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Abstract

This paper presents a geometric approach (symmetries) to dynamic economic
problems that integrates the solution procedure with the economics of the
problem. Techniques for using symmetries are developed in the context of
portfolio choice, optimal growth, and dynamic equilibria. Information on
preferences, budget sets, and technology is combined to explicitly compute the
solution. By focusing on the geometry of the underlying economic structure,
the symmetry method can handle many types of problems with equal ease. Given
an appropriate economic structure, it is immaterial whether the problem is in
continuous or discrete time, is deterministic or stochastic with a Brownian,
Poisson or other process, uses a finite or infinite time horizon, or even
whether the rate of time preference is fixed or variable. These details are
unimportant as long as the geometry is unchanged. All cases are treated in a
unified manner. A major strength of the symmetry technique is its ability to
ferret out the solutions to complex models with simple underlying economic
structures. For example, a previously unsolved optimal growth model with both

time-varying discount rates and technology is easily solved via symmetries.






1. Introduction

This paper presents a geometric approach (symmetries) to dynamic economic
problems that integrates the solution procedure with the economics of the
problem. Techniques for using symmetries are developed in the context of
portfolio choice, optimal growth, and dynamic equilibria. Information on
preferences, budget sets, and technology is combined to explicitly compute the
solution. By focusing on the geometry of the underlying economic structure,
the symmetry method can handle many types of problems with equal ease. Given
an appropriate economic structure, it is immaterial whether the problem is in
continuous or discrete time, is deterministic or stochastic with a Brownian,
Poisson or other process, uses a finite or infinite time horizon, or even
whether the rate of time preference is fixed or variable. These details are
unimportant as long as the geometry is unchanged. All cases are treated in a
unified manner.

Symmetries exhibit various interesting features. A major strength of the
symmetry technique is its ability to ferret out the solutions to complex
models with simple underlying economic structures. A previously unsolved
optimal growth model with both time-varying discount rates and technology is
easily solved via symmetries. Symmetries can also be used to transform
problems into a simpler form, as will be demonstrated for hyperbolic absolute
risk aversion (HARA) felicity. Symmetries are well-adapted for dealing with
equilibrium problems. For example, they can demonstrate the uniqueness of
equilibrium. Finally, the symmetries do not require the transversality
condition, although it will hold if necessary for an optimum.

In contrast, most dynamic economic models are solved on a case-by-case
basis. Although the methods of dynamic programming bring some order to the

subject, they do not fully exploit the economic structure of the models.
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Stochastic control problems are a case in point. They can rarely be
explicitly solved even though the Bellman partial differential equation
characterizes the solutions.

Explicit solutions have been found in a few cases involving portfolio
selection and asset pricing.’' Although Samuelson (1969) derived the solution

for one problem, most of these solutions were obtained by the method of

2

"divine revelation."” Guess the solution and plug it in. If it works, fine;

if not, try another guess. This reliance on trial solutions is not totally
satisfactory. The most general result was found by Danthine and Donaldson
(1981).° Their theorem still leaves the solution technique unconnected with
the economic structure of the problem. Why the problem has a solution of this
form is left unexplained.

The rationale for the symmetry approach is most easily seen by considering
a simple portfolio problem. It has two important characteristics—a linear
homogeneous budget constraint and a homogeneous valuation functional defined
over consumption paths. In ordinary demand theory, the combination of these
two properties gives rise to a homogeneous indirect utility function.

One way to demonstrate this is the following geometric argument. Suppose
there are only two goods and a linear budget constraint. An increase in
income expands the budget set uniformly, as in the usual textbook diagram.
When preferences are homogeneous (or even homothetic), this uniform expansion
leaves the indifference map unchanged. At the optimum, the relative
quantities of each good are the same, only the absolute amount changes.
Plugging, this in the utility function reveals that the indirect utility
function is homogeneous in income. The situation is really no different in
the portfolio problem.

This type of argument is not limited to uniform expansion of the feasible

set. When there is production, increasing the endowment can cause a lop-sided



expansion {(dilation) of the feasible set. If dilation does not change the
preference ordering, the expansion takes optima to optima. We can then easily
calculate the indirect utility (value) function.

When there are more goods, the geometry may not look quite so simple.
Rather than inspecting the shapes of budget sets and indifference maps on a
diagram, we must use more powerful methods. Mathematically, these geometric
relationships are expressed by using certain transformations (symmetries) that
are based on the economic structure.? The symmetries generate generalized
notions of homogeneity and homotheticity. The uniform expansion used to
define homogenity is replaced by another transformation—the symmetry. This
generalized homotheticity turns symmetries into powerful tools. With them, we
can discover many of the economically important properties of the solutions.
Their full power is most apparent when dealing with more complex problems.
This is especially true in dynamic competitive equilibrium problems. The
effects on many agents can easily be aggregated, even when the agents are
" heterogeneous.

Sections Two and Three introduce the symmetry technique. Section Two sets
up the basic abstract framework, and presents a theorem relating symmetries to
the value function. Section Three uses a simple linear symmetry to examine
some portfolio problems of Merton (1969, 1971, 1973) and Fischer (1975). Two
main conditions are used. The first is linear homogeneity of the state
equation, as in typical budget constraints. The second condition is that the
felicity function be either homogeneous or logarithmic. The constant relative
risk aversion felicity functions obey this restriction.

This sets the stage for using symmetries as tools. Section Four shows how
the symmetry approach works in more complex cases where the felicity function
is neither homogeneous nor logarithmic. Symmetries apply to Merton’s

portfolio problem even for the more general hyperbolic absolute risk aversion



4
felicity functions. The same arguments apply to more general stochastic
processes. In particular, they apply for Poisson processes.

Section Five examines Ramsey problems with Cobb-Douglas production
functions. Two types of model are considered. In the first, the symmetries
determine the form of the value function for a Ramsey problem with discounting
originally solved by Mirman and Zilcha (1975). The undiscounted version
(Mirman and Zilcha, 1977) can be handled in exactly the same way. It makes no
difference to the symmetries if the problem is discounted. The second example
is a variant of the Mirman and Zilcha model inspired by Mitra (1979} that
allows for non-stationary production and discount rates. Many time-varying
models may be explicitly solved via the symmetry technique.

Section Six examines a sample equilibrium problem. This is Michener’s
(1982) version of Lucas’ (1978) asset pricing model. In fact, the symmetry
applies to the more general asset pricing model of Brock (1982). Even in this
wider framework, they can show that Lucas’ stationary asset pricing function
gives all possible equilibrium prices. Interestingly, the transversality

condition need not be invoked to prove uniqueness of the price sequence.

2. Symmetries and Their Properties

A form of Markov decision model provides a useful framework for
introducing the symmetry concept. Let z = (m,c,a,m) denote a Markov process
over the probability space I with index set ¥ that takes values in # x € x o x
%$.° The index set can be either the interval [0.T] (for continuous processes)
or the set {0,...,T} (for discrete processes). Of course, T can be infinite.
The Markov process z is assumed to obey a system of stochastic differential

(or difference) equations L(z) = 0. These are the evolution equations.



The process z includes four types of variables. There is an endogenous
state variable m that will usually be income or wealth. There are two types
of action variables. The consumption-type variables ¢ appear in the objective
functional. Other actions that do not enter the objective are denoted by a.
Asset demands fall in this category. Finally, 7 includes all exogenous
parameters. These can be fixed, variable, or even stochastic.

Various restriction on the values state variables can take are summarized
by the sets M, €, f and ¥. The economics of the problem will impose some
structure on these sets. It may be important in the solution. If consumption
must be non-negative, set € = {c € R™: ¢ > 0}. When m = my is fixed, take ¥ =
{mo}.

The objective functional defined over consumption paths will be denoted by
V. Various types of objectives, such as recursive utility functions, are
permitted.® Typically, the objective functional V will be additively
separable with immediate reward (felicity) u(c,s). In that case, V(c.t) =
II u{c,s) ds for continuous processes, and V(c,t) = Z£=t u(c,s) for

discrete processes.

7

Let Et denote the conditional expectation given m(t):mt. The basic

problem can be written:

J(mt,t|w) = sup {EtV(c,t) t L{z) = 0}.
We will refer to J as the value function (indirect utility function). For
simplicity, I write J(mt,t) if m is fixed, and J(m) if t is also fixed.

To understand the geometric structure of the problem, focus on the budget
set (feasible set). The budget set given initial state m and parameter 7 is
B(mt,tlw) = {c € € : L(z) =0 for some z with m(t) = mt}.

The important question is how the budget set’'s geometry depends on the
initial state m, . Transformations that leave the evolution equations

invariant will be used to investigate this. These transformations map the
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budget set to another budget set. Let T = T, x T, x T3 x T4 be an invertible
(bijective) transformation from M x € x f x ® to M x €' x o' x F'. It is
a symmetry provided L(Tz) = O if and only if L(z) = 0.% Although the first
problems I solve will use linear, time-independent symmetries, symmetries need
not be linear. Sometimes the symmetries will be non-linear, sometimes they
will be time-dependent, and sometimes they will even be stochastic. Later, I
will even use symmetries that involve the exogenous parameters.

The following lemma shows the effect of a symmetry on the budget set. The
mapping T, takes the budget set to another budget set with possibly different

inital data and parameters. This is the key fact used in the Symmetry

Theorem.

LEMMA. If T is a symmetry, then B(Timt|T4w) = TzB(mtlw).

PROOF. Let ¢ € B(mt|v). Take z with L{(z) = 0. Since T is a symmetry,
L(Tz) = 0. Hence T,c € B(Timt|T4w), S0 T2B(mt|w) C B(Timt|T4w).

Since the Ti are invertible, we can apply the above result to T{ = T;i, mé

= " M(m! |7 tt | Tt 'm! —
Timt and T Tqv to get TZB(mt|v ) C B(Timt|T 7'). But Tim,c m and

TII= =
' o=, so B(TimtIqu) C TzB(mtlv). Hence B(Timt|T4v) TzB(mtlv). QED

SYMMETRY THEOREM. If EtV(Tzc,t) = ft[EtV(c,t)] for some family of
increasing functions ft, then J(Timt,t|T4v) = ft[](mt,t|w)].

PROOF.® Since

J(Timt,tITqv) sup {EtV(c,t): c € B(Timt|T4w)}
we apply the lemma to get

J(Timt,t|T4v)

sup {EtV(c,t): c € TZB(mtlv)}
= sup {EtV(Tzc,t): c € B(mt|w)}.
= sup {ft[EtV(c,t)]: c € B(mt,tlv)}.

Now since ft is increasing, we can pull it through the supremum to get



J(Timt,t|T4v) = f [sup {EV(c.t): c € B(mt,t|w)}]

So J(Tlmt,tIqu) = ft[J(mt,tlw)]. QED

Note that the family of functions ft can be time—-dependent. In fact, it

can even be stochastic.

3. Simple Symmetries

When m is a scalar variable, and L is linear homogeneous in (m,c), the
Symmetry Theorem determines the form of the solution for additively separable

V when u(c,s) is either homogeneous or logarithmic in c.

OOROLLARY 1. Let m and c be real-valued and suppose V is an additively
separable objective. Suppose L{An,Ac,a,m) = AL(m,c,a,7), u{Ac,s) = Aau(c,s)
for A > 0, and M and € are cones (Ml = M, N€ = €). If J(mt,tlv) exists, it
has the form ](mt,tlw) = A(t) m% for some function A(t).

PROOF. Let Tym = Am, Toc = Ac, Taga = a and T,m = 7 for A > O. Now AL(z)

L(Tz). Since these are simultaneously zero, T is a symmetry. Now, V(Tzc,t)

V(Ae.t) = A'V(c,t) since u(re,s) = N'u(c,s). Set f (V) = A*V. By the
Symmetry Theorem,
Jan Lelm) = f[I(m . elm] = A J(m Lt

Now take A = 1/m_and A(t) = J(1.t|m) to get J(m .t|m) = A(t) %t. QED

COROLLARY 2. Under the conditions of Corollary 1 with u(c,s) =
f(s) log c, ](mt,t|w) = A(t) + F(t) log m, where F(t) = IZ f(s) ds in
continuous time and F(t) = ZZ:t f(s) 1in discrete time.

PROOF. In continuous time, V(Ac,t) = f{ f(s) log Ac ds = V(c,t) +

F(t) log N. Setting ft(V) =V + F(t) log A, the Symmetry Theorem yields
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J(Kmt,tlv) = F(t) log N + J(mt,tlw). Now set A = 1/mt and A(t) = J(1.t|m).

This shows J(mt,tlw) = A(t) + F(t) log m . Discrete time is similar. QED

An easy application is to a version of Merton's (1969, 1971) portfolio
problem. In its simplest form, there are two assets. The safe asset pays a
certain return r. The risky asset pays an expected return p and a stochastic
return with variance o, described by a Brownian motion z. The total return
from a unit of the risky asset in a time interval dt is [p dt + o dz]. Total
wealth is m and a is the share of wealth held in the risky asset. Income from
the safe asset is [(1-a)mr dt] while income from the risky asset is [amp dt +
ao dz]. Since the consumption flow is ¢, the budget constraint can be written
as the stochastic differential equation L{m,c,a,w) = dm - a(p-r)m dt - (rm—
c) dt —amo dz = O where m = (r,p,0). Of course, the solutions will be
Markov processes (see Arnold, 1974). When short selling (a < O or a > 1) is

permitted, the problem is

T a —fis
J(mt,t) = sup Et J c e ds
{c,a} t
s.t. dm = L(m,c,a,m);

c 20, m>0; m(t) = m .

Here # = {m : m > O}, € = {c : ¢

N

0} and o = {a}. If short selling were
prohibited, take ' = {a : 0 ( a { 1}. In either case, Corollary 1 clearly
applies. When the value function exists, it is given by J(mt,t) = A(t) m%.
Knowing the form of J in advance is quite useful. The Bellman equation can
have extraneous solutions. Merton (1969) used a transversality condition to
eliminate them. The symmetry approach automatically eliminates the extraneous

solutions from consideration.

Many of the economically important results do not need the explicit



solution for J, only the form determined by the corollaries. We can
immediately see that the value function has absolute risk aversion (1-a)}/m
and relative risk aversion (1-a), regardless of what A(t) is. This can be
used in the first order conditions to show that consumption is linear in
wealth and that the optimal asset share is a = (p-r)/o°(l-a). If this is in
4', this is also the solution to the problem without short selling. Merton
(1969, 1971, 1973) has computed A(t) in detail. When short selling is
prohibited, and (p-r)/0®(1l-a) is not in o', all wealth must be held in only
one of the assets {(a = O or 1).

The same symmetry works on closely related versions of this problem.
Logarithmic felicity functions can be treated the same way by using Corollary
2 in place of Corollary 1. These results can also be extended to the case
where there are many risky assets. One such model, involving two state
equations, is due to Fischer (1975). He uses a variant of the Merton model
where there are two risky assets with returns [p, dt + o, dz,] and [p, dt +
0, dz,]. The price of the consumption good is given by a stochastic inflation
process p with expected inflation rate w and variance o . The consumer's
wealth shares of the two risky assets are a, and a,. This leaves (1 - a; -
a>) as the wealth share of the safe asset. Two distinct symmetries arise
from the economic structure of the problem. By using both, I can extract more
information than would otherwise be possible.

Fischer's problem is

J(mg,Pg) = sup Eg Jw u(c,s) ds
{c.a;} o

s.t. dm

[a1(p1-T) + az(pz-r)Im dt + (rm-pc) dt
+ m{a o0, dz, + aso, dz,)

dp = dt + dz
Y% mp pUp p

m>O0, ¢c >0, m(0) =my, p(O) = po.
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There is a second symmetry acting on the price level p in addition to the
familiar symmetry T,m = Am, Toc = Ac and Taa = a. The second symmetry is
S,;{(m,p) = (Am,Ap), S,c = ¢ and Sza = a. This symmetry is particularly
interesting since it leaves the budget set unchanged. It expresses the fact
that the budget set depends only on real wealth, not nominal wealth. By the
Symmetry Theorem, applied to S = (S;.S5.53). J(Amg,Apo) = J{(mo.po). Setting
AN = 1/po yields J(mg,pg) = J(mg/Po,1) = I{(mg/po) for some function I. The
value function J is also a function of real, not nominal, wealth.

We can use this to derive Fischer’s important relation

Jmpp/Jmmm = —(Jm/Jmmm) -1
(equation 20 in Fischer). Although Fischer uses this equation, he never
actually shows it is true. Rather, he asserts that consumption depends on
real wealth and uses a first order condition to get his equation (20). We can
go the opposite way to see that Fischer's assertion is true. Use the first
order condition uc(c,s) = me. As me = p(I'(m/p)/p) = I'(m/p), and since
consumption satisfies uc(c,s) = I'(m/p), it is a function of real wealth.

In the special case where felicity is homogeneous (or logarithmic) we can
use the standard symmetry T and the two corollaries to get, respectively,
J(mo.Po) = A(mo/po)® and J(mo.po) = A + [log (mo/po)] J”g £(s) ds.

In these simple cases, T; and T, were identity transformations. This is
true for most known linear examples. The same type of symmetry can be applied

(o}

to asset pricing models with multiple consumption variables.' The more

complex models in the following sections will have non-trivial T; and T,.

The key fact behind the corollaries is that the symmetry T is related to
the objective in a simple way: V(Tyc,t) = V(Ac,t) = AaV(c,t) or V(T,c,t) =
log N + V(c,t). Maxima are transformed into maxima. The optimal controls

¥

* .
(¢ ,a ) for the problem with initial conditions m(t)= m . are transformed into

0
the optimal controls (Tsc ,Tsa*) for the problem with initial conditions m(t)
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= Timt. When the optimal controls exist, this fact can be quite useful. Hahn
(1970) used it to determine optimal saving and consumption.

Symmetries can also help illuminate existing results. Danthine and
Donaldson (1981) have shown that consumption is a not a linear function of
output in stochastic control problems with Cobb-Douglas production and
homogeneous logarithmic felicity, although it is linear for logarithmic
felicity. A close look at the appropriate symmetry explains why. In fact,
this result appears even in a two-period deterministic setting. Neither an
infinite-horizon nor uncertainty are necessary.

Consider Cobb-Douglas production, c, = (mo—ci)%. As my is increased to
Amg, the production frontier expands in a lop-sided manner from the parabola
AA to the parabola BB in Figure 1. This expansion is performed by the
symmetry To(c;,c5) = (Aci,A%cz). A given optimum S is mapped to T by this
symmetry. The indifference maps of most constant elasticity of substitution
(CES) utility functions are distorted by this transformation. For example,
the Leontieff utility function u,(c;.,c3) = min (c,.c,) is transformed into
uz{(cy.2) = min (Rci,k%cz). Clearly, the indifference curves are different.
Only the Cobb-Douglas indifference curves are undistorted, and so only Cobb-
Douglas utility has T as the new optimum. In the Leontieff case, the both the
old optimum S and the new optimum R lie on the 45° line. For general CES
utility, the actual location of the new optimum depends on the elasticity of
substitution o. When S is the original optimum, the new optimum will be R
when o = O (Leontieff), between R and T for o between O and 1, T for o = 1
(Cobb-Douglas), and to the right of T for o greater than 1. In finite-horizon
discounted models, homogeneous felicity yields a CES utility function, while
logarithmic felicity gives Cobb-Douglas utility. As in the two—period model,

only the logarithmic case is well-behaved.
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Good 2

Figure 1

Good 1
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4. Sympetries With HARA Felicity

Another way to use symmetries is to transform a problem into an easier-to-
solve form. This works on Merton’s (1971, 1973) portfolio problem for the HARA
class function u(c.s) = (¢ + n)a e_ﬁs/a where ¢ + 11 2 0, a < 1 and a, 1 # 0.
The constraint onc, ¢ + 11 > 0, is a bit different from the homogeneous Merton
problem. The strategy is simple. Use a symmetry with Toc = c + 17 to turn
this into a homogeneous felicity function.

This sort of symmetry is a bit different from the previous examples
because the constraint changes. The solution is to use a symmetry with
(T,,T2.T3) : U x€xod>M x B xd'. The Ti must still be invertible and
satisfy the budget constraint

dm = a{p-r)m dt + (rm-c) dt + amo dz. (1)
Let m" = T.m and a = Tsa. For (T,.T,.T3) to be a symmetry, the transformed
variables must solve

dm’ = a*(p—r)m* dt + (rm*—c—n) dt + amo dz.
Substituting for c from (1) gives us
dm” = dm + (a*m*-am)[(p—r) dt + o dz] + r(m*—m)dt - 1 dt
Choose a* to eliminate the stochastic part of the equation. Letting a* =
a(m/m*) so that a'm. = am yields
d(m-m) = r(m -m) dt - 7 dt. (2)

This is a crucial point. Equation (2) has many solutions. Which one
should we choose? Since M' = {m*: m* 2 0}, our choice determines the
constraint set £ for the inhomogeneous problem. One reasonable possibility is
to require that terminal wealth m(T) be non-negative. Under this condition,
any borrowing must be repaid by time T. The boundary condition m*(T) = m(T)
will insure this. This leads to Merton’s solution. A different choice here

would mean a different constraint set M.
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With m*(T) = m(T) as boundary condition, the solution is

Tym = mo=m o+ (n/r) [1 - e_r(T_t)].

This gives M = {m: m + (n/r) [1 - e—r(T—t)] > 0}.
For t ¢ Tand n > O there is a positive probability of negative wealth,

but the asset holder must end up with m(T) > 0.'' Of course, the value

function is
—r(T- a
Jng.®) = A [ mg o+ (o) 1 - e T

Another choice of constraint would give a different solution. The economic
structure of the problem enters in a decisive way through this constraint.

In addition to showing the importance of paying close attention to the
constraints, this symmetry is different in other respects. It is affine, not
linear, and the transformation is time-dependent. This last feature appears

again with non-linear production functions.

5. Symmetries and Non-Linear Production

Another application of symmetries is to models involving Cobb-Douglas
production and logarithmic felicity. In this section, I use symmetries on a
stationary Ramsey problem (Mirman and Zilcha) and a non-stationary version of
the same problem inspired by Mitra. The same method will also apply to more

complex optimal growth models of this type, as those used in Radner (1966) and

Long and Plosser (1983).

5.1 Time Stationary Felicity

A simple stochastic Ramsey problem, due to Mirman and Zilcha (1975), is

® t-1
J(y) = szp Eo Zt:l & log Ct

t
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s.t. ¢ +k =k ~.; t>2 (3)

where 6 < 1 is the discount factor and the p, are independent random variables

with mean p < 1.

For a symmetry to be useful, it must preserve the preference ordering.

With logarithmic felicity, that means that Tzct = atcg for some a, and 6.
% * *
Let Tikt = kt and Tzct = c, be the transformation associated with y = Ay.

Equation (3) must be satisfied by both the transformed and untransformed

p p

. t-1 3 »* t-1 .
variables, so when ¢, =0, k =k, and k = (kt—l) . Setting z,

x* Peo1
= kt/kt’ we see that z, satisfies zt = 2.4 with z, = A. This has solution

t-1
(TT;_{ pp)
CS At where At = A . Notice that although Py is stochastic, the

transformation can be defined as easily as if it were deterministic.
. - . * * = - -
Substituting the expressions for kt and Cp into (3), we see that this is

indeed a symmetry provided a, = At and 6 = 1. Applying the discrete—time

t

analog of Theorem 1 shows that
© t-1 t—1
J) = Eo |2, © (TTi=o p;) log A |+ J(¥)-

Setting A = 1/y and using the fact that the p, are independent with mean p, we

get
Jy) = J(1) + [1/(1 - pb)] log y.
The symmetries also show that the optimal policy function is linear in

production y.

The same symmetry can be used on the undiscounted version of this problem

(Mirman and Zilcha, 1977) to get
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Jy) = J() + (1 -p)" logy.

In general J(1) # O, although Mirman and Zilcha erroneously give J(1) = O.
Without discounting, J(1) is determined by normalizing J so that the Golden
Rule has value zero. When P is deterministic (pt = p), the Golden Rule
initial endowment is g = pp/(l—p) and J(1) = -(1 - p)™" log g. Therefore,

J(y) = (1 - p) *log (y/g)-

5.2 Non-Stationary Felicity

An interesting variant on this problem was studied by Mitra (1979). Using
a specialization of McKenzie's (1974) general time-varying model, Mitra
considered a fixed felicity function with a time-varying discount rate. A
further generalization, which I will examine, is to allow the technology to
vary with time as well. For notational convenience, 1 only consider the
deterministic case. These results may be extended to admit stochastic
production as well. To insure that symmetries apply, I will consider Cobb-
Douglas production and logarithmic felicity as above. Let ~ = (7v;, v2,...),
p=(p1, P2..-.), and A = (6y, 65,...) be given. The technology at time t

p
is given by ft(xt) = v x "

&t with 6t representing the discount factor at time

t. The Ramsey problem P(y,A,p,~v) becomes:

0
J(yIA,p,W) = sup Zt:l 6t log .
s.t c, + X = xpt—1 for t>1
t t t-1"t-1
cy; + X4 = Yy; Ct' Xt 2 0

Two symmetries combine to find the value function. The first transforms
this into a problem with T, = 1. The symmetry S(Ct’xt) = exp 0 (ct.xt)
does this when o solves the difference equation o, = log Teo1 Y P19
with o0, = 0. The symmetry used on the Mirman-Zilcha model then does the rest.
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- Tt
To illustrate this, consider the case 6 = 6t 1, P p and v=e o

For the first symmetry, o, = v(t-1) + PO _ and g, = 0. As is easily

1

: . t
verified, the solution to this difference equation is o v(p - pt + t -

t
1)(1 - p) 2. The value function then obeys J(y|6.p.7) = J(y|6.0.0) +
~6/[(1 - 8)3(1 - pd)].

This transforms the problem into a deterministic Mirman-Zilcha model. Its
solution yields J(y|6.p.7v) = A + v8/[(1 - 8)%(1 - p&)] + (1 - p6)™" log y
where A is constant. An interesting point about this expression is that it
permits computation of the optimal policy function, and hence facilitates
explicit computation of the optimal path. For this, use the Bellman equation

J(y|6.p.7) = sup {log c + BJ(eq(y—c)p|6,p,7)}.
Plugging in the expression for the value function, and using the first order
condition, shows that the optimal choice of ¢, is (1-pd)y. Similarly, c, =
(1—p6)yt where Y, is the income available at time t. The optimal consumption
path is then c, = c exp {'v(pt - pt+ t - 1)(1 - p) % + pt”1 log (y/g)} where
c=(1-pdg and g = (pé)p/(l_p) denote steady state consumption and
income, respectively.

Although technology grows at a constant rate, the growth rate of
consumption varies. Asymptotically, the optimal path grows at rate v/(1-p).
At finite times, its behavior depends on the sign of [log (y/g) + vp/(1-p)?].
Consumption grows at an increasing, constant or decreasing rate as [log (y/g)
+ vp/(1-p)®] is negative, zero or positive. In the first two cases,
consumption is monotonically increasing in time. The last case involves
another interesting possibility. With a large initial capital stock, the
optimal consumption can be U—shaped.12

Examination of the more general case O < P =P <1 with 6t and 7.

arbitrary is also interesting. By the same procedure,
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t-1 t-1
* _ _ _ p _ p p
X, = (1 5t/ut)(1 6t—1/ut—1) o (1 = 6,/1y) y

Where ., = Zm o) pt_j.
J t=j "t

Note that uj must be finite for all j if the problem
is to be well-posed. Let x* have initial stock x and Z* have initial stock z.
Since 0 < (1 - 6t/ut) <1,

<

t < |xp - ZP | - o.

Ix* - 2
t <
The optimal paths from different capital stocks are asymptotic to each other.
This is known as the twisted turnpike. Mitra established this for the generic
stationary technology case (1979). With time-varying production, the twisted

turnpike need not hold.'®
6. Equilibrium Models

The symmetries of Section Five can be applied to equilibrium models with
Cobb-Douglas production and logarithmic felicity. In such a setting, the same
symmetry can be applied to all households. Provided a steady state is known,
other equilibria may be investigated. One relatively simple equilibrium model
is Michener’s (1982) version of Lucas’ (1978) asset pricing model. In
addition to the value function, we also need to find the equilibrium pricing
function. This causes Michener some mild embarassment. Although Lucas did
show that bounded utility functions have a unique equilibrium pricing
function, his uniqueness theorem does not apply here. Fortunately, Michener’s
answer 1s unique, and the symmetries can show it. Furthermore, even if we
allow non-stationary prices a la Brock (1982; Malliaris and Brock, 1982),
equilibrium prices are still unique. Michener’s problem must be broken into

two parts. The first is solved conditional on asset prices. The second
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determines the equilibrium prices. The first problem is

Y t-1
V(y.z|lp) = sup Eq Zt:l 19 log C,
{c.x}
s.t. log Yeep = P log Y, + €
Co FPXy T OVF T PTG T T %

z, 2 0, ¢ 205 zy =2z, ¥y, =Y.

Of course 0 ¢ p <1, 0<5<1ande ~ N(0,0%).
In each time period the consumer chooses X o the amount of the asset to
hold at the end of the period, and consumption - The consumer’s asset

holding is carried over and becomes the initial asset holding Zi41 for the

next period.

This problem, like Fischer's, has two sets of symmetries. The first, based

on the linear budget c trai + = + , is T ,Z =
g onstraint c. P X, YiZ¢ P.Z, 1(yt t)

(yt,Azt), Tzct = kct, and Tsx, = Axt. By Corollary 2,

t
V(v.2z|p) = (1-6)"" log A + V(y.z|p).

Hence V(y,z|p) = V(y.1l|p) + (1-6)"" log z.
Further, if x: is optimal from z, Ax: is optimal from Az at the same

prices. Hence, P, is not only an equilibrium price sequence for z, so that

X, = Z, but is also an equilibrium price sequence for Az. Equilibrium prices

are unaffected by changes in initial wealth =z.
The second symmetry is a bit different since it also involves the price

sequence. This symmetry is based on the Cobb-Douglas technology log Vey1 =

p log yt + et, and is a deterministic version of the Mirman-Zilcha symmetry.

It is Si(yt'zt) = (Atyt,zt), Szct = Atct, Saxt = X and S.,pt = Atpt where At
p
= A . This symmetry maps equilibrium prices into equilibrium prices since x

is unchanged by it.
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PROPOSITION. For each initial y, there is a unique equilibrium price
sequence. It is given by the pricing function p(yt) = 6(1-6)_1yt.
PROOF. An application of the Principle of Optimality shows that A, = Py

are equilibrium prices for (y;,z). Another application yields

V(y.z|p) = sup {log [yz + pi(z - x,)] + 6 Eo V(yz.x:lq)}-
X4

Now T shows that q, are equilibrium prices for (y,.z') for any z'. This
symmetry also tells us V(yz.xX;|q) = V(y2.1|q) + (1-6)"" log x,. Armed with
this information, we can now apply the first order conditions at x, = z and
find p, = 6(1-6)"" y.

Of course, a similar argument can be applied to q- Hence, p, = 6(1-6)71
Y2 also. A simple induction shows that P, = 5(1-6)"1 e This is necessarily

unique. QED

The point is that the only equilibrium prices are actually given by the
stationary equilibrium pricing function p(y) = <‘5(1—t5)_1 y. Now let V(y.,z) =
V(y,z|pt(y)) be the equilibrium value function. Using the Symmetry Theorem on
S shows V(Ay.z) = (1-p8)™" log N + V(y,z). Combining this with the results
using T gives

V(y.z) = A+ (1-6)"" log z + (1-p6)"" log y
for some constant A.
As is usual with the symmetry technique, the actual nature of the

stochastic term was irrelevant. We will get the same results whenever this

problem is well-posed.
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7. Conclusion

This paper has shown how symmetry arguments can be used to solve various
kinds of maximization problems. In addition to the examples presented here,
symmetries are able to solve various other problems. They can also be used on
the exponential utility functions used by Holmstrom and Milgrom (1986) and
Chang (1986). The type of symmetry used on the Mirman-Zilcha example can be
applied to more general problems of the same type, such as Radner (1966) or
Long and Plosser (1983). Precott and Mehra’s (1980; Mehra, 1984) recursive
competitive equilibrium is another model where symmetries can be helpful.

Other types of equilibrium models may be examined. Becker's (1980) Ramsey
equilibrium, where agents may not borrow against future wage income is such an
example (Boyd, 1986a).'® One interesting application of this is found by
adding capital taxation to the model. With appropriate preferences and
technology, symmetries can be used to calculate the transition path between
steady states when tax rates are changed (Boyd, 1986b). The symmetries give
us an expression for each individual’s utility, and can be used to analyze
welfare.

Elementary techniques for finding symmetries were presented in the
examples. In many cases, the question of existence of symmetries remains
open. The Noether theorem should prove helpful. It plays a key role in

investigations of a related type of invariance in Sato (1981), Sato and Nono

(1983) and Logan (1977).
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Footnotes

Typical cases include Merton (1969, 1971), Samuelson (1969), Gertler and

Grinols (1982), Malliaris and Brock (1982) and Michener (1982).

The major exceptions are Hahn (1970) and Mirrlees (1974) who use an

embryonic form of the symmetry technique.

A general result for homogeneous felicity without uncertainty, is due to

Mino (1983). His proof involved manipulation of the Hamiltonian.

This is the same type of symmetry concept used in physics. See Weyl

(1952).

Each of the sets involved is a subset of some vector space.

See Koopmans (1960) for details on recursive preferences.

Note that the conditional expectation is usually a random variable. For

it to be constant, m must be constant.
More generally, T is a symmetry between problems with evolution operators
L and L' provided L(Tz) = O if and only if L'(z) = 0. This expanded

notion of symmetry will prove useful in Section Five.

When a maximum exists, it can be used to simplify the proof.
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11.

12.

13.

14.
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Gertler and Grinols (1982) use a money-in-the—felicity—function model
where the felicity function is ufc;,cz) = A log ¢; + B log c, with ¢,

denoting consumption and c, being real money balances.

» L
The point is that log m is a Brownian motion. Thus there is a positive
s * -r(T-t)
probability of log m < log {(n/r) [1 - e 1} for t < T, and m may
. * »* .
be negative. Further, as ¢ = Bm for some constant 6, there is also a
positive probability of negative consumption. Further interpretation is
required to make sense of this case. Merton works in a partial
equilibrium setting, and ¢ need only represent consumption out of wealth.
Thus each agent may receive 7 units of the consumption good in each
period, independent of wealth yielding total consumption ¢ + m. An
alternative is to require wealth and consumption be non-negative. This

is the path followed by Sethi and Taksar (1986).

For example, with v = p =%, 0< 8 < landy =g° = 6°/4, ¢, =c exp {t +
yy t1 Lo . . . - 4 - 3.5
3(%) }. Consumption in the first three periods is ¢, = ce”, ¢, = ce

and c5 = Ee3'75.

In the exogenous technical progress example, the twisted turnpike does
not hold. This may be verified by applying 1’Hépital’s rule to the
explicit expression for X, = péct/(l—pé). A modified turnpike result
does hold since |xt - zt|e_7t/(1_p) - 0.

The Ramsey equilibirium is further developed in Becker and Foias (1986)

and Becker, Boyd and Foias (1986).
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