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Abstract

This paper demonstrates existence of optimal capital accumulation paths
when the planner’s preferences are represented by a recursive objective
functional. Time preference is flexible. We cast our problem in terms of a
general multiple capital good reduced-form model motivated by the Uzawa-
Epstein-Hynes formulation of continuous—time recursive utility. Existence of
optimal paths is addressed via the classical Weierstrass method. We thus
choose a topology where the objective is upper semicontinuous and the feasible
set is compact. This is the topology of uniform convergence of capital stocks
on compact subsets. On feasible sets it is equivalent to weak convergence of
investment flows under our maintained hypotheses. An improved version of a
lemmg due to Varaiya proves compactness. Unfortunately, Fatou’s Lemma cannot
be used to show preferences are upper semicontinuous as stock convergence in
our topology does not imply the existence of a subsequence where the flow
variables converge almost everywhere. A monotonicity argument is combined

with a powerful theorem of Cesari to demonstrate upper semicontinuity.






1. Introduction

This paper demonstrates existence of optimal capital accumulation paths
when the planner’s preferences are represented by a recursive objective
functional. Time preference is flexible. The question of existence of
optimal paths is addressed via the classical Weierstrass method. By carefully
choosing an appropriate topology, we can insure the objective is upper
semicontinuous and the feasible set is compact. Optimal paths exist.

Following Ramsey (1928), optimal growth theory has generally relied on
models incorporating a fixed pure rate of time preference (possibly equal to
zero). In this context, the preference order of the planner is represented by
a time-additive utility functional. This type of objective has been
criticized by various authors, dating back to Fisher (1930), on the grounds
that the pure rate of time preference should not be independent of the size
and shape of the consumption profile. When preferences are time-additive,
this independence is a direct consequence of the strong separability property
by which the marginal rate of substitution for consumption at any two dates is
independent of the rest of the consumption stream (Hicks, 1965, gives an
extended critique along these lines). Lucas and Stokey (1984) argued that the
only basis for studying the time-additive case is its analytic tractability.
Koopmans (1960) laid the foundation for eliminating this deficiency of optimal
growth theory by introducing "time-stationary" or "recursive” preferences.

Uzawa (1968) extended Koopmans’ discrete—time concept of recursive utility
to continuous—time. A rigorous treatment of the existence problem for the
Uzawa model was finally given by Nairay (1984). He drew upon a general
existence theorem presented by Magill (1981). Both Uzawa and Nairay operated

in the single-good setting of Ramsey's original model, but with the additional



limitation of an affine production function.

Following Uzawa’'s lead, Epstein and Hynes (1983) proposed another
formulation of continuous-time recursive utility.' They took an indirect
approach to the existence question that was based upon solving equations
associated with Pontryagin’s necessary conditions for optimality. This may be
possible only under very strong assumptions.2

Our existence theorem proceeds via a direct method. Moreover, we consider
a general multiple capital good model motivated by the Uzawa, Epstein and
Hynes formulation of continuous—time recursive utility. We cast our problem
in terms of a reduced form model. This framework focuses on the vector of
capital stocks and the corresponding net investment flows. These stock and
flow variables jointly determine the consumption flow at each point in time.
This formulation has much in common with the traditional fixed discount rate
reduced-form model, which helps to clarify both the similarities and
differences between the fixed discount rate and recursive models. The
continuity properties of the objective functional are a key difference. Our
existence theorems also accomodate technologies exhibiting stock, but not flow
nonconvexities, such as models with increasing returns to scale.

The first step in the existence proof is to choose an appropriate
topology. Ours is that of uniform convergence of capital stocks on compact
subsets. On feasible sets it is equivalent to weak convergence of investment
flows under our maintained hypotheses. We prove compactness using an improved
version of a theorem originally due to Varaiya (1967). We show that stock
convergence in this topology does not imply the existence of a subsequence
where the flow variables converge almost everywhere.3 Therefore, a Fatou’s

Lemma argument cannot be used to show a limit point of a maximizing sequence

is an optimum.



The failure of almost everywhere convergence poses severe technical
difficulties for the existence theory. One way around it, used by Romer
(1986), is to impose conditions on the flows that insure pointwise
convergence.® We deal directly with the problem of weak flow convergence.

The key to our approach is a powerful theorem of Cesari (1983).5 Cesari’s
theorem is a type of Fatou's Lemma for weakly convergent sequences. It is the
foundation of our major result, the Upper Semicontinuity Theorem for
Objectives.

Cesari’s theorem involves joint conditions on preferences and technology.
A growth condition on feasible stocks is intertwined with the properties of
the objective on growing paths. We show how the classical Tonelli necessary
condition for upper semicontinuity of integral functionals implies the joint
conditions cannot be separated into independent conditions on preferences and
technology. A version of the joint condition had already arisen in one-sector
time—additive models involving a linear technology. Its general importance is
revealed by the recursive framework. The joint condition also emphasizes
Koopmans’® (1967,1976) mathematical screening view of optimal growth theory.
Depending on the technology, some otherwise attractive welfare criteria may
prove nonsensical due to their inability to determine an optimum.

Similar joint conditions appear in the discrete-time existence theory for
recursive preferences (Boyd, 1986). Boyd also combined compactness and
continuity conditions on the economically relevant subset of the commodity
space to obtain existence of an optimum.6 The same idea is implicitly
exploited here by the requirement that felicity conditions hold only on the
set of feasible programs. What happens off the feasible set is economically

irrelevant.

Of course, our existence theorem also applies to time-additive utility as



a special case.’ Balder's (1983) existence theorem extends concepts used in
the classical case of a bounded time domain to infinite-horizon models. Our
technology and felicity conditions play a role similar to his uniform
integrability condition for flow variables and strong uniform integrability
condition for cost functions.® In contrast with Magill (1981), we use a
single commodity space and topology for the entire analysis. Further, his
methods are not really suitable for extension to recursive utility.® Gaines
and Peterson (1985) permit the same type of non-convexities as we do. They
actually prove a simple form of Cesari’s theorem. Their results apply to
stationary technologies subject to diminishing returns. In contrast, even in
the time-additive case, we include nonstationary and constant returns to scale
technologies.

The paper is organized as follows: The model is introduced in Section Two.
Section Three investigates the topological structure of the feasible sets.
Section Four proves the existence theorems and shows applications to specific
examples. Final comments are in Section Five. The Appendix further clarifies

the relation between the topologies used on feasible sets.
2. The Model

There are m capital goods in the general model economy. The technology is
aset 2CR x R" x R". We assume that there is an s with (t.k,y) € Q for some
(k,y) for every t > s. Henceforth, we assume s = O without loss of
generality. Define D = {(t,k) : (t,k,y) € Q for some y} and G(t,k) = {y :
(t.k,y) € Q}. The investment correspondence G thus has domain D. Given
capital stock k at time t, any y € G(t,k) can be accumulated as additional

capital. The investment correspondence is allowed to vary with time. The



programming problem is defined for a given felicity function L and discounting
function R, both mapping @ to R, and an assigned initial capital stock x € X
where X C Ri is the set of potential initial capital stocks. Formally, an
economy is a quadruple (2, L, R, x) with x > O that satisfies the Technology

and Felicity Conditions given below.

A capital accumulation program, k, is an absolutely continuous function

Il 10
from R+ to R+.

Define the set of attainable (admissible) programs from
initial stock x, A(x) by
A(x) = {k €A : k € G(t.k) a.e., O < k(0) < x}.
Let D(t) = {k : (t.k) € D for some y}. We call the technology convex if

the section {(k,y) : y € G(t,k)} is convex for each t. In this case, A(x) is

convex for each x € X.

The recursive objective functional, I, is given by
00 . t °
I(k) = - Jy L(t.k.k) exp (J; R(s.k.k) ds) dt.

The programming problem, P(x), is defined by
P(x) - J(x) = sup {I(k) : k € A(x)}.
Here J is the value function. An admissible program K* is an optimal solution
to P(x) if k= € A(x) and I(K) = J(x).
If L(t,k,y) and R(t,k,y) are convex in (k,y) for each t, the objective
functional is concave. If the objective is concave and the technology is

convex, the value function is clearly concave and thus continuous on the

relative interior of its domain X.

Technology Conditions

(i) G(t,R) is compact and convex for each (t,R) and kR - G(t,kR) is upper

semicontinuous for each t.
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(ii) For all x € X, there is a w, € Leoc

such that IE] < B, a.e.
whenever k € A(x).

(iii) A(0) # @.

Note that the non-triviality condition (iii) implies A(x) # @ for all
x € X. In many economic applications inaction is always possible by virtue of
free disposal, thus O € G(t,k). Condition (iii) immediately follows since

k(t) = x is feasible.

Felicity Conditions
(i) L:Q >R and R:Q - R are continuous on Q and convex in y € G(t,k)
for each fixed (t,kR) € D.
(ii) L > O and there exists a non-positive function P, € LZOC such that
R(t,k(t),k(t)) > p (t) for all k € A(x).

(iii) There is a program kR € A(x) such that I(R) > -®.

We will refer to L as the felicity function and R as the discounting
function. The second and third Felicity Conditions both involve a type of
joint condition on preferences and technology. Koopmans (1967) observed that
technological possibilities may restrict the type of utility functions that
can be sensibly used. These joint conditions should be taken in this spirif.
Condition (F.ii) will be satisfied regardless of the technology whenever R is
bounded below by a constant. Any program that satisfies the third Felicity
Condition is called a good program. Many capital accumulation models have
good programs. When R is bounded below zero and L is bounded, condition

(F.iii) is satisfied regardless of the technology. At the opposite extreme,



when the technology has a maximum sustainable stock and R is bounded below,
this condition is also trivially satisfied regardless of L. In the usual
additively separable model, R is a negative constant. If, in addition, a
maximum sustainable stock exists, then (F.ii) and (F.iii) are automatically
satisfied. When we consider additively separable utility functions in more
detail, the second Felicity Condition will be modified to include a joint
condition on preferences and technology. Applications given in Section Four

will further illustrate the role of the Technology and Felicity Conditions.
3. The Topology of Feasible Sets

Two equivalent modes of convergence are particularly important for our
feasible set. The first (the compact—open topology) will be used to establish
compactness of the feasible set. The second (the weak topology) is more
appropriate for demonstrating upper semicontinuity of the objective. Both are
defined on the space A of absolutely continuous functions from R+ to R". The
C topology is the topology of uniform convergence on compact subsets (the
compact-open topology) and is defined by the family of norms "f”w,T = sup

{1£(t)] : 0 ¢t <T) for T=1, 2,... where

'| is any of the equivalent
Euclidean norms on R". Under these norms, C is a complete, countably-normed
space and thus a Fréchet space.

The second topology is obtained by focusing on the flows rather than
stocks. When f is absolutely continuous, its derivative is locally
integrable. The space of locally integrable functions, denoted LZOC, is a
Fréchet space under the topology given by the norms ”ful,T = fg |f(s)]| ds.

The space A can be topologized by the norms ”f”A T = ||f||oo Tt ||f||1 T These

norms turn A into a Fréchet space with a topology that is equivalent to that



given by the natural metric on the direct sum R @ Lzoc‘ thus A =R ® Lzoc'
As a Fréchet space, it has a dual and associated weak topology.

Since the dual of Lzoc is given by (Lzoc)’ = {f € L : f has compact
support}, ¢ is in the dual of A if and only if <¢,f> = af(0) + fg B(s)f(s) ds
for some a € R, T > O and B € L. This duality defines the weak topology on
A. Curiously, any sequence that converges in the weak topology on A converges
in the C topology. (Use the Dunford-Pettis Theorem and mimic the proof of
Lemma 2 below.) However, weakly convergent nets need not converge in the C

' We will be working with a subspace F(u), defined by a growth

topology.*
condition, where the two topologies actually are equivalent. For each pu €
Lzoc with p > O, define the subspace F(u) by F(u) = {k € A k| ¢ u}. As the
following lemmas show, the two topologies are equivalent on F(up). Moreover,

given this equivalence, we can easily establish that F(u) is compact in this

topology.

LEMMA 1. Suppose hn € F(u) and kn -k in C, then R € F(u) and hn >k

weakly in A.
PROOF. Let T > O be given. For E > 0, choose 8 such that IE p <e
whenever E C [0,T] with [E| < 6. Suppose 0 < t; < s; < ... ¢ t < S < T with

ZT_ |t.-s.| < 6. Then
i=1 i7i

t.
20 q k(e k(s < =] {Ik(e)k (e)] + J k| + Ik (s))-k(s) 1}

Sy
4

<oomfi-wlly g v |t
Si

< 2m ||1<—1<n||0°T + e

< 2e

for large n. Thus k € A.



Since k_(0) - k(0) and [k [l;

I\

”””1,T’ kn will converge weakly in A to
k provided, for each T, IE ﬁn - IE k for all measurable E C [0,T].*? Let e >
0 and choose 6 such that IF p < e and lIF k | < e whenever F C [0,T] with

|F| < 6. When |E| > 0, take a finite disjoint union of intervals, G =

U?_l (t;.s;) with [ENG] < 6. Set F = EXG. Then

gk - JTp k| < |0 G k) | + Jplk | + gk |
< 3T U Ce)kCe) |+ Ik (5K )+ 2e
< 2m ”kn - x|, Tt 2

As n -5 ®, we see that knﬂ k weakly. Clearly Iﬁl {pa.e., so k €F(n). QED

LEMMA 2. If a net, (ha}aeA, converges weakly in A to R and ha € F(n),
then R > Rk in C.
a

PROOF. Let e,T > 0. Since |ﬁa| { p and k€ LZoc' we can choose & such

that |f; Ra | < e and |f; k | < e whenever 0 ¢ s,t < T and |s-t| < 6. Let t

t
6n and M = max {n : t_ < T}. Choose B € A with |k _(0) - k(0) + fon(ka—k)|

|k (t.) —k(t )| < e for a >B. When O < t < T, take t_ with |t-t | < &.
a" n n n n

Then

k() - k(e)] < Ik (t ) - k(t )] + Iftn(ﬁa—ﬁ)l < 3e

for a > B. Thus k -k uniformly on [0,T] for all T. QED

Combining the preceeding lemmas with the fact that the C topology is

metrizable yields the following proposition.
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PROPOSITION 1. On F(un), the C and weak A topologies are equivalent.

Further, F(un) is closed and this topology is metrizable.

LEMMA 3. F(n) is compact in the C topology.

PROOF. Since F(p) is closed, it suffices to show F(pn) is equicontinuous
on [0,T] for each T. Ascoli’'s Theorem will then establish compactness. Let
e > 0 and choose & such that [, p < e whenever E C [0,T] and |E| < &. Then,
for |s-t| < &, |k(s)-k(t)]| = |f; k| < |f; n | < e. Therefore F(u) is

equicontinuous on [O,T] for each T. QED

Various authors have assumed that weak convergence in A implies the
derivatives either converge pointwise (this is implicit in Lemma 3.2 of Brock
and Haurie, 1976) or have a subsequence that converges pointwise (Yano, 1982,
Lemma 3).13 As the following example shows, neither of these need happen. **

Consider the Rademacher functions. Define

{ 1 0<t-[t] <1r2
R(t) =
-1 172 <t - [t] <1
where [tﬂ is the greatest integer function. The nth Rademacher function,
rn(t) is defined on [0,1] by rn(t) = R(2nt). The Rademacher functions form an

orthonormal set in L?(0,1) C L*(0,1) and are elements of L'(0,1). By Bessel’s

Inequality (Halmos, 1951, pg. 18), any f € L has 3.

" 1 £ (s) ds 17 ¢

”f”2 < ”f”w, thus fé f(s)rn(s) ds - 0. The Rademacher functions converge

weakly to O, but no subsequence can converge pointwise. If it did, the

Lebesgue Bounded Convergence Theorem would force the L? distance between the
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Rademacher functions in the subsequence to converge to zero. This cannot
- . 15
happen since the L? distance between two Rademacher functions is always V2.
The strongest statement that can be made about pointwise limits is

expressed in the following lemma.

LEMMA 4. Suppose R and hn are real-valued and hn -> kR weaRly in LZOC.

Then limsup hn(t) 2 R{(t) 2 liminf hn(t).

n-»> o n - o

PROOF. Suppose the first half of the inequality is violated. Then there

are T, 6 > O such that E = {t : x(t) > limsup xn(t) + 6} has positive
n-oo

measure. Let g(t) = limsup x (t) and g (t) = sup x (t). Noteg =-g
n n m n
n- oo m>n

pointwise. By Egoroff’s Theorem there is a measurable set F with |F| < |E|/2
such that g, 8 uniformly on G = E\F. Now take n large enough that 6/2 +

g(t) > gn(t) for t € G. Then x(t) + 6/2 > gn(t) on G. But then x(t) + 6/2 >
xm(t) on G for all m > n. Integrating over G and letting m - ® now yields the

contradiction.

Consideration of -k now shows that the second half of the inequality is

also satisfied. QED

When the functions take values in Rn, and p € Rn, this lemma applies to

the inner product <p,k(t)>.
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4. Fxistence of Optimal Paths

The main existence result for the problem P(x) is stated below.

EXISTENCE THEOREM. For each economy (9, L, R, x), there is an optimal

solution to P(x).

The proof follows once we establish compactness of the feasible set and
upper semicontinuity of the objective in the weak topology. Compactness of
the feasible set is the subject of Lemma 6, while the Lower Semicontinuity
Theorem will insure upper semicontinuity of the objective. We conclude the

section by examining the theorem’s application to one-sector and multi-sector

models.

L.1 Existence Theory

Lemmas 1 and 6 together consitute a variation on a theorem due to Varaiya
(1967, Theorem 2.1) that is more suited to our setting. We relax Varaiya's
conditions somewhat be establishing compactness of a larger set, F{u), via a
bound on k. This bound, which is naturally related to the technology, plays a
crucial role in showing the Felicity Conditions hold in applications. Varaiya
works under more restrictive conditions that imply such a bound. Another
point of note is the role of a compact-valued investment correspondence.

Our approach clarifies the role of compactness of the technology set.
Varaiya showed that k is almost everywhere an element of every closed half-
space containing the technology set. It might seem that we just take the
intersection of the closed half-spaces containing the (convex) technology set

to show that k is in the technology set. This fails as k need only be in each
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half-space almost everywhere. When we intersect over arbitrarily many sets, k
may be in the intersection almost nowhere! When the technology set is compact

for each (k,t), the following lemma can be used to solve the problem.

LEMMA 5. Suppose G is a compact, convex, non-empty subset of R' and % is
dense in R'. Then G is the intersection of the half-spaces of the form {y :
{p,y> £ a} containing it, where p € ® and a is a real number.

PROOF. Clearly G is contained in the intersection. It is enough to show
that any point not in G is not in a half-space containing G. Let x € G. Then
there is a p', not necessarily in #, with <p',x> > max {<p'.y> ' y € G}. Let
f(q) = <q,x> - max {<q,y> : y € G}. Since G is compact, f is continuous.

As % is dense in R", there is a p € ® with f(p) > 0. Taking any a with <p,x>

> a > max {<p,y> : y € G} yields the desired half-space. QED

LEMMA 6. If the technology conditions are satisfied, then A(x) is a
compact subset of A.

PROOF. By Proposition 1, A(x) C F(n) with F(u) compact. It suffices to
show that A(x) is closed. Let kn -k in C with kn € A(x). Then kn(O) - k(0),
so 0 ¢ k(0) ¢ x. Similarly, k(t) € D(t) for all t. By Proposition 1, k € A
and Rn >k weakly in L} . Let ¥ be a countable dense subset of R®. Since &

foc

is countable, we can use Lemma 4 to obtain a set F with zero measure such that

for each p € #:

limsup <p,1°<n(t)> > <p.k(t)> > liminf <p,1'<n(t)> for all t € F.

n-o o n-o

Let a > sup {<p,y> : yv € G(t,k(t))}. As G is upper semicontinuous in k
and kn(t) - k(t), G(t,kn(t)) C{z : a> <p,z>} for n large. Hence <p,ﬁn(t)>
< a for n large and so

max {<p,y> : y € G(t,k(t))} > limsup <p,1'<n(t)>
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> <p.k(t)> for t € F
Now G(t,k(t)) is compact and convex. By Lemma 5, it is the intersection of
the half-spaces containing it of the form {y : <p.y> < a} where p is in the
countable dense set $. Thus ﬁ(t) € G(t,k(t)) for t € F. It immediately

follows that k € A(x). QED

If G(k.t) is only closed, a countable set # with the desired properties
may not exist. In Lemma 6 we must choose the countable set % before looking
at the limsup. The same % must be used for almost every time t to get
inclusion in G(t.k(t)) almost everywhere. A simple illustration of what can
go wrong is when G(k,t) = {(y:.y¥2) @ y;: + ty, < 1}. Clearly ¥ must contain a
multiple of (1,t) for almost every t to write G(t,k) as the intersection of
half-spaces derived from #. Thus % cannot be countable.

We also need the following theorem, which holds for any T < ®.

LOWER SEMICONTINUITY THEOREM. Suppose Fq: R, x R2n >R, U {+»} is
measurable in (t,x,f) € R+ X R2n, lower semicontinuous in (x,€) for each t,
and convex in § for each (t,x). Further, suppose Fg 2 - ¢y on {1 where ¥ 2 O,
¥ € L*(0,T). Now let hn - kR weakly in A and En € G(t,kn) a.e. If G obeys the
technology conditions, then for each T

n - ©

T ° - T .
IO Fo(t,kR,R) dt < liminf IO Fo(t,hn,hn) dt.

PROOF. This is a special case of Theorem 10.8.i in Cesari (1983). QED

UPPER SEMICONTINUITY THEOREM FOR OBJECTIVE FUNCTIONALS. Suppose the

Felicity and Technology Conditions are satisfied and hn - k weakly in A(x).
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Then limsup I(k_) < I(R).
n-o>ow n
PROOF. Let e, T > 0. Choose & such that IIE Py | < e whenever |E| < 6.

Let gN(t) = inf Ig R(s,km,ﬁm) ds and g(t) = lim gN(t). Apply the Lower
m>N

Semicontinuity Theorem to Fo(t,x,E) given by R for £ € G(t.x) and +» otherwise
with ¢ = =P, - Thus g(t) 2 fé R(s,k,ﬁ) ds almost everywhere. By Egoroff’s
Theorem, there is a set E with [E| < & and gy 8 uniformly on F = [O,T]\E.

For n > N with N large this yields,

[\

t ° t °
IO R(S’kn’kn) ds -e + IO R(s,k,k) ds for t € F (1)

[\

-2¢ + J; R(s.k.k) ds  for ¢ € [0,T].

Now since L > O,

Jo L(t.k .k ) exp (5 R(s.k_,k ) ds) dt

N

S Ltk k) exp (J§ R(s.k_ .k ) ds) dt (2)

(A%

e S L(tk k) exp (S5 R(s.k.K) ds) dt
for n large enough.

An application of the Lower Semicontinuity Theorem with Fo(t,x,§) =
L(t,x.E) exp (fs R(s.k(s).k(s)) ds) for § € G(t,x) and +® otherwise and ¥ = O.
gives

Ig L(t.k .k ) exp (Jg R(s.k_.k ) ds) dt

T . t °
> IO L(t,kn,kn) exp (IO R(s’kn’kn) ds) dt
> —e + e 2% Jp L(t.kK) exp (J§ R(s.k.K) ds) dt

Thus liminf —I(kn) > -e + e—2e fg L(t,k,ﬁ) exp (fé R(s,k,ﬁ) ds) dt for all

e, T > 0. Letting e >0 and T » ® yields the desired inequality. QED
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In the additively separable case the situation is much simpler. In that
case R(t.k,y) = px(t) is independent of k and y. The lower semicontinuity
theorem can be applied directly to L(t,x,f) exp px(t). This is essentially
the method used by Gaines and Peterson (1985). In contrast, the more general
recursive case requires two applications of the lower semicontinuity theorem.
In the general case, allowing L to take negative values causes severe problems
due to the double use of the lower semicontinuity theorem. The one-sided
estimate of equation (2) must be replaced by a two-sided estimate. This would
follow if equation (1) gave a two-sided estimate. However, this would require
the integral of R to be both upper and lower semicontinuous. This condition

is not generally satisfied. By a classical theorem of Tonelli it can only be

satisfied when R is affine in y.'®

Note that additively separable utility is
trivially affine since R is independent of y.

An attempt to sidestep the problem by putting the recursive model in an
additively separable form also fails due to Tonelli’s theorem. The recursive
model (Q,L,R,x) may be represented in a time additive framework by adding
state variables. Given an economy, define an additional state variable z by
putting

z = R(t,k.k), 2z(0) = 0.
Set M(t,k,ﬁ,z,i) = —L(t,k,ﬁ) exp z. The indirect representation of the
economy is the triple (Q2,M,x). Attainable programs for the indirect
representation of the economy are elements of
B(x) = {(k.z) : k € A(x), 2(t) = Jj R(s.k.k) ds}.
The indirect objective functional, N, is defined by

N(k) = fg M(t,k,k,z,z) dt.
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The indirect programming problem is to choose an attainable program which
achieves sup N(k). In general, the existence theorems of Balder (1983) and
Gaines and Peterson (1985) do not apply to the indirect problem. The set B(x)
need not be compact even though A(x) is compact. Compactness of B(x) would
follow if the integral of R is continuous in k. However, we have already
noted that Tonelli’s theorem prevents this unless R is affine in y! If we
only know R is convex in y, kn converges to k weakly in A(x) implies zn(t) 2
-2e + z(t) for n large, which is equation (1) again. This is not enough to
yield the compactness of B(x) needed for the general recursive case.

When R is affine in y, a variant of the Upper Semicontinuity Theorem does
in fact hold (Corollary 1). For this, we use the Modified Felicity Condition

that (F.i), (F.ii’) and (F.iii) are satisfied where (F.ii') is given below.

(F.ii') There are P and Po € LZoc and a non-negative measurable

function N obeying fg A (t) exp (fé p2x(s) ds) dt < ® such that
P1x(3) < R(s.R(s).R(5)) < by (s) and A (t) < L(t.R(P).R(1)) for

all k € A(x).

COROLLARY 1. Suppose the Technology and modified Felicity Conditions are

satisfied. Then limsup I(k_) < I(R).
n-o n

PROOF. Fix T. Since plx(s) < R(s,k(s),ﬁ(s)) < p2x(s), equation (1)
applies to both R and -R. Thus fé R(s,kn(s),ﬁn(s)) ds converges to
fé R(s,k(s),ﬁ(s)) ds almost everywhere on [0,T]. Letting nn(t) =
t .
exp (fo R(s,kn(s),kn(s)) ds) we have nn(t) - n(t) a.e.

Apply the Lower Semicontinuity Theorem to Fo{t,x.,n.£.0) defined by
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nL(t,x,§) + Ax(t) exp (fé pzx(s) ds) for £ € G(t,x) and +® otherwise. Since

T is arbitrary and Fg > O, we let T - © to obtain
S t o .
IO A (t) exp (fo Po, (s) ds) + liminf -I(k )
> 12 It ds) - I(k
2 g A (1) exp (J§ py (5) ds) - I(K).

As the additional integrals are finite, limsup I(kn) < I(k). QED

PROOF OF EXISTENCE THEOREM. Let kn € A(x) be a maximizing sequence for I.
Since A(x) is compact, we can find a K e A(x) and a subsequence, also denoted
kn with kn - k*. By the Upper Semicontinuity Theorem for Objectives,

Limsup I(k_) < I(k"). Thus J(x) = limsup I(k ) < I(K). As XK© € A(x)., I(K)

< J(x). Therefore I(k*) = J(x) and kK is the desired optimal path. QED

COROLLARY 2. Suppose (2, L, R, x) satisfies the Technology and modified

Felicity Conditions. Then P(x) has a solution.

The proof of the corollary is the same as the theorem, except for two
points. First, Corollary 1 must be used instead of the Upper Semicontinuity
Theorem for Objectives. Second, the bounds on L and R in (F.ii’) insure the
supremum is finite. This approach also applies to undiscounted additively
separable models, even through the supremum may not be finite. The way around
this problem is to use the overtaking criterion investigated by Brock and
Haurie (1976) and Yano (1982). In this case the value loss is used as the
felicity function. Such an objective functional has maximum zero, which is

attained by the golden rule. Good programs are then those with finite value
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loss. As the correct form of the overtaking criterion for recursive utility

remains unknown, the remainder of this paper will focus on discounted models.

L.2 One-Sector Models

One type of model that satisfies the technology conditions is the one-
sector growth model. Denote consumption by c(t), capital by k(t) and net
investment by ﬁ(t). Assume the gross production function f:Ri - R, is
continuous in (k,t) and increasing in k. Further, there is a continuous
function 7(t) with O ¢ f(k,t) < 7(t)(1+k) for k > O. This growth condition is
automatically satisfied if f is concave in k. Capital depreciates at rate

B € [0,1], thus the net production function is g(k,t) = f(k,t) - Bk.
Consumption ¢ is given by c(t) = g(k,t) - ﬁ(t) = f(k,t) - Bk(t) - ﬁ(t).
Define G(t.k) = [-Bk. g(k,t)] and @ = {(t.k,y) € R, x R x R" : y € G(t,k)}.
This defines the standard technology.

The first and third technology conditions are clearly satisfied. The
second technology condition is also satisfied. To see this, we study the path
of pure accumulation. As a preliminary step, define undepreciated capital by
K(t) = eBt k(t). Undepreciated capital obeys O < K < F(K,t) where F(K,t) =
e’3t f(e—BtK,t) is undepreciated gross output. Since F obeys the growth
condition whenever f does, and since K - e_ﬁt K is continuous in C, it is

enough to consider the no-depreciation case (B = 0).

Let 7o = sup {7(t) : 0 < t < T+1} and M = sup {[f(k.t)| : O < v < T+,

—3

|k - ko| ¢ b} < TT(I + |ko| + b), where b is an arbitrary positive number.
Then b/M > 1/21'T for b sufficiently large. The Peano Existence Theorem
(Hartman, pg. 10) now shows that any solution to k = f(k,t) with k(0) = x on
[0.T) can be extended to [O,T+1/2TT). Thus a solution k(t|x) exists on

[0,9)."7 As f is increasing, this solution is unique (Hartman, pg. 34). It
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follows that v(t) < k(t|x) whenever v < f(v,t) with v(0) { x (Hartman, pg.

26). Thus O < v < T(e)(1 + v(£)) < 7(£)(1 + k(t|x)) = p (t) whenever

v € A(x). Since My is continuous, it is locally integrable, and the third condition
solutions to the equation k = f(k,t) (see Hartman, Chapter 3) can be used to
establish the same result.

The advantage of the above approach is it yields the tightest possible
bound on My, - Our strategy is to use B to obtain (F.ii’). For this it is
important that My be as small as possible. The examples following Corollary 3
will further illustrate this point. A cruder bound can easily be obtained.

Solving the differential equation k = T7(t)(1+k) shows that feasible paths must
obey k(t) < (l+x) exp (IS T(s) ds) - 1.

One model that gives rise to a standard technology is the affine
technology f(k) = rk + w, wherer > B and w > O are given parameters. A
variant of this model has been investigated by Uzawa (1968) and Nairay
(1984).18 It can be regarded as a deterministic version of the income
fluctuation problem studied by Schechtman (1976) and Schechtman and Escudero
(1977). Following the above technique yields the upper bounds [x + (w/r)] et
- (w/r) for the capital stock and (rx + w) e"" for investment. Note that this
example does not satisfy the Inada Conditions at O or "infinity"”. These
conditions are f'(0+) = o and f'(k) - B < O for k sufficiently large.
Although the Inada conditions are important for demonstrating the existence of
a steady state, they are not relevant for the existence of optimal paths. In
addition, the affine model’'s technology is superproductive: f'(k) - B > O for
all k > O. We could also apply this to the more general case where r and w

are allowed to vary with time. This would represent the budget constraint

faced by a consumer when given the time path of interest rates and wages, as
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in the discrete-time Ramsey equilibrium (Becker and Foias, 1986; Becker, Boyd
and Foias, 1986).

Another example failing the Inada condition at O is given by f(k)
= 2k/(1+k): clearly f'(0) =2 > 1 > B. This production function is a member
of the C.E.S. class with elasticity of substitution equal to 1/2 and labor
input 1. The Cobb-Douglas model has f(k) = Ak% with parameters A > 0 and O <
a < 1. When B = 0, this model is superproductive. When § > O, the Inada
condition at "infinity"” implies the existence of a positive maximum
sustainable stock b defined by f(b) = fb.

Non-convex technologies are also permitted. One such example would be
f(k) = w/4 + arctan (k-1). Such convex-concave technologies were first
studied by Clark (1971) and Skiba (1978). This will also cover the stock non-
convexities in investment models (Davidson and Harris, 1981), but not flow
non-convexities.

Epstein (1985a, b) has introduced a generalization of Uzawa’s (1968)
recursive utility function. A felicity function, u, and a discounting
function, v, are defined in terms of consumption c. We assume the felicity
function is negative, continuous, concave and increasing with u{0) > —% and
the discounting function is continuous concave and increasing with v(c) > v(0)
=p > 0 for all ¢ 2> 0. Now take L(t,k,y) = -u(f(k,t) — y - Bk) and R(t,k,y) =
-v(f(k,t) — y - Bk). These objectives are a continuous—time version of
Koopmans’® (1960) recursive preferences. Note that I(0) = u(0)/(1-p) > -», so
goéd programs exist.

Examples of admissible discounting functions include: v{(c) = 1 + arctan o
for 0 < @ < 1; v(c) = 1 + arcsec (1+c), and v(c) = 2 — e C. The first two are
bounded from above by 1 + w/2, the last by 2. In all of these cases p = 1.

Other examples of discounting functions may be unbounded above, for example,



22

v(c) =1 + log (1+c) and v(c) =1 + c¥, 0 < @ < 1. Under a standard

technology, the affine form v{(c) = a + bc witha > O, b 2 0 is permitted by
the modified Felicity conditions. Of course, b = O yields the additively
separable utility function. The affine case can be generalized by removing
the upper bound on u, although care is then needed to insure that the modified
Felicity conditions hold. At the other extreme, when u is a constant, we
obtain the (1983) Epstein-Hynes utility function. We will restrict our
attention to felicity and discounting functions that satisfy either the
modified or unmodified Felicity Conditions. However, Nairay (1984) introduces
a transformation that can recast certain other types of felicity functions, in
particular, those considered by Uzawa (1968), into our framework.

Production functions and objectives meeting the above conditions define

the standard recursive one sector model (f, B, u, v, x).

COROLLARY 3. Every standard recursive one sector model (f, B, u, v, x)

has an optimal solution.

This corollary generalizes previous existence theory for both the one
sector Epstein model and the additively separable model to include both time
varying and certain types of non-convex technologies.

With Epstein-Hynes utility (u = -1), any standard technology yields a
standard model. To see this, note ¢ = f(k) — Bk — k < f(k) < 7(t)(1 + k(t|x))
when the technology is standard. With v increasing, this means that v(c) ¢
v(T(t)[1 + k(t|x)]) = px(t). As px(t) is continuous, p € LZoc’ and the
Felicity Conditions are satisfied.

This corollary also applies to Uzawa models that do not satisfy the

conditions of Nairay’'s existence theorem. He assumed u log-concave in order
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to quote Magill’s (1981) existence theorem. Consider u(c) = — exp {-[c +
(1//2)]1%?}. This is a concave, bounded, increasing felicity function that
satisfies our hypotheses, yet it is not log-concave. This example also shows
our conditions are weaker than Magill'’s.

With additively separable utility, things become more complicated.
Consider the case where f(k,t) < A(1 + k), so k € (1 + x)eAt as above.
Suppose u > 0, and define the upper asymptotic exponent by m = limsup
[log u(c)/log c] as ¢ » ». Thus [|u(c)| exp (-pt)] is bounded at infinity by
exp (nlog ¢ - p)t and thus by exp (nA - p)t. The modified Felicity
Conditions will be met whenever nA < p. It is clear that the smaller the
bound on k (smaller A), the easier it is to satisfy mA < p, thus the
importance of the smallest possible choice of M - When u(c) = log ¢, n =0
and any positive discount factor p will yield the existence of optimal paths,
provided there is a good program. Similar considerations apply when u(c) = -
¢! with 11 < 0. Variations on this will also work if f is time—-dependent.
Note the similarity to the results for discrete-time models obtained by Brock

and Gale (1969), McFadden (1973) and Boyd (1986)."°

L.3 Multi-Sector Models

Models with heterogeneous goods also fall into our framework. One such
model is the problem of harvesting two species in a predator-prey relationship
(Haurie and Hung, 1976; Haurie 1980). Benhabib and Nishimura (1979) give
examples of n-sector models without joint production. Yet another example is
the continuous—time von Neumann model used by Magill (1981). Given a
production set II, a reduced process is a pair (z(t), q(t)) € 1 C Rin, q(t) =
c(t) + %(t) with ¢, z > O where z gives the input stock and q is the flow of

output. The production set II satisfies
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(1) TII is a closed convex cone.

(2) If (R,y) €N and k = 0, then y

1
o

(3) There is an (k,y) € DI with y > O.

(4) If (R,y) €T, and R' > Rand 0 < y' <y, then (kR',y') €1I.

By setting @ = R_ x I, so G(t.k) = {y €'R2 : (k,y) € I}, we can recast the
model in our framework. Condition (3) insures that the cross—sections of II
used in G are bounded. Since they are also closed, the investment
correspondence is compact-valued.

An example of such a production set is the von Neumann (1945) technology
given by I = {(k,y) : (-k.y) € (-A.B)z, z > O, y 2 O} where (A, B) is a pair
of nxm matrices with non—negative entries such that for any j there is an i
with aij > O and for any i there is a j with bij > 0.

Define a(k,y) = sup {«¢ € R : y > ak} whenever (k,y) € II. The following

theorem concerning maximal balanced growth is due to von Neumann (1945) and

Gale (1956).

VON NEUMANN EQUILIBRIUM THEOREM. There exists a vector of prices p*, an
interest rate r*, a capital stock h*, and an expansion rate a*, such that
*®
(1) (PP )(-k,y) <O for all (k,y) € I
»

(2) o = a(h*,y*) = sup {a(k,y) : (R,y) €I, (kR,y) # 0} where y* - a k.

(3) 0<a =r Cm p >0, kK >O0.

Magill (1981) considers models that satisfy the KMT condition py. > O
(see Kemeny, Morgenstern and Thompson, 1956 or Takayama, 1985). Either

regularity (k > O whenever (k,y) € II and a(k,y) = a*) or Gale’'s (1956)
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irreducibility criterion implies the KMT condition. For k in the attainable
set A(x) = {k € A : (k,ﬁ) €l, k>0and 0 ¢ k(0) < x}, Magill (1981) shows
max {|ﬁ(t)|, lc(t) |} < A exp [(a* + e)t] a.e. for any € > O. An examination
of his proof reveals that € can be taken as zero when p* is strictly positive.
Define R(k,y) = sup {v(c) : (k, y + c) €1II, c € Rn}, where v is any Epstein-
Hynes discounting function defined over n consumption goods. Taking ux(t) =
A exp [(a* + e)t] and px(t) = v(ux(t),...,ux(t)) satisfies both the
Technology and Felicity Conditions. Thus optimal paths exist.

In the additively separable case, curvature conditions (asymptotic
elasticity, asymptotic exponent) are required for existence of optimal paths
Under the appropriate curvature conditions, existence follows in a
straightforward manner without using the complex weighting schemes employed by
Magill (1981).

All these results, in both one— and multi-sector models, also apply to
time-varying felicity and discounting functions. One way these might arise is
through an uncertain lifetime. Consider an Epstein-Hynes discounting function
and suppose the probability of death is given by a continuous density p(t).
Following Chang (1986), death is treated as a zero consumption state.

Expected utility EU(C) is then
—Ig p(s) ds [IS exp (—f(t)v(C)dT) dt + fg exp (—f(S)V(C)dT - f:V(O)dT) dt ]

Integrating the first term by parts and integrating the second term yields,

after some rearrangement,
EU(C) = —Ig [1-P(s)+p(s)/v(0)] exp (-f v(c) dr) ds

where P(s) = fg p{T) d7 is the probability of dying by time s.

Letting Q(s) = -log [1-P(s)+p(s)/v(0)] and q = Q yields the time-varying
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felicity function gq(s) + v(c). Thus
EU(C) = -[1 + p(0)/v(0)] Sy exp (-F v(c) + a(s) ds) dt

This gives us one of the generalized recursive utility functionals studied by
Streufert (1986a,b). The same technique, when applied to additively separable
utility, yields a time-varying discount factor a4 la McKenzie (1974) or Mitra

(1979). 1If, in addition, the probability of death has a Poisson distribution,

Chang (1986) shows the uncertain lifetime simply alters the discount factor.
5. Conclusion

We conclude the paper by mentioning several problems for further
investigation. One problem is to extend the existence theorem to allow jumps
in the state variables. Time-additive utility models with state constraints,
such as irreversible investment, are known to exhibit state jumps when the
dynamic process has a binding constraint. This problem is particularly acute
in the realm of perfect foresight equilibrium analysis.20

A second problem is to permit an unbounded horizon. This means that the
horizon length is determined endogenously as part of a solution. The optimal
horizon may be finite or infinite. The natural resource literature provides a
number of interesting models where the horizon is unbounded. Significant

implications of the model may depend on whether or not the terminal time is

e . 21
finite.

The existence theory in our paper places the analysis of a class of

recursive utility models on a firm foundation. A third problem would be to

start the analysis of the optima themselves. Sensitivity analysis is an
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obvious first step. What is the effect of the initial stock on the feasible
set, the value function and optimal paths? How do continuous changes in the
felicity function affect the value function and optimal paths?

A fourth problem would be to demonstrate the existence of shadow prices or
dual variables which support an optimum.22 Previous work in the area of
recursive, but not time-additive, utility has focused on applications of the
Volterra variational derivative in aggregate models (Wan, 1970; Ryder and
Heal, 1973; Epstein and Hynes, 1983; and Sung, 1986). Duality methods for the
recursive case have also used standard Pontryagin conditiohs under the
hypothesis of a twice continuously differentiable value function and single
capital good (Epstein and Hynes, 1983). What is the correct form of the dual
for the general recursive utility programming problem? Do supporting prices
exist which obey a form of the no-arbitrage and transversality conditions?
Can support prices be used to completely characterize an optimum? Support
prices are linear functionals and therefore are elements of a dual space. Are
those support prices representable in an economically interesting form? For
example, are they represented as an integral functional? These are possible
problems for future work on the theoretical foundations of optimal capital

accumulation with a recursive objective.
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Appendix

The procedure we use to show that the C and weak topologies are not
equivalent is adapted from standard arguments showing the weak and norm
topologies are not equivalent on infinite-dimensional Banach spaces. In fact,
weak topologies are usually not characterized by sequences, and thus not
metrizable. We will show that, contrary to Balder, the weak topology is not
stronger than the C topology.

Suppose the contrary and let V = {f € A : ||f||oo'1 < 1}. This is open in C,
thus there is a basic weakly open set N with N C V. By the definition of the
weak topology there are e,m > 0 and g, € Loo with compact support, n = 1,...,m
with N = {f € A : |[£(0)] < e and |f°(‘)’ fg | <eforn=1,...,m.

We can regard g, as a linear functional on A. As such, its null space has
codimension at most one. Thus the intersection of the null spaces of the g,
has codimension at most m. As A is infinite-dimensional, there is a non-zero
h € A with J‘g hg =0 forall n=1,...,m. Now let H=h / 2|, ;- Clearly
H € N but H € V. This contradiction shows that the weak topology cannot be
stronger than the C topology on A.

In fact, we have shown that any basic, weakly open neighborhood of zero
contains functions that are not in V. Thus we can construct a net that
converges weakly to zero, but does not converge in C. Simply use the weakly
open neighborhoods of zero as the directed set and, for each neighborhood N,

let XN be an element of N that is not in V.
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Footnotes

Epstein (1985a,b) subsequently generalized the Epstein and Hynes form of
recursive utility. He did not address the existence question in those

papers.

Specifically, they assume there is a twice continuously differentiable
solution to a generalized Hamil ton—-Jacobi equation. The existence of

such a solution is an open problem.

Brock and Haurie (1976) thought stock convergence implied flow
convergence almost everywhere. Yano (1982) pointed out their mistake.
He then claimed there would be a subsequence where the flows converged

pointwise. This is only a more sophisticated version of the same error.

Romer’s result admits two interpretations. The first uses weak
convergence of the derivatives of the flows. As this implies pointwise
convergence of the flows, the objective need not be concave in the flows.

The second requires the objective be concave in the flows.

His Lower Semicontinuity Theorem (10.8.i) is the first that is general
enough for our purposes. Earlier results of this type (Cesari, 1974;
Ekeland and Temam, 1976; Olech, 1976; Rockafellar, 1976; and Ioffe, 1977)
were not powerful enough to handle the general recursive case. Cesari’s
theorem makes use of a weaker hypothesis than the various "normality"

conditions of Rockafellar and Ekeland and Temam (see Cesari, 1983, pp.

351, 365).
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10.

See Beals and Koopmans (1969) and Majumdar (1975) for earlier treatments
of existence questions in discrete-time models with general utility

functions.

See Baum (1976), Brock and Haurie (1976), Bates (1978), Takekuma (1980),
Magill (1981), Yano (1982), Ekeland and Turnbull (1983), Leizarowitz
(1985), Gaines and Peterson (1985), Carlson (1986), Eirola and Kaitala

(1986), and Romer (1986).

Balder’'s work was built on the results cited in footnote 4. He was also

indirectly influenced by Poljak (1969).

Nairay (1984) applied Magill’s result to a subclass of the Uzawa utility

functionals. However, his method is not suitable for generalization.

Recall that a function f is absolutely continuous if for every T and e >

0, there is a 6 with ZT—I |f(ti)_ f(si)l { e whenever O ¢ t; { s; ¢

<t s T with 2, |t.—s.| < 6. Absolutely continuous
m m i=1 i i

functions may be represented as the integral of their derivative f by
f(t) = £(0) + fé %(s) ds. Further, the derivative of f not only exists
almost everywhere, but it is locally integrable—its integral over any

compact set is finite. Conversely, given a locally integrable function g

1

(denoted g € Leoc

). its integral Ié g(s) ds = f(t) is absolutely

continuous.
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12.

13.

14.

15.

16.
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Balder (1983, Appendix A) confuses the equivalence of sequential
convergence with the equivalence of the topologies. Sequences are not

sufficient to characterize the topologies. See the Appendix for details.

It immediately follows that [ ﬁn¢ - [ Rv for any simple function ¢ in
Lm(O,T). As the simple functions are dense in Loo and the ﬁn are norm-

[v ]
bounded, the integrals will converge for any ¢ ‘in L . Thus kn converges

weakly to k.

Eirola and Kaitala (1986) uncritically used Yano’s claim in their

existence article.

The example is based on a mild form of chattering. The chattering only
involves the flows, not the state. Romer (1986) gives an economic

example where even the state variable suffers from chattering.

The same argument applies to any orthonormal set in L. The classical
orthonormal functions——trigonometric, Hermite, Legendre, etc. all share
this property. These examples are commonly used to show weak convergence

does not imply norm convergence {Ekeland and Turnbull, 1983, pp. 76-78).

Cesari (1983, p.107) gives a version of Tonelli’s theorem. It shows

continuity of the exponential term in (k,y) would imply R is affine in y.
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17.

18.

19.

20.

21.

22.

The fact that f(k,t) < 7(t)(1+k) plays a crucial role. When g exhibits
increasing returns to scale, the path of pure accumulation may blow up in
finite time. Consider f(k,t) = k% for @ > 1. The path of pure

accumulation from x = 1 is kK%' = 1/[(1-a)t + 1]. Thus k(1/(a-1)) = +®.

There are two important differences in Nairay’'s work. First, he only
requires k > -w/r rather than k > 0. This can be handled through an
appropriate modification of 2. Second, he does not impose a lower bound
on k. However, he uses convexity properties to show k is bounded on

optimal paths. Without loss of generality we can assume k is bounded and

the technology conditions are satisfied.

Other types of one-sector models, such as the joint production model of

Liviatan and Samuelson (1969), also fit neatly into our framework.

Araujo and Scheinkman (1983) and Romer (1986) may be consulted for a
detailed discussion of the economic importance of the jump case.

Existence theory for this problem in time-additive models was the subject

of Murray (1986).

Toman (1985) provides examples and existence results for a class of time-

additive models with an unbounded horizon.

Duality theory for concave time-additive models has been the subject of

many papers; the paper by Araujo and Scheinkman (1983) represents the

current state of that research.
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