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Abstract

This paper examines the existence, continuity and characterization of
optimal paths under Koopmans’ "time-stationary” or "recursive” preferences.
Such infinite-lived agents have flexible time preference. Their current
utility is defined as a fixed function (the aggregator) of current consumption
and future utility. Given a suitable aggregator, a useful refinement of the
Contraction Mapping Theorem generates the utility function. A limiting
argument, analogous to partial summation, constructs an upper semicontinuous
utility function for an even broader class of aggregators. The classical
Weierstrass method then demonstrates the existence of optimal paths. Under
somewhat more stringent conditions on the aggregator and technology, optimal
paths are continuous in the initial capital stocks, and are characterized

through the Euler equations and a transversality condition.






1. Introduction

This paper examines the existence, continuity and characterization of
optimal paths under time-stationary recursive preferences specified by an
aggregator function. Given a suitable aggregator, a refinement of the
Contraction Mapping Theorem generates the utility function. A limiting
argument, analogous to partial summation, constructs an upper semicontinuous
utility function for an even broader class of aggregators. The classical
Weierstrass method then demonstrates the existence of optimal paths. Under
somewhat more stringent conditions on the aggregator and technology, optimal
paths are continuous in the initial capital stocks, and are characterized
through the Fuler equations and a transversality condition.

Recursive utility involves flexible time preference. In contrast, many
dynamic economic models rely on the additively separable utility function.
Unfortunately, a fixed rate of impatience can cause strange behavior in rather
ordinary circumstances. A consumer facing a fixed interest rate will either
try to save without limit, or borrow without limit, except in the knife-edge
case where the rate of impatience equals the interest rate. This problem is
especially severe when there are heterogeneous households. If all households
face the same interest rate, and have different rates of impatience, they
cannot all be in a steady state.

Recursive utility escapes this dilemma by allowing impatience to depend on
income. These "recursive" or "time-stationary"” preferences, introduced by
Koopmans (1960), formalize a method used by Fisher (1930). Fisher employed a
simple division between current consumption and future utility.1 With
recursive preferences, current utility is taken as a fixed function (the

aggregator) of current consumption and future utility.



Koopmans’ approach was to find axioms on preferences that would allow the
utility function to be characterized by such an aggregator. I provide a
converse in this paper. Given an aggregator, recursive substitution can be
used to construct the utility function on an appropriate space of consumption
paths. A new concept of impatience, B-myopia, helps build the link between
the properties of the aggregator and the utility function. The parameter (3
combines information about both discounting and the asymptotic growth
properties of the aggregator. This result applies to a wide variety of
utility functions, including those with hyperbolic absolute risk aversion.?

Taking the aggregator as fundamental provides detailed information about
preferences. First, it is a lot easier to specify an aggregator than a
recursive utility function. Koopmans, Diamond and Williamson (1964) found an
aggregator that had a specific property (increasing marginal impatience), but
the corresponding utility function has never been explicitly computed. It
does not have a closed form expression. Second, the aggregator, with its
sharp distinction between current and future consumption, often makes it
easier to incorporate hypotheses about intertemporal behavior. It can be
quite difficult to translate axioms into usable conditions on the utility
function. Further, if we impose behaviorial conditions as axioms, there is
the question of their consistency. With aggregators, this is never a problem.
Once the utility function exists, consistency is automatic. Finally,
characterization of optima via the no-arbitrage conditions is simpler when we
use the aggregator rather than the utility function or preference order.

As in Lucas and Stokey (1984), I construct the aggregator by means of a
contraction mapping. Unfortunately, their method only applies to bounded
utility functions. I introduce a refinement of the Contraction Mapping

Theorem, the Weighted Contraction Theorem, which applies to a much broader



class of utility functions that includes many standard examples. This theorem
can also be used to lift the artificial restriction to bounded utility so
common in stochastic dynamic models.® Utility functions that allow —® as a
value require further treatment. The contraction technique is combined with a
"partial sum" technique to construct these utility functions.

Two additional results follow from the construction of the utility
function. First, depending on its asymptotic marginal felicity, the
aggregator can often be bounded by certain standard functions, which
systematically determine the parameter . Second, it enjoys useful continuity
properties. As in Beals and Koopmans (1969), Majumdar (1975) and Magill and
Nishimura (1984), the combination of continuity or upper semicontinuity with
compactness of the feasible set immediately yields existence. Further,
Majumdar showed that convexity properties can then be used to find support
prices via the Hahn-Banach theorem. This is quite different from the routes
taken by Gale (1967), Brock (1970) and Sutherland (1970). In particular,
value loss techniques are, at best, difficult to apply to recursive
preferences. Fortunately, continuity can still be used. As a bonus, Beals
and Koopmans' route to existence is conceptually much simpler than the other
approaches.

This method requires the choice of an appropriate commodity space. There
are two conflicting tendencies here. When the space is small and the topology
is strong, it is relatively easy to obtain a continuous utility function.

The concept of B-myopia measures how far we must go. The space must also be
large enough to contain the feasible set, and the topology weak enough to make
it compact. In particular, the space must contain the path of pure

. 4
accumulation.

When the utility function is actually continuous, much more can be said.



The Maximum Theorem yields a continuous maximizer correspondence. In
addition, with a concave utility function and convex technology, optima are
characterized by a combination of the Euler equations and transversality
condition. The weighted norms constructed to show existence are utilized in a
squeezing argument that demonstrates the necessity of the transversality
condition. They also help construct an approximate utility function used to
show sufficiency of the transversality and Euler equations.

Of course, these techniques apply to the simplest recursive case, the
additively separable utility function. As such, they bring many scattered
results under one roof. They can deal with piecewise linear, time-varying
(Brock and Gale, 1969), strongly productive (Gale and Sutherland, 1968), or
nonclassical technologies (Dechert and Nishimura, 1980) as well as
undiscounted (or even upcounted) utility in a unified way.

Section Two introduces the aggregator. The Weighted Contraction Theorem
is proved in Section Three. The utility function is constructed in Section
Four, using the Weighted Contraction Theorem and a "partial sum” approach.
Optimal paths are studied in the next three sections. Existence is the
subject of Section Five. Continuity is demonstrated in Section Six. Finally,
the Euler equations and transversality condition characterize optimal paths in

Section Seven. Concluding comments are gathered in Section Eight.

2. The Aggregator Approach

The formal analysis of recursive utility functions dates back to Koopmans
(1960). In addition to demonstrating the axiomatic underpinnings of recursive
utility, he showed how they could be constructed from an aggregator function

W. The aggregator maps X x Y to Y, where X and Y are subsets of R+ = {x €



R:x? O}.5 Without loss of generality, I assume O € Y. The aggregator W
must take values in Y so that the recursion map Tw can be defined below. The
recursive utility function will be the unique fixed point of TW'

Possible aggregators include W(x,y) = u(x) + 8y, which yields the
additively separable utility function Ei=1 6t_1u(xt), Koopmans, Diamond and
Williamson’'s (1964) aggregator W(x,y) = (1/6) log (1+Bx7+6y), and the Uzawa
aggregator W(x,y) = (-1+y) exp [-u(x)] as used by Uzawa (1968) and Epstein and
Hynes (1983).

More formally, W: X xY - Y is an aggregotor if:

W1} W is continuous on X x Y and increasing in both x and y.
W2) W obeys a Lipschitz condition of order one, i.e., there exists
& > 0 such that |W(x,y) - W(x,y')| < &|y-y'| for all y, y' in
Y. (This is called uniformly bounded time perspective.)
Another useful property is
W3’) W is jointly concave in x and y.

There are several important points about (W2). First, the Lipschitz bound
6 is independent of x and y. Second, 6 < 1 is not required. This permits
undiscounted or even upcounted models. Third, a variable 6 could be handled,
but would require much finer control over both the program space and the
aggregator to give significant additional information. The uniform bound is
chosen to make life simpler, and maintains a balance between power and ease of

use.

Given such an aggregator, we can define the recursion map TW' First,

define the projection m and shift S by 7X = Xy and SX = (x2 ..) for X €

Xy
R’. The key property that makes a utility function U recursive is that U(X)
= W(wX, U(SX)). Intuitively, we can find U by recursively substituting it in

this equation. This recursive substitution is accomplished by the



transformation Ty defined by (TwU)(X) = W(mX, U(SX)). Thus (TQO)(X) =

, W(x1 ..... W(XN,O))...)).

Curiously, the aggregator need not be jointly concave for the associated
utility function to be concave. The Uzawa aggregator is not concave, but the
associated utility function U(x) = —zi=1 exp [—E:zl u(xT)] is concave.
The Uzawa aggregator does satisfy condition (W3) below. Epstein (1983) gave
sufficient conditions for the concavity of generalized Uzawa aggregators.
Whenever the existence theorems of Section Four provide a utility function,
condition (W3) is both necessary and sufficient for its concavity.

W3) (Tga)(X) is concave in X for all N and all constants a € Y.

LEMMA 1. Suppose (Tya)(X) - U(X) and (W3) or (W3') holds. Then U is
concave on its domain A. If, in addition, W is strictly concave in x and
strictly increasing in y, then U is strictly concave.

PROOF. Suppose (W3') holds, then (W3) holds. To see this, take O < a <1
and X, X' € A, and assume f(X) = [Tg—la](X) is concave. Let X% = aX +
(1-a)X'. Then T f(X") = WD, £(SXT)) > Wk, af(SX) + (1-a)f(SX')) 2
a W(xl,f(SX)) + (1-a) W(xi,f(SX')). By induction, (W3) follows. Finally, as
the pointwise limit of concave functions, U is concave.

The argument for strict concavity is similar. QED
3. The Weighted Contraction Theorem
The Contraction Mapping Theorem is a useful technique for proving

existence theorems and is often used in dynamic programming (e.g. Blackwell,

1965; Denardo, 1967). The commonly used forms of this theorem require bounded



utility functions. Unfortunately, this rules out many of the usual utility
functions. In particular, functional forms with constant elasticity of
marginal utility, such as the logarithm, are not included. This is a severe
restriction. Fortunately, a modification of the contraction technique can be
used even when the utility functions are not bounded. This is the weighted
contraction method.

Weighted function techniques are relatively new to dynamic programming
(e.g.., Wessels, 1977; Waldman, 1985),6 and have only now found their way to
economics. The idea is this: Instead of considering bounded functions, look
at functions obeying a growth condition. This new function space has a
natural norm induced by the growth condition. On this new (weighted) space,
the mapping is a contraction.

Let f € C(A;B), the space of continuous functions from A to B. Suppose ¢
€ C(A;B) with BC R and ¢ > 0. The function f is ¢-bounded if “f”¢ =
sup {|f(x)|/¢(x)} < ®, and the ¢-norm is Hf”¢.7 The ¢-norm turns C@(A;B) =
{f € C(A;B) : f is ¢-bounded} into a Banach space.® In particular, C¢(A;B) is a
complete metric space. A transformation T: C¢ - C¢ is a strict contraction if

HTx—Ty”w < 6”x—y”¢ with 6 < 1. For such T, we have:

CONTRACTION MAPPING THEOREM. A strict contraction on a complete metric
space has a unique fixed point.
The proof is well-known, and can be found in various standard references

(e.g.. Reed and Simon, 1972; Smart, 1974).

In applications, the main problem is to show that T is a strict
contraction. An easy way to do this is by using monotonicity properties, as

is common in dynamic programming. In the weighted contraction context, this



vields the following form of the theorem.

WEIGHTED CONTRACTION MAPPING THEOREM (MONOTONE FORM). Let T: C¢ - C such
that

1) T is non-decreasing (u < v implies Tu < Tv).

2) T(0) € C¢.

3) T(u + Ap) < Tu + ADBp for some constant 6 < 1 and all A > O.

Then T has a unique fixed point.

PROOF. For all u, v € Cw, lu—v| ¢ Hu—v”w ¢. So, u v+ ”u—v”¢ ¢ and v
<u+ ”u—VHQ ¢. Properties (1) and (3) yield Tu £ Tv + 6”u—v”¢ ¢ and Tv £ Tu
+ 8”u—v”¢ ¢. Thus ”Tu—Tv”¢ < 6”u—v“w.

Setting v = 0, we have “Tu—T(O)H¢ < 9”u"¢, and so “Tu“¢ < BHu”w +
HT(O)H(P { ®» by property (2). Hence T: cq) - c(p. As 8 < 1, T is a strict
contraction on C¢. By the contraction mapping theorem, it has a unique fixed

point. QED

This form of the Contraction Mapping Theorem is particularly adapted for
use on dynamic programming problems, including economic models with a
recursive structure. In particular, it can be used to establish the existence
and continuity of recursive utility functions. It can also be used on
stochastic programming problems such as those in Lucas’ asset pricing model
(1978). Other variants are possible. By using the techniques of Bhakta and
Mitra (1984), the requirement that 6 < 1 can be relaxed. Further, a version

of the Local Contraction Mapping Theorem can also be obtained.



4. The Existence of Recursive Utility

The recursive utility function will generally be defined on a space
smaller than R . Define X(B) = {X € K. : X[ < @) where [X|g = sup PR
is the PB-weighted e norm. Here § 2 1. The utility function will be a
function on X(f8) that is continuous in the topology generated by the B-norm
(B-topology). These norms can be thought of as having the discount factor 1/
built in. Topologies of this type have been used by Chichilnisky and Kalman
(1980) and Dechert and Nishimura (1980) to study optimal paths.

One notion of impatience is the concept of myopia introduced by Brown and
Le@is (1981). Their basic idea was to use the continuity properties of the
utility function to measure impatience. This notion was founded on the
observation that Mackey continuity presupposes a certain degree of impatience.
This idea may be further developed by considering continuity with respect to a
variety of different topologies. In particular, we may use the f-topology.

If U is defined and continuous on X(B), we call U B-myopic.

Let A C R with W(U;zo SNA) C X. Both the shift S and projection 7 are
continuous in any topology on A that is stronger than the relative product
topology., as are the B-topologies. Given a positive function ¢, continuous on

A, let C = C(A:Y) and C¢ = Cw(A;Y). Since all the functions involved are

continuous, T,: C - C.
W e
CONTINUOUS EXISTENCE THEOREM. Suppose the topology on A is stronger than
the relative product topology, W: X x Y » Y obeys W1 and W2, ¢ is continuous,
W(mX,0) is yp-bounded, and &l o S”¢ ¢ 1. Then there exists a unique U € C¢

such that W(wX, U(SX)) = U(X). Moreover, (TaO)(X) - U(X).
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PROOF. Since W is increasing in vy, Tw is increasing. Now |TW(O)|/¢(X) =
IW(X1,0)|/¢(X) < © because W(wX,0) is ¢-bounded. Finally, Tw(f + Ap) =
W(x

1+ £(SX) + Ap(SX)) < W(x[.£(SX)) + A8 9(SX) < Tyf + Ab lle o S||¢ @(X).

w
The Weighted Contraction Theorem, with 6 = 6il¢ o S”¢ < 1, shows that Tw is a
contraction, and has a unique fixed point U.
. N N N
Finally, Ue) - (oY, < 8" o™l < fvll, (slle o sll,)"-  As

the last term converges to zero, (TuO)(X) - U(X).

L.1. Examples with Aggregator Bounded Below

The easiest application of the Continuous Existence Theorem is to a
bounded aggregator with 6 < 1 and A = X(1). Take ¢ as the constant 1, and use
the product topology. This yields a recursive utility function that is not
only PB-myopic for all 3 2 1, but also continuous in the relative product
topology on X(l).g In particular, this applies to the Uzawa aggregator with
u(0) > 0.

Another application is to W with O < W(x,0) < A(1 + xn) as in the case
where W(x,0) has asymptotic exponent or asymptotic elasticity of marginal
felicity (see Brock and Gale, 1969) less than i > O with 6Bn < 1. In this
case, take A = X(f) and ¢(X) =1 + [X[g. Then |l¢ o S“¢ = B, and the
recursive utility function is B-myopic. When O < W(x,0) < A(1 + log x). a
similar argument shows that U is B-myopic for all B < w0 *9 In fact, when f is
concave, f(x) < f(1) + a(x-1) for some supergradient a. (If differentiable, «
= f'(1).) Taking ¢(X) =1 + IXII3 shows that any aggregator that is concave in
x yields a B-myopic utility function whenever 83 < 1.

Whether W(0,0) = O is really a matter of convenience. The important fact

used is that W is bounded below. If W(0,0) # O, a modest adjustment of the

utility scale can remedy the situation. Use the adjusted aggregator, V(z.y) =
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W(z, y + U(0)) - U(0). Both aggregators generate equivalent utility

functions, and V(0,0) = 0. When applied to the Uzawa aggregator W(z,y) =

“u(7)  (his yields U(0) = W(0,U(0)) = (-1 + U(0)) o ul0)

u(O).

(-1 +y)e so

U(0) = 1/(1-v) where v = e The adjusted aggregator is then V(z,y) =
[y + v/(1-v)] e %% = 1/(1-9).
In general, the condition Bné < 1 cannot be relaxed without losing

existence on X(B). Let W(z,y) = 21+ 8y and take B = 6_1/n.

The utility
function cannot be defined when X is given by X, = Bt. No utility function

can be constructed from the aggregator on X{(f3). A smaller space must be used.

L.2. Unbounded Aggregators

The Continuous Existence Theorem can also be used indirectly to deal with
aggregators that are not bounded below. These aggregators have W(0,0) = —w.
Paths that are near O can also pose problems. For this reason, we use a

donut-shaped region of Rw for the set A. Choose v { B, and define 7|X| =
t-1 |

inf |xt/7 if 0<~ <o and 7|x| =0 if « =0. Then take A = X(B.7)
= {X € R: : |X|ﬁ’ 7|X| { @}, This is the set of paths that have a growth rate
between v and B. For B = @, set leﬁ = 0. Thus X(B,0) is just our old friend
X(B) while X(»,~) is the space of paths with growth rates at least v. Note
that X(®,0) = X(») = Rf. Suppose there are increasing functions g and h with
g(x) < W(x,0) < h(x) and ¢ > O where ¢(X) = max {h(|X|B), —g(qul)}. Then
W(x,0) is ¢-bounded and trivially continuous in the discrete topology. If

5“¢ 0o S“@ < 1, the Existence Theorem will apply. This yields a utility
function defined on X{(B8.,~). Unless v = 0, this does not directly yield any

useful type of continuity. However, it is the first step of an indirect

attack on the problem.
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SEMICONTINUOUS EXISTENCE THEOREM. Suppose W: X x Y - Y obeys W1 and W2,
g, h and ¢ are as above, W(wX,0) is ¢-bounded, and 5l o S“¢ < 1. Then there
exists an U obeying W(mX, U(SX)) = U(X) that is upper semicontinuous in the [-
topology on X(B) if B < » and upper semicontinuous in the product topology on
X(®) if B = .

PROOF. For ~« > 0 and B < », let bt = Bt_l and define the "partial sums"”

on {X € X(B,v) : |x|’3 < k} by

N N
Sy() = TNUS"B)(X) = Wx. Wiy ... Wy U(kS B)) .. .)).
si < kB and W is i ' W uks By <
ince xy. . < B an is increasing, (XN+1' ( ) <
N N+1 N . . .. .
W(ks ', U(kS "B)) = U(kS B). Substituting this in SN(X) yields SN+1(X) <

SN(X) < U(kB). Thus U(X) given by lim SN(X) = inf SN(X) is either
N

N - «
finite or -,

Since U is the infimum of functions that are upper semicontinuous in the
B-topology, it is upper semicontinuous in the f-topology when |XIB < k.M
Provided U is well-defined on X(B8), it is upper semicontinuous there since any
B-convergent sequence is also B-bounded. When B = ® and W(«,0) = O,
interpreting U(SNB) as O gives the same result on all of X(®), while any W
with W(®,0) < ® can be transformed so that W(»,0) = O.

The bounds obtained in the Continuous Existence Theorem show that U is
well-defined and recursive. The same estimate can be used to prove both of

these facts. Write SN K to denote the dependence on k. For k' > k,

N N (N

& M [o(kS"B) + ¢(k'S"B)]

I
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N
< w (sl o sl

For some M'. The first step uses the Lipschitz bound (W2). The second uses
the ¢-boundedness of U on X{B,v), and the third uses fact that ¢(SNX) <

(e o SH¢)N ¢(X). As this last expression converges to zero, the definition

of U is independent of k. Now set k' = k8. Recursivity now follows from

N+1 .
W(XI’SN,k’(SX)) = W(xl,...,W(xN+1,U(kS B))...) = SN+1,k(X) since
letting N - ® and using the continuity of W shows W(xl,U(SX)) = U(X). QED

One point of importance is that the utility function exists on X(B,v).
Further, it is ¢-bounded there, and thus finite. Unfortunately, the
Continuous Existence Theorem does not yield useful information about the
continuity of U on X(B,v) as we were forced to use the discrete topology,
where all functions are continuous. Fortunately, upper semicontinuity
suffices for demonstrating the existence of optimal paths.

Aggregators with -1 - min {0, log x} < W(x,0) < C + log (1+x) fall
into this framework. Given 6 < 1 and § ?» 1, the constant C may be assumed
large enough that 6(C + log B)/C < 1. Taking ~» = 1 shows that utility
function exists on X(fB,1) for any B. In other cases, upcounting (6 > 1) may
be allowed. When -x'' { W(x.0) < O withn <0, we require GBn < sy <
1. As 11 <O, Sn <{ 1 and there are ~ that permit 6 > 1. The Upper
Semicontinuous Existence Theorem applies to these examples.

The "partial sum” approach works on a wider range of aggregators than

considered in the theorem. One of these is the Rawlsian aggregator, W(z.,y)
min {z,y}. Note that 6 = 1. In this case, the "partial sums” SN(X) =

inf {xt : t ¢ N} are independent of k and B. Recursivity follows instantly.
Further, the "partial sums" are defined on all of RT and continuous in the

product topology there. This means that the Rawlsian utility function U(x)

{
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inf X, is upper semicontinuous in the product topology. The same is true of
the discounted or upcounted versions W(z,y) = min {z,dy}.

If there is a function v(x) with v(x) = W(x,uv(x)), "partial sums" can be
defined by [Tuu(k)](X). These form a decreasing sequence, so their limit is
an upper semicontinuous function U(X). As W(x,,U(SX)) = lim [Tg+1v(k)](X) =

U(X), this yields a recursive utility function. This recursive utility

function may fail to be lower semicontinuous. One such example is W(x,U) = -1
-X -X 00 t

+ e U. Here v(x) = -1/(1 - e ™), and U(X) = Et=1 exp (_ET=1 XT).

Setting X, = 2 log (t+1)/t, and taking the sequence X® = (xl,...,xn,O,...),

shows that this utility function is not lower semicontinuous since U(Xn) = —®

but U(X) > -». Note that & = 1 in this example.'?
5. The Existence of Optimal Paths

The existence of optimal paths is shown by a version of the classical
Weierstrass method. Upper semicontinuous functions defined on compact sets

have maxima.

OPTIMAL PATH THEOREM. If F is a [B-compact subset of X(B), and U is B-
upper semicontinuous on X(f), there exists a C* € F with U(C*) = sup {U(C)
C € F}.

PROOF. Let U = sup {U(C) : C € F}. Take a maximizing sequence Cn S10)
U(Cn) - U*. Since F is f—compact, there is a subsequence, also denoted Cn
that PB-converges to some feasible C*. By the B-—upper semicontinuity of U,

(€ 2 lim 0(C ) = U*. But u(d%) < UT, so U(C") = U QED
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LEMMA 2. let a < B and let F be an a-bounded set. The B-topology and
the relative product topology coincide on F.

Proof. Let k be an a-bound for F. Clearly the B-topology is stronger
than the product topology on F. Suppose X" > X in the product topology.
Given e > 0, choose M such that k(a/ﬁ)M < e. Since X* - X, we can find an N

with sup {|x2 - xtI/Bt} < e for n > N. But then an - XIB { 2 for n > N, and
t<M

X" 5 X in the B-topology. The two topologies are identical. QED

The lemma is useful when trying to verify that a set is actually -
compact. If it is a-bounded for some a < B, it suffices to show the set is
compact in the relative product topology. As a general rule, the product
topology is easier to work with. It is crucial that 8 > a. Majumdar (1975)
gives an example illustrating why norm-bounded feasible sets are not compact
in the norm topology. The same sort of problem would occur here if 8 = a. In
fact, B = a = 1 is precisely Majumdar’s case.

One application is to a one-sector model of optimal capital accumulation
(Ramsey model). In the classical Ramsey model, the technology is described by
a (gross) production function. The production function f is a continuous,
non-decreasing function f: R+ - R+. Note that f(0) 2 0. In the time-varying
Ramsey model, the technology is described by a sequence, {ft}, of such
production functions. Given this production technology, the set of feasible
paths of accumulation from initial stock k (the production correspondence) is
P(k) = {X € X(w) : 0( x, < ft(xt—l)’ Xy = k}. The set of feasible paths,

F(k) is {C €X(®) : 0 (e < f (x

¢ S - X, for some X € P(k)}. Both F(k) and

t—l)
P(k) are closed in the product topology and F(k) C P(k) C X?_l [O,ft(k)].

As this last set is compact by Tychonoff's Theorem, F(k) is also compact in



16

t_
the product topology. Define ft inductively by fl = f1 and ft = ft o f 1.

The path of pure accumulation is {f'(k)}. If lim [fY(k)/a'] < ®, both P(k)
©

and F(k) are a-bounded subsets of X(B). When ;(Z) is a-bounded, we call the

technology a-bounded. By Lemma 2, any a-bounded technology yields a B-compact

feasible set for B > a. The Optimal Path Theorem then shows that an optimal

path exists whenever U is B-upper semicontinuous on X(B) for some B > a.

Many commonly used production functions yield a-bounded technologies. The
Cobb-Douglas production function with depreciation parameter A is f(x) = AxP +
(1-A)x where A > 0, 0 < p <1, and O ¢ A < 1. For this, take a = 1 when A > O
and any @ > 1 when A = 0. For the affine technology f(x) = Ax + B with A > O
and B > O, take a = A when B = 0 and any a > A when B > O. Production
functions of the form f(x) = (1 + Vx)® can use any a@ > 1. As any concave
production function obeys f(x) < f(a) + E(x-a) for some supergradient £ (e.g.
€ =1f'(a)), it is a-bounded for any a > §. Thus, any stationary, concave,

production technology is a-bounded for all a > 1lim f'(k). A time-varying
k » o

example is the case of exogenous technical progress where ft(x) = e"'%P. The
path of pure accumulation grows at asymptotic rate exp {n/(1-p)}. so the
technology is a-bounded for a > exp {n/(1-p)}.

Yet another type of feasible set is a budget set. This may admit
consumption paths that grow too fast. However, if we define utility to be
infinite on such paths, the choice of such paths may not be feasible in
equilibrium. For the budget sets considered in Becker, Boyd and Foias (1986),
it is enough that the utility function be well-behaved on technically feasible
paths. They approximate the utility function by functions that are continuous
on Rm. and demonstrate existence of equilibrium for this modified economy. A

limiting argument then shows that paths with infinite utility are not in the
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budget set in equilibrium.18

6. Sensitivity of Optimal Paths

The existence of optimal paths is just one of the useful facts that follow
from continuity of the utility function and compactness of the feasible set.
When the aggregator defines a continuous utility function, a modern version of
Weierstrass’ theorem, the Maximum Theorem, can be used to show continuity of
optimal paths. For example, when the budget set (and hence the optimal path)
depends continuously on a parameter vector w, the maximizer correspondence

M(w) will be continuous.

Maximum Theorem. If U is B-continuous and F(w) is [-lower semicontinuous
in w and B-compact-valued, then the value function J(w) = sup u(F(w)) is
continuous and the maximizer M(w) is upper semicontinuous. Further, if U is
strictly concave, then M(w) is a continuous function of w.

Proof. This is a form of the Maximum Theorems found in Berge (1963) or

Klein and Thompson (1984).

In the Ramsey model with an a-bounded technology, F(k) is PB-compact and
continuous for B > a. Since F(k) is a-bounded, the B and product topologies
are equivalent on F(k). In the product topology, the set of feasible paths is
the continuous image of the production correspondence, so it is enough to show
that the production correspondence P(k) is product continuous.

Upper semicontinuity is easy. The production correspondence is closed
since each of the inequalities that define it depend on only finitely many

periods, and are preserved under limits. Further, for k' near k, P(k') C



18

P(k+1). Locally, everything takes place in a compact set. Thus closedness
implies upper semicontinuity.

For lower semicontinuity, it is enough to show lower semicontinuity for
the subbasic open sets G(Y,e,N) = {K € Rf : |xt~yt| (e for all t < N}. Let
e,N > 0 be given. Take Y € P(k). By continuity of the ft' we can choose b
with [£'(k’')-£%(k)| < e for all t < N when |k-k’'| < 6. For any such k', take
the path x, = min {y,, £'(k')}. Note that f'(k') +e > £°k) > y_ for
t ¢ N, so Ve 2 X, > y, € for all t < N. Hence X € G(Y,e,N). Further,
£ (¢) = min (£ (v,). £y x,,; and x; < f (k') so X €P(k').
It follows P(k') N G(Y.e,N) # @ whenever |k-k'| < &, establishing lower
semicontinuity. Therefore P is a continuous correspondence.

An immediate application is to demonstrate B-continuity of optimal paths
as a function of initial capital stock. One consequence is that ct(k) is
continuous in k for each t. In general, this only holds for B > a. For B =
a, it can fail even in models with additively separable utility. Amir, Mirman
and Perkins (1983) and Dechert and Nishimura (1983), using a non-convex
stationary technology, find that optimal paths converge to zero if the initial
capital stock is below some critical value. The critical value is itself a
steady state, and the only optimal path from the critical value is to remain
there. Above the critical value, optimal paths converge to a steady state
that lies above the critical value. They assume a maximum sustainable stock,
so @ = 1 will do. The optimal path is clearly not norm (a = 1) continuous.

Variations on this are possible. Stronger forms of the maximum theorem
allow the utility function to depend on the parameter w. If the bounds of
Section Four hold uniformly in w, the optimal paths will be continuous in w. *

A simple example is an optimal growth model with additively separable utility

W(z.y) = u(z) + &y. Take {(k.6) = w € Q = R+ x [0,8] with a strictly concave,
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bounded u and 6§ < 1. With a stationary concave production function f, a
unique optimal path {ct(k,é)) exists. Further, {ct(k,é)} is B-continuous,
hence ct(k,é) is a continuous function of (k,5) for all (k,5) e Q.

When the turnpike property holds, B-continuity of optimal paths will imply
a-continuity. In fact, if optimal paths starting in some interval of initial
stocks converge to the same steady state, a—-continuity follows on that
interval. Beals and Koopmans (1969) and Magill and Nishimura (1984) have
demonstrated how these properties follows from monotonicity of the optimal
paths. Beals and Koopmans examined conditions where a convex technology would
yield monotonic optimal paths. A necessary and sufficient condition for
monotonicity is not known in general. However, in the additively separable
case, Dechert and Nishimura (1983) carried out an analysis of monotonicity in

a reduced form model. In the general aggregator case, the analogous reduced

form model has yet to be constructed.
7. Characterization of Optimal Paths

Optimal paths for the Ramsey model are characterized in this section. A
useful envelope theorem and the Euler equations are developed first. I then
proceed to the main result that the FEuler equations, together with the
transversality condition, completely characterize optimal paths for a large
class of aggregators.

The following assumptions will be maintained throughout this section.
The recursive utility function U obeys U(0O) = O and is concave and ¢-bounded
on X(B) for some ¢ with ||¢ o S”¢ < 1/6. 1In addition, the feasible set F is
generated by an a-bounded technology for some a < B given by a sequence

continuous, concave, increasing production functions {ft} with ft(O) = 0. As
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a consequence, the theorems of Sections Five and Six apply. The value

function J(y) is defined and continuous in the initial income y = fl(k).

Envelope Theorem. The value function ] is increasing and concave. If U
is differentiable with respect to consumption in period 1, then J is
differentiable and obeys J'(y) = U;(C) where C is any optimal path from y.

Proof. The first two properties follow from the usual arguments.
Differentiability is established as follows.'® Let h> 0, H = (h,0,...0), and
let C be an optimal path with initial income y so that J(y) = U(C). Clearly,
J(y+h) 2 U(C+H) and thus J(y+h) - J(y) 2 U(C+h) - U(C). Dividing by h and
taking the limit shows that the right-hand derivative J'(y+) satisfies J'{(y+)
2 U;(C). Repeating this with h < O shows J'(y-) < U ;(C) < J'(y+). As J is

concave, J'(y+) < J'(y-), thus J'(y) = U,(C). QED

Corollary. If U is recursive, and the aggregator is differentiable, then

J'(y) = Wy(c,,U(SC)) where C is any optimal path from y.

Before proceeding, note that partial derivative of U with respect to
consumption at time t is given by

U(C) = Wa(es.U(SC)) Wa(cz U(SCY) ... Wa(e, 1 U(ST'C)) Wile, (S O)).
Define the marginal rate of impatience R by

1 + R(C) = W,(c,;,U(SC))/W,(c,;.U(SC)) W,(c,,U(S%C)).
Then we have U (C)/U,,(C) = 1 +R(s"'C).
Let C* be optimal and let X* be the associated sequence of capital stocks.

Def ine Cs: R, - R’ by CS,t(X) = c: for t # s, s+l; c_ (x) = ft(xt_l) - X;

> *
CS,S+1(X) = ft+1(x) - X1 Then X, solves max {U(Ct(x)) : 0 <¢x( ft(xt—l)}'

S,S

X
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By the Kuhn-Tucker theorem,

% % > ] ¢ »*
Uy (C) £1,(x) —U(C) § =0 if 0 <x < f (x,_)

<0 if x =0
- t
Equivalently,
> 1+ r(sTIY if X = £ (%))
£, 65 = 1RSI 1 0 < < E )
< 1+ RETIY i X = 0.

In either form, these will be referred to as the Euler equations.16 The Euler

equations will be instrumental in proving the Transversality Theorem.

Transversality Theorem. A path c* is optimal if and only if the Euler

equations hold and lim XtUt(C*) = 0.

t > ®
Proof. Suppose C* is optimal.’” As above, the optimal path must satisfy
the Euler equations. Let Ve = ft(xt_l) denote the income stream associated
with the optimal path c* and Jt denote the value function at time t. As Jt(O)

= 0, and Jt is concave, Jt(y) >y Jé(y) for all y > 0. Setting y = Ve yields
t t
Jt(yt) > Y, Wi(ct,U(S c)) > X, Wi(ct,U(S C)). (1)

Now Jt(yt) = U(St_lc). Multiplying through by 6t_1 and using eq. (1) yields

t-1

5t y(stl

C) > x U(C) > O
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Combining the g-boundedness of U with &ll¢ o S“¢ < 1 shows lim xtUt(C) = 0.

For the other half, let C be feasible and define the approximate utility
function by Gn(C) = [T@U(C*)](C). Thus Gn(C) - U(C). Further, Gn is concave
and ¢_(C) = U(C), so

u(c’y - ¢ () > =, Ut(C*)(c: - c,)-
Now ct -c, = ft(x:_l) - ft(xt—l) - x: + X, . Since f is concave, ct - c, 2
f’(x* )[x* -x, .] - X+ X, Substituting and rearranging yields
t -1 t-1 t—-1 t t

% -1 , ™ »* N
u(Cc) -6 (0) > 22:1 Ut+1(C*) £1,,0) [x, - %] - 22:1 U (€)Ix, - x,]

P, (& 1, B - U I - x ]+ U (E)x, - X0

N\

*. %
2 - Un(C )xn.

The last inequality follows from the Euler equations, which imply that all of
the terms in the summation are non-negative. Letting n - ® shows that U(C*) 2

U(C) for all feasible C. Thus C. is optimal. QED
8. Conclusion

A number of extensions are possible. Similar techniques will work when
there are many commodities available at each time. In fact, a Banach space

of commodities at each time can be dealt with in similar fashion.'®

A time-
varying aggregator (Streufert, 1985) can also be used, resulting in a

recursive type of variable discount rate model (McKenzie, 1974; Mitra, 1979).
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Other possible developments involve the weighted contraction and "partial
sum” techniques. Stochastic models with recursive preferences have gotten
attention as of late (Epstein, 1983; Bergman, 1985; Nairay, 1985). The
Weighted Contraction Theorem may prove fruitful for investigating stochastic
or continuous-time models such as the Lucas (1978) asset pricing model. The
"partial sum” approach suggests how the concepts of "overtaking” and "catching
up” can be extended to recursive preferences. In fact, when a program with u
= -® is compared with programs with finite u, an implicit overtaking criterion
is present. Exactly how overtaking can be applied in a general recursive
framework remains to be seen.

Further work also needs to be done on relating the new B-myopia concept to

more traditional notions of impatience based on the marginal rate of

substitution for consumption in adjacent time periods.
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Footnotes

Fisher actually referred to "real income”, but he also emphasized that

income would ideally be measured in terms of utility.

Previous work along these lines (Lucas and Stokey, 1984) only applied to

bounded aggregators.

Examples where it may prove useful include Lucas (1978), Prescott and
Mehra (1980) and Danthine and Donaldson (1981). A weakness of these (and
other) papers is that explicitly solvable examples frequently involve
unbounded utility, while the general theory only applies to bounded

utility. Weighted contractions can remedy this.

This choice of the commodity space is similar in motivation to the
choice of both commodity and price spaces in Aliprantis, Brown and
Burkinshaw (1985). In their terminology, this commodity space is the

Riesz ideal generated by the path of pure accumulation.

The following notational conventions will be used. Sets are denoted by

boldface capitals, vectors in Rw by capitals and real numbers by

lowercase.

Weighted function spaces have a long history in the Fourier Analysis

literature, e.g., Stein (1956).
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11.

12.
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This type of weighting must be distinguished from another type of
weighting previously used in economics. The second type of weighting
deals with the underlying commodity space rather than functions on it.
Examples include Chichilnisky (1977, 1981) and Magill (1981) for
continuous-time models and Chichilnisky and Kalman (1980) and Dechert and

Nishimura (1980) for discrete-time models.

Let Vf = f¢. Since ¢ is continuous, Vf is a continuous function whenever
f is continuous. Further, V is an isometric isomorphism from the Banach
space of bounded continuous functions to C¢(A;B). Hence Cw(A;B) is also

a Banach space.

This product continuity was the result obtained by Lucas and Stokey

(1984).
Take C > O such take &(C + log B)/C < 1 and set ¢(x) = C + log (1+4x).
A function f is upper semicontinuous if {f(x) < a} is open for all a.

Some aggregators that seem to have 6§ = 1 are really well-behaved. One

example, used in Streufert (1986), is W(x,U) = x + JU, where W, = 1/2/U.

[1,®).

This blows up as U - 0. However, if U > 1, W > 1, so we take Y

On this set, & = 1/2, and all is well.
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16.

17.

In a different setting, Peleg and Yaari (1970) also utilized the fact
that paths with infinite utility were outside the budget set in

equilibrium,
Details may be found in Boyd (1986).
This method is adapted from Mirman and Zilcha (1973).

When the Inada condition lim W {c¢.U) = o holds, consumption will be
co0 b

strictly positive on the optimal path. Since ft(O) = 0, the associated
path of capital stocks is also pocitive. The inequalities reduce to

equality under the Inada condition This is not needed in the text.

This portion of the proof is based on the squeezing argument put forth in

Mirman and Zilcha (1975) and corrected by Becker (1985).

Just define }Xiﬁ = sup th/ﬁtH and 7{Xi = inf fo/vtn where Il-1l is the

Banach norm.



27
References

Aliprantis, C. D., Donald J. Brown and O. Burkinshaw (1985), Edgeworth
Equilibria, Cowles Foundation Discussion Paper #756, Yale University.

Amir, Rabah, Leonard J. Mirman and William R. Perkins (1983), Nonclassical
Optimal Growth, University of Illinois Discussion Paper.

Beals, Richard and Tjalling C. Koopmans (1969), Maximizing Stationary Utility
in a Constant Technology, SIAM J. Appl. Math. 17, 1001-1015.

Becker, Robert A. (1985), Capital Income Taxation and Perfect Foresight, J.
Pub. Econ. 26, 147-167.

Becker, Robert A., John H. Boyd III and Ciprian Foias (1986), The Existence of
Ramsey Equilibrium, Working Paper, Indiana University.

Berge, C. (1963), Topological Spaces, Macmillan, New York.

Bergman, Yaacov Z. (1985), Time Preference and Capital Asset Pricing Models,
J. Financial Econ. 14, 145-159.

Bhakta, P. C. and Sumitra Mitra (1984), Some Existence Theorems for Functional

Equations Arising in Dynamic Programming Problems, J. Math. Anal. Appl. 98,
348-362.

Blackwell, David (1965), Discounted Dynamic Programming, Ann. Math. Stat. 36,
225-235.

Boyd, John H., III (1986), Preferences, Technology and Dynomic Equilibria,
PhD. Dissertation, Indiana University.

Brock, William A. (1970), On Existence of Weakly Maximal Programmes in a
Multi-Sector Economy, Rev. Econ. Stud. 37, 275-280.

Brock, William A. and David Gale (1969), Optimal Growth under Factor
Augmenting Progress, J. Econ. Theory 1, 229-243.

Brown, Donald J. and Lucinda M. Lewis (1981), Myopic Economic Agents,
Econometrica 49, 359-368.

Chichilnisky, Graciela (1977), Nonlinear Functional Analysis and Optimal
Economic Growth, J. Math. Anal. Appl. 61, 504-520.

Chichilnisky, Graciela (1981), Existence and Characterization of Optimal
Growth Paths Including Models with Non—-Convesities in Utilities and
Technologies, Rev. Econ. Stud. 48, 51-61.

Chichilnisky, Graciela and P. J. Kalman (1980), Application of Functional
Analysis to Models of Efficient Allocation of Economic Resources, J. Opt.
Theory Appl. 30, 19-32.



28

Danthine, J.-P. and John B. Donaldson (1981), Stochastic Properties of Fast
vs. Slow Growing Economies, Econometrica 49, 1001-1033.

Dechert, W. Davis and Kazuo Nishimura (1980), Existence of Optimal Paths and
the Turnpike Property: The Non—-Convex Case with Unbounded Stocks, Working
Paper, SUNY-Buffalo.

Dechert, W. Davis and Kazuo Nishimura (1983), A Complete Characterization of
Optimal Growth Paths in an Aggregated Model with a Non-Concave Production
Function, J. Econ. Theory 31, 332-354.

Denardo, Eric V. (1967), Contraction Mappings in the Theory Underlying Dynamic
Programming, SIAM Rev. 9, 165-177.

Epstein, Larry G. (1983), Stationary Cardinal Utility and Optimal Growth Under
Uncertainty, J. Econ. Theory 31, 133-152.

Epstein, Larry G. and J. Allan Hynes (1983), The Rate of Time Preference and
Dynamic Economic Analysis, J. Pol. Econ. 91, 611-635.

Fisher, Irving (1930), The Theory of Interest, Macmillan, New York.

Gale, David (1967), On Optimal Development in a Multi-Sector Economy, Reu.
Econ. Stud. 34, 1-18.

Gale, David and W. R. S. Sutherland (1968), Analysis of a One Good Model of
Economic Development, in Mathematics of the Decision Sciences: Part 2 (G. B.
Dantzig and A. F. Veinott, eds.), American Mathematical Society, Providence.

Klein, Erwin and Anthony C. Thompson (1984), Theory of Correspondences, Wiley,
New York.

Koopmans, Tjalling C. (1960), Stationary Ordinal Utility and Impatience,
Econometrica 28, 287-309.

Koopmans, Tjalling C., Peter A. Diamond and Richard E. Williamson (1964),
Stationary Utility and Time Perspective, Econometrica 32, 82-100.

Lucas, Robert E., Jr. (1978), Asset Prices in an Exchange Economy,
Econometrica 46, 1429-1455.

Lucas, Robert E., Jr. and Nancy L. Stokey (1984), Optimal Growth with Many
Consumers, J. Econ. Theory 32, 139-171.

Magill, Michael J. P. (1981), Infinite Horizon Programs, Econometrica 49, 679-
T11.

Magill, Michael J. P. and Kazuo Nishimura (1984), Impatience and Accumulation,
J. Math. Anal. Appl. 98, 270-281.

Ma jumdar, Mukul (1975), Some Remarks on Optimal Growth with Intertemporally
Dependent Preferences in the Neoclassical Model, Rev. Econ. Stud. 42, 147-153.



29

McKenzie, Lionel W. (1974), Turnpike Theorems with Technology and Welfare
Function Variable, in Mathematical Models in Economics (J. Los and M. W. Los,
eds.), North-Holland, New York.

Mirman, Leonard J. and Itzhak Zilcha (1975), On Optimal Growth Under
Uncertainty, J. Econ. Theory 11, 329-339.

Mitra, Tapan (1979), On Optimal Economic Growth with Variable Discount Rates:
Existence and Stability Results, International Econ. Rev. 20, 133-145.

Nairay, Alain (1985), Recoverability of Uzawa Utiity Functionals Under Asset
Price Lognormality, J. Econ. Dynamics Control 9, 241-250.

Peleg, Bezalel and Menahem E. Yaari (1970), Markets with Countably Many
Commodities, Internat. Econ. Rev. 11, 369-377.

Prescott, Edward C. and Rajnish Mehra (1980), Recursive Competitive
Equilibrium: The Case of Homogeneous Households, Econometrica 48, 1365-137S.

Reed, Michael and Barry Simon (1972), Methods of Modern Mathematical Physics
I, Functional Analysis, Academic Press, New York.

Smart, D. R. (1974), Fixed Point Theorems, Cambridge University Press,
Cambridge.

Stein, Elias M. (1956), Note on Singular Integrals, Proc. AMS 8, 250-254.

Streufert, Peter A. (1985), Dynamic Allocation with Consistent
Intergenerational Benevolence, IMSSS Technical Report #471, Stanford.

Streufert, Peter A. (1986), Abstract Dyanmic Programming, University of
Wisconsin-Madison, SSRI Workshop Series #8619

Sutherland, W. R. S. (1970), On Optimal Development in a Multi-Sectoral
Economy: the Discounted Case, Rev. Econ. Stud. 37, 585-588.

Uzawa, H. (1968), Time Preference, the Consumption Function, and Optimum Asset
Holdings, in Value, Capital and Growth: Papers in Honour of Sir John Hicks
(J.N. Wolfe, ed.), Edinburgh University Press, Edinburgh.

Waldman, K. H. (1985), On Bounds for Dynamic Programs, Math. Operations
Research 10, 220-232.

Wessels, J. (1977), Markov Programming by Sucessive Approximations with
Respect to Weighted Supremum Norms, J. Math. Anal. Appl. 58, 326-335.






Rochester Center for Economic Research
University of Rochester
Department of Economics

Rochester, NY 14627

1985-86 DISCUSSION PAPERS

WP#1 GOVERNMENT SPENDING, INTEREST RATES, PRICES AND BUDGET DEFICITS IN
THE UNITED KINGDOM, 1730-1918
by Robert J Barro, March 1985

WP#2 TAX EFFECTS AND TRANSACTION COSTS FOR SHORT TERM MARKET DISCOUNT
BONDS
by Paul M. Romer, March 1985

WP#3 CAPITAL FLOWS. INVESTMENT, AND EXCHANGE RATES
by Alan C Stockman and Lars E.O0. Svensson, March 1985

WP#4 THE THEORY OF INTERNATIONAL FACTOR FLOWS: THE BASIC MODEL
by Ronald W. Jones, Isaias Coelho, and Stephen T. Easton,
March 1985

WP#5 MONOTONICITY PROPERTIES OF BARGAINING SOLUTIONS WHEN APPLIED TO
ECONOMICS

by Youngsub Chun and William Thomson, April 1985

WP#6 TWO ASPECTS OF AXIOMATIC THEORY OF BARGAINING
by William Thomson, April 1985

WP#7 THE EMERGENCE OF DYNAMIC COMPLEXITIES IN MODELS OF OPTIMAL GROWTH:
THE ROLE OF IMPATIENCE
by Michele Boldrin and Luigi Montrucchio, April 1985

WP#8 RECURSIVE COMPETITIVE EQUILIBRIUM WITH NONCONVEXITIES: AN
EQUILIBRIUM MODEL OF HOURS PER WORKER AND EMPLOYMENT
by Richard Rogerson, April 1985

WP#9 AN EQUILIBRIUM MODEL OF INVOLUNTARY UNEMPLOYMENT
hy Richard Rogerson, April 1985

WP#10 INDIVISIBLE LABOUR, LOTTERIES AND EQUILIBRIUM
by Richard Rogerson, April 1985

WP#11 HOURS PER WORKER, EMPLOYMENT, UNEMPLOYMENT AND DURATION OF
UNEMPLOYMENT: AN EQUILIBRIUM MODEL
by Richard Rogerson, April 1985

WP#12 RECENT DEVELOPMENTS IN THE THEORY OF RULES VERSUS DISCRETION
by Robert J. Barro, May 1985



WP#13

WP#14

WP#15

WP#16

WP#17

WP#18

WP#19

WP#20

WP#21

WP#22

WP#23

WP#24

WP#25

WP#26

WPp#27

CAKE EATING, CHATTERING, AND JUMPS: EXISTENCE RESULTS FOR
VARIATIONAL PROBIEMS
by Paul M. Romer, 1985

AVERAGE MARGINAL TAX RATES FROM SOCIAL SECURITY AND THE INDIVIDUAT
INCOME TAX

by Robert J. Barro and Chaipat Sahasakul, June 1985

MINUTE BY MINUTE: EFFICIENCY, NORMALITY, AND RANDOMNESS IN
INTRADAILY ASSET PRICES
by Lauren J. Feinstone, June 1985

A POSITIVE ANALYSIS OF MUGLTIPRODUCT FIRMS IN MARKET EQUILIBRIUM
by Glenn M. MacDonald and Alan D. Slivinski, July 1985

REPUTATION IN A MODEL OF MONETARY POLICY WITH INCOMPLETE INFORMATION
by Robert J. Barro, July 1985

REGULATORY RISK, INVESTMENT AND WELFARE
by Glenn A. Woroch, July 1985

MONOTONICALLY DECREASING NATURAL RESOURCES PRICES UNDER PERFECT
FORESIGHT
by Paul M. Romer and Hiroo Sasaki, February 1984

CREDIBLE PRICING AND THE POSSIBILITY OF HARMFUL REGULATION
by Glenn A. Woroch, September 1985

THE EFFECT OF COHORT SIZE ON EARNINGS: AN EXAMINATION OF
SUBSTITUTION RELATIONSHIPS
by Nabeel Alsalam, September 1985

INTERNATIONAL BORROWING AND TIME- CONSISTENT FISCAL POLICY
by Torsten Persson and Lars. E 0. Svensson, August 1985

THE DYNAMIC BEHAVIOR OF COLLEGE ENROLLMENT RATES: THE EFFECT OF
BABY BOOMS AND BUSTS
by Nabeel Alsalam, October 1985

ON THE INDETERMINACY OF CAPITAL ACCUMULATION PATHS
by Michele Boldrin and Luigi Montrucchio, August 1985

EXCHANGE CONTROLS, CAPITAL CONTROLS, AND INTERNATIONAL FINANCIAL
MARKETS
by Alan C. Stockman and Alejandro Hernandez D., September 1985

A REFORMULATION OF THE ECONOMIC THEORY OF FERTILITY
by Gary £. Becker and Robert J. Barro, October 1985

INREASING RETURNS AND LONG RUN GROWTH
by Paul M. Romer, October 1985



WP#£28 INVESTMENT BANKING CONTRACTS IN A SPECULATIVE ATTACK ENVIRONMENT :
EVIDENCE FROM THE 1890's
by Vittorio Grilli, November 1985

WP#29 THE SOLIDARITY AXIOM FOR QUASI-LINEAR SOCIAL CHOICE PROBLEMS
by Youngsub Chun, November 1985

WP#30 THE CYCLICAL BEHAVIOR OF MARGINAL COST AND PRICE
by Mark Bils, (Revised) November, 1985

WP#31 PRICING IN A CUSTOMER MARKET
by Mark Bils, September 1985

WP#32 STICKY GOODS PRICES, FLEXIBLE ASSET PRICES, MONOPOLISTIC
COMPETITION, AND MONETARY POLICY
by Lars E.O0. Svensson, {(Revised) September 1985

WP#33 OIL PRICE SHOCKS AND THE DISPERSION HYPOTHESIS, 1900 - 1980
by Prakash Loungani, January 1986

WP#34 RISK SHARING, INDIVISIBLE LABOR AND AGGREGATE FLUCTUATIONS
by Richard Rogerson, (Revised) February 1986

WP#35 PRICE CONTRACTS, OUTPUT, AND MONETARY DISTURBANCES
by Alan C. Stockman, October 1985

WP#36 FISCAL POLICIES AND INTERNATIONAL FINANCIAL MARKETS
by Alan C. Stockman, March 1986

WP#37 LARGE-SCALE TAX REFORM: THE EXAMPLE OF EMPLOYER-PAID HEALTH
INSURANCE PREMIUMS
by Charles E. Phelps, March 1986

WP#38 INVESTMENT, CAPACITY UTILIZATION AND THE REAL BUSINESS CYCLE
by Jeremy Greenwood and Zvi Hercowitz, April 1986

WP#£39 THE ECONOMICS OF SCHOOLING: PRODUCTION AND EFFICIENCY IN PUBLIC
SCHOOLS
by Eric A. Hanushek, April 1986

WP#40 EMPLOYMENT RELATIONS IN DUAL LABOR MARKETS (IT'S NICE WORK IF YOU
CAN GET 1T!)
by Walter Y. 0Oi, April 1986.

Wi#41 SECTORAL DISTURBANCES, GOVERNMENT POLICIES, AND INDUSTRIAL OUTPUT IN
SEVEN EUROPEAN COUNTRIES
by Alan C. Stockman, April 1986.

WP#42 SMOOOTH VALUATIONS FUNCTIONS AND DETERMINANCY WITH INFINITELY LIVED
CONSUMERS
by Timothy J. Kehoe, David K. Levine and Paul R. Romer, April 1986.



WP#43

WP#44

WP#45

WP#46

WP#47

WP#48

WP#50

WP#51

WP#52

WP#53

WP#54

WP#55

WP#56

WP#57

WP#58

WP#59

AN OPERATIONAL THEORY OF MONOPOLY UNION-COMPETITIVE FIRM INTERACTION
by Gienn M MacDonald and Chris Robinson, June 1986.

JOB MOBILITY AND THE INFORMATION CONTENT OF EQUILIBRIUM WAGES: PART
1, by Glenn M. MacDonald, June 1986.

SKI-LIFT PRICING, WITH AN APPLICATION TO THE LABOR MARKET
by Robert J. Barro and Paul M. Romer, May 1986.

FORMULA BUDGETING: THE ECONOMICS AND ANALYTICS OF FISCAL POLICY
UNDER RULES, by Eric A. Hanushek, June 1986.

AN OPERATIONAL THEORY OF MONOPOLY UNION-COMPETITIVE FIRM INTERACTION
by Glenn M. MacDonald and Chris Robinson, June 1986.

EXCHANGE RATE POLICY, WAGE FORMATION, AND CREDIBILITY
by Henrik Horn and Torsten Persson. June 1986.

MONEY AND BUSINESS CYCLES: COMMENTS ON BERNANKE AND RELATED
LITERATURE, by Robert G. King, July 1986.

NOMINAL SURPRISES, REAL FACTORS AND PROPAGATION MECHANISMS
by Robert G King and Charles I. Plosser, Final Draft: July 1986.

JOB MOBILITY IN MARKET EQUILIBRIUM
by Glenn M. MacDonald, August 1986.

SECRECY, SPECULATION AND POLICY
by Robert G. King, (revised) August 1986,

THE TULIPMANIA LEGEND
by Peter M. Garber, July 1986.

THE WELFARE THEOREMS AND ECONOMIES WITH LAND AND A FINITE NUMBER OF
TRADERS, by Marcus Berliant and Karl Dunz, July 1986.

NONLABOR SUPPLY RESPONSES TO THE INCOME MAINTENANCE EXPERIMENTS
by Eric A. Hanushek, August 1986.

INDIVISIBLE LABOR, EXPERIENCE AND INTERTEMPORAL ALLOCATIONS
by Vittorio U. Grilli and Richard Rogerson, September 1986,

TIME CONSISTENCY OF FISCAL AND MONETARY POLICY
by Mats Persson, Torsten Persson and Lars E. 0. Svensson,
September 1986.

ON THE NATURE OF UNEMPLOYMENT IN ECONOMIES WITH EFFICIENT RISK
SHARING, by Richard Rogerson and Randall Wright, September 1986.

INFORMATION PRODUCTION, EVALUATION RISK, AND OPTIMAL CONTRACTS
by Monica Hargraves and Paul M. Romer, September 1986.



WP#60 RECURSIVE UTILITY AND THE RAMSEY PROBLEM
by John H. Boyd III. October 1986.






To order copies of the above papers complete the attached invoice and return to Christine
Massaro, W. Allen Wallis Institute of Political Economy, RCER, 109B Harkness Hall,
University of Rochester, Rochester, NY 14627. Three (3) papers per year will be
provided free of charge as requested below. Each additional paper will require a $5.00
service fee which must be enclosed with your order. For your convenience an invoice is
provided below in order that you may request payment from your institution as necessary.
Please make your check payable to the Rochester Center for Economic Research.
Checks must be drawn from a U.S. bank and in U.S. dollars.

W. Allen Wallis Institute for Political Economy

Rochester Center for Economic Research, Working Paper Series

OFFICIAL INVOICE

Requestor’s Name

Requestor’s Address

Please send me the following papers free of charge (Limit: 3 free per year).

WP# WP# WPH#

I'understand there 1s a $5.00 fee for each additional paper. Enclosed is my check or

money order in the amount of § . Please send me the following papers.
WPH# WP# WP#
WP# WPH# : WP#
WPp# WPH# WP#

WPH# WP# WP#



