come up with a

d-type idea can try to buy one from a patent agent. Innovators are not allowed to buy patents. A
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firm that draws a d-type idea may sell the associated patent to a patent agent at the price q. This

price is determined on a competitive market. Once a patent is sold to an agent the seller cannot

use it in the future. A patent agent can only handle one d-type idea at a time. The introduction of

patent agents simplifies the analysis. Without this construct the analysis would have to keep track

of the portfolio of patents that each firm has for sale. This technical construct is imposed without

apology, as in the real world many patents are sold through agents, as was discussed.

Let na and nb represent the numbers of agents and buyers in the market for d-type patents. The

total number of matches in the market is given by the matching function

M(na, nb) = ηnµan
1−µ
b .

The matches are completely random. Thus, the odds that an agent will find a buyer are given by

ma(
na
nb

) =
M(na, nb)

na
= η(

nb
na

)1−µ,

and similarly that a buyer will find an agent by

mb(
na
nb

) =
M(na, nb)

nb
= η(

na
nb

)µ.

This search friction could reflect many things: the hardship of matching buyers and sellers in a thin

market for a complicated product or the diffi culty of a buyer assessing the quality of a patent for his

line of business, inter alia.

The ratio of potential sellers to buyers, na/nb, reflects the slackness of the market. Since agents

and buyers are matched randomly, the propinquity between the buyer’s technology class and the

class of the d-type patent being sold is a random variable. A buyer will incorporate a d-type patent

that he purchases into his production process in accordance with the above law of motion for z. The

price of the d-type patent is determined by Nash bargaining between the agent and buyer. Represent

this price by p = P (z, x; z). The negotiated price will depend on the propinquity of the patent, x,

and the state of the buyer’s technology, z. The bargaining power of the agent is given by ω. In

contrast, the price at which a firm sells its d-type patent to an agent is fixed at q, because the agent

doesn’t know who he will sell the patent to in the future. The timing of events in the market for

d-type patents is portrayed in the right panel of Figure 2. Last, after the d-type patent market closes,

an n-type idea may arrive to a firm. For the moment assume that n-type ideas are not traded. A

market for n-type ideas is appended onto the model in Section 3.4.

2.2 The Representative Consumer/Worker

In the background of the analysis is a representative consumer/worker. This individual supplies one

unit of labor inelastically. The person owns all of the firms in the economy. He also rents out the
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Figure 2: The technology circle (left panel) and the timing of events (right panel) for d-type ideas.

Note that n-type ideas arrive after the market for d-type patents closes.

capital used by firms. Thus, he will earn income from wages, profits and rentals. Capital depreciates

at the rate δ . The real return earned by renting capital is 1/r. ( I.e., r is the reciprocal of the gross

interest rate. It will play the role of the discount factor in the Bellman equations formulated below.)

The individual is assumed to have a momentary utility function of the form U(c) = c1−ε/(1 − ε),
where c is his consumption in the current period and ε is the coeffi cient of relative risk aversion. He

discounts the future at rate β. Last, the representative consumer/worker’s goal in life is to maximize

his discounted lifetime utility. Since this problem is entirely standard it is not presented.

2.3 Firms: Buyers, Keepers and Sellers

A firm hires labor, l, at the wage rate w, and capital, k, at the rental rate, r̃ ≡ 1/r − 1 + δ, to

maximize profits. It does this at the end of each period after seeing the realized values for e′ and z′.

Thus, its decision problem is

e′Π(z′; z) = max
k,l

[(e′z′)ζkκlλ − r̃k − wl].

where e′Π(z′; z) is the profit function associated with the maximization problem; the fact that this

function is multiplicative in e′ is established momentarily. The first-order conditions to this maxi-

mization problem imply that

k = κ
o

r̃
, (5)

and

l = λ
o

w
. (6)

Using (1), (5) and (6), it follows that profits are given by

e′Π(z′; z) = (1− κ− λ)o = e′z′(1− κ− λ)[(
κ

r̃
)κ(

λ

w
)λ]1/ζ . (7)
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Again, in equilibrium the rental and wage rates, r̃ and w, will be functions of the aggregate state

of the world, z. Note that profits are increasing in z′ when there are diminishing returns to scale

(1− κ− λ < 1). This provides an incentive to innovative.

The value function for a firm that desires to buy a patent will now be formulated. To this end, let

V (z; z) represent the expected present-value of a firm that currently has productivity z and is about

to learn whether or not it has come up with a d-type idea. Due to the focus on symmetric equilibrium

there is no need ever to record the firm’s location on the technology circle. Now, suppose that the

firm does not innovate. Then, it will try to buy a d-type patent. With probability 1−mb(na/nb) it

will fail to find a patent agent. In that circumstance, the firm’s productivity will remain at z; this is

equivalent to setting x = 0 in (2). It may still acquire an n-type patent before the start of production,

though, which would allow productivity to increase by γnz. The expected value of the firm, before

the n-type patent shock, is E[Π(L(z, 0, b; z); z)] + rE[V (L(z, 0, b; z); z′)]—recall that b ∈ {0, 1} is a
random variable connected with the n-type idea that takes the value one with probability p and that

E[e′] = 1.

With probability mb(na/nb) the firm will meet an agent selling a d-type patent with propinquity

x. Two things can happen here: either the firm buys a d-type patent from the agent or it doesn’t.

The d-type patent sells at the price p = P (z, x; z), which is a function of the buyer’s type, z, as

well the propinquity of the patent to the firm’s technology class, x. The determination of the d-

type patent price is discussed below. The firm will only buy the patent if it yields a higher payoff

than what it will obtain if it doesn’t buy it. If the firm buys a patent, its productivity will rise to

z + γdxz. Again, before production begins the firm may also obtain an n-type patent, which would

result in a further increase in productivity. The firm’s expected value (before the n-type patent

shock) will then move up to E[Π(L(z, x, b; z); z)] − P (z, x; z) + rE[V (L(z, x, b; z); z′)]. If it doesn’t

buy a d-type patent then its productivity will remain at z. The expected value of the firm will then

be E[Π(L(z, 0, b; z); z)] + rE[V (L(z, 0, b; z); z′)]. Denote the distribution over propinquity for buying

a patent from a patent agent by D(x).

The expected discounted present value of the buyer, B(z; z), is easily seen to be

B(z; z) = mb

(
na
nb

)∫
{Ia(z, x; z)

{
E[Π(L(z, x, b; z); z)]− P (z, x; z) + rE[V (L(z, x, b; z); z′)]

}
+ [1− Ia(z, x; z)]

{
E [Π(L(z, 0, b; z); z)] + rE

[
V (L(z, 0, b; z); z′)

]}
}dD(x)

+ [1−mb(
na
nb

)]
{
E [Π(L(z, 0, b; z); z)] + rE

[
V (L(z, 0, b; z); z′)

]}
, (8)

where z evolves according to (3) and

Ia(z, x; z) =

 1 (sale), if the buyer purchases a patent,

0 (no sale), otherwise.
(9)
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The indicator function Ia(z, x; z), defined above, specifies whether or not the non-innovating firm

will buy a d-type patent. The determination of this function is discussed below.

Turn now to the situation where the firm successfully innovates. If it decides to keep the d-type

patent then the firm’s productivity will be z + γdxz as in (2). Productivity may still increase if the

firm draws an n-type idea. Before the realization of the n-type patent shock, the firm will have the

expected value K(z + γdxz; z), as given by

K(z + γdxz; z) = E [Π(L(z, x, b; z); z)] + rE
[
V (L(z, x, b; z); z′)

]
, (10)

where again z evolves according to (3) and b ∈ {0, 1} is a random variable. Alternatively, it can sell

the d-type patent to an agent. Then, its productivity will remain at z (unless it subsequently draws

an n-type idea). The value of a seller, S(z; z), is

S(z; z) = E [Π(L(z, 0, b; z); z)] + σq + rE
[
V (L(z, 0, b; z); z′)

]
. (11)

Once the seller puts a d-type patent up for sale at the beginning of the period it expires with

probability 1−σ. A firm that innovates will either keep or sell its d-type patent depending on which

option yields the highest value. Given this, it is easy to see that the decision to keep or to sell a

patent can be formulates as

Ik(z, x; z) =

 1 (keep), if K(z + γdxz; z) > S(z; z),

0 (sell), otherwise.
(12)

2.3.1 The Decision to Innovate

The firm’s decision to innovate is now cast. With probability i the firm discovers a d-type idea and

with probability 1−i it doesn’t. The firm chooses the probability of discovering a d-type idea subject
to the convex cost function C(i; z). Hence, write the innovation decision as

V (z; z) = max
i

{
i

∫
{Ik(z, x; z)K(z + γdxz; z) + [1− Ik(z, x; z)]S(z; z)}dX(x) + (1− i)B(z; z)− C(i; z)

}
.

(13)

The first-order condition associated with this problem is∫
{Ik(z, x; z)K(z + γdxz; z) + [1− Ik(z, x; z)]S(z; z)}dX(x)−B(z; z) = C1(i; z),

(where C1 is the derivative of C with respect to i) so that

i = R(z; z) (14)

= C−1
1

(∫
{Ik(z, x; z)K(z + γdxz; z) + [1− Ik(z, x; z)]S(z; z)}dX(x)−B(z; z); z

)
.
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2.4 Patent Agents

Turn now to the problem of a patent agent. It buys a d-type idea at the competitively determined

price q. With probabilityma(na/nb) it will meet a potential buyer on the market and with probability

1−ma(na/nb) it won’t. Denote the distribution of buyers by G(z). The value for an agent, A, with

a patent is thus given by

A(z) = ma

(
na
nb

)∫ ∫ {
Ia(z, x; z)P (z, x; z) + [1− Ia(z, x; z)]rσA(z′)

}
dG(z)dD(x)

+ [1−ma

(
na
nb

)
]rσA(z′), (15)

where Ia(z, x; z) is specified by (9) and is defined formally shortly below. The price of a d-type patent

is determined via Nash bargaining. Specifically, p is determined in accordance with

max
p
{E [Π(L(z, x, b; z); z)]− p+ rE

[
V (L(z, x, b; z); z′)

]
− E [Π(L(z, 0, b; z); z)]− rE

[
V (L(z, 0, b; z); z′)

]
}1−ω

× [p− rσA(z′)]ω.

The first term in braces gives the buyer’s surplus. This gives the difference between the value of the

firm when it secures a d-type patent and the value when it does not. The second term details the

seller’s surplus. In standard fashion,

p = P (z, x; z) = ω{E [Π(L(z, x, b; z); z)] + rE
[
V (L(z, x, b; z); z′)

]
− E [Π(L(z, 0, b; z); z)]

− rE
[
V (L(z, 0, b; z); z′)

]
}+ (1− ω)rσA(z′), (16)

whenever both the buyer’s and seller’s surpluses are positive. The price lies between rσA(z′) and

E [Π(L(z, x, b; z); z)] + rE [V (L(z, x, b; z); z′)] −E [Π(L(z, 0, b; z); z)] − rE [V (L(z, 0, b; z); z′)]; if the

former is above the latter then no solution exists. Now, define Ia(z, x; z) in the following manner:

Ia(z, x; z) =


1, if rσA(z′) ≤ p ≤ E [Π(L(z, x, b; z); z)] + rE [V (L(z, x, b; z); z′)]

−E [Π(L(z, 0, b; z); z)]− rE [V (L(z, 0, b; z); z′)] ,

0, otherwise.
(17)

2.5 Symmetric Equilibrium Along a Balanced Growth Path

The focus of the analysis is solely on a symmetric equilibrium along a balanced growth path. A

formal analysis of the model’s balanced growth path is contained in Theory Appendix 8 (online).

Before starting, define the aggregate level of productivity, z, its gross rate of growth, g, and the
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aggregate level of innovation, i, by

z ≡
∫
zdZ(z), g ≡

∫
z′dZ ′(z′)∫
zdZ(z)

, and i ≡
∫
R(z; z)dZ(z). (18)

In equilibrium the demand for labor must equal the supply of labor. Recall that there is one unit

of labor in the economy. Let Z ′(z′) represent the end-of-period distribution of z′ across firms. Now,

using (1), (5) and (6), it is easy to deduce that the labor, l, demanded by a firm is given by

l =
(κ
r̃

)κ/ζ ( λ
w

)(ζ+λ)/ζ

e′z′. (19)

Equilibrium in the labor market then implies that∫ (κ
r̃

)κ/ζ ( λ
w

)(ζ+λ)/ζ

z′dZ ′(z′) = 1,

where the fact that E[e′] = 1 has been used. This implies that the aggregate wage rate, w, is given

by

w = λ
(κ
r̃

)κ/(ζ+λ)
[∫

z′dZ ′(z′)

]ζ/(ζ+λ)

= λ
(κ
r̃

)κ/(ζ+λ)
z′ζ/(ζ+λ). (20)

The wage rate, w, depends on the mean of the end-of-period productivity distribution across firms,

z′ ≡
∫
z′dZ ′(z′).

Next, suppose that there is free entry by agents into the market for d-type patents. This dictates

that the price q will be determined by

q = A(z). (21)

To complete the description of a symmetric balanced growth equilibrium, the distribution over propin-

quity for patent agents, or D(x), must be specified. It is uniform in a symmetric equilibrium. Recall

that a firm’s permanent location in the technology space is represented by a point on the circle.

Think about a buyer located at the top of the circle. Suppose that a set of firms on some tiny arc

jk to the left of top are selling patents of mass λ that are of distance between 0 and ε away from

the top. Now take any other arc lm of equal length even further to the left of top. The start of this

second arc has distance d(j, l) from the start of the first one. In a symmetric equilibrium there will

be on the second arc, for all practical purposes, an identical set of firms selling patents of mass λ

that are of distance between d(j, l) and d(j, l) + ε away from the top.

2.5.1 Some Features of a Balanced Growth Path

Along a balanced growth path, consumption, investment, output, profits, wages, and the selling and

buying prices for d-type patents will all grow at a constant rate. Also, the interest factor and rental

rate on capital are constant. Assuming that this is the case, then it is easy to deduce from (20) that

wages must grow at the gross rate gζ/(ζ+λ). Aggregate output and profits will grow at this rate too,
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as can be inferred from (7). Given the assumption that tastes are isoelastic, the interest factor and

rental rate on capital are given in standard fashion by

r = β/gεζ/(ζ+λ), (22)

and

r̃ = gεζ/(ζ+λ)/β − 1 + δ, (23)

where again ε is the coeffi cient of relative risk aversion. By substituting the solution for wages, as

given by (20), into the demand for labor, (19), it can be seen that a firm’s employment is proportional

to z′/z′. Since on average one would expect that z′ will be growing at the same rate as z′, this suggests

that a stationary firm-size distribution exists.

It turns out that along a balanced growth path the indicator functions Ik(z, x; z) and Ia(z, x; z)

can represented by simple threshold rules for x that do not depend on either z or z. In particular,

Ik(z, x; z) =

 1 (keep), x > xk,

0 (sell), otherwise,
and Ia(z, x; z) =

 1 (sale), x > xa,

0 (no sale), otherwise.

That is, an innovating firm keeps its d-type idea when x > xk and sells otherwise. Analogously, a

sale between a buyer and a patent agents occurs if and only if x > xa.

3 Empirical Analysis

3.1 Data Sources

This section details data sources and variable constructions. For further information, please see

Empirical Appendix 9 (online).

NBER-USPTO Utility Patents Grant Data (PDP). The core of the empirical analysis draws

from the NBER-USPTO Patent Grant Database (PDP). Patents are exclusionary rights, granted

by national patent offi ces, to protect a patent holder for a certain amount of time, conditional on

sharing the details of the invention. The PDP data contains detailed information on 3,210,361 utility

patents granted by the U.S. Patent and Trademark Offi ce between the years 1976 and 2006. A patent

has to cite another patent when the former has content related to the latter. When patent A cites

patent B, this particular citation becomes both a backward citation made by A to B and a forward

citation received by B from A. Moreover, the PDP contains an International Patent Classification

(IPC) code for each patent that helps identify where it lies in the technology space.7 Extensive use

7The USPTO originally assigns each patent to a particular U.S. Patent Classification (USPC), which is a system

used by the USPTO to organize all patents according to their common technological relevances. The PDP also assigns

an IPC code to each patent using the original USPC and a USPC-IPC concordance based on the International Patent

Classification Eighth Edition.
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of the forward and backward citations are made, as well as the IPC codes assigned to each patent,

to determine a patent’s location in the technology space, its distance to a firm’s location in the

technology spectrum, and also to proxy for a patent’s quality. The exact methodology followed to

construct these measures is detailed below.

Patent Reassignment Data (PRD). The second source of data comes from the recently-released

USPTO patent assignment files retrieved from Google Patents Beta. This dataset provides detailed

information on the changes in patent ownership for the years 1980 to 2011. The records include

966,427 patent reassignments not only due to sales, but also due to mergers, license grants, splits,

mortgages, collaterals, conversions, internal transfers, etc. Reassignment records are classified ac-

cording to a search algorithm that looks for keywords, such as “assignment”, “purchase”, “sale”,

and “merger”, and assigns them to their respective categories. Through this process, 99% of the

transaction records are classified into their respective groups—see Empirical Appendix 9 for more

information.

Compustat North American Fundamentals (Annual). In order to assess the impact of patents

and their technological distance on firm moments, such as stock market valuation, the PDP patent

data is linked to Compustat firms. The focus is on the balance sheets of Compustat firms between

the years 1974-2006, retrieved from Wharton Research Data Services. The Compustat database and

the NBER PDP database are connected using the matching procedure provided in the PDP data.

Lex Machina Database on Patent Litigations. The information on litigated patents is obtained

from Lex Machina. It is the most comprehensive database on patent litigations since 2000. Lex

Machina obtains its data on a daily basis from (i) the administrative database of the United States

federal courts, (ii) all United States District Courts’websites, (iii) the International Trade Commis-

sion’s (EDIS) website, and (iv) the USPTO’s websites.

Derwent Litalert Database on Patent Litigations. For litigation information before 2000, the

Derwent Litalert Database is used. Further description about this dataset can be found in Galasso,

Schankerman and Serrano (2013).

Carnegie-Mellon Survey (CMS) on Industrial R&D. The sector-level licensing information is

drawn from the CMS. This dataset is one of the rare R&D surveys in the United States that contains

information on the licensing activities of firms. The CMS contains 1,478 randomly selected R&D

labs of manufacturing firms, stratified by three-digit SIC industry codes. All labs are located in the

United States. In the survey the firms are asked to report the most important reason for applying

for their product patent, where one of the answers is “to obtain revenue through licensing.” The

percentage of firms picking this answer is aggregated to two-digit SIC industry classifications, which

results in a sector-level licensing intensity measure. More information can be found in Cohen, Nelson

and Walsh (2000).
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The empirical analysis requires the construction of a notion of distance in the technology space.

For that purpose, the citation patterns across IPC technology fields are utilized. The PDP contains

the full list of citations with the identity of citing and cited patents. Since the data also contains the

IPC code of each patent, the percentage of outgoing citations from one technology class to another are

observable. Using this information, a metric, discussed below, is constructed to gauge the distance

between a new patent and a firm’s location in the technology spectrum.

In what follows, for each empirical fact the best and largest possible sample is used. For instance,

for the firm value regressions all patents that are matched to the Compustat sample are utilized.

Similarly, to describe the change from seller to buyer, all patents for which the buyer and seller could

be uniquely identified are used. Therefore, even though the samples vary across different empirical

facts, this approach delivers the most reliable results.

3.2 Technological Propinquity

The notion of technological propinquity between a patent and a firm is now formalized. Think about

a patent as lying within some technological class. Call this technology class X. Empirically this can

be represented by the first two digits of its International Patent Classification (IPC) code. Now, one

can measure how close two patents classes, X and Y , are to each other. To do this, let #(X ∩ Y )

denote the number of all patents that cite patents from technology classes X and Y simultaneously.

Let #(X ∪Y ) denote the number of all patents that cite either technology class X and/or Y . Then,

the following symmetric distance metric can be constructed:

d(X,Y ) ≡ 1− #(X ∩ Y )

#(X ∪ Y )
,

with 0 ≤ d(X,Y ) ≤ 1. This distance metric is intuitive. If each patent that cites X also cites Y , this

metric delivers a distance of d (X,Y ) = 0. [Also note that d(X,X) = 0.] If there is no patent that

cites both classes, then the distance becomes d (X,Y ) = 1. The distance between two technology

classes increases, as the fraction of patents that cite both decreases. Given this metric between

technology classes, a distance measure between a patent and a firm can now be constructed.

In order to measure how close a patent is to a firm in the technology spectrum, a metric needs

to be devised. For this purpose, a firm’s past patent portfolio is used to identify the firm’s existing

location in the technology space.8 In particular, the distance of a particular patent p to a firm f

is computed by calculating the average distance of p to each patent in firm f’s patent portfolio as

follows:

dι (p, f) ≡

 1

‖Pf‖
∑
p′∈Pf

d
(
Xp, Yp′

)ι1/ι

, (24)

8The firm’s patent portfolio is defined as all inventions by the firm up to that point in time.
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Figure 3: Empirical distance distributions. The figure plots empirical density functions for the

distance, dι(p, f), between a patent, p, and a firm’s patent portfolio, f , for three values of ι.

with 0 < ι ≤ 1, and where 0 ≤ dι(p, f) ≤ 1. In this expression, Pf denotes the set of all patents
that were ever invented by firm f prior to patent p, ‖Pf‖ stands for its cardinality, and d

(
Xp, Yp′

)
measures the distance between the technology classes of patents p and p′. Note that d

(
Xp, Yp′

)
= 0

when the firm has another patent, p′, in the same class as p. Therefore, this metric is defined only

for ι > 0. Finally, when ι = 1 the above metric returns the average distance of p to each patent in

firm f’s patent portfolio: d1 (p, f) ≡ ‖Pf‖−1∑
p′∈Pf d

(
Xp, Yp′

)
, with 0 ≤ d1(p, f) ≤ 1.

The empirical distribution for this notion of distance is displayed in Figure 3 for three values of

ι. As can be seen, patents have heterogeneous technological distances to the inventing firms. The

intermediate value, ι = 2/3, is chosen for the subsequent analysis.9

3.3 Stylized Facts

Next, the empirical findings highlighted in the introduction of the paper are presented. Table 1

provides the summary statistics. Panel A shows the summary statistics of the variables computed

using Compustat firms. The distance-adjusted patent stock is constructed in a way such that each

patent’s contribution to the portfolio is multiplied by its distance to the firm prior to the aggregation.

Specifically, ∑
p∈Pf

dι (p, f)× quality(p)

9The value chosen for ι does not appear to make much of a difference for the analysis. For example, both the

empirical and model simulation results in the paper are more or less the same when either ι = 1/3 or ι = 1.
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Summary Statistics

Observation Mean St. Dev
Panel A. Compustat Facts

log market value 37,331 5.58 2.30
log employment 39,431 0.75 2.28
log patent stock 41,515 5.68 2.25
log distance-adjusted patent stock 42,269 3.38 4.23

Panel B. USPTO/NBER Patent Facts
patent quality 2,771,692 12.1 20.6
patent distance 2,548,998 0.48 0.30
litigation probability 2,772,895 0.01 0.10

Panel C. Patent Reassignment Facts
fraction of patents sold (at least once) 3,210,361 0.16 0.36
number of times a patent is sold 3,210,361 0.19 0.52
conditional duration of patent sale, yrs 421,936 5.48 4.58
litigation and sale probability 2,772,895 0.003 0.05

Panel D. Cumulative Density
0 times 1 time 2 times

number of times a patent is sold 85% 97% 99%
Table 1: Patent quality is measured by the number of patent citations corrected for truncation using
the "HJT correction term" from Hall, Jaffe and Trajtenberg (2001). "Portfolio size" is defined as the
number of patents that the innovating firm has ever produced by the time of the current innovation.
"Transfer duration" is measured by the grant date, with negative durations being dropped.

where dι (p, f) and quality(p) are the distance and quality terms for patent p. The quality of a

patent is measured by the citations it has received from other patents, corrected for truncation and

technology class biases using the weights offered in Hall, Jaffe and Trajtenberg (2001).

Panel B reports the summary statistics of the USPTO/NBER patent data. As seen, the average

distance between a new patent and its firm is 0.48. The so-called “garage inventors”and firms that

do not have any existing patents in their portfolio are dropped when patent distance is computed.

Panel C lists the summary statistics using patent reassignment data. On average, 15.6% of patents

in the sample were traded at least once. The mean time to sell a patent after its grant date is 5.5

years. The average number of trades per patent is 0.2. Panel D shows that 97% of patents are traded

at most one time and this number goes up to 99% when the fraction of patents that are traded at

most two times are considered. Only a paltry 1.0% of patents involve litigation. The following fact

summarizes this section.

Fact 1 About 15% of patents are sold and it takes about 5.5 years to sell them on average.
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Firm Market-Value Regressions

Dependent Variable: log market value
(1) (2) (3) (4) (5) (6)

log patent stock 0.039*** 0.039*** 0.039*** 0.038*** 0.037*** 0.071***
(0.008) (0.008) (0.008) (0.009) (0.009) (0.010)

log dist-adj pat stock -0.020*** -0.020*** -0.020*** -0.020*** -0.020*** -0.032***
(0.003) (0.003) (0.003) (0.003) (0.003) (0.004)

log employment 0.728*** 0.728*** 0.736*** 0.763*** 0.763*** 0.692***
(0.008) (0.008) (0.008) (0.009) (0.009) (0.010)

firm litigation intensity no yes no no yes no
sector litigation intensity no no yes no yes no
sector licensing intensity no no no yes yes no
only renewed patents no no no no no yes
Obs 36,094 36,091 36,094 33,062 33,060 27,528
R2 0.92 0.92 0.92 0.92 0.92 0.92

Table 2: Compustat, firm-level regressions. Standard errors are in parentheses and *** denotes
significance at the 1% level. Firm and year fixed effects and intercept terms are included in all
specifications. The last column repeats the regression in the first column but excludes all patents
that have not been renewed at least once.

3.3.1 Firm Market Value and Patent-Firm Distance

Are patent-firm distances important when it comes to the relationship between a firm’s patent

portfolio and its value? In order to answer this question, Table 2 regresses “log market value” in

year t on a firm’s patent portfolio, its distance-adjusted patent portfolio, and the firm’s size in the

same year. The regressions also include year and firm fixed effects to rule out firm-specific properties

and time trends.

As expected, column 1 shows that the patent portfolio of a firm is positively related to its stock

market valuation. Presumably this is because patents are protecting knowledge that is valuable for

the firm. More interestingly, a firm’s patent portfolio, once adjusted by patent distances, is negatively

related to the firm’s market value. The coeffi cient for the distance-adjusted patent stock quantifies

the loss of correlation between the patent portfolio and firm value due to the technological mismatch

between the firm and its patents. In short, while the non-distance component of the patent portfolio

contributes positively, the distance-related component contributes negatively to firm value. In order

to interpret the results correctly, consider the ratio of the (negative) coeffi cient of the distance-

adjusted patent stock to that of the unadjusted patent stock. The ratio of the two elasticities

is 51.3%. This reflects the relative importance on market value of a shift in the distance-adjusted

patent portfolio versus a change in the non-adjusted one. This ratio will be targeted in the simulation.

It provides information on the importance of d-type patents relative to n-type ones.

Two factors that have been receiving some attention in the literature recently are licensing and
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litigation. They could influence a firm’s incentives to do R&D, the value of a firm’s patent stock, or a

firm’s decision to buy, keep or sell patents. Licensing is an alternative vehicle for technology transfer.

Additionally, litigation might affect a firm’s decision to acquire, retain or sell patents. Therefore,

controls are introduced for litigation and licensing: Columns 2-4 introduce the fraction of a firm’s

portfolio that is ever litigated, sector-level litigation intensity (defined as the fraction of litigated

patents over total patents in that sector), and sector-level licensing intensity, respectively. Column 5

introduces all these controls at once. All of these alternative specifications show that the benchmark

estimates in column 1 are remarkably robust. Last, some patents have little value. To control for

this, the last column only includes those patents that were renewed at least once.10 (Patents must

be renewed, at a small fee, in their 3rd, 7th and 11th years.) As can be seen, a lot of patents aren’t

renewed and purging these patents increases somewhat the impact of the patent stock and distance-

adjusted patent stock on the firm’s market value. The story remains more or less the same, though,

with the relative value of the first two regression coeffi cients more or less staying fixed. The gist of

this section is summarized as follows:

Fact 2 A patent contributes more to a firm’s stock market value if it is closer to the firm in terms

of technological distance.

3.3.2 Patent Sale Decision and Patent-Firm Distance

Does the technological distance of a patent to the firm influence the decision to keep or sell it? In

order to conduct this analysis, the indicator variable for whether a patent is sold or kept (=1 if a

patent is sold, =0 if not) is regressed on a number of potentially related regressors, including the

patent’s distance to the initial owner. Table 3 reports the OLS regression results.

Using the full sample, column of Table 3 indicates that a patent is more likely to be sold if it

is more distant to the firm. The regression includes controls for the size of the patent portfolio

of the firm, patent quality, year and firm fixed effects. The coeffi cient on the distance variable is

statistically significant and positive. Considering the average number of patents sold (' 15%) in the

time period, the coeffi cient suggests that a perfectly mismatched patent is 13.1% (' 0.0197/0.15)

more likely to be sold to another firm, rather than being kept. Recall also that the definition employed

for a sale is quite conservative, in the sense that patent transfers due to mergers and acquisitions

are not considered sales, even though the primary motive for these events might be the acquisition

of patents. The results are in line with the intuition that a firm is more likely to sell patents that

10 Information on patent renewals is obtained from the USPTO’s U.S. Patent Grant Maintenance Fee Events.
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Patent Sale Decision
(Full Sample with Litigation Intensity)

Dependent Variable (=1, if sold, 0 otherwise)
(1) (2) (3) (4) (5)

distance 1.972*** 1.982*** 1.980*** 1.991*** 2.398***
(0.078) (0.078) (0.078) (0.078) (0.091)

tech-class litigation intensity no yes no yes no
patent litigation dummy no no yes yes no
renewed patents only no no no no yes
Obs 2,547,881 2,547,881 2,547,881 2,547,881 1,976,964
R2 0.42 0.42 0.42 0.42 0.44

Table 3: The dependent variable is multiplied by 100 for clarity. All specifications control for the
number of citations that each patent received (using the HJT correction term), for the size of the
firm’s patent portfolio and also for firm fixed effects. Year and intercept terms are included. The
coeffi cients on the non distance terms are not reported to save space and are available upon request.
The last column repeats the regression in the first column of the panel but excludes all patents that
have not been renewed once. Standard errors are in parentheses and *** denotes significance at the
1% level.

are not a good fit, rather than keeping them, due to the potential gains from trading the patent to

a firm that might be better suited to exploit the embedded ideas commercially.

Column 2 controls for the litigation intensity of the technology class, while column 3 controls for

the lifetime litigation status of the patent, and column 4 for both simultaneously. The association of

distance to a patent sale is unaffected by the presence of these additional controls. Column 5 redoes

the first regression but purges those patents that aren’t renewed at least once. The effect of distance

is only slightly more pronounced. The results are also robust to inclusion of the licensing intensity

of a sector—see Section 9.6 in the Empirical Appendix for the results. The stark result is that adding

additional controls or restricting the sample do not weaken the link between distance and patent

sale; to the contrary, they make it more pronounced. The implications of litigation and licensing on

the market for ideas will be explored in more detail in Section 6.

Fact 3 A patent is more likely to be sold the more distant it is to a firm.

The primary motivation behind considering patent distance as a likely determinant of patent sale

decisions is the potential gains from trade that arise if the patent can be sold to a firm that can use

it better, which in expectation yields more profits. If this intuition is correct, the distance between

the owner firm and the patent is expected to decrease after a patent is sold. Let d (p, fb) denote the

distance of the patent to the buyer firm, and d (p, fs) to the seller firm. Next, the change in distance,

d (p, fb)− d (p, fs), is computed. This difference is −0.152 in 1980, the beginning of the sample, with

a standard error of 0.049. What this shows is that conditional on a patent sale, the distance between
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a patent and its owner is significantly decreased. In other words, the mismatch between the idea and

the firm owning it is reduced. The effect is economically large. Considering that the average measure

for distance is 0.481, the average reduction in distance is approximately 32% (' 0.152/0.481) of the

average distance. The average distance reduction in the whole sample is 16% and this number goes

up to as high as 49% in 2006, which is the end year of the sample.

Fact 4 A patent is technologically closer to the buying firm than to the selling firm.

3.4 Tacking on a Market for n-type Patents

To append a market for n-type ideas onto the model, recall that a firm obtains an n-type idea with

probability p. This can arise in one of two ways: either the firm develops an n-type idea or it purchases

one. Let a firm that develops an n-type idea sell it with probability ps. Likewise, assume that a firm

that fails to come up with an n-type idea will purchase one with probability pb. Suppose that the

market for n-type ideas clears instantaneously every period. This implies that pps = (1 − p)pb, so

that pb = psp/(1 − p). Adding a market for n-type patents onto the above structure does not alter

the model’s solution for a symmetric balanced growth path. This is discussed further in the Theory

Appendix, Section 8.2.

In the U.S. data the distance between a patent and its owner’s line of business shrinks on average

upon a sale; i.e., a patent is closer to the buyer than the seller. This is not true empirically for all

patent sales. The presence of n-type patents helps the model better capture Fact 4. It is easy to

deduce that on average the distance between a d-type patent and its owner would contract in the

model by [1/(1−xa)]
∫ 1
xa
xdx− [1/X(xk)]

∫ xk
0 xdX(x), since a non-innovating business buys if x > xa

and an innovating firm sells when x < xk. The average distance between an n-type patent and its

owner would contract in the model by
∫ 1

0 xdx−
∫ 1

0 xdX(x).11 This is smaller than the number for d-

type patents, because [1/(1− xa)]
∫ 1
xa
xdx >

∫ 1
0 xdx and [1/X(xk)]

∫ xk
0 xdX(x) <

∫ 1
0 xdX(x). Thus,

the presence of a market for n-type patents operates to reduce the average shrinkage in distance

upon sale between a patent and its owner.

4 Calibration

In order to simulate the model values must be assigned to the various parameters. There are sixteen

parameters to pick: β, ε, κ, λ, δ, σ, γd, χ, ρ, µ, η, ω, γn, p, ps, and std(e′). A distribution

11The distance between an n-type patent and its owner has no real effect; i.e., the technology class for an n-type

patent is just a label.
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for X(x) needs to be provided as well. As is standard in macroeconomics, some of the parameter

values are chosen on the basis of a priori information, while others are determined internally using

a minimum distance estimation routine. By selecting some parameters using a priori information

the size of the calibration/estimation procedure is reduced. This is important because undertaking

calibration/estimation is problematic when there is a large number of parameter values. For the

most part, there is either a consensus about what the appropriate values for these parameters are,

or the U.S. data speaks directly to them. The selection of parameter values on the basis of a priori

information is now discussed.

4.1 The Use of A Priori Information

1. Capital’s and labor’s shares of income, κ and λ. In line with Corrado, Hulton and Sichel (2009)

estimates from the U.S. National Income and Product Accounts, capital’s and labor’s shares of

incomes, κ and λ, are set to 25 and 60%. This implies that the profit parameter, as represented

by ζ, accounts for the remaining 15%. This is a fairly typical value used in the macroeconomics

literature, as is discussed in Guner, Ventura, and Xu (2008).

2. Depreciation rate for capital, δ. The depreciation rate of capital is chosen to be 6.9%. This is

consistent with the U.S. National Income and Product Accounts.

3. Survival rate for a patent, σ. In the United States a patent lasts for 17 years. Hence, σ =

1− 1/(1 + 17).

4. CRRA parameter, ε. This parameter is taken to be 2, the midpoint between the various esti-

mates reported in Kaplow (2005). This is a common value used in macroeconomics.

5. Long-run interest rate. A reasonable value for the long-run interest rate in the United States is

6%—see Cooley and Prescott (1995). Now, the long-run growth rate for the United States is 2%.

Given the value for the economy’s long-run growth rate, gζ/(ζ+λ) = 1.02, and the coeffi cient

of relative risk aversion, ε = 2, the discount factor, β, is then uniquely pinned down using the

equation β = rgεζ/(ζ+λ)—see (22). This is standard procedure for a growth model.

6. The Empirical Distribution for the Proximity of Patent to a Firm’s Technology Class. The

empirical distance distribution for the United States displayed in Figure 3, for ι = 2/3, is used

for the analysis. Define a measure of propinquity (or closeness) between a patent p and a firm

f by cι(p, f) ≡ 1−dι (p, f), where dι (p, f) is given by (24). The density associated with cι(p, f)

is used for X(x). This amounts to just a simple change in units on the horizontal axis in Figure
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3. Assume that x is distributed uniformly within each of the ten bins of the histogram. (There

is an additional mass point at one.) One might think that a firm will try to invent ideas that

are close to its line of business. The calibration strategy forces the propinquity of ideas to the

inventor’s line of business in the model to be congruent with the U.S. data.

7. R&D Cost Elasticity, ρ. In order to estimate the elasticity of the R&D cost function, the cost

function in the model is inverted to obtain a production function. Then, a regression is run

using Compustat data to determine the parameter value, ρ, where the output of the R&D

production function is proxied for by citation-weighted patents.

8. Bargaining power, ω. The bargaining powers of buyers and sellers are chosen to be equal. This

assumption is often imposed in macroeconomic models using Nash bargaining. Unfortunately,

there does not seem to be a good way to identify a value for this parameter, either using a

priori information or through the calibration/estimation procedure discussed below. Due to

the presence of a spillover externality in (2), the Hosios condition will not necessarily lead to

an effi cient matching equilibrium.

Therefore, values for the parameters β, ε, κ, λ, δ, σ, ρ, and ω are imposed using a priori information

in line with (1), (2), (3), (4), (5), (7), and (8) without having to solve the model. The distribution

X(x) is constructed in line with point (6).

4.2 Minimum Distance Estimation

Values for the remaining parameters, χ, µ, γd, η , γn, p, ps, and STD(ln e′), must be assigned.

This is done by minimizing the sum of the squares between some data targets, discussed below, and

the model’s predictions for these targets. The model is highly non-linear in nature. Computing the

solution to the model essentially involves solving a system of nonlinear equations, as is discussed

in the Theory Appendix, Section 8.1. Therefore, it is not the case that a particular parameter

is identified uniquely by a particular data target. By computing the Jacobian of the system the

influence of each parameter on the data targets can be gauged. The presentation below uses this

Jacobian and other features of the framework to discuss, in a heuristic fashion, how the parameters

are identified. The Jacobian is presented in Section 9.7 of the Empirical Appendix. The data targets

are listed in (1) to (7) below. Targets (1) to (5) are discussed now.

1. Long-run growth in output. In the United States output grew at about 2% per year over

the postwar period. Intuitively, one would expect the parameter γd, which governs how d-
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type innovations enter the law of motion for a firm’s productivity growth (2), should play an

important role in determining this. The same is true for the n-type patent parameters, γn

and p. The Jacobian confirms that these parameters have a positive impact on growth—see

Appendix 9.7 for more detail. The term for the d-type patents, or γd, dominates the others.

The parameter governing the cost of R&D, χ, has a negative and smaller effect on growth.

2. The ratio of R&D expenditure to GDP. U.S. expenditure on research and development is about

2.91% of GDP. What parameters influence this ratio? Again, the parameter γd governing the

productivity of d-type patents is very important. It increases this ratio because the payoff from

R&D rises with γd. Not surprisingly, the R&D cost parameter, χ, has a bearing here, because

it directly governs the cost of innovation, as can be seen from (4). Last, the n-type patent

parameters, γn and p, are negatively associated with this ratio. They increase GDP growth

without the need to do R&D.

3. Fraction of patents sold. About 16% of patents are sold in the United States, as catalogued

in Table 1. The parameters governing the matching function, µ and η, control how easy it is

to sell a d-type patent. They are important in determining this ratio. The parameters, p and

ps, regulating the arrival and sales rates for n-type patents are also important, although the

dependence here is of a mechanical nature.

4. Duration until a sale. The entire empirical frequency distribution for the duration of a sale

is targeted—see Figure 4.12 In particular, the calibration procedure tries to minimize the sum

of the squared differences between the empirical distribution and its analogue for the model.

It takes about 5.34 years on average to sell a patent. The coeffi cient of variation around this

mean is 0.84. So, there is considerable variation in sale duration. The parameters governing

the matching function, µ and especially η, are obviously central here. This can be seen from

equation (27) in Section 8.1 of the Theory Appendix, which specifies the odds that a patent

agent will find a buyer. These parameters also influence the spread in duration.

12Different criteria can be used for dating when an idea is born. One could use the application date instead of the

grant date since some patents are sold before they are granted. An alternative would be to use the first time that

another inventor builds on this invention (as measured by the first citation that a patent receives). This reflects the

time it that took for others to learn about the idea. Last, it is possible that excluding more recent observations might

prevent the confounding effects of a potential truncation bias. This occurs because patents toward the end of sample

have less time to be sold. Repeating the analysis using these three new sale duration distributions does not change the

main findings.
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5. Distance reduction upon sale—all patents. Section 3.3.2 presents an estimate (−0.152) from the

the micro data on the average difference between a buyer’s and seller’s technological propinquity

for a patent.13 This estimate is targeted and helps to discipline the relative importance d-

and n-type patents. As is discussed in Section 3.4, the arrival rate of n-type ideas and the

probability of selling them, or p and ps, are central here. They operate to reduce the observed

amount of distance reduction since the sale of these patents does not depend upon technological

propinquity. This is shown by the Jacobian of the system. Additionally, the parameters of the

matching function, µ and η, influence the model’s ability to hit this target. More effi cient

matching implies a larger reduction in distance.

4.2.1 Indirect Inference

The data targets (6) and (7) discussed below derive from the firm-level panel-data regressions pre-

sented in Section 3. As was mentioned, computing the equilibrium solution for the model essentially

involves solving a system of nonlinear equations, as the Theory Appendix, Section 8.1, makes clear.

Undertaking the indirect inference involves an additional step. Here a Monte Carlo simulation is

undertaken on a panel of 30,000 firms for 30 periods (to replicate the number of periods in the data).

This is used to estimate the panel-data regressions analogues for the model that correspond with the

ones estimated from the U.S. data, which are presented in Table 2.

6. Relative strength of the patent stock versus the distance-adjusted patent stock on a firm’s market

value. This is estimated from the micro data—Table 2, column 1. It is measured by the ratio

of the coeffi cient on log distance-adjusted patent stock to log patent stock. This target plays

a significant role in identifying the size of the distance related term, γd, relative to the non-

distance related ones, γn and p, in the law of motion for productivity (2). The former has

a positive impact on this ratio, while the latter have negative ones. The matching function

parameters, µ and η, also have an influence on this target because they affect the value of a

d-type patent. Similarly, so does the cost of doing R&D, χ. Last, the probability of selling an

n-type patent, conditional upon its arrival, ps, affects this statistic. The higher the likelihood

that an n-type patents is sold, and therefore that it is not used production, the less impact it

will have a firm’s market value. This results in d-type patents mattering more for market value

relative to n-type ones—again, the detail is in the Jacobian presented in Appendix 9.7.

13The quantitative results do not change in a material way when the mean of the averages over all years in the

sample is used instead.
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Parameter Values

Parameter Value Description Identification
β = 0.98 Discount factor A priori information
ε = 2.00 CRRA parameter A priori information
κ = 0.25 Capital’s share A priori information
λ = 0.60 Labor’s share A priori information
δ = 0.07 Depreciation rate A priori information
σ = 0.94 Patent survival rate A priori information
γd = 0.25 Distance-related productivity Calibration/Estimation
χ = 0.83 Cost of R&D Calibration/Estimation
ρ = 3.00 R&D cost elasticity A priori information
µ = 0.50 Matching function, exp Calibration/Estimation
η = 0.09 Matching function, const Calibration/Estimation
ω = 0.50 Bargaining power Imposed
X(x) Proximity distribution A priori information
γn = 0.18 Non-distance related productivity Calibration/Estimation
p = 0.17 Pr(n-type idea) Calibration/Estimation
ps = 0.47 Pr( sell n-type patent|arrival) Calibration/Estimation
STD(ln e′) = 0.07 Production shock, std Calibration/Estimation

Table 4: The parameter values used in the baseline simulation.

7. Relative strength of the patent stock versus employment on a firm’s market value. This, too, is

estimated from the micro data—Table 2, column 1. It is measured as the ratio of the coeffi cient

on log patent stock to the coeffi cient on log employment. The (inverse of this) ratio can be

thought of as measuring the impact of an increase in the patent stock on employment, holding

fixed the firm’s market value. In the model there are two reasons a firm’s market value may

rise relative to other firms. Its long-run productivity, z′, may have increased relative to average

long-run productivity, z′, or it may have realized a favorable value for the temporary produc-

tion shock, e′. This ratio identifies the standard deviation of the firm-specific idiosyncratic

production shock, STD(ln e′). Without the e′ shock, employment would be a perfect predictor

of relative productivity, z′/ z′—see (42). Introducing the e′ shock breaks this one-to-one corre-

spondence. The parameter STD(ln e′) has no impact on the other data targets. The parameter

γn governing the productivity of n-type patents also affects this ratio. As γn rises employment

becomes a better predictor of a firm’s market value, so it impinges on this ratio in a negative

way. An increase in γd does not work the same way as it results in more d-type ideas, which

makes the patent stock a better predictor of market value.

To highlight a central aspect of the calibration procedure, note that a key goal of this research

here is to quantify the importance of the patent market for eliminating the misallocation of ideas

across producers. Two considerations come into play: the importance of technological propinquity
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Calibration Targets

Target U.S. Data Model
Long-run growth in output 2.00% 2.08%
Ratio of R&D expenditure to GDP 2.91% 1.96%
Fraction of patents that are sold 15.6% 16.6%
Average duration until a sale (fit entire distribution) 5.48 yrs. 6.28 yrs.
Sale duration, c.v. (fit entire distribution) 0.84 0.71
coef(dist-adj pat stock)/coef(pat stock) -0.511 -0.590
coef(pat stock)/coef(empl) 0.054 0.054
d(p, fs)− d(p, fb), all sold 0.152 0.165

Table 5: In the calibration the full sales duration distribution (17 points) is targeted. The above
table just reports the mean and the coeffi cient of variation for this distribution as summary measures.

between a patent and a producer (or γd) and the effi ciency of the market for ideas (or η). A low

volume of patent sales could occur either because technological propinquity is not very important

(but the patent market is still effi cient) or because the patent market is ineffi cient (but technological

propinquity is important). The above micro data is used to identify both of these channels. At

the risk of sounding repetitive, the firm market-value regressions in Table 2 are used to speak to

the size of γd. Since firm fixed effects are included in these regressions, there is a strong sense in

which changes in the distance-adjusted patent stock are being tied to firm market value. Therefore,

reproducing similar regression results using the model-generated data (in particular the relative size

of the coeffi cients on the log distance-adjusted patent stock to the log patent stock) helps identify

γd. Matching up the model’s output with the micro data on the fraction of patent sold, average sale

duration, and the difference between the buyer’s and seller’s technological propinquities pins down

η. The effi ciency of the market for ideas plays a very important in the analysis and is analyzed in

detail in Section 5.

It is well known that patents show big differences in terms of their qualities which could also

affect their sales. A reasonable belief might be that a small fraction of patents are highly valuable

while the median one is not. To take quality heterogeneity into account, all regressions control for

patent citations as a proxy for patent quality. So, the empirical analysis attempts to purge concerns

about patent quality from the stylized facts.14

14Alternatively, one could introduce quality into the model. In particular, every idea could have a quality component

drawn from some distribution. Now, the decisions to buy and sell patents would be a function of distance and quality

(in addition to the aggregate state variable). Perhaps the distribution governing quality could be mapped into the

empirical distribution for patent citations. Doing this would significantly complicate the analysis, but could be a fruitful

avenue for future research.
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Figure 4: Sales duration distribution, data and model

The upshot of the calibration procedure is displayed in Tables 4 and 5. Figure 4 shows, for both

the data and model, the frequency distribution over the duration for a sale. As can be seen, it

appears to be harder to affect a sale in data than in the model.

5 Findings

The importance of a market for patents will be gauged now. There are two sources of ineffi ciencies

in the model. The first one is the usual knowledge externality. Each single innovation raises the

aggregate knowledge stock in society, which benefits the future generations that stand on the shoul-

ders of former giants through z in (2). The second source of ineffi ciency emerges due to matching

frictions, which is of particular interest here. To analyze the latter, various experiments that change

the effi ciency of the market for d-type patents will be entertained. The effi ciency of the market for

d-type patents is increased in stages. First, the market is shut-down by setting the meeting rate to

zero. Then, an experiment is performed where the meeting rate for matches is allowed to rise. While

it may be easier for buyers and sellers to meet now, a seller’s idea may still not be well suited for

the buyer. The next experiment considers a situation where patent agents can find buyers who are

perfect matches for the ideas that they are selling. So, there is no mismatch between buyers and

sellers on the patent market. Still, innovating firms produce d-type ideas that are not ideally suited

for their own businesses and this injects a friction into the analysis. A patent that is not incorporated

into an innovator’s production process will only have a finite life on the market. Additionally, it may

take time to find a buyer. The final experiment focuses on the case where innovating firms produce

ideas that are tailored toward their own production activity. Here ideas are perfectly matched with
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the developer. The change in welfare from moving from one environment to another is calculated.

The metric for comparing welfare is discussed now.

5.1 Welfare Comparisons

Consider two economies, namely A and B, moving along their balanced growth paths. Aggregate

consumption, the gross growth rate, and aggregate productivity for economy A are represented by cA,

gA, and zA. Similar notation is used for country B. To render things comparable, start each country

off from the same initial position where zA = zB = 1. Now, the levels of welfare for economies A

and B are given by

WA =

∞∑
t=1

βt−1 (cAt )1−ε

1− ε =
(cA1 )1−ε

(1− ε)[1− β(gA)1−ε]
, and WB =

(cB1 )1−ε

(1− ε)[1− β(gB)1−ε]
,

where cA1 and cA1 are the time-1 levels of consumption in economies A and B. How much would

initial consumption in economy A have to be raised or lowered to make people have the same welfare

level as in economy B? Denote the fractional amount in gross terms by α (which may be less than

one). Then, α must solve
(αcA1 )1−ε

(1− ε)[1− β(gA)1−ε]
= WB,

so that

α = (WB/WA)1/(1−ε).

This welfare measure is used in all experiments.

5.2 Varying the Contact Rate for Matches, η

The patent market mitigates the initial misallocation of ideas. Still, it takes time to sell a patent

as the patent agent may not be able to find a buyer. To understand how this friction in matching

affects the economy, it is useful to examine the relationship between the scale factor for the matching

function, η, and several key variables.15 Figures 5 and 6 summarize the results.

The market for d-type patents is shut down when η = 0. When there is no market, the equilibrium

growth rate goes down to 2.02% from from its benchmark value of 2.08%. Shutting down the market

results in a welfare reduction of 1.18% in consumption equivalent terms, which is quite sizable. As

the contact rate, η, rises it becomes easier to find a buyer for a patent, ceteris paribus. This is

reflected in a drop in the length of time that it takes to find a buyer, as the right panel of Figure 5

illustrates. The price that an innovating firm receives for a patent, q, rises accordingly—see the left

15The relationship between g and η is highlighted in the simplified model developed in Supplemental Appendix 12.
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Figure 5: The impact of an increase in the contact rate on duration, innovation, growth and welfare.

Figure 6: The impact of an increase in the contact rate on the price for the innovator, slackness and

the cutoffs.

panel of Figure 6. As the price moves up an innovating firm becomes choosier about the patents that

it will keep. Figure 6, right panel, illustrates how an innovator’s cutoff for selling, xk, rises with η.

(Recall that better patents are associated with higher values for the propinquity metric.) Similarly,

buyers become pickier about the patents that will they purchase so that xa moves up with η.

The rate of innovation, i, does not change much. It falls as η starts to rise since the consequences

of failing to innovate are now lessened, because it will be easier for a firm to buy a patent. The high

price for patents begins to spur innovation at higher levels of η. Market slackness, na/nb, has an

interesting ∩ shape, which is displayed in the left panel of Figure 6. When η = 0 the patent market

is essentially closed as no innovators will want to sell their ideas. The number of prospective buyers

is 1 − i. As η starts to rise so does the number of innovators that want to sell their ideas. This
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increases the flow of new patents into the patent market and results in na/nb moving upwards. As

the rate of innovation, i, declines the number of prospective buyers, 1− i, rises. This force operates

to reduce na/nb. Additionally, as the contact rates increases the market becomes more effi cient. It

is easier for a seller to find a buyer, ceteris paribus. This works to reduce the stock of sellers.

Growth increases along with effi ciency in matching, despite the reduction in the number of new

ideas—see the left panel of Figure 5. So does welfare. If the effi ciency of the market was at its

extreme (the minimum value for η that results in all buyers meeting a patent agent with probability

1), growth would go up to 2.46% and welfare would be 5.97% higher than the calibrated economy.

The upshot is that the market for patents plays an important role in the economy.

5.3 Perfectly Directed Search

A second source of ineffi ciency in the model is the random search technology used in the d-type patent

market. In the baseline model, conditional upon a meeting between a buyer and a patent agent, the

propinquity of the idea to the firm is drawn from a uniform distribution. Instead imagine a perfectly

directed search structure, where patent agents are able to target the segment of the economy that

exactly matches the patent they want to sell. In such a case, whether or not a patent agent meets

a buyer is still a probabilistic event governed by the matching function. The propinquity between

the patent and the buying firm would be nonstochastic and equal to unity; in other words, a perfect

match. The level of welfare in this alternative economy is 1.94% higher than in the baseline one. The

output growth rate increases slightly from 2.08 to 2.19%, despite a small decline in the innovation

rate. The fraction of all patents sold increases from 16.6 to 19.9%. Last, a decomposition of growth

reveals that the fraction of growth due to all patents sold moves up from 18.9 to 26.6%.16 Table

6 summarizes the results (where the baseline model is labeled BM and PDS refers to the perfectly

directed search structure).

16Appendix 8.1 shows that g − 1 = γdi
∫ 1
xk
xdX(x) + γd(1−i)mb(

na
nb
)
∫ 1
xa
xdx + γnp, where i is the aggregate rate of

innovation. Note that there are three terms on the right side. The first term can be used to measure the contribution to

growth from the distance-related ideas that firms keep, the second from the ones that they sell. The third term gives the

growth arising from non-distance related ideas. This term can be further decomposed as γnp = γn[p(1−ps)+(1−p)pb],

where the first term in brackets gives the contribution from non-distance-related patents kept and the second from the

ones sold.
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Thought Experiments

BM PDS PDSwHC PI
Output growth rate, %, (gζ/(ζ+λ) − 1)× 100 2.08 2.19 3.05 3.38
Innovation rate, i 0.58 0.56 0.57 0.61
Welfare gain, α− 1 0.00 0.02 0.14 0.18
Fraction of all patents sold 0.17 0.20 0.68 0
Growth from all patents sold 0.19 0.27 0.73 0

Table 6: The first column of results is for the baseline model (BM). Perfectly directly search (PDS)
is shown in the second column where a patent sold is a perfect match for the buyer (x=1). In the
third column (PDSwHC) there is perfectly directed search, plus there is a high contact rate between
patent agents and buyers. All innovating firms draw the perfect idea (x=1) in the last column (PI).
The figures in the first row (only) are in percent.

5.3.1 Perfectly Directed Search with a High Contact Rate

Now, redo the above experiment with perfect directly search while also using a high contact rate for

matches.17 The results are reported in Table 6 (under the column labeled PDSwHC). Output growth

is now much higher at 3.05%, even though innovation is slightly lower than in the baseline model.

This reflects a reduction in misallocation. As can be seen, now most patents are sold. Economic

welfare is 14.3% higher.18

Figure 7 gives the upshot from the experiments that have been conducted so far. It shows how

the cumulative distribution function for the propinquity of new ideas to firms, or for x, changes

across the various experiments. First, firms in the U.S. data produce ideas that are not well suited

for their own lines of business, as can be seen from the distribution labeled “Empirical”. (Recall that

a higher value for x ∈ [0, 1] indicates that an idea is better suited for the firm’s business activity.)

In the baseline model, a firm is free to sell such an idea. A firm that fails to innovate can try

to buy one from another firm. This leads to a better distribution of ideas, as is reflected in the

distribution function for the baseline model after transactions on the market for patents have been

consummated. The distribution function for the baseline model stochastically dominates, in the first-

order sense, the empirical distribution. When the contact rate for matching is high it is relatively

easy to consummate a patent sale. The distribution for x improves—see the histogram labeled “High

Contact Rate”, which stochastically dominates the one for the baseline model. Of course, if search

could be perfectly directed things would be better still—“High Contact w Directed Search”, which

stochastically dominates all other distributions.

17The contact rate, η, is set high enough that all buyers meet a patent agent with probability 1.
18This large welfare gain derives solely from the large increase in growth, gζ/(ζ+λ), given the assumed form of

preferences over consumption, as can be gleaned from Section 5.1. That is, if there is a large increase in growth then

this form of preferences will always show a large increase in welfare (when ε = 2, which is a standard value).

34



Figure 7: Misallocation of Ideas. The graph plots the cumulative distribution functions for x. A

higher value for x, measuring propinquity, implies that an idea is better suited for a firm.

Note that not all firms sell their patents, even though they are not perfectly matched with their

ideas. This occurs because are still some frictions left in the patent market. First, there are more

sellers than buyers on the market, so not all patents will be immediately sold. Second, patents have

a finite life on the market and hence suffer some depreciation. Both these factors imply that the

price at which a firm can sell a patent, q, will be less than what it is worth to a perfectly matched

firm.

5.4 Removing the Misallocation of Ideas

The central ineffi ciency in the framework derives from the fact that firms develop ideas that are

imperfect matches for the own production processes. The presence of a market for patents mitigates

this problem. Suppose that an innovating firm comes up with a d-type idea that is always a perfect

match for its production process. That is, let each innovating firm always draw x = 1. This case is

summarized in Table 6 (under the column labeled PI). In this situation, the economy could increase

its growth rate from 2.08 to 3.38%, a big jump. Welfare would increase by 17.8%. This illustrates

that the frictions arising from mismatches in innovation are large.
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6 Quantitative Extensions: Licensing and Litigation

When it comes to technology transfer and the market for ideas, two important concerns about

patenting and the market for ideas deserve additional attention, namely licensing and litigation.

Licensing provides an additional mechanism for transferring ideas. By limiting attention to patent

sales, a fear might be that the analysis overstates the amount of misallocation in the market for ideas.

A firm may buy or keep a patent to prevent litigation. This does not increase the firm’s productivity

in a technological sense. Hence, the value of patents for a firm’s productivity may be overestimated.

6.1 Licensing

Arora and Ceccagnoli (2006) report that licensing intensity in the United States is around 5%. The

goal here is to understand the quantitative implications of licensing in the current setting. Zuniga and

Guellec (2009) conduct a survey on firms that license out their patents and analyze the obstacles to

licensing. The most frequent problem reported by firms was that “identifying (a) partner is diffi cult.”

This shows that search frictions, which are highlighted in the model of the patent market developed

here, seem to apply to the licensing market as well. Licensing could have many other purposes than

pure technology transfer, such as deterring entry. To the extent that licensing is used as a substitute

arrangement for a patent sale, the previous analysis might have underestimated the liquidity in the

market for ideas and generated too much search frictions. In order to take this substitutability into

account, assume that all the licensing arrangements are for the purpose of technology transfer. Hence

in what follows, assume that the overall turnover in the market for ideas is 20.6% = 15.6% + 5%.

The model is recalibrated and simulated using this number. Table 7 reports the results. The model

matches the data well when it is recalibrated to allow for a larger number of ideas to be transferred.

Not surprisingly, a shutdown in the market for ideas leads now to a bigger welfare loss (1.40 versus

1.18%). As before, the reduction in growth is still small, but slightly higher (a loss of 0.07 versus

0.06 percentage points). Again, the small loss in growth is due to the fact that the rate of innovation

rises when the market for ideas is closed, as was shown earlier in the right panel of Figure 5.

6.2 Litigation

Patent litigation could also lead to patent sales for reasons not necessarily related to technology

transfer [Galasso, Schankerman and Serrano (2013)]. To begin with, it is useful to get a sense of the

share of patents that are ever litigated in the sample employed here. Using the Derwent and Lex

Machina databases, Table 1 shows that about 1.0% of patents involve litigation. Furthermore, when
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Results with Licensing and Low-Ligation Sectors

Panel A: Calibration Targets
Licensing Low-Litigation

U.S. Data Model U.S. Data Model
Growth in Output, % 2.00 2.03 2.00 2.10
Ratio of R&D expenditure to GDP, % 2.91 1.81 2.91 1.98
Fraction of Ideas that are sold, % 20.6 20.5 16.4 17.6
Average duration until a sale, yrs. 5.48 6.05 5.94 6.35
Sale duration, c.v. 0.84 0.72 0.78 0.70
coef(dist-adj pat stock)/coef(pat stock) -0.511 -0.607 -0.568 -0.596
coef(pat stock)/coef(empl) 0.054 0.057 0.052 0.050
d(p, fs)− d(p, fb), all sold 0.152 0.161 0.136 0.143

Panel B: Impact of Shutting Down the Market for Ideas ( η = 0)
Benchmark Licensing Low-Litigation

∆ in Growth (percentage pt.) -0.06 -0.07 -0.06
∆ in Welfare, % -1.18% -1.40% -1.12%
Table 7: Results for both the data and model when ideas can be also transferred via licensing and
when the analysis is restricted to low-litigation sectors.

patents that are both ever litigated and ever sold during their lifetime are considered, the share drops

down to 0.3%. Hence, among sold patents, only 2% (=0.3/15.6) are ever litigated. Given these small

shares, it may seem unlikely that litigated patents could have a major impact on the quantitative

results.

As Galasso, Schankerman and Serrano (2013) emphasize, however, the threat of litigation might

be very important in the sale decision, even if in practice, few litigations are actually observed.

In order to exclude this potential channel, the analysis is redone, focusing exclusively on sectors

with very low litigation intensity. All the micro data targets are recalculated using patent and firm

observations that have a litigation intensity below the mean of the pertinent sample—the targets for

the U.S. growth rate and R&D expenditures to GDP remain the same. Indeed, sectors have a lot of

heterogeneity in terms of the litigations observed, and a sector’s litigation intensity might be a good

indicator for the propensity of a given patent to be litigated.

Table 7 presents the new estimates and the welfare gain from the market. Note that the affected

data targets change only slightly. These changes occur from restricting the micro data to the low-

litigation sectors. The model still fits very well. The welfare loss for shutting down the market for

ideas is now a bit smaller (1.12 versus 1.18%). The upshot is that focusing on low-litigation sectors

does not affect the analysis in a material way.
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7 Conclusions

A model of the market for patents is developed here. Each period a firm conducts research and

development. This R&D process may spawn new ideas. Some of the ideas are useful for a firm’s

line of business, others are not. A firm can patent and sell the ideas that are not. The fact it can

sell ideas provides an incentive to engage in R&D. Likewise, firms that fail to innovate can attempt

to buy ideas. This allows a firm to grow its business. This reduces the incentive to do R&D. The

effi ciency of the patent market for matching ideas with firms has implications for growth. These are

examined here.

The empirical analysis, drawing on the NBER-USPTO patent grant database and patent reas-

signment data available from Google Patents Beta, establishes five useful facts. First, somewhere

between 15 and 20% of patents are sold. Second, it takes on average 5.48 years to sell a patent.

Third, a firm’s patent stock contributes more to its market value the closer it is to the firm in terms

of average technological distance. Fourth, a patent is more likely to be sold the more distant it is to

a firm’s line of business. Fifth, when a patent is sold it is closer to the buyer’s line of business than

to the seller’s. The empirical analysis attempts to control for licensing and litigation. These five

facts suggest that a market for patents may play an important role in correcting the misallocation

of ideas across firms. It may also influence a firm’s R&D decision.

The developed model is calibrated to match several stylized facts characterizing the U.S. data,

such as the postwar rate of growth, the ratio of R&D spending to GDP, the fraction of patents sold,

the empirical sale duration distribution, and the reduction in distance between a patent and its owner

upon a sale. Additionally, some micro-level facts from panel data regressions are targeted using an

indirect inference strategy. Specifically, the importance of distance in a firm’s patent portfolio for

determining the firm’s market value is zeroed in on. The value of a market for selling patents is then

assessed. This is done by conducting a series of thought experiments where the market is first shut

down and then the effi ciency of the patent market is increased successively. The effi ciency of this

market is important for economic growth and welfare.

The new NBER patent reassignment data opens new and exciting directions for future research

on innovation and technological progress. One direction is the analysis of optimal patent policy that

not only considers the monopoly distortions and innovation incentives, but also takes into account

the possibility of trading ideas through patents. Another direction is the analysis of firm dynamics

when patents are not only produced in-house, but also purchased from others. Finally, the role

of financial frictions is also a new and important channel that could impact the (mis)allocation of
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ideas. These are all very exciting and important aspects of technological progress that await further

research.
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ONLINE APPENDIX

The online appendix contains two sections, namely Sections 8 and 9. Section 8 deals with

theoretical aspects of the analysis. In particular, the full solution for the symmetric balanced growth

is provided. Section 9 pertains to the empirical work. This section describes the databases that

are used and discusses how they are cleaned and linked together. The construction of the distance

metrics and patent stock measures used in the analysis are then detailed. The empirical section also

repeats the panel data regression analysis reported in Table 3 when the licensing intensity of a sector

is included. Last, the Jacobian associated with the calibration procedure is presented.

8 Theory Appendix

8.1 Balanced Growth

The analysis is restricted to studying a symmetric balanced growth path. The solution to the economy

along a balanced growth path will now be characterized.19 Suppose that mean level of productivity

for firms, z, grows at the constant gross rate g. Specify the variables z and z in transformed form so

that z̃ = zζ/(ζ+λ) and z̃ = z/zλ/(ζ+λ). Thus, z̃ grows at rate gζ/(ζ+λ) and, on average, so will z̃. It

turns out that z̃ (or equivalently z) is suffi cient to characterize the aggregate state of the economy

along a balanced growth path. It also turns out that the form of the distribution for d-type patent

buyers, or G, does not matter.

Proposition 1 (Balanced Growth) There exists a symmetric balanced growth path of the following

form:

1. The interest factor, r, and rental rate on capital, r̃, are given by (22) and (23).

2. The value functions for buying, keeping and selling firms have linear forms in the state variables

z̃ and z̃. Specifically, B(z; z) = b1z̃+b2z̃, K(z+γdxz; z) = k1z̃+k2(x)z̃, and S(z; z) = s1z̃+s2z̃.

3. The indicator function for an innovator specifies a threshold rule such that Ik(z, x; z) = 1,

whenever x > xk, and is zero otherwise. I.e., an innovating firm keeps its d-type idea when

x > xk and sells otherwise.

19A simplified version of the model with a closed-form solution is presented in Supplemental Appendix 12.
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4. The indicator function for a sale between a buyer and the patent agent for a d-type idea specifies

a threshold rule such that Ia(z, x; z) = 1, whenever x > xa, and is zero otherwise. I.e., a sale

between a buyer and a patent agents occurs if and only if x > xa.

5. The value function for a patent agent has the linear form A(z) = az̃.

6. The beginning-of-period value function for a firm has the linear form V (z; z) = v1z̃+ v2z̃. The

constant rate of innovation for a d-type idea by a firm is

i = i =

{
1

χ

[
X(xk)s2 +

∫ 1

xk

k2(x)dX(x)− b2

]}1/ρ

. (25)

7. The constant net rate of growth for aggregate productivity, g − 1, is implicitly given by

g − 1 = γd

[
i

∫ 1

xk

xdX(x) + (1− i)mb(
na
nb

)

∫ 1

xa

xdx

]
+ γnp, (26)

with the aggregate law of motion (3) taking the simple form

z′ = gz.

8. The prices for selling and buying d-type patents are

q = az̃,

and

P (z, x; z) =
[
(1− ω)σrgζ/(ζ+λ)a+ ω(π + rv1/g

λ/(ζ+λ))γdx
]
z̃,

where π is a constant.

9. The matching probabilities for sellers and buyers of d-type patents are constant and implicitly

defined by

ma(
na
nb

) = η

{
{1− σ[1−ma(

na
nb

)(1− xa)]}(1− i)
σiX(xk)

}1−µ

, (27)

and

mb(
na
nb

) = η

{
σiX(xk)

{1− σ[1−ma(
na
nb

)(1− xa)]}(1− i)

}µ
. (28)

10. The constants a, b1, b2, k1, π, s1, s2, v1, v2, xa and xk, as well as the linear term k2(x),

are determined by a nonlinear equation system, in conjunction with the 5 equations (22), (25),

(26), (27) and (28) that determine the 5 variables g, i, r,ma(na/nb), and mb(na/nb). This

system of nonlinear equations does not involve either z̃ or z̃.
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Along a balanced growth path, wages grow at the constant gross rate gζ/(ζ+λ), a fact evident

from equation (20). So will aggregate output and profits, as can be seen from (7). The gross interest

rate, 1/r, will remain constant along a balanced growth path. Point 2 implies that on average the

values of the firm at the buying, selling, and keeping stages also grow at the rate of growth of output.

So, the relative values of a firm at these stages remain constant in a balanced growth equilibrium.

Thus, it is not surprising then that the decisions to buy, sell or keep d-type patents in terms of

propinquity, x, do not change over time. Hence, the function Ik(z, x; z) does not depend on z. It

may seem surprising that the decision doesn’t depend on z, either. This transpires because a firm’s

profits are linear in z, as equation (7) shows. It turns out that k1 = s1, which implies that only

x is relevant [when comparing k1z̃ + k2(x)z̃ with s1z̃ + s2z̃]. Likewise, the value of a patent agent

also increases at rate gζ/(ζ+λ)—point 3. Hence, equation (21) dictates that the price, q, at which a

firm can sell a d-type patent must also grow at this rate. Additionally, it is easy to see from (16)

that the price at which the agent sells a d-type patent to firms, p, will appreciate at this rate too.

Note that this price does not depend on z, because given the linear form of the value function, V ,

only x will be relevant (when comparing v1z
′ with v1z). Additionally, using (17) it should now not

be too diffi cult to see that the function Ia(z, x; z) will only depend on x. It’s easy to deduce from

equation (14) that the rate of innovation, i, will be constant over time if B, K, and S grow at the

same rate as aggregate productivity. Since the decisions to buy and sell patents only depend on x,

it is straightforward that the number of buyers and sellers on the patent market are fixed along a

balanced growth path. To see that the form for the distribution function over buyers, G(z), does not

matter note that this function only enters value function for the patent agent (15). But, by points

(4) and (8), the functions Ia(z, x; z) and P (z, x; z) do not depend on z. Thus, G(z) is irrelevant in

(15). Last, the evolution of shape of the distribution function Z over time does not matter for the

analysis. Its mean grows at the gross rate g, independently of any transformation in shape.

Proof of the Existence of a Balanced Growth Path. The proof proceeds using a guess and

verify procedure (or the method of undetermined coeffi cients).

Point (1). To derive the interest factor and rental rate, r and r̃, imagine the problem of a

consumer/worker who can invest in one period bonds that pay a gross interest rate of 1/r. The

Euler equation for asset accumulation will read

c−ε = (β/r)(c′)−ε.

Along a balanced growth path, if the mean level of productivity grows at rate g then consumption,

the capital stock and output must grow at rate gζ/(ζ+λ). This fact can be gleaned from the production
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function (1), by assuming z grows at rate g, that capital and output grow at another common rate,

and that labor remains constant. Therefore, r = β/gεζ/(ζ+λ). In standard fashion, the rental rate on

capital is given by r̃ = 1/r − 1 + δ = gεζ/(ζ+λ)/β − 1 + δ.

Point (4). The form of the threshold rule for buying a d-type patent follows from the fact the

sum of the surplus (sans price) accruing to a firm that buys a patent and the surplus (sans price) to

the patent agent must be greater than zero; otherwise, a non-negative sale price, p, for the d-type

patent would not exist. First, plug the solutions for w and r̃, or (20) and (23), into the profit function

(7) to obtain

e′Π(z, z) = π
e′z

zλ/(ζ+λ)
= πe′z̃, (29)

and

E[e′Π(z, z)] = πz̃, since E[e′] = 1,

with

π ≡ ζ

gλ/(ζ+λ)

(
κ

gεζ/(ζ+λ)/β + δ − 1

)κ/(ζ+λ)

. (30)

Second, conjecture that the value functions V (z; z) and A(s) have the forms V (z; z) = v1z̃+v2z̃ and

A(s) = az̃. Third, given the above, note that the (sans price) surpluses for a buying firm and the

patent agent are given by

π(z̃ + γdxz̃)− πz̃ + rE[V
(
z + γdxz, z

′)]− rE[V
(
z, z′

)
] = (π +

rv1

gλ/(ζ+λ)
)γdxz̃,

and

−σrA(z′) = −σrgζ/(ζ+λ)az̃ [cf. (17)].

It is easy to deduce from (16) and (17) that sum of these two quantities must be positive for a trade

to take place. Note that whether or not the sum of the above two equations is nonnegative does not

depend on z̃. This sum is also increasing in x. Solving for the value of x that sets the sum to zero

yields

xa =
σrgζ/(ζ+λ)a

(π + rv1/gλ/(ζ+λ))γd
. (31)

Thus, xa is a constant.

Point (8). The solutions for d-type patent prices, q and P (z, x; z), are easy to obtain. Insert the

above formulae for the (sans price) surplus for a buying firm and the (sans price) surplus for a patent

agent into expression (16) to get

P (z, x; z) =
[
ω(π + rv1/g

λ/(ζ+λ))γdx+ (1− ω)σrgζ/(ζ+λ)a
]
z̃.

It is immediate from (21) that q = az̃, predicated upon the guess A(s) = az̃.
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Point (5). It will now be shown that the value function for the patent agent, A(z), has the

conjectured linear form. Focus on equation (15), which specifies the solution for A. The price for

a d-type patent does not depend on z, given Point (8). Additionally, D(x) = U [0, 1]. Furthermore,

Ia = 1 for x > xa and is zero otherwise. Thus,

A(z) = az̃ = ma(na/nb)

∫ 1

xa

P (z, x; z)dx+ [1−ma(na/nb)Pr(x ≥ xa)]σrA(z′),

from which it follows that

a = σrgζ/(ζ+λ)a−ma(na/nb)(1− xa)ωσrgζ/(ζ+λ)a (32)

+ma(na/nb)ω(π + rv1/g
λ/(ζ+λ))γd(1− xa)(1 + xa)/2.

Point (2). The value function for a buying firm, B(z; z), can be determined in a manner similar

to that for A in Point (5). Here

B(z; z) = b1z̃ + b2z̃,

with

b1 = π + rv1/g
λ/(ζ+λ), (33)

and

b2 = −mb(na/nb)(1− xa)(1− ω)σrgζ/(ζ+λ)a+ rv2g
ζ/(ζ+λ) (34)

+mb(na/nb)(1− ω)(π + rv1/g
λ/(ζ+λ))γd(1− xa)(1 + xa)/2

+(π + rv1/g
λ/(ζ+λ))γnp.

To derive this solution, the results in Points (4) and (8), along with the conjectured solution for V ,

are used in equation (8). Similarly, using equation (11) it can be shown that the value function for

a seller, S(z; z), is given by

S(z; z) = s1z̃ + s2z̃,

with

s1 = π + rv1/g
λ/(ζ+λ), (35)

and

s2 = σa+ rv2g
ζ/(ζ+λ) + (π + rv1/g

λ/(ζ+λ))γnp. (36)

Last, following from (10), a keeper’s value function can be written as

K(z + γdxz; z) = k1z̃ + k2(x)z̃,
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with

k1 = π + rv1/g
λ/(ζ+λ), (37)

and

k2(x) = (π + rv1/g
λ/(ζ+λ))γdx+ rv2g

ζ/(ζ+λ) + (π + rv1/g
λ/(ζ+λ))γnp. (38)

Point (3). The threshold rule for keeping or selling a d-type patent is determined by the condition

k1z̃ + k2(xk)z̃=s1z̃ + s2z̃;

that is, at the threshold a firm is indifferent between keeping or selling the patent. Now, s1 = k1 so

that

(π+rv1/g
λ/(ζ+λ))γdxk+rv2g

ζ/(ζ+λ)+(π+rv1/g
λ/(ζ+λ))γnp = σa+rv2g

ζ/(ζ+λ)+(π+rv1/g
λ/(ζ+λ))γnp.

Hence,

xk =
σa[

π + rv1/gλ/(ζ+λ)
]
γd
, (39)

a constant.

Point (6). Turn now to the beginning-of-period value function for the firm, V (z; z), and the

rate of innovation, i, that it will choose. By using the linear forms for the value functions B(z; z),

K(z + γdxz; z), and S(z; z), the fact that b1 = k1 = s1, and the property that the threshold rule

takes the form Ik = 1 for x > xk and Ik = 0 otherwise, the firm’s dynamic programming problem

(13) can be rewritten as

V (z; z) = z̃ max
i∈[0,1]

{[X(xk)s2 +

∫ 1

xk

k2(x)dX(x)− b2]i− χ

1 + ρ
i1+ρ}+ (π + rv1/g

λ/(ζ+λ))z̃ + b2z̃.

Differentiating with respect to i then gives

X(xk)s2 +

∫ 1

xk

k2(x)dX(x)− b2 = χiρ,

from which (25) follows. Using the solution for i, as given by (25), in the above programming problem

yields

V (z; z) =
ρ

(1 + ρ)χ1/ρ
[X(xk)s2 +

∫ 1

xk

k2(x)dX(x)− b2]
1+ 1

ρ z̃+ (π + rv1/g
λ/(ζ+λ))z̃ + b2z̃.

It then follows that

v1 =
gλ/(ζ+λ)

gλ/(ζ+λ) − r
π, (40)

and

v2 = b2 +
ρ

(1 + ρ)χ1/ρ
[X(xk)s2 +

∫ 1

xk

k2(x)dX(x)− b2]
1+ 1

ρ . (41)
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Point (7). The gross rate of growth for aggregate productivity, g, will now be calculated. Suppose

that aggregate productivity is currently z. A fraction i of firms will innovate today. Those firms

that draw x > xk will keep their good patent. The productivity for these firms will increase. The

fraction 1 − i of firms will fail to innovate. Out of these firms the proportion mb(na/nb) will find a

seller on the market for d-type patents. They will buy a d-type patent when x > xa. Thus, z will

evolve according to

z′ = z+ i

∫ 1

xk

γdxzdX(x) +mb(na/nb)(1− i)
∫ 1

xa

γdxzdx+ γnpz.

This implies (26).

Point (9). The number of buyers on the market for d-type patents is given by nb = 1 − i; all

firms that fail to innovate will try to buy a d-type patent. Along a symmetric balanced growth path,

the number of patent agents, na, must satisfy the equation

na = σna[1−ma(na/nb)(1− xa)] + σiX(xk).

Focus on the right-hand side. Take the first term. Suppose that there are na patent agents at the

beginning of the period. A fraction σ of these agents will survive into next period. Out of these,

mb(na/nb)(1− xa) will find a buyer. Thus, they will not be around these next period. Move to the

second term. A mass of iX(xk) new firms will decide to sell their patents Out of this, the fraction σ

will survive. The sum of these two terms equals the new stock of patent for sale, na. Solving yields

na =
σiX(xk)

1− σ[1−ma(na/nb)(1− xa)]
and

na
nb

=
σiX(xk)

(1− i){1− σ[1−ma(na/nb)(1− xa)]}
.

Equations (27) and (28) follow immediately.

Point (10). The 12 constants, viz a, b1, b2, k1, π, s1, s2, v1, v2, xa and xk, in conjunction with

the linear term k2(x), are specified by the 12 non-linear equation (30) to (41). The equations include

the variables g, i, r,ma(na/nb), and mb(na/nb). So, equations (22), (25), (26), (27) and (28) must be

appended to the system to obtain a system of 17 equations in 17 unknowns. This system does not

depend on either z̃ or z̃.

8.2 More on Tacking on a Market for n-type Patents

The discussion in Section 3.4 is completed here. An n-type idea is worth (π + rv1/g
λ/(ζ+λ))γnz̃

in production value to a firm.20 Specifically, it will increase z′ by γnz. This will lead to increase

20 In Section 8.1 it is shown that the value functions for buying, keeping, selling and innovating firms are linear

in the expected value of a new n-type idea, as can be seen by examining the coeffi cients, b2, k2(x), s2, and v2. The
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in current profits in the amount πγnz̃ and discounted expected future profits by rv1/g
λ/(ζ+λ)γnz̃.

Any price, qb, in the interval [0, (π + rv1/g
λ/(ζ+λ))γnz̃] can be an equilibrium market price on the

market for n-type patents. The exact value for qb doesn’t matter though. At the time of all decision

making, the expected discounted present value of profits arising from an n-type patent is p[(1 −

ps)(π + rv1/g
λ/(ζ+λ))γnz̃+psqb]+(1− p)pb[(π + rv1/g

λ/(ζ+λ))γnz̃− qb], which takes into account the

keeping, selling and buying events, respectively. This expression reduces to p(π + rv1/g
λ/(ζ+λ))γnz̃,

using the fact that pps = (1−p)pb. Thus, the expected discounted present value of profits associated

with an n-type patent does not involve the equilibrium market price, qb, or the buying and selling

probabilities, pb and ps. Therefore, adding a market for n-type patents does not alter the solution

for the balanced growth path presented in Proposition 1.

9 Empirical Appendix

The brunt of the analysis relies on data from three sources: USPTO, NBER Patent Database Project

(PDP), and Compustat. The first source contains data on the patents that are reassigned across

firms. The second is used to retrieve information on the technology classes for patents and the stocks

of patents for firms. Facts about the employments and stock market values for firms are obtained

from the third source.

9.1 Patent Reassignment Data (PRD)

The patent assignment data is obtained from the publicly available U.S. Patent and Trademark Offi ce

(USPTO) patent assignment files hosted by Google Patents Beta. These files contain all records of

changes made to U.S. patents for the years 1980-2011. The files are parsed and combined to create

the dataset. The following variables are kept:

• Patent number: The unique patent number assigned to each patent granted by the USPTO.

• Record date: Date of creation for the record.

• Execution date: Date for the legal execution of the record.

• Conveyance text: A text variable describing the reason for the creation of the record. Examples

are: “Assignment of assignor’s interest”, “Security Agreement”, “Merger”, etc.

terms in question have the all form (π + rv1/g
λ/(ζ+λ))γnp, implying that the production value of an n-type idea is

(π + rv1/g
λ/(ζ+λ))γn—see (34), (36), (38) and (41).
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• Assignee: The name of the entity assigning the patent (i.e., the seller if the patent is being

sold).

• Assignor: The name of the entity to which the patent is being assigned (i.e., the buyer if the

patent is being sold).

• Patent application date: Date of application for the patent.

• Patent grant date: Date of grant for the patent.

• Patent technology class: The technology class assigned to the patent by the USPTO according

to its internal classification system.21

The entries for which this information are inaccessible are dropped from the sample.

During the parsing process, the following are done:

• Only transfer agreements between companies are kept.

• Only utility patents are kept; entries regarding design patents are dropped.

This cleaning process leaves 966,427 observations. Using the string variable that states the reason for

the record, all reassignments that are not directly related to sales are dropped (for instance, mergers,

license grants, splits, mortgages, court orders, etc.)

In order to create an even more conservative indicator of patent reassignments, a company name-

matching algorithm is employed, so that marking internal transfers as reassignments can be avoided,

where patents are moved within the same firm, or between the subsidiaries of the firm. The idea

behind the company name-matching algorithm is to clean the string variables for the assignor and

the assignee of all unnecessary indicators and company type abbreviations. If the cleaned assignor

and assignee strings are equal, the type of the record is changed to internal transfer, provided that

it was identified as a reassignment before.

The pseudo-code for the algorithm, an enhanced version of Kerr and Fu (2008), is as follows:

1. All letters are made upper case.

2. The portion of the string after the first comma is deleted. (e.g., AMF INCORPORATED, A

CORP OF N.J. becomes AMF INCORPORATED)

3. If the string starts with “THE ”, the first 4 characters are deleted.
21This variable is not used, however, to represent the technology class for a patent, as is discussed below.
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4. All non-alphanumeric characters are removed.

5. Trailing company identifiers are deleted if found. The string goes through this process 5

times. The company identifiers are the following: B, AG, BV, CENTER, CO, COMPANY,

COMPANIES, CORP, CORPORATION, DIV, GMBH, GROUP, INC, INCORPORATED,

KG, LC, LIMITED, LIMITED PARTNERSHIP, LLC, LP, LTD NV, PLC, SA, SARL, SNC,

SPA, SRL, TRUST, USA, KABUSHIKI, KAISHA, AKTIENGESELLSCHAFT, AKTIEBO-

LAG, SE, CORPORATIN, CORPORATON, TRUST, GROUP, GRP, HLDGS, HOLDINGS,

COMM, INDS, HLDG, TECH, and GAISHA.

6. If the resulting string has length zero, that string is declared as needing protection. Some

examples that are protected by this procedure: “CORPORATION, ORACLE”, “KAISHA,

ASAHI KAISEI KABUSHIKI”, “LIMITED, ZELLWEGER ANALYTICS”.

7. The algorithm is re-run from the beginning on the original strings with one difference: The

strings that are declared as needing protection skip the second step.

9.2 USPTO Utility Patents Grant Data (PDP)

The patent grant data comes from the NBER Patent Database Project (PDP), and contains data

for all the utility patents granted between the years 1976-2006. How the PDP and PRD are linked

to each other is discussed later on.

9.3 Compustat North American Fundamentals (Annual)

The Compustat data for publicly traded firms in North America between the years 1974-2006 is

retrieved from Wharton Research Data Services. The Compustat database and the NBER PDP

database are connected using the matching procedure provided alongside the PDP data. Extensive

information on how the matching is done can be found on the project website.

9.4 Connecting PRD and PDP Data

There are two different questions of interest, which require combining the Patent Database Project

data with the Patent Reassignment Data. The first analysis is on whether a patent is ever reassigned

(i.e. sold) over its entire lifetime, and what determines the probability of this event. For this purpose,

it is only necessary to connect the information from PRD to the firm which applied for the patent.

This is easily done by using the unique patent number each patent is given by USPTO.
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The second question involves the change in match quality of the patent when it is traded between

two firms. In this case, one needs to know the characteristics of both the assignor and the assignee

firm for each reassignment record in the PRD dataset. However, there is no existing connection

established between the PRD and PDP datasets. To connect these datasets, the company name-

matching algorithm described earlier is employed.

9.5 Variable Construction

9.5.1 Patent-to-Patent Distance Metric

In order to construct a topology on the technology space empirically, it is necessary to create a

distance metric between different technology classes. Such a metric enables one to speak about the

distance between two patents in the technology space, and leads to the construction of more advanced

metrics.

The first 2 digits of the IPC (International Patent Classification) codes of a patent are chosen

to indicate its technology class. The IPC code used for a patent is taken from the PDP data and

differs from the classification scheme employed in the PRD data. It should be noted that the PDP

data actually contain more than a single IPC class for a single patent in some cases, since the IPC

codes were assigned using a concordance between the IPC and the internal classification system of

USPTO. The IPC code provided in the PDP file with assignees is used in such cases, which is unique

for each patent.

As discussed in the main text, a plausible distance metric between patent classes can be generated

by looking at how often two different technology classes are cited together. Formally:

d(X,Y ) ≡ 1− #(X ∩ Y )

#(X ∪ Y )
, with 0 ≤ d(X,Y ) ≤ 1.

where #(X ∩ Y ) denotes the number of patents that cite technology classes X and Y together, and

#(X ∪ Y ) denotes the number of patents which either cite X or Y or both.

9.5.2 Definition of a Firm in the Data

There are four different entity identifiers in the NBER PDP dataset. The USPTO assignee number

is the identifier provided by USPTO itself, but the creators of the PDP have found that it is not

very accurate. A single assignee might have many different USPTO assignee numbers. The PDP

uses some matching algorithms on the names of the assignees to create a more accurate assignee

identifier, called PDPASS. They also link the patent data to Compustat data. Compustat has an
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identifier called GVKEY. However, these refer to securities rather than firms. So a single firm might

be represented by many GVKEY’s. For this reason, they use a dynamic matching algorithm again to

link all GVKEY’s to certain PDPCO’s, where the latter is a unique firm identifier that is created for

the NBER PDP database project. The project creates this identifier in order to be able to account

for name changes, mergers & acquisitions, etc. This paper follows the same procedure.

9.5.3 Patent-to-Firm Distance Metric

In order to measure how close a patent is to a firm in the technology spectrum, a metric is necessary.

However, throughout their lifetimes firms register patents in multiple technology classes. Hence the

patent-to-patent distance metric is insuffi cient for this purpose. One possible way to construct a

patent-to-firm distance metric is to compare a patent to the past patent portfolio of the firm. The

distance measure between each patent a firm registered in the past, and the new patent in question

can be calculated using the patent-to-patent distance metric offered earlier. The distance between

the firm and the patent should be a function of these separate distances. Equation (24) defines a

parametric family of distance measures indexed by ι. The analysis is conducted for several values of

ι.

9.5.4 Creating the Patent Stock Variable for Compustat Firms

As argued in Hall et al (2005), the citation-weighted patent portfolio of a firm is a plausible indicator

of the intangible knowledge stock of a firm. The authors demonstrate that this measure has additional

explanatory power for the market value of a firm above and beyond the conventional discounted sum

of R&D spending of a firm, since R&D is a stochastic process which can succeed or fail; whereas

patents are quantifiable products of this process when it is successful. Furthermore, it is revealed

that the number of citations a patent receives is a fine indicator of the patent’s worth, increasing the

market value of a firm at an increasing rate as the number of citations go higher.

Since all the future citations to a patent cannot be observed at any given date, the citations

variable suffers from a truncation problem. There are also technology class and year fixed effects to

consider. All of these issues are thoroughly investigated by Hall et al (2005); they provide a variable

called hjtwt in order to correct the citation number of each patent in the PDP dataset. This study

uses their correction method. In the end, a corrected citations number for each patent is obtained. In

order to create the patent stock variable of a firm (PDPCO), the corrected citations number across

all the patents of a firm are added together at each year. This variable is called patent stock.
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Patent Sale Decision
(Compustat Sample with Licensing Intensity)

Dependent Variable (=1, if sold, 0 otherwise)
(1) (2) (3) (4) (5) (6)

distance 3.737*** 3.728*** 3.741*** 4.125*** 4.123*** 4.413***
(0.138) (0.138) (0.138) (0.142) (0.142) (0.157)

tech-class litigation intensity no yes no no yes no
patent litigation dummy no no yes no yes no
sector licensing intensity no no no yes yes no
only renewed patents no no no no no yes
Obs 1,151,348 1,151,348 1,151,348 1,078,735 1,078,735 919,421
R2 0.32 0.32 0.32 0.32 0.32 0.34

Table 8: See the notes for Table 3.

In addition to the patent stock, the corrected citations number across all the patents of a firm,

multiplied by the patent-to-firm distance generated at the date of the patent’s inclusion into the

portfolio are also added together to create a new variable. This variable quantifies the overall waste

in the patent stock caused by the mismatch between the technology class of the patents and the firm.

This variable is expected to have a negative effect on market value of equity for a firm. The variable

is called the distance-adjusted patent stock.

9.6 Patent Sale Decision with Licensing Intensity

Table 8 introduces the licensing intensity of the sector. This variable is available only for Compu-

stat firms. Therefore the sample is reduced by half. Because of this sizable change, columns 1-3

repeat the same exercises as their counterparts in Table 3. One major difference to note is that

the association between the distance and sale indicators becomes more pronounced, almost doubled.

Column 4 introduces licensing intensity and column 5 includes the litigation and licensing controls

simultaneously. The last column redoes the regression in column 1 while purging the patents that

were not renewed once.

9.7 The Impact of Parameter Values on the Data Targets

Table 9 presents the Jacobian associated with the calibration/estimation. This Jacobian provides

useful information about how the parameters influence the model’s ability to hit the data targets.

By moving along a row, one can see how a parameter in question influences the various data targets.

Alternatively, by going down a column one can gauge what parameters are important for hitting the

data target of concern.
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Calibration/Estimation Jacobian (Elasticities, %)

Param Growth R&D/GDP Frac. so ld Avg. Dur. Dur. CV daps/ps ps/emp dist red , a ll

γd 74.39 47.39 -8 .64 0.36 -0 .18 15.71 -4 .64 -4 .12

χ -17 .18 -10.55 23.06 -4 .81 2.42 -7 .68 -23.37 4.67

µ 0.86 -1 .41 9.63 -4 .22 2.12 -4 .27 -2 .03 18.87

η 3.32 -5 .45 37.25 -16.34 8.21 13.00 -8 .60 73.06

γn 22.46 -24.81 5.66 -1 .75 0.88 -17.79 -98.84 0.21

p 22.46 -24.81 47.46 -1 .75 0.88 -3 .74 -51.07 -71.53

ps 0 0 64.57 0 0 18.55 -36.70 -71.74

STD(ln e) 0 0 0 0 0 -3 .84 225.95 0

Table 9: The data targets in the Jacobian follow the order that they are presented in Table 5.
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SUPPLEMENTAL APPENDIX
(For RCER Working Paper Only)

10 Background on the Market for Patents—Supplemental Material

In this section additional background information on the market for patents is provided. The pre-

sentation starts with some historical evidence in Section 10.1 and then turns to more recent evidence

in Section 10.2.

10.1 Historical Evidence

Patents constitute a property right over a technology the ownership of which can be transferred to

a secondary party. This right was enacted by the Patent Act of 1836, which states:

“And be it further enacted, That every patent shall be assignable in law, either as to

the whole interest, or any undivided part thereof, by any instrument in writing; which

assignment, and also every grant and conveyance of the exclusive right under any patent,

to make and use, and to grant to others to make and use, the thing patented within and

throughout any specified part or portion of the United States, shall be recorded in the

Patent Offi ce within three months from the execution thereof, for which the assignee or

grantee shall pay to the Commissioner the sum of three dollars.”

Since the 1836 Act, the U.S. Patent Offi ce has recorded information on the ownership of all U.S.

patents. Many patents have been sold in the market. Unfortunately, despite its importance and

wide use, the empirical studies on the market have been limited due to the lack of systematic data

[Lamoreaux, Sokoloff, and Sutthiphisal (2013)]. Recently, however, Khan and Sokoloff (2004) have

gone through the Dictionary of American Biography and collected systematic data on the “great

inventors” of the 19th century. Their findings are striking: For inventors who started their own

firms, only one third of the patents in their patent portfolio were actually granted to them, which

implies the remaining two thirds were acquired from others. Their study documents the size of the

market. The fraction of patents that had a reassignment was between 16-44% during the second half

of the 19th century. This is very similar to the number found here that lies between 14-22% for the

period 1980-2000.

Khan (2013) argues that the market for patents in the United States developed very rapidly

thanks to the effective patent and legal system in the country. She (p. 8) states:
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“As a result, American inventors were able to benefit from patent markets to a far

greater extent than in other countries. Intermediation enhanced their ability to divide

and subdivide the rights to their idea, sometimes with great complexity, across firms,

industries and regions. Successful inventors were able to leverage their reputations and

underwrite the research and development costs of their inventions by offering shares

in future patents. This process also facilitated trade in patent rights and technological

innovations across countries, and numerous American patentees succeeded in establishing

multinational enterprises and dominating the global industry.”

This flexible environment and the possibility of selling their inventions provided many inventors,

with great potential, the chance to flourish. For instance, Thomas Edison transferred the partial

rights for 20 of the first 25 patents in his career [Lamoreaux, Sokoloff, and Sutthiphisal (2013)].

Overall, the existence of the market allowed the democratization of innovation. It provided small-

scale garage inventors with access to the market for technology. The same is true for female inventors

and Khan (2013) provides various examples of how they benefited, in particular, from the market. For

instance, Maria Beasley reached an agreement in 1881 to transfer half of the rights for an uncompleted

invention to James Henry of Philadelphia, in return for an advance of funds to complete the machine.

The market has been key for allocating important innovations to the right hands. For instance,

Nicholas (2009) uses geo-coded data on the location of inventors and research labs to show that a

significant fraction of the most valuable patents acquired by firms during the 1920s were most likely

not generated in the firms’research laboratories.

10.1.1 Intermediaries

Many inventors who tried to sell their inventions in the market, such as Rufus M. Porter who invented

the alarm clock, washing machine, clothes dryer, and rotary plow, failed because they could not find

interested assignees. This market has been associated with severe matching frictions. Kahn (2013)

argues that intermediaries have the ability to reduce the costs of search and exchange, to enhance

liquidity, to improve market depth and breadth, and to increase overall effi ciency. Lamoreaux and

Sokoloff (1999) report that there were 550 such registered patent agents by 1880. Figure 8 depicts an

example of a contract that was prepared around 1870 to transfer to the ownership rights of a patent.

Even during the 19th century, there were manuals for inventors which taught how to sell their

patents more easily. Figure 8 shows the cover of one such manual prepared by William E. Simonds

in 1871. This manual was advising inventors to advertise their inventions as much as possible.
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Figure 8: Patent Sale Contract around 1870 (left panel) and the Cover of a Patent Sale Manual by

Edgar Edgar Simonds, 1871 (right panel).

Advertising patents was key for finding a buyer. For instance, Elias E. Reis read an advertisement

about a patent on electrical welding, invented by Elihu Thomson in 1886, and said it “immediately

opened up to my mind a field of new applications to which I saw I could apply my system of producing

heat in large quantities”[Lamoreaux and Sokoloff (1999, p. 23)].

One important observation made by Khan (2013) is as follows. Even though the popular media

discusses patent intermediaries [using modern jargon: patent trolls or non-practicing entities (NPE)]

as if they have emerged recently, such entities have been the norm in this market throughout the

history. NPEs were the norm during the nineteenth century, and technology markets provide ample

evidence that patentees who licensed or assigned their rights were typically the most productive

and specialized inventors. NPEs did not produce anything with the patents that they purchased.

They used their expertise and networks to find the right users who could generate the largest ex-

pected economic returns from these inventions. NPEs profited from intermediation, per se, without

participating in either inventive activity or manufacturing.
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10.1.2 Size of the Market for Patents

Even in yesteryear the market for patents was sizable [Lamoreaux and Sokoloff (1997, 1999)]. Lam-

oreaux, Sokoloff, and Sutthiphisal (2013) have shown that the fraction of patents that had a reas-

signment was somewhere between 16 to 28% in the late 19th century, a number similar to the 14 to

22% found here.

10.2 More Recent Evidence

10.2.1 Size of the Market for Patents

Several papers have documented that the size of the market for technologies in the United States

and Europe in the 1990s were around 0.2% of their GDPs [Arora, Fosfuri, and Gambardella (2001),

Gambardella, Giuri, and Mariani (2006)]. In particular, using figures from the Internal Revenue

Service, Arora et al (2001) estimate the monetary value of the overall volume for the market for

patents in the United States to be around $32 billion in 2000. A McKinsey report estimates the

same number to be $100 billion in 2000 [Elton et al. (2002)]. In a European Commission (EC)

report, Gambardella et al (2006) report that the market for patents in Europe was €9.4 billion

between 1994 to 1996 and went up to €15.6 billion in 2000 to 2002, which corresponds to 0.16 and

0.2% of GDP. Similarly, Serrano(2013)’s estimates, based on patent reassignment data, show that

the volume of patent sales correspond to 50% of the total valuation of patents.

The same reports highlight the fact that even though many firms wanted to sell their technologies,

they could not do so due to market frictions. For instance, Gambardella et al (2006) estimate the

potential market sizes for “sleeping patents”in the 1994-1996 and 2000-2002 periods as €14.8 billion

and €24.4 billion, which are larger than the actual market sizes. Elton et al (2002, p. 2) report

that while companies could potentially earn up to 10% of their operating income from utilizing their

patents in technology sales, only 0.5% of patents are actually utilized currently. They conclude that

this underutilization is mainly driven by managerial failures and informational asymmetries in the

market for patents.

The patent market is regarded as being thin due to the specialized nature of the knowledge that

is embodied in each patent. Gans and Stern (2010) and Hagiu and Yoffi e (2011) discuss the recent

failure of online intellectual property platforms to arbitrage the market. According to them, the

sensitivity of intellectual property makes potential buyers and sellers reluctant to reveal information

online; they prefer face-to-face dealings with the other party. Also, some buyers may perceive a

lemons problem: if the patents were truly valuable, then the sellers should be able to profit by
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developing the idea themselves or by selling it directly to interested parties.

10.2.2 The Complementarity between New Patents and the Existing Stock of Knowl-

edge within a Firm

The significance of the propinquity of a idea with a firm’s core line of business is recognized in Gort

(1962)—see Jovanovic (1993) for a formalization of some of the ideas in Gort (1962). In well-known

work, Teece (1986) stresses the importance of asset complementary as a key ingredient for successful

innovation. The closer an innovation is to a firm’s core line of business, the more likely it is to

have the technical knowledge to implement it and the practical knowledge to market it. Arora and

Ceccagnoli (2006) and Figueroa and Serrano (2013) examine the empirical significance of this idea

for patenting and licensing activities. Relatedly, several papers have shown that firms’internal R&D

activities affect the type of patents that they acquire [Arora and Gambardella (1994) and Cassiman

and Veugelers (2006)]. In addition, Salant (1984) provides a theoretical analysis of ideas trading as

motivated by preventing the dissipation of competitive rents, a hypothesis examined empirically by

Gans and Stern (2000). This can only be successful when the idea is close to the line of business

that the firm is trying to protect from competitors.

10.2.3 Serendipity

The European Commission report finds that 1/3 of European patents are not used for any industrial

purpose. Why are there so many unused patents and why are they produced in the first place?

The report states that half of these unused patents are “sleeping patents” that are typically by-

product inventions in non-core technologies for which the inventing firm cannot foresee a potential

use. Similarly, Sakkab (2002) provides an interesting case study: Proctor and Gamble (P&G) was

commercializing only 10% of its patents and the rest were “sitting on their shelf.”Chesbrough (2006)

argues that this huge underutilization of ideas in firms is due to the very decentralized process that

determines which projects research staff work on and what discoveries are made in the firm. Many

firms recruit R&D personnel by promising research freedom and often compete with universities. This

process limits the coupling of research ideas with business ideas. Hence, firms can produce ideas that

are not close to their core business activities and cannot foresee a potential use of these ideas either.

Elton et al (2002, p. 2) say that “Engineers at chemical companies, for example, aren’t likely to know

that the materials and processes they use to separate atmospheric gases could help semiconductor

manufacturers reduce the time and money needed to manufacture the high-value integrated circuits
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that use ceramic rather than plastic bindings. (Ceramic can withstand more heat than plastic and

thus allows for smaller sizes and higher densities.) Yet one midsize chemical company, helped by an

external network of technologists, discovered that its process could cut the production costs of these

chips by up to 20 percent, or more than $200 million.”

10.2.4 Policy Implications

This huge patent market has important policy implications. Some scholars have argued that despite

the rapid growth in the potential of the market for ideas, industrial policies are not following this

rapid change and hence are creating obstacles limiting better market allocations. Gambardella et al

(2006) call policymakers to action in order to increase the rate of utilization of patents. Similarly,

Chesbrough (2006) argues that there is no information standard for intellectual property trade.

Without these standards, it is very diffi cult to collect aggregate statistics on this trade and it becomes

much harder for firms to know what technologies are available in the market. Indeed, according to a

survey by Radauer and Dudenbostel (2013) one of the major obstacles that firms are reporting is the

diffi culty in identifying suitable partners in the market for ideas. Both economists and policymakers

have emphasized the need for revising industrial policies in light of the presence of a market for

ideas.22

The main policy conclusions of these studies concern reducing informational frictions in the

market through better intermediation. For instance, Gambardella et al (2006) advocate policies that

would simplify the formation of intermediaries. For interested readers, Tietze (2010) provides further

details, as well as a literature review on patent intermediaries.

11 Stationary Firm-Size Distribution—Supplemental Material

The model will display a stationary firm-size distribution along a balanced growth, despite the fact

that the distribution for Z is shifting over time and changing shape. To see this, substitute (20) into

(19), while making use of the definition in (18), to get

l =
e′z′

z′
≡ e′ẑ′. (42)

Thus, the amount of labor that a firm hires is proportional to its own productivity, e′z′, relative

to the mean level of productivity in the economy, z′. The density function for l is the just the
22This is in the summary of a European Patent Offi ce-OECD-UK Patent Offi ce Conference, entitled “Patents:

Realising and Securing Value” held on November 21, 2006. It can be accessed at: http://www.oecd.org/science/sci-

tech/37952293.pdf.
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density function for e′ times by the density function for z′, because e′ and z′ are independent of each

other. The probability distribution function for the idiosyncratic firm-specific production shock, e′,

is exogenously given. So, characterizing the firm-size distribution amounts to characterizing the

distribution for ẑ′ ≡ z′/z′.

To delineate the firm-size distribution, focus on a firm’s draw for x. This is an independently

and identically distributed random variable. To see this, note that in the current setting a firm will

discover a d-type idea with probability i. If it innovates, then it will draw x from the distribution

X. Conditional on innovating, it will sell its d-type patent with probability X(xk) and will keep it

with probability 1−X(xk). If it fails to innovate, then it will go onto the market for d-type patents.

Conditional on failing to innovate, it finds a patent agent with probability mb(na/nb). When it finds

a patent agent then it will draw from U [0, 1]. A purchase then occurs with probability 1−xa. Hence,

x is


= 0, with Pr{(1− i)[(1−mb) +mbxa] + iX(xk)},

∼ X[xk, 1], with Pr[i(1−X(xk))],

∼ U [xa, 1], with Pr[(1− i)mb(1− xa)].

(43)

Note that 0 < E[x] < 1.

Turn to the firm’s law of motion for z or (2). Divide z through by z to get

z′

z′
=
z

z′
z

z
+ γd

z

z′
x+ γn

z

z′
b, or ẑ′ =

1

g︸︷︷︸
<1

ẑ + γd
1

g
x+ γn

1

g
b, (44)

where ẑ ≡ z/z. This is a stationary autoregressive process with a non-Gaussian error term. Here,

treat g as a constant, The gross growth rate, g, can be taken as a constant because it can be solved

for independently of the form for the stationary distribution. Proposition 1 establishes this. In a

similar vein, i, mb, xa, and xk are known constants that are independent of the form of the stationary

distribution; again, this is a consequence of Proposition 1. Now, 0 ≤ b, x ≤ 1. Thus, the process

for ẑ′ will be trapped within the compact set [0, z], where z ≡ (γd + γn)/[(g − 1)], provided that it

starts off within this interval.

Proposition 2 (Existence of a Unique Stationary Firm-Size Distribution). The stochastic process

(44) converges weakly to a unique invariant distribution.

Denote the stationary distribution for ẑ′ by Ẑ. Why does the stationary firm-size distribution

(modulo the part associated with the distribution for e) have a finite upper bound, z? The answer is

that it is diffi cult for a firm’s productivity, z, to grow faster than aggregate productivity, z. Growth in
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Figure 9: The left panel illustrates the time-invariant firm size distribution. The right panel shows

how the productivity distribution evolves over time.

aggregate productivity pulls all firms along as is evident in (2). When a firm’s growth in productivity

pulls ahead of aggregate growth it loses this slipstream effect, so to speak. Since z′ increases in an

arithmetic fashion with x and b, growth must decay when z is held fixed. The distribution for

productivity across firms, or Z, is not stationary. Consider a point along a balanced growth path

where z = 1. The z’s will be distributed on [0, z] according to Ẑ, where z ≡ (γd + γn)/[(g − 1)].

Next period z will have grown to z′ = gz. Now, z will be distributed on the [0,gz] according to

Z ′ = Ẑ(z/g). Note the distribution for the z’s is getting stretched rightward over time; i.e., the

cumulative distribution function is being defined over an ever increasing domain. In general, if in the

current period Z : [0, z∗]→ [0, 1] then for next period Z ′ : [0,gz∗]→ [0, 1], where Z ′(z) = Z(z/g).

The invariant firm-size distribution for the model is also computed via a Monte Carlo. The unique

invariant firm-size distribution associated with the baseline model is shown in the left panel of Figure

9. This distribution resembles a log normal. The coeffi cient of variation for the distribution is 24.2%.

The right panel of Figure 9 illustrates how the productivity distribution shifts rightward over time

due to growth in the economy. (Here the histograms calculated from the Monte Carlo simulation are

replaced by a fitted density function so the movement could be highlighted). A change in shape of

the distribution over time is evident.

Proof of the Existence of a Unique Stationary Firm-Size Distribution. All that needs to

be shown is that the stochastic process (44) for ẑ converges weakly to a unique invariant distribution,

because e and z are independent of each other and the distribution for e is exogenously given. By

Stokey and Lucas (1989), Theorem 12.12, it is suffi cient to establish three things. First, the transition

operator associated with (44) needs to satisfy the Feller Condition [see Stokey and Lucas (1989), p.
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220]. Second, it is required that this transition operator is monotone [Stokey and Lucas (1989),

p. 220]. Third, the transition operator must satisfy a mixing condition [Stokey and Lucas (1989),

Assumption 12.1].

The stochastic difference equation (44) is continuous in ẑ, trivially. It then follows, using Stokey

and Lucas (1989) Theorem 8.9 and Exercise 8.10, that a transition operator connected with (44)

exists and satisfies the Feller property. Denote this operator by P (ẑ, B), which gives the probability

measure connected with a move for z from the point ẑ into the set B. Define the random variable ξ

by ξ ≡ γdx/g+γnb/g. Similarly, let Q(X) represent the probability measure connected with drawing

a value for ξ ∈ X. To establish monotonicity, consider the integral∫
H(ẑ′)P (ẑ, dẑ′) =

∫
H(

1

g
ẑ + ξ)Q(dξ),

for any non-decreasing function H(z′). Clearly,∫
H(

1

g
ẑ + ξ)Q(dξ) ≥

∫
H(

1

g
z + ξ)Q(dξ),

for all ẑ >z. Thus, P is monotone.

Finally, turn to the mixing condition. The long-run mean of the above process is z∗ = (γdE[x] +

γnb)/(g − 1), where 0 < z∗ < z ≡ (γd + γn)/(g − 1). To satisfy the mixing condition, it suffi ces to

show that if the process starts off at ẑ = 0, then there exists some chance that it will cross into the

interval [z∗, z], and analogously if it originates at the ẑ = z, then there are some odds that it will

cross into the set [0, z∗]. Clearly, if the process starts off from ẑ = z, then there are some odds that

it will cross into the set [0, z∗]. The firm can draw x = 0 with strictly positive probability, as can

be seen from (43). The same is true for b, too. So, just think about drawing x = 0 and b = 0 for

some prolonged but finite period of time, T + 1. Eventually, the process will cross into [0, z∗]; this

will take a maximum of T + 1 periods where T = ln(z∗/z)/ ln(1/g). This occurs with probability,

{(1 − i)[(1 −mb) + mbxa] + ixk}T+1 × (1 − p)T+1 > 0. Likewise, if the process starts off from ẑ =

0, then there are some odds that it will cross into the set [z∗, z]. Think about drawing an x shock

in the interval [x, 1], where x = max{E[x] + ε, xa, xk} with ε > 0, together with b = 1. This joint

event occurs with some strictly positive probability, Pr[x ≥ x]× p—again see (43). Imagine drawing

this shock for some long, finite period of time. Then, it will take a maximum of t + 1 periods for

the process to cross into the set [z∗, z], where t = ln[1 − (z∗/υ)(1 − ρ)/ρ]/ ln ρ, with ρ ≡ 1/g and

υ ≡ γdx+ γn. The probability of this occurring is (Pr[x > x]× p)t+1 > 0.
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12 Simplified Model—Supplemental Material

A simplified version of the benchmark model is presented here. The goal is to develop an analytical

solution to the simplified model. This solution can be used to connect objects such as matching effi -

ciency in the patent market, η, or the importance of technological propinquity, γ, with the economy’s

growth rate, g. The development is heuristic in nature and may be useful for readers not familiar

with the modeling apparatus employed in the paper.

12.1 Simplifying Assumptions

Some simplifying assumptions are now made in order to solve the model analytically:

• The model is cast in continuous time. This rules out certain simultaneous events within a

period.

• The per-period return for firms, Π (z), is given the linear specification Π (z) = πz. Recall that

in the benchmark model profits turned out to be linear function in z; cf. (7).

• The law of motion for a firm’s productivity is given by z′ = z+γxz. Thus, only distance-related

patents are allowed; cf. (2).

• The utility function is logarithmic, implying ε = 1.

• The innovation rate, i > 0, is assumed to be exogenous. It is set to unity.23 The analysis here

will focus on the reallocation of ideas (the main point of the research) rather than the creation

of ideas.

• All firms can meet a patent agent and buy an idea at any point in time. In the benchmark model

only failed inventors could buy from the market. This assumption was made in the benchmark

model for technical convenience.24 The analysis here illustrates that the assumption in the

benchmark model is innocuous.

• The seller is assumed to have full bargaining power; ω = 1.

23 In continuous time the arrival rate, i, can potentially be greater than 1, as will be seen.
24 If one allowed this in the benchmark model, then some firms could acquire two ideas (instead of just one) in a

period. The distribution for new ideas would then be over {0,1,2} instead of {0,1}. This can’t happen in a continuous

time, since the odds of innovating plus buying a patent at a particular instance of time are zero. The results from the

continuous-time model closely parallel those of the benchmark model.
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• The propinquity of an idea, x, is drawn from a uniform distribution on [0, 1], rather than the

empirical distribution.

• There is no expiration date for a patent on the market. In the benchmark model patents on

the market expired with some probability.

The rest of the model is as before. To make this section self contained, the basic environment is

now described in some detail.

12.2 Environment

Time is continuous and household utility is logarithmic. The discount rate is ρ. Along a balanced

growth path the real interest rate will be given in standard fashion by r = ρ+g. There is a continuum

of firms of measure 1 that are located on a circle, as in the main model. Each firm is defined by its

location on that circle and its current productivity z. (Time subscripts are dropped, when possible,

to simplify the notation.)

The equilibrium profit of each firm is linear in productivity z such that

Π (z) = πz.

A firm’s productivity, z, improves through new innovations which arrive at an exogenous rate i. Each

new innovation contributes to productivity according to the following law of motion

z′ = z + γxz, (45)

where x ≡ 1− d ∈ [0, 1] is the propinquity of a new innovation to the firm (which is the inverse of a

distance) and

z ≡
∫
zjdj

is average productivity in the economy. Once an idea arrives its propinquity is drawn from a uniform

distribution such that x ∼ U[0,1].

The firm has two (mutually exclusive) options:

1. Keep the idea and produce with it.

2. Sell it directly to a patent agent for the price q.

All firms may try to purchase a patent, even those who have successfully innovated.
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Denote the number of ideas on the market to be sold by na and the number of buyers by nb.

Then, each period, the number of matches is regulated by the matching function

M (na, nb) = ηnµan
1−µ
b .

Since any firm can buy an idea at any time (unlike in the benchmark model) the measure of potential

buyers is equal to 1. Therefore, the number of matches at every instant is

M (na, nb) = ηnµa . (46)

12.2.1 A Firm’s Value Function

The analysis proceeds using the guess-and-verify technique. Focus on an equilibrium with a cutoff

rule for selling a patent; i.e., a firm keeps an idea if x < x∗ and sells it otherwise. Conjecture that

the cutoff to buy is the same as the one to sell. Discretize time into small intervals of length ∆.

Then, the state of a firm can be summarized by the pair (z, z) and the value function for a firm can

be written as

V (z, z) = πz∆ + i∆e−r∆

[∫ 1

x∗
V (z + γxz, z+∆) dx+

∫ x∗

0
[V (z, z+∆) + q] dx

]

+M (na, nb) ∆e−r∆
∫ 1

x∗
[V (z + γxz, z+∆)− P (x, z, z)] dx+M (na, nb) ∆x∗e−r∆V (z, z+∆)

+ [1− i∆−M (na, nb) ∆] e−r∆V (z, z+∆) + o(∆).

Over any time interval ∆ the firm collects πz∆ in profit. During the same interval, the firm can

receive a new idea with probability i∆. (As an aside, this implies that i can be bigger than one

when ∆ is suffi ciently small.) It will keep the idea, if x > x∗, and sell the idea to a patent agent for

the price q, otherwise. Likewise, a firm can receive an option to buy a patent with the endogenous

matching probability M (na, nb) ∆. It will decide to buy the idea at price P (x, z, z), if x > x∗.This

price is determined by a take-it-or-leave-it offer that the patent agent makes. The firm won’t buy

the patent if x < x∗. Conditional on meeting an agent, this event will occur with probability x∗

(and explains the last term on the second line). Finally, if the firm neither innovates or meets

an agent, which occurs with probability [1− i∆−M (na, nb) ∆], the firm moves to the next time

interval with no change in its own productivity and collects the continuation value V (z, z+∆), which

is discounted by the multiplicative factor e−r∆. Note that over the time interval in question that

aggregate productivity will evolve from z to z+∆. Finally, observe the presence of some second-order

terms denoted by o(∆). These terms involve the event that the firm both innovates and buys a
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patent at the same time, which occurs with probability i∆M (na, nb) ∆ = iM (na, nb) ∆2. As the

length of period shrinks these terms will disappear (relative to the other terms in the expression

because ∆2 becomes small relative to ∆).

Divide both sides by ∆. Take the limit as ∆ → 0, while rearranging the above expression.

Let V̇ (z, z) ≡ lim∆→0 [V (z, z+∆)− V (z, z)] /∆. Note that z+∆ → z as ∆ → 0. Additionally,

e−r∆ ' 1− r∆, when ∆ is small, a fact that is useful for the third line of the equation for the value

function. One obtains

rV (z, z) = πz + i

[∫ 1

x∗
V (z + γxz, z) dx+

∫ x∗

0
[V (z, z) + q] dx− V (z, z)

]
(47)

+M (na, nb)

∫ 1

x∗
[V (z + γxz, z)− V (z, z)− P (x, z, z)] dx+ V̇ (z, z) .

This continuous-time value function has the following interpretation: The safe return on the left-

hand side is equated to the risky return on the right-hand side. Every instant, the firm collects its

instantaneous profit, πz. At the rate i a new idea arrives with some propinquity x. If x > x∗, then

the firm keeps the idea and its productivity will increase by γxz. Otherwise, the firm sell will sell

the idea to the agent at the price q. Finally, V̇ (z, z) captures the increase in the firm’s market value

due to the growth in aggregate productivity, z.

12.2.2 The Price for a Buying Firm

The patent agent makes a take-it-or-leave-it offer to the buyer. Hence, the patent agent will strip all

of the surplus from the transaction. The price of patent, P (x, z, z), is then given by

P (x, z, z) = V (z + γxz, z)− V (z, z) , when x ≥ x∗. (48)

The pricing rule (48) allows the firm’s value function (47) to be written as

rV (z, z) = πz + i

[∫ 1

x∗
K (x, z) dx+ x∗q

]
+ V̇ (z, z) ,

where

K (x, z) ≡ V (z + γxz, z)− V (z, z) (49)

is the value of keeping a new idea that has propinquity x.

12.2.3 Patent Agents and the Price for a Selling Firm

Denote the value function for a patent agent who is about to sell an idea by A (z) . This can be

expressed as:

rA (z) =
M

na

∫ 1

x∗
[P (x, z)−A (z)] dx+ Ȧ (z) , (50)
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which already incorporates the fact that there will be no trade when x < x∗. Also note that the

arguments of M (from here on out) are suppressed for clarity. This expression depends on the

equilibrium flow of matches per seller, M/na, which represents the probability that the agent will

find a buyer. Conjecture that the patent agent’s value function is linear in aggregate productivity z;

i.e.,

A (z) = az. (51)

As in the main text, suppose there is free entry by agents into the market to buy patents from firms.

This dictates that the price q will be determined by

q = A (z) . (52)

The following result holds:

Lemma 3 (The Value Function for a Firm) Assume that the patent agent’s value function, A (z),

takes the linear form specified in (51). Then, the firm’s value function, V (z, z), is linear in both its

own z and the aggregate z so that

V (z, z) = v1z + v2z, (53)

where

v1 =
π

r
and v2 =

iv1γ(1
2 −

x∗2

2 ) + ix∗a

ρ
.

Proof. See Section 12.4.

12.2.4 The Cutoff Rule

The law of motion for the stock of ideas on the market is

ṅa = ix∗ −M(1− x∗). (54)

The first term, ix∗, gives the flow of new ideas into the market, since the rate of innovation is i and

x∗ is fraction of new innovations that are put on the market. For the rest of the text, assume that

i = 1. The second term, M [1− x∗], gives the number of ideas that are sold in a period. All firms

try to buy a patent. The measure of firms is one. They meet an agent with probability M and buy

an patent with probability (1 − x∗). The equilibrium number of matches can be found by setting

ṅa = 0 in (54) which implies

M =
x∗

1− x∗ . (55)
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Clearly the number of matches increases in the cutoff x∗: a higher x∗ implies that initial inventors

keep less of their ideas since they now have to meet a more stringent threshold. Plugging the number

of matches (55) into the matching technology (46) gives the equilibrium stock of ideas on the market

or

na =

[
x∗

(1− x∗) η

] 1
µ

. (56)

The number of matches per seller is then

ma ≡
M

na
= η

[
x∗

(1− x∗) η

]µ−1
µ

. (57)

The patent agent’s value function, A (z), can be solved for now. Using the conjecture (51) that

this value function is linear, in conjunction with (50), (55), and (56), generates (the steps are similar

to those outlined in the proof of Lemma 3).

a =
ma

v1γ
2

(
1− x∗2

)
ρ+ma (1− x∗) . (58)

The only remaining equilibrium variable to be determined is the cutoff, x∗. The marginal seller

is indifferent keeping and selling the idea so

K (x∗, z) = q. (59)

The value of keeping the idea K (x∗, z) from (49) and (53) is

K (x∗, z) =
π

r
γx∗z.

Now, it has been shown that A (z) = az, where a is expressed in (58), q = A (z), and v1 = π/r.

Using these results in the indifference condition (59) allows the cutoff rule, x∗, to be written as

x∗ =
ma

(
1− x∗2

)
ρ+ma (1− x∗)

1

2
, (60)

where ma is expressed in (57).

12.2.5 The Aggregate Growth Rate

The focus can now shift to the aggregate net growth rate for the economy, g. Using (45) it is easy

to deduce that after a small time interval, ∆, the average productivity will evolve from z to z+∆

according to

z+∆ = z+

∫ 1

0

[
(i∆ +M∆)

∫ 1

x∗
xγzdx

]
dj.
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To compute the aggregate rate of growth, subtract z from both sides, perform the integration on the

right-hand side, and divide by z∆, to obtain

g = (i+M) γ

(
1

2
− x∗2

2

)
.

Last, let i = 1 and use equilibrium matching rate given by (55) to write i + M = 1 + x/(1 − x) =

1/(1− x). The above formula can then be rewritten as

g = γ ×
[

1

2︸︷︷︸
non-market

component

+
x∗

2︸︷︷︸
]

market

component

. (61)

Equation (61) characterizes the role the patent market plays in determining the equilibrium

growth rate. Assume there is no patent market so that all firms keep their ideas for themselves.

This is equivalent to x∗ = 0. In this case, since each idea is drawn from a uniform distribution, the

average propinquity of an idea to an innovating firm is equal to E[x] = 1/2. Moreover, each idea

contributes to a firm’s productivity by the multiplicative term γ per unit of propinquity. Therefore,

the overall growth in productivity will be given by γ/2.

The role of the patent market comes into play through x∗. Recall that firms keep patents with

propinquity x ≥ x∗ and that patents are drawn from a uniform distance distribution. When the

cutoff increases from 0 to x∗ the average propinquity of the utilized ideas increases by x∗/2 and

the average propinquity becomes (1 + x∗) /2. Therefore, any market arrangement that increases the

threshold x∗ contributes positively to economic growth.

12.3 Predictions

In order to achieve further analytical results, assume also that µ = 1. Using (57) and (60) then gives

x∗ =
ρ

η
+ 1−

√[
ρ

η
+ 1

]2

− 1. (62)

For use below, note that the cutoff rule, x∗, is decreasing in ρ/η.

Proposition 4 (Aggregate Growth Rate) The aggregate net rate of growth, g, is increasing in the

productivity gain from a new idea, γ, and matching effi ciency, η, and is decreasing in the rate of

time preference, ρ.

The first fact is obvious from (61), while noting from (62) that the cutoff, x∗, is not a function

of γ. To see the second fact note that an increase in matching effi ciency, η, increases the cutoff,
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via (62), and therefore growth, g, though (61). This result is also very intuitive. As the matching

technology becomes more effi cient, the market value of a patent increases due to more frequent

matches. Therefore, the owner becomes more selective when deciding to keep an idea. This increases

the cutoff rule x∗. Hence, markets with more effi cient matching technologies grow faster. The last

result follows from the fact that more patience (a lower ρ) translates into a higher expected value

from selling the patent as is evident from (58). Hence, firms put more ideas on the market when

discount rate decreases and ideas are allocated to better users in this way.

12.4 Proof of Lemma 3

Proof. Substitute the conjecture (53) into (47), while making use of (48), to get

r [v1z + v2z]− v2zg = πz + i

[∫ 1

x∗
[v1 (z + γxz) + v2z− v1z − v2z] dx

]
+ ix∗q.

This expression simplifies to

r [v1z + v2z]− v2zg = πz + i

∫ 1

x∗
v1γxzdx+ ix∗q

= πz + iv1γz

[
1

2
− x∗2

2

]
+ ix∗q.

Equating the terms on the left- and right-hand sides that involve z and z, separately, yields

v1 =
π

r
, and rv2z− v2zg = iv1γz

[
1

2
− x∗2

2

]
+ ix∗q.

Recall that q = A (z) = az and that along a balanced growth path r − g = ρ. These facts allow for

the formula for v2 to be rewritten as

v2 =
iv1γ

[
1
2 −

x∗2

2

]
+ ix∗a

ρ
.
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