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Abstract

This paper develops an analytically tractable model of a firm’s
production decisions in the face of demand uncertainty that takes explicit
account of the non-negativity constraint on inventories. The model also
allows a range of assumptions about the firm'’s ability to backlog its excess
demand. Either the ability to backlog or positive serial correlation in
demand causes the firm's production to exhibit more variance than its sales.
Testable implications of the model are discussed, and modifications to the

standard linear—-quadratic specification are suggested.






Manufacturers, setting industry in motion to provide for
a scale of consumption which is expected to prevail some
months later, are apt to make minor mistakes, generally
in the direction of running a little ahead of the facts.
When they discover their mistake they have to contract
for a short time to a level below that of current
consumption so as to allow for the absorption of the
excess inventories; and the difference of pace between
running a little ahead and dropping back again has
proved sufficient in its effect on the current rate of
investment to display itself quite clearly against the
background of the excellently complete statistics now
available in the United States.

J. M. Keynes, The General Theory.

Economists have long recognized that inventories play an important role
in business cycles, as the above quotation suggests. The importance of
changes in inventory investment in cyclical fluctuations has been widely
documented.1 In eight post-war recessions, declines in inventory investment
have on average accounted for more than 30 percent of the peak-to-trough
declines (relative to trend) of real GNP, even though inventory investment
itself represents a much smaller component of GNP. Blinder and Fischer’s
(1981) detailed accounting of the 1973-75 recession also suggests that most of
the action in inventories occurs in the finished goods component, and that
large changes in inventory investment occur one quarter after large changes in
sales. Yet the common assumption that firms try to smooth production in the
face of fluctuating demand, either because of diminishing returns or costs of

adjusting production, suggests that inventories could be a stabilizing force.



A temporary decline in demand would, according to this view, result in some
degree of accumulation of inventories (or, to be more precise, the inventory
reduction that the firm undertakes should not be so great as to offset the
unintentional accumulation that is the direct result of the demand shock), as
the firm only partially adjusts its rate of production.

It is safe to say that few economists still believe that finished goods
inventories are held only to smooth production in the face of fluctuating
demand. The simple fact that the variance of production exceeds the variance
of sales——even after controlling for obvious seasonal factors influencing
production (see, e.g. Blanchard (1983))--strongly suggests that production-
smoothing is of secondary importance. Two general approaches that have been
considered in the literature are (1) to allow for a stockout-avoidance motive,
taking account of the non-negativity constraint on inventories, and (2) to
allow for cost or productivity shocks. In the spirit of the first approach is
the inclusion in a linear-quadratic model of a (quadratic) cost of being away
from some target level of inventory. If the target is proportional to
expected next-period sales, for example, then the variance of production can
exceed the variance of sales. The difficulties with this approach, apart from
its obviously ad hoc nature, are, first, that it does not prevent inventories
from being negative, and, second, that the more general variance inequality
that it implies has also been rejected empirically (see West (1986)).
Moreover, Abel’s (1985) more rigorous treatment of the non-negativity
constraint led him to the opposite conclusion, namely that production should
be smoother than sales. The approach that allows for cost shocks, as exempli-
fied by Eichenbaum (1984) and Blinder (1986), while able to account for pro-
duction volatility, in practice still ignores the non-negativity constraint.
Also, it suffers from the lack of better direct evidence of cost shocks.

This paper develops a model of production and inventory behavior that



focuses exclusively on the stockout-avoidance motive. The model potentially
explains many of the stylized facts about inventory behavior that have been
documented in recent years, including the "excess" volatility of production
(e.g. Blinder (1986) or West (1986)), and the positive correlation between
inventory levels and sales (Rotemberg and Saloner (1985)). Inventories arise
as a result of two plausible technological constraints: (1) Firms cannot
costlessly short-sell their products; and (2) production decisions are made in
advance, before the state of demand is fully known.2 The model has linear
costs, so that there is no conventional production-smoothing motive. With
explicit specifications of uncertainty, the model yields analytical solutions
to the firm’s optimization problem. The solutions explicitly take into
account the non-negativity constraint on inventories (i.e. the possibility of
stockouts) and a range of assumptions about the firm’'s ability to backlog its
excess demand.

The conditions under which the variance of production is greater than the
variance of sales turn out to be quite broad. They include demand processes
that are independently and identically distributed (i.i.d.), and processes
that are positively serially correlated. Although the linear cost structure
presumably overstates the potential for production counter-smoothing, the
strength of the findings below suggests that production can be more variable
than sales even if there is significant convexity of costs, and even if the
only source of uncertainty is on the demand side. Hence the model is capable
of rationalizing the violations of the production-smoothing models found by
Blinder (1986) and West (1986). The model also suggests some ways in which
the linear-quadratic framework employed in much empirical research (e.g. West
(1986) and Blanchard (1983)) might be modified to make it a better approxima-

tion to more rigorously based models.

The plan of the paper is as follows: Section I presents the general



version of the model, and solves for a representative firm's optimal price and
production decisions. Section II contains the central results of the paper,
namely conditions under which production will be more variable than sales.
Section III illustrates the main points of the paper with an extended example.
The final section summarizes the results and suggests areas for further

research.

I. The Model

In this section I consider a monopolist’s choice of price and production
when it is uncertain about its demand. Each period the firm must decide how
much it wishes to have available for sale in the coming period, and at what
price, prior to knowing demand for that period.3 If actual sales turn out to
be less than the available stock, the firm may carry the remainder (at some
cost) into the next period as inventory. If, on the other hand, the firm
"stocks out”, the result is lost and/or delayed sales.4 The model of the firm
is similar to that of Karlin and Carr (1962). The main generalization is that
I allow the firm to backlog some portion of its excess demand in any period.

Given its current information, the firm chooses a price and a quantity of
production for the succeeding period to maximize expected profits over an
infinite horizon. After observing the realization of demand for that period
and any other relevant news, the firm again chooses price and quantity for the
next period, and so on. The stock of goods the firm has available for sale
each period is equal to its leftover inventory plus that period’s production.
Actual sales equal either that period’s total demand or the amount available
for sale, whichever is smaller.

I make the extreme but useful assumption of a linear cost of production.
Thus the firm will not explicitly use inventories to smooth production over

time. There is nothing in this assumption that would bias the firm toward



production counter—-smoothing, though. A positive discount rate ensures that
the firm will try to match production and sales, as the model implies that in
the limit as the uncertainty about demand is eliminated, production becomes
identical to sales.

If backlogging is feasible, the firm's total demand may include its
excess demand from previous periods. A backlog, for the purposes of this
paper, occurs when a firm and a customer agree to execute a transaction at
some period in the future, as a consequence of the firm having stocked out in
the current period. I assume that the firm can backlog some known portion of
its excess demand in any period, an assumption which includes as special cases
Abel’s (1985) assumption of no backlogs, and West's (1983, Ch. 3) assumption
of 100 percent backlogs. The cost to the firm of backlogging is the interest
lost on the price of the goods, since money is assumed to change hands only at
the time of the sale. The price for the backlogged sale is the price as of
the original demand, not the price at the time of the sale.5

The assumptions regarding the timing and availability of production are
worth emphasizing, because they differ somewhat from those of other authors
(e.g. West (1983), Abel (1985)). I assume that the production resulting from
decisions based on period t-1 information is available for sale in period t.
There are several possible interpretations of this assumption. One is that
the production decision based on period t-1 information is implemented in
period t, but quickly enough that the production is available for sale in
period t as well. A second interpretation is that the decision is implemented
in period t-1, with the production available for period t. Still a third is
that production and sales activity take place in alternate sub-periods, night
and day, for example, with each night's production based on information
including the day’'s sales. The convention for this paper will be the first,

so the production indexed by t will always be based on information as of t-1,



but available for sale in period t (see Figure 1). The substantive difference
between this assumption and that of the above-mentioned authors is that they
assume a longer lag between the receipt of information and the availability of
production for sale, namely that the production based on period t-1 informa-
tion is not available for sale until period t+l. Which assumption is better
is an empirical question, and may differ from one industry to another. I
would argue that this paper’s assumption is probably closer to the truth for
production—-to-stock industries. Industries with lengthy production periods
(e.g. airplane manufacturing, construction) tend to produce "to order" rather
than to stock, and therefore do not hold finished goods inventories. Figure 2
depicts one possible realization of inventories, sales, and production, under
the assumption that the latter two activities take place at constant rates
within a period (except in the event of a stockout). During period t-2, sales
are occurring at a faster rate than production, so inventories are drawn down.
The opposite is the case in period t-1. In period t, sales occur at such a
fast rate that the firm stocks out during the period, at which point the sales
are constrained by production. The next period’s production is then
increased, with the goal of building inventories back up to a more desirable
level. Again, there are other possible timing conventions that would lead to
different within-period behavior of the endogenous variables that are entirely
consistent with the results presented below.

I assume that the firm's demand in period t has a stochastic component
representing new demand for that period, and a certain component representing
backlogs from earlier periods. Prices enter the stochastic component multipli-

catively, so that the firm’s total demand in period t can be expressed as:

(1.1) X, = h(pt)St + bt—l’



where b is the stock of backlogs, S

-1 is an exogenous stationary stochastic

t
process, and the function h() is non-stochastic.
If the firm does stock out in period t, then its excess demand is just

X, (nt_1 + yt) =X, < Z. I assume that the firm can backlog a portion q of

its excess demand, where q is a known constant. We have, therefore
(1.2) bt = q(Xt - Zt).

The assumption that q is a known constant is restrictive, and in many cases
might not be very realistic. It does, though, represent a generalization of
the assumptions made by West (1983) (who assumed gq=1), and Abel (1985) (q=0).
I assume that the only direct costs facing the firm are a linear cost of
production, CY and its opportunity cost of funds, which implies a discount

6 -
factor B < 1. Both B and ¢ are constant over time and across firms. The

firm’s realized profit in period t is

1. _ _
(1.3) T, =PZ, ~CY

Inventory carried into the next period satisfies the identity

(1.4) n

I
=]
+
<
1
N

t t-1

and sales can be no greater than the available stock, nor greater than demand

at a given price:
t

1. i
(1.5) z_ £ mln[nt_1 + yt,xt].

In what follows, I will assume that (1.5) holds with equality, i.e. that the



firm never turns down a sale. This will be justified below in the case of
multiplicative demand shocks by Propositions 1 and 2, which show that the firm
earns a constant positive markup in each period.

At the beginning of each period, the firm chooses price and production to

maximize the present discounted value of expected profits. Thus it solves
2 t
5—
Eeal 2 B (pgzg ~ ev))]

subject to the inventory-production-sales identity (1.4), the non-negativity
constraint on inventories (1.5), the demand function (1.1), and the backlog
equation (1.2). The multiplicative nature of the stochastic component of
demand turns out, not surprisingly, to be a helpful restriction. I will take

it one step further and assume that innovations in the demand process enter

multiplicatively, i.e.

S, =E_,(S)u,.

where the u, are independently and identically distributed. I choose this
particular specification of uncertainty because of its simplicity (it will
turn out that price is independent of the state variables) and because of its
realism as compared to other simple specifications. The additive uncertainty
assumed in Section III, for example, would imply that uncertainty diminishes
in relative importance with the scale of operations.

To summarize: Each period the firm’s demand consists of its backlogged
sales from previous periods, about which it is certain, plus new demand, which
it does not know at the time it makes its production decision. In choosing its

level of production, the firm must weigh the possibility that it will stock



out against the possibility that it will end up with inventory to be carried
over into the next period. The key assumption is that the firm cannot
literally sell a good that it does not have in stock.

I now solve the firm's profit maximization problem using standard dynamic

programming techniques. The fundamental dynamic programming equation is given

by

(1.6)  Jn _;.b _,.T, ) =

;ﬁj"; Eo1(PeZy — oy + Bl(n.b.Ty))

subject to the constraints (1.1), (1.2), (1.4), and (1.5), where Tt denotes
the set of state variables relevant to the firm's forecasting problem. The
linear cost structure assumed in this problem greatly facilitates its
solution. The primary effect of the assumption of multiplicative uncertainty
is to make the solution time—invariant, as we shall see.

Let G() denote the cumulative distribution function (assumed to be
continuous and strictly monotonic) for the forecast error u, - Also, let
Q, = [nt__1 t Y- bt—l]/[h(pt)Et—l(st)]’ the ratio of the amount the firm
makes available for sale (in excess of its backlogs) to its expected demand
(again, not counting its backlogs). The probability that the firm stocks out
in period t is 1 - G(Qt)' which is the probability that the forecast error is
greater than Qt' Using the fact that the derivative of expected sales with
respect to production is equal to the stockout probability, one can show that

the first-order condition for the production decision is:

(1.7) 0 = (p, - c)(1-Pq)[1 - G(Q,)] - <(1-B)G(Q,).
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This condition can be interpreted as follows: At a given level of production,
the firm will stock out with probability 1-G, in which case it loses p—c in
the current period, while backlogging a portion q of the excess demand. Thus
the net gain to the firm from producing another unit this period, conditional
on stocking out, is (p-c)(1-Bq). With probability G, however, the firm will
not stock out, in which case an increase in production this period is just a
shift from the next period. Hence, conditional on not stocking out, the firm
loses c{(1-B) as a result of producing an extra unit this period. At the
optimum, the net expected gain from producing another unit should equal zero.
It is easy to verify that at the optimum, G will lie strictly between O and 1,
provided p > ¢ and 0 ¢ B < 1.

One immediate implication of equation (1.7), because it is expressed in
terms of Qt’ is that the firm always produces enough to satisfy the certain
component of its demand, which in this model is the stock of backlogged sales.
This makes sense, because if p > ¢, the firm profits on each sale; hence it
would never wish to delay or miss out on a certain sale.

Equation (1.7), or something very close to it, holds much more generally
than just under the assumptions in this paper. The only differences would be
that with a more general specification of uncertainty, G would be replaced by
the distribution function for demand, and the parameters assumed to be
constant would be time-varying, and possibly functions of the control
variables y and p. But for given values of p, ¢, B, q. and for a given
distribution of demand, (1.7) must hold at the optimum. It essentially
expresses the tradeoff between stocking out and carrying over inventory as
described earlier. Note, for example, that a larger markup implies a lower

stockout probability (that is, ceteris paribus, more production), while a

greater ability to backlog increases the firm’'s optimal stockout probability.

The first-order condition with respect to price is a little more
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. . = = _ _ah_t i

complicated. Letting g(Qt) = E(ut| u, < Qt)' and e = ap, b (the price
elasticity of expected demand), we have

(1.8) 0 =uG+ Q1) + Ball - (uG + Q (1G))]

P~ Bc p,C
- e, { - uG + Bq_ -~ [1-uG] }.
Py , Py

This condition is perfectly analogous to the standard monopolist’s first-order
condition for price. An increase in price raises revenue on existing sales,
but drives some customers away. The positive terms in (1.8) equal expected
sales (expressed as a proportion of expected demand), including those sales
that are backlogged, i.e. not executed until the following period. The
negative term takes account of the fact that some customers will, in
expectation, be lost as a result of the price increase, and is proportional to
the elasticity of expected demand. The primary difference between (1.8) and
the corresponding condition under certainty ((p-c)/p = 1/e) is the possibility
of no reduction in sales in response to a price increase, which arises because
of the positive stockout probability. In other words, the elasticity of
expected sales will generally be less than the elasticity of expected demand,
because with probability 1-G the firm will stock out, in which case there will
be no change in sales, on the margin, in response to a price increase.
Intuition should therefore suggest that, because of this, the markup will be
greater than in the certainty case, and indeed this is confirmed by the

following result.

Proposition 1: The firm’s markup is greater than it would be under certainty.
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(Proof: Using (1.7) to simplify (1.8) yields the following expression for the
markup (note, however, that (1.9) below is not a closed form expression for
(p,—¢)/p,):

. [uG + Q(1-G)](1-Ba) + Pa
(1.9) v =

P, t u(1-fq) + PBaq

| =

The factor multiplying 1/e is greater than one, because Qt > u.)

There is a long tradition in the economics literature, going back at least to
Mills (1959), of concern with the question of how uncertainty affects the
pricing decision of a monopolist.7 Proposition 1 essentially extends the
result of Karlin and Carr (1962) to the case where the monopolist can backlog
its excess demand.

Equation (1.9) makes clear that, as with the textbook monopolist, some
restrictions on h(pt) will generally be necessary for any equilibrium to
exist. For the present purposes, it will suffice to assume that the
elasticity of expected demand is bounded from above and below. This will
ensure that the markup is positive but finite, and that the firm makes

positive expected profits. The next result then follows immediately from

equation (1.9):

Proposition 2: The profit-maximizing markup, and hence the price, is constant

over time.

(Proof: (1.7) implies that Qt depends only on P B, ¢, q, and on the distri-

bution of u, . Also, the elasticity depends only on pP,- Therefore, no state

variables enter the right side of (1.9), so price is constant over time.)
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This result is helpful from an analytical standpoint because it enables us to
focus on production and sales behavior without regard to price changes. It
also greatly simplifies the solution to the problem of optimal production, as
we shall see. The counter-smoothing results derived in the next section are
not at all sensitive to assumptions about pricing behavior, though. For
example, the result carries over to the case of a competitive equilibrium in
which price adjusts ex post to clear the market (see Kahn (1986, Ch. 2)).

The intuition for the constant price result is simply that the markup
depends on the elasticity of expected sales, which is constant, not on the
expected level of sales. A firm with, for example, an unexpectedly large
stock of inventories does better by saving on current production costs and
selling entirely out of inventory than by cutting its price and maintaining
its level of production. Although with non-multiplicative uncertainty, firms
would generally respond to changes in expected demand by changing their
prices, the variance of production and the variance of sales would, to a first
approximation, be affected the same way. Procyclical price changes, for
example, would smooth both production and sales. Hence a more general

specification of uncertainty would not be likely to overturn the results

presented in the next section.

-1t

the firm's new demand (demand exclusive of backlogs) in period t, conditional

In what follows, I will define X, to equal the expectation of h(p)St.

on information as of time t-1. The constancy of the profit-maximizing price

leads immediately to the following result about the production decision:

Proposition 3: The firm chooses production so that the probability of stocking

out is the same every period.
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(Proof: Equation (1.7) expresses Qt as an implicit function of p, ¢, q, B, and
the distribution function G, all of which are constant. Therefore the

stockout probability l—G(Qt) is constant.)

Proposition 3 is a consequence of the result that all of the parameters that
affect the tradeoff between stockouts and inventory carrying costs are
constant over time. If, for example, the markup were procyclical, the
stockout probability would be countércyclical. since the costs of stocking out
would be greater in periods of high demand.

We can now completely characterize the decision rule of the firm in terms
of the state variables of the problem. Substituting for Qt in (1.7), and

defining the parameter

(the optimal value of Qt)' we have

(1.10) n

Equation (1.10) shows that the firm makes available for sale in period t an

amount equal to its backlogged sales bt— , plus a multiple k of its expected

1
demand. Strictly speaking, k could be any positive number, depending on the
distribution of u, the markup, and the other parameters. For most plausible

parameter values, though, k will be greater than 1, as the following example

suggests.

Example: Suppose new demand X, is of the constant elasticity form
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€

-1 = pt— u.. where T is a scalar, and let u be distributed uniformly over

r t-1

the interval [0,2], so that G(u) = (1/2)u. It turns out that the markup
satisfies a quadratic equation involving the discount rate B, the elasticity
of demand e, and the backlog factor q. Tables 1A and 1B give values for the
markup (defined as p/c) and for k implied by various values for e, with q
equal to zero or one. Table 1A assumes B = 0.995, and Table 1B assumes

B = 0.99.

A number of interesting features of the model emerge from these
calculations. First, the ability to backlog has, perhaps not surprisingly, a
huge effect on inventory levels. With q equal to zero, k is substantially
greater than unity even for very small markups, whereas with q equal to one, k
is small at even fairly substantial markups. At moderate markups (e.g. less
than 33 percent), firms that are able backlog their excess demand have
inventory levels that are, on average, less than half of those of firms that
cannot backlog.

Second, inventory holdings are not very sensitive to the discount rate.
The rate assumed in Table 1B is roughly twice that in Table 1A, and yet for
the most part the optimal values of k hardly differ. Since empirical
researchers have rarely found inventory investment to be very sensitive to
interest rates, it is encouraging that, at least in this example, the model
implies that inventory levels are not substantially affected by changes in the
discount factor.8 The last column of Table 1B gives the percentage difference
in expected inventories between the two cases (with Table 1A as the base
case), for q equal to zero. (This difference is negligible in the case of q
equal to 1.)

Finally, note that the although the markups are larger than the static
monopolist’s markup p/c = e/(e-1), the difference is very small. This is

because the discount factor B is very close to one in either case. It is easy



16

to verify that if B=1 exactly, the markup is exactly that of the static mono-
polist. This is because it is costless to hold inventories if the discount
rate is zero, and therefore the firm will never allow itself to stock out.
Hence the elasticity of expected sales is equal to the elasticity of expected
demand, so the reason for the higher markup as described earlier goes away.

It should be no surprise that the model is not very well-behaved as the
elasticity of expected demand goes to infinity. In the example above, as the
elasticity approaches infinity, price approaches cost, and the firm ceases to
produce to stock. This reflects the fact that a constant p=c could not be a
competitive equilibrium, because inventory carrying costs {the positive
discount rate) imply that firms’' expected profits would be negative. With
monopolistic price-setting, profits may be negative if the elasticity of
demand is too large. Kahn (1986, Ch. 2) provides a model of a competitive
equilibrium analogous to the monopoly model ;onsidered here. The behavior of
production and sales in that setting is the essentially the same; only the
interpretation differs, since by assumption individual consumers and producers
behave as if they can buy and sell as much as they want.

Another interesting feature of this model is that the derivative of
production with respect to expected sales need not equal one, and is likely to
be greater than one. The technical reason for this "multiplier” effect is
that firms choose production with regard to stockout probabilities, not first
moments. In general, the difference between the means of two probabi-lity
distributions will not equal the difference between the quantiles (i.e. the
points at which the distribution function is equal to some given value).
Therefore, unless the optimal stockout probability happens to be such that k
equals one, a change in expected demand should lead to something other than a
one—for-one change in expected production.9 The results of the next section

concerning production counter-smoothing, however, hold for any value of k > O.
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We can, by a series of substitutions, solve for production and sales in
terms of demand expectations and innovations. Equation (1.10) and the
identity Y, =2

t-1 + a, —a 4 together imply

-b

(1.11) Ve =2 e-1%¢ T =2%e-1) * Py t~2°

+ k(
Thus production is equal to the most recent period’'s sales, plus the change in
the stock of backlogged sales, plus a factor proportional to the change in
expected new demand. We can immediately see that if no backlogging were
possible (q=0), and if demand were i.i.d., then production would just equal
lagged sales, and the variance of production would, of course, equal the
variance of sales.9 The interest of this model, then, depends on the failure
of at least one of those restrictions.

Equations (1.5) and (1.10) together imply the following expression for

sales:

(1.12) Z =b +

where v, = min[k,ut]. Equation (1.12) says that actual sales equal the stock
of backlogs, plus new demand or the remaining stock, whichever is smaller. A
stockout occurs if u, > k.

Combining the above expressions for production and sales with the
specification of backlogs (1.2), we get the following equations for
production, sales, backlogs, and inventories:

(1.13) y. = k(

=15t T t=2%t-1) T e2Xeo1Veo1 t Ge—o¥eo1 (Mo Vo)

(1.14) Ze = 1% eVe Y Qemo¥eo1 (Vg T V)
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(1.15) b, = qt_l)_(t(ut - vt)

(1.16) n, = t—th(k - Vt).

These expressions can be readily understood if one bears in mind the rela-
tionships between u, v, and k. If u < k, then v = u; otherwise v = k. In the
first case, backlogs are zero, leftover inventories are positive, and sales
are equal to total demand. In the second, leftover inventories are zero,
backlogs positive, and sales are constrained by the available stock.10

The results from this section suggest a straight-forward test of the
model. If q = O, for example, the model implies that the quantity n_q +y,
is an efficient forecast of period t demand, and that actual period t sales
are equal to the forecast plus an error term that should be white noise
uncorrelated with anything in the period t-1 information set. One could

regress log(zt) on log(n +yt), and the nothing else in the period t-1

t-1
information set should enter significantly except for factors that might

affect k, namely interest rates, factor prices, and so forth. (See Kahn (1986,
Ch. 3) for a more detailed derivation of this and related tests of the model.)

The next section considers the question of whether inventory behavior as

derived above is likely to lead to production counter-smooothing.

II. The Variance of Production

A number of authors have suggested that a target inventory motive might
account for the fact that the variance of production typically exceeds the
variance of sales. The purpose of this section is to determine sufficient
conditions for production counter-smoothing to occur. To understand why some
sort of target motive is a logical candidate to explain the "excess' variance

of production, we can rearrange the identity (1.4) as follows. Let
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a, = n._4 + Yo the total stock available for sale by the end of period t.

Then we have another identity

(2.1) R TR L
or, with production on the left side:
(2.2) Y Sz, ta —a

Thinking of a, as the target, and y, as the instrument by which the firm
achieves the target, equation (2.2) has the behavioral interpretation that
production must make up for the previous period’'s sales (that is, replenish
the inventory stock), and respond to changes in the desired stock available

for sale. The corresponding variance relationship is
(2.3) var(y) = var(z) + var(Aa) + 2cov(z_1,Aa)

The firm’'s desired level of a, presumably depends on expected future sales, so
changes in a, would depend on changes in expected future sales. Under this
interpretation, then, the variance of production would exceed the variance of
sales unless changes in expected future sales were negatively correlated with
the most recent period’s sales. Even so, it is still not clear under what
circumstances production counter-smoothing would occur. For example, Abel
(1985) shows, in a model very similar to West's (1983, Ch. 3), that profit-
maximizing firms may smooth production even if their costs are linear. Abel
considers only i.i.d. demand processes, however, and does not allow his firms
to backlog their excess demand. One of the implications of what follows is

that Abel’'s results depend very much on both of those restrictions.11
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We have seen already that with i.i.d. demand and no backlogging, the two
variances are identical, since production equals lagged sales. The first
result of this section shows that backlogs alone induce production

counter—-smoothing.

Proposition 4: If demand is i.i.d. and q > O, then the variance of production

exceeds the variance of sales.
(Proof: With i.i.d. demand, equations (1.13) and (1.14) simplify to

Ve = Ve v aluy —ve I

zp = v +alug g — v lx

where x is the (constant) expectation of new demand. Since u and v are

serially uncorrelated, it follows that
2
var(y) = var(z) + 2qx cov(v,u-v).

But v and u-v are nondecreasing functions of u, so the covariance term is
positive.)

The intuition for Proposition 4 is that backlogs shift sales away from
periods of large unexpected demand, while production responds to the previous
period’s excess demand. This is easiest to see in the case q=1. Production
each period equals lagged sales plus the change in the stock of backlogs.

Recalling that each period’'s backlogs are always filled, we then have that
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production equals last period’s sales to new customers, plus the current stock
of backlogs (since zt_1‘+ (bt—l - bt—2) = (Zt—l - bt—2) + bt—l)' Backlogs,
though, are the difference between the last period’s demand and sales, if
positive; hence production equals lagged new demand, and the variance of
production equals the variance of new demand.12 The time series of sales, on
the other hand, will clearly be smoother than that of new demand, since sales
will be shifted away from periods with large positive demand shocks.

Now suppose that q=0, but that demand is not i.i.d. The next result

shows that the production counter-smoothing result found in Section I holds in

this more general setting in which the firm chooses price optimally.

Proposition 5: If demand is not i.i.d. (in the sense that X, is not a

t-17t

constant), and if demand expectations are positively related to current sales,

then the variance of production exceeds the variance of sales.

(Proof: With q=0, and using the notation Asw for any variable

t swt - s—1wt—1
w, we have

t t-1 t-1%¢

2
so Var(y) = Var(z) + k var(At_lgt) + 2k cov(zt_l,At_lgt). 1f —1%¢ depends

positively on z then cov(z A

-1 t—lzt) will be positive, which also implies

t-1’

var(y) > var(z).)

Thus changes in expectations must be negatively correlated with sales for the
variance of production to be less than the variance of sales, even without
backlogging. Note that this result holds for any k > 0. So even if

production responds less than one-for-one with changes in expectations,
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counter-smoothing may still occur. It is the serial correlation properties of
the demand process that in this case determine the extent to which production
will be more variable than sales. If expected demand depends only on lagged
demand (or lagged sales), and if there is no backlogging, then production
counter—smoothing will occur if and only if demand is positively serially
correlated.

The intuition for Proposition 5 is the same as in the case considered in
Section I. A demand shock has two effects: it changes inventories, and it
changes expectations about future demand. If demand is positively serially
correlated, the two effects work in the same direction. A positive shock, for
example, lowers inventories (thereby increasing optimal production
one—for-one), and increases expected demand for the following period. The
latter effect also increases optimal production, so the total innovation in
production is larger than the innovation in sales. Thus both backlogs and
non—-i.i.d. demand have the effect of increasing the variance of production
relative to the variance of sales.13 That these effects can be quantitatively
significant is established in Kahn (1986, Ch. 1), in which simulations with
plausible stochastic processes for demand yield variances of production two to

three times the variances of sales.

ITI. Stockouts and Backlogs: An Extended Example

This section presents two simple cases that highlight the results from
the previous section, i.e. that firms' ability to backlog excess demand and
positive serial correlation in demand both lead to production counter-—
smoothing. To keep matters as simple as possible, in this section I consider
only the production decision of the firm, and assume that the output price is
constant. I also let uncertainty enter additively rather than multiplica-

tively, so as to be able to calculate variances directly.
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Part A considers a firm whose demand is serially correlated. In Part B

the firm’s demand is i.i.d., but its excess demand can be backlogged.

A. Serially Correlated Demand
Suppose that the firm's demand, denoted x, is an AR(1) process:

(3.1) X, = d + P, 1+ U,

where -1 ¢ p < 1. The forecast error u, is an i.i.d. normally distributed
random variable with mean zero and variance 02. and is uncorrelated with
anything known at time t-1. The maximum amount the firm can sell in period t

is its inventory as of the end of the previous period, plus whatever it

produces during period t:

3.2 = i +

( ) z, m1n[nt_1 Yo xt],
where z, denotes actual sales in period t. The cost of producing Ye is again
cy,. so the firm’s problem is of the form considered in Section I, except with
a constant price p.

The first-order condition implied by equation (1.7) in this case is:

(3.3) 0 = (pc)(1 - ¢(A /o)) - c(1-B)e(A /0).

where

>
]

n

¢ -1 + Y © (d + px

-1

(the difference between the amount the firm makes available for sale and its
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expected demand), ¢() is the standard normal c.d.f., and B is the discount
factor. Interpretation of this condition is reasonably straight-forward.

First, note that the firm will stock out if and only if u_ > At; thus 1 - ¢ is

t
the stockout probability. In the event of a stockout, the gain from having
produced an additional unit is p-c; in the event that there is stock left over
at the end of the period, the firm is worse off as a result of having produced
the additional unit by an amount c(1-B), since it could have delayed the
expenditure by one period. At the optimum, the expected marginal gain must

equal zero. Note that equation (3.3) is a special case of (1.7) with q = O.

Letting k = ow—l((p—c)/(p—ﬁc)). we get the decision rule
(3.4) a =E__.x_ +k

where a, = n._,+vy, (the total stock available for sale in period t), so that

we have

(3.5) n +y, =d+ px + k.

t-1 t t-1
That is, the optimal a, equals expected demand plus a factor that depends on
the markup, the discount factor, and the variance of the forecast error.
These are the parameters that determine the cost of stocking out relative to
carrying over inventories. We can use this rule together with (3.2) to solve
for the behavior of production, sales, and inventories in terms of the

characteristics of the demand process:

(3.6) y, =d + px

¢ 1t min[u

e-1-Kd-

(3.7) z_=d + px

¢ -1t min[ut,k].



(3.8) n, = k - min[k,ut].

Thus production and sales follow very much the same sort of process. However,
the important difference is that x and u are contemporaneously correlated,
while u is uncorrelated with previous realizations of x. Letting

v = min[u,k], we have

(3.9) Y = d + PXe 1 * Ve
so that
2 2 2
(3.10) var(y) = p 0" /(1-p7) + var(v) + 2pcov(u,v) .

The same calculations for the sales process yield
(3.11) var(z) = 02p2/(1—p2) + var(v) .

Since the covariance of v and u is positive, it is clear that production is
more variable than sales in this example if and only if p > O.

The intuition for this result is that if demand exhibits positive serial
correlation, production will respond to an innovation in sales by more than
one-for-one. A positive demand shock, for example, reduces inventories and
increases the optimal level of a . The first effect alone would make
production exactly as variable as sales; the changes in optimal a, that result
from changes in expected demand cause production to be more variable than

sales, the more so the more positively serially correlated is demand.
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B. Backlogs

In this section I set p from equation (3.1) equal to zero, so that demand
is i.i.d., but allow the firm to backlog its excess demand. The total demand
facing the firm in each period now includes any excess demand that may be left
over from previous periods. The conditional expectation of "new” demand (that

is, demand exclusive of backlogs) is now assumed to be constant. We have

(3.12) X, = d + (xt_l - zt—l) +u.

The second term is, of course, non-negative, and equals zero in the event that

the firm has inventory leftover from the previous period. The firm knows

X 17 Zeq when it chooses Y-

In this case the first-order condition for optimal production turns out
to be
(3.13) 0 = (p-¢)(1-B)[1-¢(A/0)] - c(1-B)o(A /o).

which is a special case of (1.7) (q = 1). The difference between this
condition and (3.3) in Part A is that now the gain to the firm from having
produced an additional unit, conditional on stocking out, is the difference
between selling this period and selling next period, i.e. (p—c)(1-8). In the
previous case, excess demand was assumed to be lost forever, whereas with
backlogging, the sales are only delayed by one period. Note that the loss from
having produced an additional unit in the event of a shortfall in demand is
also proportional to 1-B, so that the discount factor a actually does not
affect the production decision in this case.

As before, the firm’s decision rule takes the following form:
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(3.14) a = Et—lxt + K
or
(3.15) n_, vy, = d + (xt 1 zt—l) + K,

where k = aw_l((p—c)/p). Ceteris paribus, k is less than k as defined in the

previous example, again because the cost of stocking out is smaller in this

case.
Given the equation for sales (3.2), and defining v = min[ut,n] as

before, we have

(3.16) z, =d+ (xt_1 - zt—l) + v .

End-of-period inventories are then

(3.17) n =k -v_,

and excess demand in period t can be expressed as

(3.18) X, —Z_=u, — D

which is simply the difference between the forecast error and the truncated
forecast error for period t. For ut small, excess demand is zero, but for ut >
Kk, it is positive.

We can use (3.14)-(3.18) to solve for production and sales:

(319) yt =d + ut_l



(3.20) z, =d+ (ut_1 - vt—l) + o,

But the quantity d + u is exactly equal to lagged new demand, and therefore

t-1
production is exactly as variable as new demand. Sales will clearly be less
variable than new demand, though, since when demand is unexpectedly high,
sales are shifted to subsequent periods, and indeed one may show rigorously
that the variance of (3.19) is greater than the variance of (3.20).

These special cases highlight the two sources of production counter-
smoothing considered in this paper: serial correlation in demand, and the
backlogging of excess demand. The two are clearly related, since backlogging
imparts some serial correlation to the total demand faced by the firm. A
large positive shock to demand in one period, for example, is carried over
into the next period’s total demand by means of the backlog. The two sources
are conceptually different, though, so it is useful to consider them sepa-
rately. Backlogs are negligible or non-existent in many industries that have

sigificant serial correlation in demand.

IV. Conclusions

This paper has demonstrated the importance of taking explicit account of
both stockouts and backlogs in inventory models, as both considerations were
shown to increase the variance of production relative to the variance of sales
in the presence of serially correlated demand. With strictly convex costs, of
course, it is likely that production would be smoothed relative to the predic-
tions of the model, but a simple continuity argrument implies that strict con-
vexity of the cost function is consistent with production counter—smoothing.
Moreover, there are a number of other factors left out of the formulation that

could work in the direction of further increasing the volatility of produc-
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tion. For example, changes in interest rates will generally affect both the
demand for durable goods and the cost of holding inventories. An increase in
the interest rate, for example, would lower both expected demand and desired
inventory accumulation. Thus to the extent that interest rates affect demand
even greater volatility of production might occur.

This last observation suggests one area for further research. It would
be useful to model the demand side of the model in greater detail. The
general equilibrium results alluded to earlier (Kahn (1986), Ch. 2) suggest
that the results of this paper are robust to more rigorous treatments of
demand. That model assumes time-separable utility, though, which is not very
realistic in the case of consumer durables. A more complete treatment of
intertemporal substitution on the part of consumers would be a useful
extension, especially in the model with backlogs.

Another question that arises is the relationship between this model and
the linear—quadratic specification of as in Blanchard (1983) and West (1986).
First, the "target” inventory behavior that comes out of this model is similar
to the ad hoc specification employed in those models, except that current
period production is added to the end-of-period inventory stock. Thus for the
linear-quadratic target specification to have more of a claim to being an
approximation to an optimal policy its target inventory component should be
modified accordingly. The second difference is the convex costs of production
and of changing production in the linear—quadratic model. Both of the above-
mentioned authors imposed a strict quadratic specification of production cost
(i.e. c(y) = hy2). If those models were estimated with a linear and a quad-
ratic cost term (which would be useful anyway, given West’s excess volatility
result), along with the modified target inventory specification, then there
might be some basis for the claim that thé specification approximates the

objective of a firm with general convex costs and a non—negativity constraint
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on inventories, especially if the quadratic coefficients turn out to be small
or insignificant. Conversely, a test for the significance of the quadratic
coefficients could be a valid test of the constant marginal cost assumption
employed in this.paper.

In terms of policy implications, one clear message of this paper is that
the degree of uncertainty surrounding a particular policy option, both in
terms of what its effect on aggregate demand will be, and whether or not it
will be implemented, may play as important a role in determining the policy’s
impact as its direct effect. A policy that increases short-term uncertainty
about demand without affecting its expectation, for example, may have substan-
tial real affects, since changes in the dispersion of the demand distribution
have first-order effects on optimal inventory accumulation. Similarly, the
multiplier effects of counter-cyclical policies will depend very much on how
they affect firms’ uncertainty about demand. On the other hand, such policies
could end up exacerbating the fluctuations, given that firms may respond to

changes in expectations with more than one-for-one changes in production.



Notes

1. See, for example, Blinder and Fischer (1981), and Dornbusch and
Fischer (1984, Ch. 7).

2. In Kahn (1986, Ch. 3) the second assumption is weakened to allow for
revisions to planned production (with increasing marginal cost) when demand
information becomes available. The qualitative features of the model remain
the same, except that actual production ends up deviating from planned
production by some amount that is correlated with the demand forecast error.

3. Thus the firm is in a so—called "production to stock” industry (see,
for example, Abramowitz (1950), or West (1983)).

4. One might argue that stockouts cannot be very important because we
never see them (i.e. zero inventories) in the data. First, the optimal
stockout probability derived in the paper can be arbitrarily close to zero.
Second, we only observe inventories aggregated across goods and at points in
time, so even if the stockout probability is high we would not expect to see
Zero inventories. Moreover, extension of the model to a firm that produces
multiple products is reasonably straight-forward, and the qualitative features
of the one-good model remain. For example, a firm that produces M different
goods will behave the same as in the one-good case (with respect to each
good), provided its customers will not accept different goods as substitutes
for their first choices in the event of a stockout. Otherwise there would be
"economies of scope”, since a firm that provided many related goods could
economize on inventories without losing sales. In the limiting case in which

the M goods are perfect substitutes the firm behaves exactly as if it only

produces one good.



5. A better assumption in many instances might be that the price the
backlogged customer pays is the minimum of the current and past price. In
this model, though, the two prices turn out to be the same.

6. Inclusion of other linear costs, such as a cost of carrying over
inventory, or a cost of stocking out, is a straight-forward extension of the
model, and does not affect the qualitative behavior of the firm.

7. See the related work of Zabel (1970,1972), who also finds that
multiplicative uncertainty leads to a higher price than under certainty.
Blinder (1982) considers the pricing behavior of inventory-carrying firms
facing various kinds of additive uncertainty.

8. Tables 1A and 1B compare the steady-state values of k for different
discount factors. This is, of course, different from calculating the effect
on inventory investment (changes in inventories) of a change in the interest
rate. Nonetheless, the last column of Table 1B should give a pretty fair
indication of how interest rates affect inventory investment in that
particular example.

9. Abel (1985) derives this result in his discussion of the importance
of the longer production lag in his model. His results suggest that assuming
a longer production lag might weaken, but not reverse, the results in this
paper.

10. It is possible for (1.13) to yield a negative solution for
production, since the first term (which reflects changes in expectations) can
in theory be arbitrarily negative for a given period. In practice, though,
expectations are not likely to be so volatile as to produce this result, so
little would be gained by imposing an additional non-negativity constraint on
the firm’s problem. Technically one can rule out such an outcome by bounding
the support of the forecast error distribution.

11. Abel shows that production will vary less than sales in a model with



a longer production lagged (as described earlier) and i.i.d. demand. Abel
points out that his model with the shorter production lag as in this paper and
constant marginal cost yields equal variances of production and sales. Taken
together, Abel's results and those in this paper suggest that adding serial
correlation to demand makes production more variable, while lengthening the
production lag tends to smooth production relative to sales.

12. Another way to understand this case is that with q > O, the firm can
act more like a "production-to-order” firm (see West (1983)), so that its
production will be more backward-looking. The model with q = 1 is not,
however, a model of a production-to-order industry, since some output is
produced to stock. It is best thought of as an industry in which firms can
backlog., but competitive pressures force some degree of production to stock.

13. Backlogs and serial correlation together do not interact perversely
to overturn the results of Propositions 4 and 5. For example, it is straight-
forward to show that if g=1, then the variance of production exceeds the
variance of demand if demand exhibits positive serial correlation, and that
the variance of demand in turn exceeds the variance of sales, the latter being

smoothed to some extent by the backorder technology.
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Figure 1: Timing Conventions
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Table 1A: Markups and Inventories, B = 0.995

q:o q:l
e p/c k p/c k
1.1 11.06 1.999 11.05 1.819
1.5 3.02 1.995 3.01 1.335
2 2.01 1.990 2.01 1.001
4 1.34 1.971 1.33 0.500
10 1.12 1.918 1.11 0.200
50 1.02 1.655 1.02 0.040
100 1.01 1.443 1.01 0.020
Table 1B: Markups and Inventories, B = 0.99
q=0 q=1
]
e p/c k p/c k *An
1.1 11.11 1.998 11.09 1.820 -0
1.5 3.03 1.990 3.01 1.336 -0
2 2.02 1.980 2.01 1.002 -0
4 1.35 1.944 1.33 0.501 -1
10 1.12 1.847 1.11 0.200 -3
50 1.03 1.447 1.02 0.040 -12
100 1.01 1.177 1.01 0.020 -18

WODWOWY

3
This column gives the percentage change in expected inventories that results

from setting a equal to 0.99, as compared to a=0.995, for the case q=0.
difference is negligible in the case qg=1.

This
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