Who Leaves Whom in Durable Trading Matches

McLaughlin, Kenneth J.

Working Paper No. 61
October 1986.

University of Rochester
Who Leaves Whom in Durable Trading Matches

Kenneth J. McLaughlin

Rochester Center for Economic Research
Working Paper No. 61
Who Leaves Whom in Durable Trading Matches

In this note, I investigate the determinants of "Who Leaves Whom" (WLW) in durable trading matches within the framework of the Coase Theorem, side payments, and the allocation of property rights (Coase 1960). I advance a definition of WLW which embeds the efficient matching of trading partners: trade occurs if and only if the match is optimal. In contrast with the conventional approach, this implies the rate at which trade relationships are severed is invariant to the allocation of property rights (Peters 1986). This difference makes the Coasian approach testable in contexts where differences in property rights exist at a point in time, or when changes occur over time.

While my approach embeds this efficiency property, it is essentially a treatment of WLW. My definition of WLW is summarized as follows: Whether one trader must be paid by the other to induce him to continue trading, or the one must pay the other to sever the relationship, what matters for WLW is one side's dissatisfaction with the initial distribution of the total value of the trade. As a corollary to Coase's theorem, this definition is invariant to the allocation of property rights.

Framework

Begin with an observed match of traders 1 and 2. They divide up the total value of the trade \(V \) into exhaustive parts \(V_1 \) and \(V_2 \).

\[
(1) \quad V = V_1 + V_2.
\]
The traders individually decide whether or not to continue trading. (There is no marginal decision). Let two indicator variables denote their respective choices:

\[
\begin{align*}
(2.0) & \quad y_i = 1 \text{ if trader } i \text{ opts to sever the trade relationship,} \\
(2.1) & \quad y_i = 0 \text{ otherwise; } i = 1, 2.
\end{align*}
\]

The resultant discrete choice (for each i) is the solution to a utility maximization problem, so the economic determinants of the \(y_i \) come from this problem. For simplicity assume the problem reduces to one of income maximization. Then with \(V_i^* \) denoting trader i's opportunity value, and \(S_i \) his surplus from this trade,

\[
\begin{align*}
(3.0) & \quad y_i = 1 \text{ iff } S_i \geq V_i - V_i^* < 0, \\
(3.1) & \quad y_i = 0 \text{ otherwise; } i = 1, 2.
\end{align*}
\]

The function \(y_i(V_i^*) \) (or \(y(V_i^*; V_i) \)) is illustrated in Figure 1. Treating \(V_i \) as a random variable, the probability of \(i \) opting to sever trade is increasing in \(i \)'s opportunity value.

There is some initial, perhaps arbitrary, division of \(V \) such that \(V = V_1' + V_2' \). How this division is determined is not central to the current analysis, but becomes important below. For the given pairs \((V_i', V_i^*) \) four combinations of the pair \((y_1, y_2) \) can result. These are depicted in Figure 2.

Whether trade occurs depends on the allocation of property rights. Separations can be by mutual consent, that is terminations obtain if and only
if both \(y_1 \) and \(y_2 \) equal 1; or separation can be unilateral or forced by one of
the traders, so if either \(y_1 \) or \(y_2 \) equals 1 trade obtains.\(^1\) There are two
intermediate cases as well; in the first of these cases, trade occurs if and
only if \(y_1 = 0 \); in the second case, \(y_2 = 0 \) is required for trade.\(^2\) Note that
the allocation of property rights determines whether or not "differences in
opinion" (i.e., (0,1) and (1,0) combinations) result in trade.

The usual approach to WLW focuses on the differences of opinion or off-
diagonal cells. Trader 1 leaves trader 2 under the (1,0) combination, and
vice versa for (0,1). Clearly this depends on the allocation of property
rights: under separations by mutual consent with differences of opinion, no
one leaves; i.e., trade can be forced. Moreover, there is little economic
content to the approach: neither prices nor side payments are used to clear
the market by resolving the differences. The determinants of the \(y_i \) are not
important for equilibrium analysis.

Side Payments and the Coase Theorem

I advance an alternative approach in which differences in choice are
resolved by a redistribution of the trade value through side payments. In
this context, the surplus equations are modified to include a side payment \(P \).

\[
(4.0) \quad S_1(P) = (V'_1 + P) - V^*_1 = V'_1 - (V^*_1 - P)
\]

\[
(4.1) \quad S_2(P) = (V'_2 - P) - V^*_2 = V'_2 - (V^*_2 + P)
\]

\[
(4.2) \quad S = S_1(P) + S_2(P) = V'_1 + V'_2 - V^*_1 - V^*_2 = V - V^*_1 - V^*_2.
\]
Consider four cases: Under unilateral separations, $P>0$ is a side payment from trader 2 to trader 1 to induce the latter to continue trading, and $P<0$ reverses the direction of payment. Under separations by mutual consent, $P>0$ is a side payment from trader 1 to trader 2 to get the latter to agree to dissolve the trading match; and vice versa for $P<0$. In (4.0) and (4.1), the middle expression groups the terms for interpretation under unilateral separations; the third expression for interpretation under mutual consent. The algebraic equivalence of a "prize for staying" and a "penalty for leaving" is thus highlighted in (4.0) and (4.1). All that matters is relative remuneration.

Replacing V_i with $V_i^* + P$ as the argument in the y_i functions, the indicator functions are now denoted $y_i(P)$ with the variables V_i^* and V_i^* suppressed. By the change of variables, the probability that $y_i = 1$ is decreasing (increasing) in P for $i=1$ ($i=2$).

The Coase Theorem states: Under unilateral separations, there exists some side payment \tilde{P} (not necessarily unique) such that $S_1(\tilde{P})>0$, $i=1,2$, if and only if $S>0$ (independent of the sign configuration of the S_i). Under separations by mutual consent, there exists some side payment \tilde{P} such that $S_i(\tilde{P})<0$, $i=1,2$, if and only if $S<0$. Therefore, in terms of the y_i functions:

$$\begin{align*}
(5.0) & \quad y_1(\tilde{P}) = y_2(\tilde{P}) = 0 \text{ iff } S > 0 \quad \text{(unilateral separations)} \\
(5.1) & \quad y_1(P) = y_2(P) = 1 \text{ iff } S < 0 \quad \text{(separations by mutual consent)}
\end{align*}$$

That is, the $(0, 1)$ and $(1, 0)$ combinations are precluded. Endogeneity of the y_i via side payments makes all trade and dissolutions mutual, and this is independent of the property right allocation.
An important implication is immediate: separations are more frequent under unilateral separations if and only if side payments are precluded. In the absence of side payments, "differences in opinion" result in separations only under the unilateral separations rule. With side payments, the rate at which trade relationships are severed is invariant to the allocation of property rights. Therefore, one can in principle test the implication of side payments and the Coase Theorem if differences in property rights are observed at a point in time, or property rights change over time. Peters (1986) conducts such a test in the context of the marriage market and rejects the exclusion of side payments.

Who Leaves Whom

The challenge now surfaces of how to generate WLW if ex post all is mutual. For the analysis of WLW, the discussion can be limited to the case of $S<0$ with initial differences of opinion. Under mutual consent, the side payment takes the form of a "bribe to let me go"; examples are a slave buying back his freedom, alimony, severance pay, and nonvested pensions (i.e., forfeited bonds) (Mortensen 1978, Kennan 1979). So trader 1 is allowed to leave trader 2 by making a positive side payment \tilde{P}. Consider the case of $S_1(0)<0$, $S_2(0)>0$, and $S<0$; only trader 1 is initially dissatisfied with the suboptimal match. By the Coase Theorem, there exists a $\tilde{P}>0$ which satisfies the inequalities $S_1(\tilde{P})<0$ and $S_2(\tilde{P})<0$. Therefore, $y_1(\tilde{P})=1$ and $y_2(\tilde{P})=1$, so dissolution of the trading pair is ex post mutual; but the ex ante dissatisfaction of trader 1 clearly results in his buying his way out. There is no doubt that such a severing of the trade relationship would be
summarized: trader 1 leaves trader 2. Hence I adopt the following definition of WLW under separations by mutual consent: trader 1 leaves trader 2 if \(\tilde{P} > 0 \), and vice versa for \(\tilde{P} < 0 \).

The definition of WLW is slightly different if trade is voluntary; that is, under unilateral separations. With this allocation of property rights, the side payment would be to the potential leaver to induce him to stay. To be explicit, assume again \(S_1(0) < 0 \), \(S_2(0) > 0 \), and \(S < 0 \). Then there does not exist a side payment \(\tilde{P} \) such that \(S_1(\tilde{P}) > 0 \) and \(S_2(\tilde{P}) > 0 \). Therefore, trade does not occur. Unlike the mutual consent result, here the definition of WLW is not obvious. However, I conclude: trader 1 leaves trader 2 if \(S_1(0) < 0 \) and there does not exist a side payment \(\tilde{P} \) from trader 2 big enough to keep trader 1.

The definition of WLW under a unilateral separation rule is motivated in several ways. First, one might simply associate leaving with an initial dissatisfaction (i.e., \(S_1(0) < 0 \)) which is not resolved. Second, if the initial dissatisfaction leads to a demand for a redivision of the trade value, and if the demand is rejected then the "leaver" is associated with the initiator of the change. This equates initiating unsuccessful demands for a redivision with initiating a separation, which in some contexts is equivalent to leaving (see McLaughlin 1986a).

Invariance Property

The next step is to show that the definition of WLW is invariant to the allocation of property rights. For given conditions of trade \((V, V'_1, V^*_i, i=1,2) \), the conclusion "1 leaves 2" is equivalent to \(S_1(0) < 0 \), \(S_2(0) > 0 \), \(S < 0 \), independent of the property right allocation.
This is established as a corollary to the Coase Theorem. Under separations by mutual consent, the existence of a side payment \(\tilde{p} > 0 \) -- meaning trader 1 leaves trader 2 -- is equivalent to: \(S_1(0) < 0, S_2(0) > 0, \) and \(S < 0. \) Under unilateral separations, the non-existence of \(\tilde{p} \) combined with \(S_1(0) < 0 \) -- meaning trader 1 leaves trader 2 -- is also equivalent to: \(S_1(0) < 0, S_2(0) > 0, \) and \(S < 0. \) Hence, my definition of WLW reduces to a pattern of surplus inequalities which are independent of the allocation of property rights.

Testing WLW

One might find in the context of some particular application that the implication of side payments and the Coase Theorem are borne out empirically. Therefore, the traditional view of WLW is inapplicable, and a test of my alternative is appropriate.

Testing the hypothesis requires predictions of WLW in order to compare the subjective responses of the traders with the predicted responses as implied by the definition. The data must include the subjective response as to WLW and one of three additional sets of variables: (i) side payments if separations are by mutual consent; (ii) determinants of i's trade value \(V_i \) and opportunity value \(V_i^* \) and an indication of property right regimes which varies across observations; (iii) determinants of \(V_i \) and \(V_i^* \) and the initial division of the trade value \(V_i \) or its determinants.

The method for empirically generating the WLW label depends on the available data. The task is simple under separations by mutual consent if side payments are observed. The definition of WLW in this case is: He who makes the side payment leaves the recipient of the side payment. Hence, the prediction is given directly by the value of side payment variable.
The problem is more difficult under unilateral separations or if side payments are not observed. In either case side payments cannot guide the inference. However, differences in property right regimes -- either cross-sectionally or through time -- can be exploited to yield the predictions of WLW under my hypothesis. The key is in exploiting the following implication: If trader 1 leaves trader 2, then trader 1 is worse off in doing so under mutual consent. This follows because, under separations by mutual consent, trader 1 makes a side payment to trader 2. One can in principle estimate structurally the determinants of the trade and opportunity values (V^*_i, V^*_j) by selection bias correction techniques and determine the impact of the allocation of property rights on the income of traders in severed matches. Thus for each trader one can estimate the impact of a change in property rights. Those traders who are estimated to fare better under unilateral separations are labeled leavers.

If one observes neither side payments nor the property right regime, then the initial division of the trade value must be modeled to test my hypothesis. With the V_i specified, one compares the observed V^*_i with the modeled V'_i to determine whether $S_i(0)<0$. If the trade relationship severs and $S_i(0)<0$, then trader 1 is predicted to leave trader 2.

In all three cases the implication of the model is tested by comparing the predictions with the subjective responses of the traders. Of course, in the third case such a procedure tests the joint hypothesis of my definition of WLW and the underlying specification of the V'_i.
What are the V'_i?

Consider several alternatives for the initial division of the trade value, V'_1 and V'_2. First, trader 2 may be the residual income recipient, in which case

\begin{align}
(6.0) & \quad V'_1 = V_1^0 \\
(6.1) & \quad V'_2 = V - V_1^0
\end{align}

where V_1^0 satisfying $V^0 = V_1^0 + V_2^0$ is trader 1's prior period trade value. This is a special case of a more general sharing rule which conditions the V'_i on V. Another alternative is an expectations scheme. Forecastable variations in V and the V_i^* (and perhaps relative bargaining strength) can be included in the determination of the initial distribution; then simply, $V'_i = EV_i$. These alternatives can be combined as well. For instance, V'_i may be determined from the expectations scheme, but trader 2 acts as the residual income recipient.

\begin{align}
(7.0) & \quad V'_1 = EV_1 \\
(7.1) & \quad V'_2 = V - EV_1.
\end{align}

Which set of relations applies is likely to be application specific. Some matching markets are characterized by a residual income recipient (e.g., the labor market), but others are not (e.g., the marriage market). In general, the V'_i are chosen to be consistent with the known empirical regularities. In my work on quits and layoffs, or WLM in the labor market, I conclude the V'_i described by (6.0) and (6.1) can account for several well-known empirical regularities of labor turnover, and that an alternative like (7.0) and (7.1) cannot (McLaughlin 1986b).
Conclusion

I have advanced in this paper a general framework for the analysis of who leaves whom (WLW). It can be applied to quits and layoffs in the labor market, to divorce in the marriage market, to dissolution of buyer-seller attachments in consumer and industrial markets, or perhaps to embargos in international trade; in fact, to any case in which there is a durable attachment of traders which is sometimes severed. Furthermore, the model is not limited to applications where side payments are observed since the essential feature is flexibility in the trade values, not side payments per se. 4

My hypothesis is refutable on two margins. First, in contrast with the conventional approach, the rate at which trade relationships are severed is predicted to be invariant to the allocation of property rights. Second, observed behavior can be used to construct the theoretically implied predictions of WLW which can be compared with the subjective responses of the traders.

My definition of WLW under the two varieties of property rights produces a Coase-like result: conclusions as to WLW are invariant to the allocation of property rights. This contrasts with the usual view which does not admit side payments into the analysis. The importance of such a result is that with trade-specific capital or informational asymmetries traders may adopt seemingly forced trade mechanisms like severance pay to preserve optimal sorting (Kennan 1979, Kahn 1985). If sorting and hence observed dissolutions are optimal, then who leaves whom is not affected by this complication. However, if costly renegotiation dominates, an important role for the usual view may remain.
NOTES

*I thank Gary Becker for his stimulating comments on the first draft.

1. Separation by mutual consent is equivalent to a unilateral trading rule; i.e., one trader can "force" the other to trade. Unilateral separation is equivalent to trade by mutual consent; i.e., trade if and only if neither trader wants to dissolve the relationship.

2. The two intermediate allocations of property rights are not considered in the rest of the paper, although they may be important in some contexts. (For instance, in the context of the labor market, long term contracts guarantee a job to the worker and indenture contracts guarantee a worker to the firm.) Rather, the analysis carries over to these two cases with only trivial modification.

3. This first result is entirely invariant to the initial allocations. In this way, one is not testing the joint hypothesis of efficient dissolutions of trading relationships and the rule for initial allocations V'_1.

4. The trade values V_i need not be perfectly flexible: if outside offers are verifiable, a counter-offer-matching scheme is sufficient to support the theoretical results (Mortensen 1978).
REFERENCES

WP#1 GOVERNMENT SPENDING, INTEREST RATES, PRICES AND BUDGET DEFICITS IN THE UNITED KINGDOM, 1730-1918
by Robert J. Barro, March 1985

WP#2 TAX EFFECTS AND TRANSACTION COSTS FOR SHORT TERM MARKET DISCOUNT BONDS
by Paul M. Romer, March 1985

WP#3 CAPITAL FLOWS, INVESTMENT, AND EXCHANGE RATES
by Alan C. Stockman and Lars E.O. Svensson, March 1985

WP#4 THE THEORY OF INTERNATIONAL FACTOR FLOWS: THE BASIC MODEL
by Ronald W. Jones, Isaias Coelho, and Stephen T. Easton, March 1985

WP#5 MONOTONICITY PROPERTIES OF BARGAINING SOLUTIONS WHEN APPLIED TO ECONOMICS
by Youngsub Chun and William Thomson, April 1985

WP#6 TWO ASPECTS OF AXIOMATIC THEORY OF BARGAINING
by William Thomson, April 1985

WP#7 THE EMERGENCE OF DYNAMIC COMPLEXITIES IN MODELS OF OPTIMAL GROWTH: THE ROLE OF IMPATIENCE
by Michele Boldrin and Luigi Montrucchio, April 1985

WP#8 RECURSIVE COMPETITIVE EQUILIBRIUM WITH NONCONVEXITIES: AN EQUILIBRIUM MODEL OF HOURS PER WORKER AND EMPLOYMENT
by Richard Rogerson, April 1985

WP#9 AN EQUILIBRIUM MODEL OF INVOLUNTARY UNEMPLOYMENT
by Richard Rogerson, April 1985

WP#10 INDIVISIBLE LABOUR, LOTTERIES AND EQUILIBRIUM
by Richard Rogerson, April 1985

WP#11 HOURS PER WORKER, EMPLOYMENT, UNEMPLOYMENT AND DURATION OF UNEMPLOYMENT: AN EQUILIBRIUM MODEL
by Richard Rogerson, April 1985

WP#12 RECENT DEVELOPMENTS IN THE THEORY OF RULES VERSUS DISCRETION
by Robert J. Barro, May 1985
WP#13 CAKE EATING, CHATTERING, AND JUMPS: EXISTENCE RESULTS FOR VARIATIONAL PROBLEMS
by Paul M. Romer, 1985

WP#14 AVERAGE MARGINAL TAX RATES FROM SOCIAL SECURITY AND THE INDIVIDUAL INCOME TAX
by Robert J. Barro and Chaipat Sahasakul, June 1985

WP#15 MINUTE BY MINUTE: EFFICIENCY, NORMALITY, AND RANDOMNESS IN INTRADAILY ASSET PRICES
by Lauren J. Feinsteine, June 1985

WP#16 A POSITIVE ANALYSIS OF MULTIPRODUCT FIRMS IN MARKET EQUILIBRIUM
by Glenn M. MacDonald and Alan D. Slivinski, July 1985

WP#17 REPUTATION IN A MODEL OF MONETARY POLICY WITH INCOMPLETE INFORMATION
by Robert J. Barro, July 1985

WP#18 REGULATORY RISK, INVESTMENT AND WELFARE
by Glenn A. Woroch, July 1985

WP#19 MONOTONICALLY DECREASING NATURAL RESOURCES PRICES UNDER PERFECT FORESIGHT
by Paul M. Romer and Hiroo Sasaki, February 1984

WP#20 CREDIBLE PRICING AND THE POSSIBILITY OF HARMFUL REGULATION
by Glenn A. Woroch, September 1985

WP#21 THE EFFECT OF COHORT SIZE ON EARNINGS: AN EXAMINATION OF SUBSTITUTION RELATIONSHIPS
by Nabeel Alsalam, September 1985

WP#22 INTERNATIONAL BORROWING AND TIME-CONSISTENT FISCAL POLICY
by Torsten Persson and Lars. E.O. Svensson, August 1985

WP#23 THE DYNAMIC BEHAVIOR OF COLLEGE ENROLLMENT RATES: THE EFFECT OF BABY BOOMS AND BUSTS
by Nabeel Alsalam, October 1985

WP#24 ON THE INDETERMINACY OF CAPITAL ACCUMULATION PATHS
by Michele Boldrin and Luigi Montrucchio, August 1985

WP#25 EXCHANGE CONTROLS, CAPITAL CONTROLS, AND INTERNATIONAL FINANCIAL MARKETS
by Alan C. Stockman and Alejandro Hernandez D., September 1985

WP#26 A REFORMULATION OF THE ECONOMIC THEORY OF FERTILITY
by Gary S. Becker and Robert J. Barro, October 1985

WP#27 INCREASING RETURNS AND LONG RUN GROWTH
by Paul M. Romer, October 1985
WP#28 INVESTMENT BANKING CONTRACTS IN A SPECULATIVE ATTACK ENVIRONMENT: EVIDENCE FROM THE 1890's
by Vittorio Grilli, November 1985

WP#29 THE SOLIDARITY AXIOM FOR QUASI-LINEAR SOCIAL CHOICE PROBLEMS
by Youngsub Chun, November 1985

WP#30 THE CYCLICAL BEHAVIOR OF MARGINAL COST AND PRICE
by Mark Bils, (Revised) November, 1985

WP#31 PRICING IN A CUSTOMER MARKET
by Mark Bils, September 1985

WP#32 STICKY GOODS PRICES, FLEXIBLE ASSET PRICES, MONOPOLISTIC COMPETITION, AND MONETARY POLICY
by Lars E.O. Svensson, (Revised) September 1985

WP#33 OIL PRICE SHOCKS AND THE DISPERSION HYPOTHESIS, 1900 - 1980
by Prakash Loungani, January 1986

WP#34 RISK SHARING, INDIVISIBLE LABOR AND AGGREGATE FLUCTUATIONS
by Richard Rogerson, (Revised) February 1986

WP#35 PRICE CONTRACTS, OUTPUT, AND MONETARY DISTURBANCES
by Alan C. Stockman, October 1985

WP#36 FISCAL POLICIES AND INTERNATIONAL FINANCIAL MARKETS
by Alan C. Stockman, March 1986

WP#37 LARGE-SCALE TAX REFORM: THE EXAMPLE OF EMPLOYER-PAID HEALTH INSURANCE PREMIUMS
by Charles E. Phelps, March 1986

WP#38 INVESTMENT, CAPACITY UTILIZATION AND THE REAL BUSINESS CYCLE
by Jeremy Greenwood and Zvi Hercowitz, April 1986

WP#39 THE ECONOMICS OF SCHOOLING: PRODUCTION AND EFFICIENCY IN PUBLIC SCHOOLS
by Eric A. Hanushek, April 1986

WP#40 EMPLOYMENT RELATIONS IN DUAL LABOR MARKETS (IT'S NICE WORK IF YOU CAN GET IT!)
by Walter Y. Oi, April 1986.

WP#41 SECTORAL DISTURBANCES, GOVERNMENT POLICIES, AND INDUSTRIAL OUTPUT IN SEVEN EUROPEAN COUNTRIES
by Alan C. Stockman, April 1986.

WP#42 SMOOOTH VALUATIONS FUNCTIONS AND DETERMINANCY WITH INFINITELY LIVED CONSUMERS
by Timothy J. Kehoe, David K. Levine and Paul R. Romer, April 1986.
AN OPERATIONAL THEORY OF MONOPOLY UNION-COMPETITIVE FIRM INTERACTION
by Glenn M. MacDonald and Chris Robinson, June 1986.

by Glenn M. MacDonald, June 1986.

SKI-LIFT PRICING, WITH AN APPLICATION TO THE LABOR MARKET

FORMULA BUDGETING: THE ECONOMICS AND ANALYTICS OF FISCAL POLICY

AN OPERATIONAL THEORY OF MONOPOLY UNION-COMPETITIVE FIRM INTERACTION
by Glenn M. MacDonald and Chris Robinson, June 1986.

EXCHANGE RATE POLICY, WAGE FORMATION, AND CREDIBILITY
by Henrik Horn and Torsten Persson, June 1986.

MONEY AND BUSINESS CYCLES: COMMENTS ON BERNANKE AND RELATED

NOMINAL SURPRISES, REAL FACTORS AND PROPAGATION MECHANISMS

JOB MOBILITY IN MARKET EQUILIBRIUM
by Glenn M. MacDonald, August 1986.

SECRECY, SPECULATION AND POLICY

THE TULIPMANIA LEGEND
by Peter M. Garber, July 1986.

THE WELFARE THEOREMS AND ECONOMIES WITH LAND AND A FINITE NUMBER OF
TRADERS, by Marcus Berlijant and Karl Dunz, July 1986.

NONLABOR SUPPLY RESPONSES TO THE INCOME MAINTENANCE EXPERIMENTS
by Eric A. Hanushek, August 1986.

INDIVISIBLE LABOR, EXPERIENCE AND INTERTEMPORAL ALLOCATIONS

TIME CONSISTENCY OF FISCAL AND MONETARY POLICY

ON THE NATURE OF UNEMPLOYMENT IN ECONOMIES WITH EFFICIENT RISK
SHARING, by Richard Rogerson and Randall Wright, September 1986.

INFORMATION PRODUCTION, EVALUATION RISK, AND OPTIMAL CONTRACTS
by Monica Hargraves and Paul M. Romer, September 1986.
WP#60 RECURSIVE UTILITY AND THE RAMSEY PROBLEM

WP#61 WHO LEAVES WHOM IN DURABLE TRADING MATCHES
To order copies of the above papers complete the attached invoice and return to Christine Massaro, W. Allen Wallis Institute of Political Economy, RCER, 109B Harkness Hall, University of Rochester, Rochester, NY 14627. Three (3) papers per year will be provided free of charge as requested below. Each additional paper will require a $5.00 service fee which must be enclosed with your order. For your convenience an invoice is provided below in order that you may request payment from your institution as necessary. Please make your check payable to the Rochester Center for Economic Research. Checks must be drawn from a U.S. bank and in U.S. dollars.

W. Allen Wallis Institute for Political Economy
Rochester Center for Economic Research, Working Paper Series

OFFICIAL INVOICE

Requestor's Name

Requestor's Address

Please send me the following papers free of charge (Limit: 3 free per year).

WP# ______ WP# ______ WP# ______

I understand there is a $5.00 fee for each additional paper. Enclosed is my check or money order in the amount of $___________. Please send me the following papers.

WP# ______ WP# ______ WP# ______
WP# ______ WP# ______ WP# ______
WP# ______ WP# ______ WP# ______
WP# ______ WP# ______ WP# ______