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1. Introduction. This note is concerned with the behavior of bargaining
solutions under replications of bargaining problems. Kalai (1975) showed that
each member of the one parameter family of non-symmetric generalizations of
the two-person Nash solution (1950) is equivalent to the Nash solution under
appropriate replications (or limits of such replications). He also noted the
invariance of the Kalai-Smorodinsky (1975) solution under replications.

~We argue here that these results crucially depend on the manner in which
the replications are performed. We propose another replication method which
seems to us just as natural and we formulate a corresponding notion of
invariance. Now it is the Nash solution that is invariant, while each member
of a one parameter subfamily of the family of non-symmetric generalizations of
the two-person Kalai-Smorodinsky solution is equivalent to the Kalai-
Smorodinsky solution under appropriate replications (or 1limits of such
replications).

The two replication methods are polar opposites. Kalai's method models
maximal compatibility of interests between the original agents and the
newcomers while the method described here models minimal compatibility. Both
methods have natural interpretations and applications in economic contexts.
Kalai's method seems particularly appropriate in public good economies and
ours in private good economies.

The parallel results obtained in the two studies have relevance to
situations in which there is some flexibility in the number of agents actually
involved in negotjiations. They tell us when groups of similar agents benefit
from being represented by one of them and conversely when an agent gains from

recruiting supporters with claims similar to his.
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2. Definitions, results. Given n¢ N, the set of positive integers, let B

be the class of n-person bargaining problems, i.e., convex, compact and

. n L -

comprehensive® subsets of IR+ containing at least one positive vector.? An n-
: . n , . .

person solution associates to every S € B a unique point of S, interpreted as

the recommended compromise for S. For the n-person Nash solution, N(S) is the

maximizer of Hxi for x € S. For the n-person Kalai-Smorodinsky solution, K(S)

is the maximal point of S on the segment [0,a(S)] where ai(S) = max{xilx e s}

for each 1. These solutions have non-symmetric generalizations:® Given
n p Py P
p = (pl,---,pn) € R, , N (S) is the maximizer of Hxi for x S and K7 (S)

is the maximal point of S on the segment [O,ap(S)] where aIi)(S) E pial,(S) for

Pys--->sP
each i.“ With a slight abuse of notation, we will also write N* as N 1 n
Pys---sP
and KP as K 1 n
Next, we define our notion of replication. Given a two-person problem

2 +
5 e B, and given m,n ¢ IN, the (m,n) replica of S is the problem g™ e g™t

involving m agents of type 1, indexed by i € Im z {1,...,m} and n agents of
type 2, indexed by j e Jn = {m+l,...,m+n}. It is constructed as follows:
m+n t 1 1

given (i,j) ¢ Im X Jn’ let Sij z {xeR | 3 (xl,xz) e S with X, = %, and
x, = xj; X, = 0 for all k ﬂ{l,g}}. Finally, let
m,n m+n
S = i, ] . i .

cch{Sij | (i,7) € Imen} , where cch{Al, ,At}, with Al’ ,At Cc R )
denotes the convex and comprehensive hull of Al’ R ’At’ i.e. the smallest

. m+n L.

convex and comprehensive subset of R containing Al’ ce ,At.

We are interested in comparing the sum of what the agents of a given
type get in s™™ to what the agent they are replicating gets in S. This
comparison depends of course on what solution is used to solve s™™ and s.
If, for a particular solution, the two numbers are always equal, we say that

the solution is replication invariant. We show that the Nash solution has
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this property. Although the Kalai-Smorodinsky does not, it turns out that the
first number is equal to what the second would be if S were solved by the two-
person non-symmetric Kalai-Smorodinsky solution with weights Py and Py
proportional to m and n. Conversely, any two-person non-symmetric Kalai-
Smorodinsky solution can be approximated by applying the Kalai-Smorodinsky
solution after replication of the agents in proportions approaching the degree
of asymmetry of the solution. We start with the results that concern the

Kalai-Smorodinsky solution.

Theorem 1: For each (m,n) € N x N, and for each S e BZ,

mKi(Sm’n) = KT’H(S) for each i e I_ and nKj(Sm’n) = K?’“(S) for each j € J_.

m+n

Proof: Let (a,B) = Km’n(S) and x € R be defined by xi = ao/m for each

i €T andx, = B/n for each j e I . We will prove that x = K(s™ ™y,

Let ' ,B' e R be such that the line of equation
1 1

a'xl + B'xz = a'a + B'B supports S at (a,B). Given each (i,j) e I x Jn’

" - - .
™M be defined by xiJ = a, X}J = B and X;J = 0 for any other

. ij m+n .
coordinate k. Clearly x- ¢ Sij and the hyperplane H C R of equation

let le € R

o'l x, + B'EL X, = a'a + B'B supports Sij at x'. Since
. In

m,n _ . m,n

S = CCh{Sijl(l,J) e Im X Jn}, H supports S as well. Note that
_ 1 ij . . m,n .

X == L x 7. Therefore x is a point of S undominated by any

(1,J)eIm X Jn
other point of s™™ e will be done if we can show that x = Xa(Sm’n) for
some A.

Since (a«,B) = Km’n(S), (e, B) = u(mal(S), naz(S)) for some . Also,
m,n _ . m,n - .
ai(S ) al(S) for all i e Im and aj(S ) aZ(S) for all j e_Jn. The
argument concludes by recalling the definition of x. (X turns out to be equal
to u.)

QED
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2 m,n
Corollary: For each (myn)e W x N, and for each S€ B, K *(8) can be

M > M M > P
approximated with any degree of accuracy by (kai(S ) nkKj(S )) where

cod el Lo V0 om0 LD IO

k k

m - m/n.

W/ ™

The next result is that the Nash solution is replication invariant.

2 m,n, _
Theorem 2. For all (m,n) €IN x N, for all Se B®, mNi(S ) = Nl(S) for each
. m,n, _ -
i e.Im and an(S ) N2(S) for each j e Jn.
. + '

Proof: Let xe R " be as in Th.1 with (a¢,B) designating N(S) instead of
m,n , m,n ) -
K (8). We claim that x = N(S ’ ). First of all, we have that X, = Xo for
all i,i' e I and Xy = X for all j,j'e J,- It is indeed well-known that
the Nash solution is anonymous, i.e. that if two individuals enter

symmetrically in the geometric description of a problem, their Nash payoffs

1 1

are identical. Now (a,B) is obtained by maximizing XX, for
1 t 1 |
x' = (x;,%x,) € S. This implies that the line of equation x,/a + x,/B = 2
' t
supports S at (a,B) as well as the curve of equation Xy X, = af. As in

Th.1l, x is a point of s™™ yndominated by any other point of gm»n Finally,
t t
the hyperplane H' of equation (I x.)/a + (L Xj)/B = 2 supports S™T at x
I J
m

n
but it also supports there the hypersurface of equation
1
X, = (%)m(ﬁ)n. This means that x = N(Sm’n).
kel U n
QED
3. Discussion. The difference between our approach and Kalai's is best

explained by reproducing the example that appears in his paper (p.131): there
are two players who can receive one dollar if they agree on a division of that
dollar. Each agent's utility is linear in what he receives so that the

problem they face in the utility space is the l-dimensional simplex S if the
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utilities are normalized by assigning utility one to receiving the whole
dollar and utility zero to receiving nothing. Both the Nash solution and the
Kalai-Smorodinsky solution recommend that the two agents get equal utilities,
implying that they receive 1/2 dollar each. Now a third player comes in,
identical to agent 2 in that he derives exactly the same utility as agent 2
from what agent 2 receives. This implies that the problem faced by the
3-player group is the largest convex and comprehensive set with projections §
on the 1-2 plane and the replica S' of S on the 1-3 plane (obtained from S by
having agent 3 playing in S' the role played in S by agent 2). The problem is
the intersection cyl{S,S'} of the cylinder based on S with generators parallel
to the third axis and of the cylinder based on S' with generators parallel to
the second axis. This construction amounts to assuming maximal coincidence of
interests among agents 2 and 3. Agent 2's consumption is like a public good
for the two of them.

The opposite extreme, in replicating agent 2, is to assume that agent 3
derives from any amount that he, agent 3, consumes, a utility equal to the
utility that agent 2 would derive from consuming the same amount but that, for
each utility level attainable by agent 1, agents 2 and 3's utilities sum to a
constant. Such a situation, which implies minimal compatibility of interests
between the two identical agents, is modeled by taking the three-person
problem to be cch{S,S'} as we have done here. This would be the appropriate
formulation for economies with only private goods.® It is of course because
the utilities of identical agents can be traded off at a one-to-one ratio that
it is particularly interesting to add these agents' payoffs and to compare the
sum to what one of them would get if he were to '"represent' them all. Such

considerations are behind the notion of replication invariance that we

proposed.



6

More generally, when economic problems are considered in which some
goods are public goods for only subgroups of agents, replications would have
to be modeled by combining Kalai's approach with the one followed here.

Kalai's results and ours reveal a sort of symmetry in the responses of
two important solutions to two extreme forms of replication, and help us
understand the circumstances under which agents would gain from having more
agents similar to them around or would be hurt by it. Such evaluation would
be of particular relevance when agents have control over whether new agents
join them in the negotiations.

Related invariance properties were recently investigated by Moulin
(1983). His analysis, placed in the <context of choice problems with
transferable utility, involves requirements on solutions such as ''invariance
under merging and splitting" (of agents). He uses them in characterizations
of Egalitarian and Utilitarian solutions.

Finally, we note that the results presented here could just as well be

proved for replications of n-person (instead of 2-person) problems.



Footnotes

S ¢ lRi is comprehensive if for all x,ye \Ri, x e S and x 2 y imply that
y e S.

Bargaining theory is usually concerned with pairs (S,d) of a convex,
compact subset S of R” and of a point d € S strictly dominated by at
least one point of S. The bargaining problems considered here differ
from those in three ways. First, we have chosen d = 0 and ignored it
altogether in the notation. Second, we have required all points of S to
dominate d. These two differences are immaterial to our analysis.
Third, we have imposed comprehensiveness of S: this is because without
this restriction the Kalai-Smorodinsky solution may select strictly
dominated points where n 2 3, while with the restriction, it always
selects weakly Pareto optimal points. (It is true however that the
Kalai-Smorodinsky solution outcome of an n-person problem obtained by
replicating in the manner described later a two-person problem that is
not necessarily comprehensive, would be weakly Pareto-optimal.)

The non-symmetric generalizations of N first appear in Harsanyi-Selten
(1972). They are also discussed in Roth (1979).

The non-symmetric generalizations of K discussed here constitute a
one-parameter subfamily of the family of non-symmetric generalizations of
K first described in Peters and Tijs (1982).

A

Note that for all A > 0, N'P = NP and k P = kP.

Incidentally, it is the approach followed by Kaneko and Wooders (1982) in

their study of the cores of partitioning games.
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Monotonicity of Bargaining Solutions with
Respect to the Disagreement Point

1. Introduction. An n-person bargaining problem is a pair (S,d) of a

n

subset S of R® and of a point d e R?. ®" is the utility space, S is the

feasible set, and d is the disagreement point. If the agents unanimously

agree on a point x of S, they get x. Otherwise, they get d. Given a
class of n-person bargaining problems, a solution defined on the class
is a function F associating to every (S,d) in the class a point F(S,d) € S
interpreted as the compromise recommended for (S,d).

We  investigate here whether the best known solutions respond
appropriately to changes in d, for fixed S. Given some agent i, assume
that di increases while dj remains constant for each Jj#£i. Since di
represents agent 1i's fallback position, one would expect that agent i's
final payoff increases (or at least does not decrease). We show that

the Nash solution behaves in this way on a class of problems commonly

considered; so do the ZKalai-Smorodinsky and Egalitarian solutions on

the subclass obtained by requiring utility to be freely disposable (a
condition which is natural since without it these two solutions would
not always yield (even weakly) Pareto-optimal outcomes).

A related requirement is that, in the circumstances described in
the above paragraph, not only agent 1i's payoff does not decrease, but
also the payoff of none of the other agents increases, so that they all
bear the cost of the improvement in agent i's bargaining position. We
show that neither the Nash nor the Kalai-Smorodinsky solution behave in
this way, even 1if utility is freely disposable. However, under that

assumption, the Egalitarian solution does.
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2. Notation. We will consider two classes of problems. En is the class
of pairs (S,d) where S¢ R® is convex, compact, and there exists x e S
with x > d.! En is the subclass of En of comprehensive problems (if x e S

and d <y <x, then y e S; this is the form that we will find convenient

to give to the condition that "utility is freely disposable"). Given

(s,d) e En, its Nash (1950) solution outcome N(S,d) is the point where

the product X is maximized for x e S with x > d; its Kalai-Smorodinsky
(1975) solution outcorme K(S,d) is the maximal point of S on the segment
connecting d to a(S,d), where for each i, ai[S,d) E.nax{xi[x e S; x > dl;
its Egalitarian solution outcome E(S,d) is the maximal point x of S with
X, - di = Xy - dj for all i,].

Given a solution F, it will be of interest to know whether F satisfies
any of the following conditions (in the statements of which (S,d), (s',d')
are arbitrary elements, and (Sk,dk) an arbitrary sequence, in its domain

of definition).

Pareto-optimality (po): For all x e R®, if x > F(S,d), then x ¢ S.

Weak Pareto-optimality (wpo): For all x e ®", if x > F(S,d), then x & S.

Scale invariance (s.inv): For all positive affine transformation i: R > (Rn,

if (s8',d") = (A(s),A(d)), then F(s',d') = A(F(S,d)).

Independence of irrelevant alternatives (iia): If s'Cs, 4 = d', F(s,d) e

S', then F(S',d') = F(s,d).

Continuity (cont): If k. s (in the Hausdorff topology) and & > d, then

F(Sk,dk) + F(s,d).

n

N satisfies all these conditions on En. K satisfies s.inv on ,

~~N

wpo and cont on En. E satisfies iia on En, wpo and cont on En.

lVector inequalites: x >y, x > y, X > V.



Finally, e = (1,...,1); co{xl, . ’Xk} is the smallest convex set
containing Xiyen oKy
3. The results. We start by formulating our first condition of

monotonicity with respect to the disagreement point.

d-monotonicity (d-mon): For all (S,d), (s',d'), for all i, if S' = S,

di > d, and dﬁ = dj for all j#i, then Fi[S',d') > Fi(S,d).
Theorem 1. The Nash solution satisfies d-monotonicity on En.
Proof. Because N satisfies s.inv, we can assume that d = 0 and N(S,d)
= e. Without loss of generality, we can also assume that d' = («,0,...,0)
for a > 0. TIet x = N(S,d'). We have to show that X, 2 1. let 8'= cofe,
x, d, d'}. Since N satisfies iia, then N(S',d) = e and N(S',d') = x.

Since N(S',d) = e, the hyperplane of support to the set {x' e Rnlﬂxi
= 1} lies above x, i.e.
(i) Exi < n.

Since N(S',d') = x, the hyperplane of support to the set

{x' e Rnl(xi—a) mx!
iAl

1 1 X

+ Y ———
X -0 iél Xy

Taking X, as fixed, we are led to investigating whether (x2,...,xn]

(xl—a) il xi} lies above e, i.e.

i#l

A

(ii)

+ n-1.

Xl—(!

e B9L exist satisfying the inequalities
(iii) Y x. < n-x. and
i 1=
1 X, -1
(iv) YV — < Xl + n-1.
4 X = Xo

Since the function h:R__+®, defined by h(t) = 1/t is convex, if

(X2,...,xn) solves (iii) and (iv), so does (xé,...,xg) defined by



X

i"E(.ZlX;)/(n_l) for all i#l. Assuming then that x, = ... = X_=a,
i .

(iii)and (iv) become

(vl (o-1l)a <n-x
n-1 xl-l
(vi)  — ¢ ;I:a + n-1

These inequalities can be jointly satisfied by same a only if
n-xy (n-1)(x;-~)
< . For this to be true, it is necessary that the
n-1 ~ nxl—l—a(n—l)

quadratic expression in X,
-nxl2 + xl(a(n—l)+2n) - an + q-n
be positive. However, its discriminant is uz(n—l)z, and its roots 1 and
n--1 ) _ , r n-17 .
1+ . It is positive only if X) € Ll’ l+a-?rJ, i.e, if Xy 2 1.
QED

Theorem 2. The Kalai-Smorodinsky solution satisfies d-monotonicity on
\n

Z .

Proof . Because K satisfies s.inv, we can assume that d=0. Without loss
of generality, we can also assume that d' = (¢,0,...,0) for ¢ > 0. Iet
X = K(s,d) and x' =K(S,d'). Since {y e sly > dl iy e sly > d'}, then
a(s,d') < a(s,d). However, al[S,d] = al(S,d'). Therefore we have

(i) a,(s,d) = a,(s,d') and a;(s,d) > a;(s,d") for all iAl.

By definition of K, we also have

(ii) x = (1-A)a(s,d) for some A e [0,1[ and

(iii) x' = pd' + (1-pla(s,d') for some u e [0,1[.

Suppose now, by way of contradiction, that x! < x,. Then, for at least

1 1

one 1iAl, x! > x;. Otherwise, we would have x' < x, in violation of the

fact that K satisfies wpo on En. To fix the ideas, suppose xé 2 X5,

Then from (i), (ii), (iii) the constraints xi < %y and %3 > X%, yield



po + (l-u]al(S,d') < (l—x)al(s,d) = Xy

= (l-u)az(s,d')

>
|
v

(l‘x)az(syd) = XZ

which in view of (i) give pa < 0, which is impossible.
OED

Remark. This result also holds on zn if n = 2 but not if n > 2. This

is clear in the first case. To prove the negative statement, we consider

|

the following example, illustrated in Figure 1.

a(S,d)=a(S,d’)

Figure 1
Example. Iet n = 3. ILet S = co{(0,0,0), (1/4,0,0), (1,1,0), (0,1,0),
(o,1,1), (1/2,1,1)}, 4 = (0,0,0), d' = (1/4,0,0). Then we have a(S,d)
= a(s,d') = e, K(s,d) = (1/3,1/3,1/3) and K(S,d') = (1/4,0,0). Agent
1 loses as d changes to d'.

Theorem 3. The Egalitarian solution satisfies d-monotonicity on En.



Proof . Suppose by way of contradiction and without loss of generality,

that for some (S,d), (S,d') e zn with d = (0,...,0) and 4" = (a,0,...,0)
with a > 0, we have that xl’ < Xp, where X = E(S,d) and x' = E(S,d').

g _ _ _ _ _ — 1 1 !
By definition of E, X = ... =X and xi a = xé = ... = X Since Xq
< X, it follows that xé < x2,...,x6 < X, SO that x' < X, in violation

of the fact that E satisfies wpo on En.

QED
Remark. This result does not hold on En, even if n = 2. Indeed, let
S = co{(0,0), (1,0), (2,2)}, 4= (0,0), d4' = (1/2,0). We have that E(S,d)

= (2,2) while E(S,d') = (3/2,1). Agent 1 loses as d changes to d'.

We will now strengthen the condition of d-monotonicity by requiring
that if d moves in a direction favorable to an agent, all the others be
negatively (in the weak sense) affected.

Strong d-monotonicity (st.d-mon). For all (s,d), (s',d'), for all i,

if §' = g, di > di and dﬁ = dj for all j#i, then Fj(S',d') < Fj(S,d) for
all j#i.
Remark. As stated, this condition is not really stronger than d-mon since

no requirement is imposed on Fi[S',d'] in relation to Fi(S,d). However,
if F satisfies po and st.d-mon, then F satisfies d-mon. Also, if F
satisfies wpo, st.d-mon and cont, then F satisfies d-mon. Finally, observe

that if n=2, and under these additional conditions, st.d-mon is equivalent

to d-mon.
Our results here are mainly negative.

Theorem 4. The Nash solution does not satisfy strong d-monotonicity.



Proof. Iet n z 3. ILet d= (0,0,0) and d' = (¢,0,0) for a > 0. We will
look for x e R and ¢ > 0 such that for S = co{d,d',e,x}, we have e =
N(Ss,d), x = N(S,d') and Xy > 1. We argue as in the proof of Theorem 1,
that for e = N(S,d) and x = N(S,d') to hold, it is necessary and sufficient

that
(1) Xl + X2 + X3 é 3
1 1 1 Xl
(ii) —t — - < + 2.
X, -0 X, 3 = Xl—a

These inequalities are satisfied (at equality) for

O\l\l
Nos

3 2 11
50 Xy = 55 X3 = 13 and a =
Agent 3 gains as d is changed to 4°'.

QED
Theorem 5. The Kalai-Smorodinsky solution does not satisfy strong
d-monotonicity on En,
Proof. The proof is illustrated in Figure 2. Iet n = 3. Let d= (0,0,0),

a' = (1,0,0), and S = cofd, (2,0,0), (2,1,0), (0,2,0), (0,2,2), (0,0,2),
(2,0,2), (2,1,2)}. We have that a(s,d) = (2,2,2) and K(S,d) =
(4/3,4/3,4/3). Also a(s,d') = (2,3/2,2) and K(S,d') = (7/4,9/8,7/4).

Agent 3 gains as d changes to d'.

QED



a (S,d)i
S 1l 7
/ a(S,d’)
- / ]
d=20 d’ / 2
2
Figure 2

Theorem 6. The E)galitarian solution satisfies strong d-monotonicity on

tn
Z .
Proof. Straightforward.

The above results leave open several questions. One of them is whether
a solution on En can satisfy po, sy, iia and cont without satisfying d-mon.

The answer is yes, even if n = 2, as shown by the next example, illustrated

in Figure 3.
L,
4 V2
N 5
y
1 X
i/ @ -
-2 0 2 4 526 742

Figure 3



Example. ILet n=2. Ilet B gz co{(0,0), (7 1/2,0), (6,1), (0,4)} and
5' = co{(-2,0), (51/2,0), (4,1), (-2,4)}. Ietxe]m 1/2,0), (6,1)[,

y €] (4,1), (2,2)] be given and let f: R®

+ R be a strictly convex, symmetric
and increasing function having two level curves !l and 12 respectively
tangent to 3 at x and to 3' at y. Then, given any (S,d) e 22, let F(S,d)
g_argmax{f(x—d)lx e s} + d.

It is easily werified that F satisfies po, sy, iia and cont. To
show that F does not satisfy d-mon, let d = (0,0), d' = (2,0). Note that
F(S,d) = x and that F(3,d') = F(8',d) + (2,0) =y + (2,0). Since v, *
2 < X;, we are done.

The next question 1is whether a solution on En can satisfy po, sy,

s.inv and cont without satisfying d-mon. BAgain, the answer is yes, even

if n = 2, as shown by the next example, iliusgrated in Figure 4:

3 2o\2q /]2 (S)

1/2¢+

w

d dr s'
-1/3 -\/4 0 1/4 3/4 1

Figure 4
Example. ILet n = 2. ILet 3 =co{(0,0), (1,0), (1,1/2), (1/4,1), (0,1)},
8' = cof(1,0), (1,1/2), (o0,1), (-1/3,1), (-1/3,0)}. Let x e [(1,1/2),

(1/4,1)], y e [(1,1/2), (O,l)] be given such x; > x5, y; > y, and ¥, <



Yoo and let f: Rz + R be a strictly convex, symmetric and increasing

function having two level curves ll and.],2 respectively tangent to S at
x and to S§' at y. Then, given any (S,d) e 22, let F(S,d) be defined as
follows: first, (S,d) 1is subjected to a positive affine transformation
A RE > 1Rz such that A(d) =0, x(a(s,d)) = (1,1). The maximum x* of f
on A(S) is then determined and finally, F(S,d) is set equal to A"l(x*).

It is easily wverified that F satisfies po, sy, s.inv and cont. To

show that F violates d-mon, let d = (0,0), 4' = (1/4,0). Note that F(5,d)

= x and that F(5',d) = y. To compute F(5,d'), we consider the linear
transformation A defined by A (x') = (% x] - %, xé), and we find that A(5,d')
= (8',4). Trerefore F(5,d') - 3 F(5',d) *+ (1/4,0). Since ;y, + 1/4

< Xl’ we are done.
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