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Abstract

The presence of chaotic behavior in optimal growth models, with
finite and infinite planning horizon, is discussed.

A density theorem is given which relates the optimal paths of
infinite horizon models to those of the finite horizon case. The
theorem proves that chaotic solutions become possible when the
discount parameter is small enough.

Besides two simple examples are given. The first considers a
standard one-sector neo-classical model where wealth effects are
allowed to be included among the arguments of the utility
function. The second is a two-sector model with linear technology
where the optimizing agents have to maximize utility through the
optimal choices of consumption and work effort.
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1. INTRODUCTION

A large part of the literature on optimal economic growth
studies the role played by the social rate of impatience in
determining stability conditions for the optimal steady state

solutions.

A well known result assures that in multisector models of
economic growth the optimal paths converge to a unique steady
state when the future utilities are not discounted, i.e. when the
social rate of discount &§ 1is equal to one and the rate of

impatience 1s then equal to zero.

Some famous examples due to Kurz [14], Sutherland [23],
Weitzman (see Samuelson [20] ) show that global stability is not
assured, 1in general, when § is smaller than one. That is to say
that in the absence of specific hypothesis we do not have any
precise knowledge on the dyrnamic behavior of the optimal

accumulation rules.

However some interesting conditions for stability have been
given using assumptions on the curvature of the utility function
when § is in a small neighbourhood of one, as for example 1in

Brock and Scheinkman [3], and in McKenzie [17].

The aim of this paper .is that of studying the behaviours of
the optimal paths arising from a general multisectorial model of
optimal growth when the rate of impatience is very high, that is
§ is in a small neighbourhood of zero: we will show that in this
case the optimal paths can be of "almost any type".
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From this result it follows that also the so called "chaotic
paths" are admissible as solutions of optimal problems: we will

give two examples of this fact.

In Section 2 the main assumptions of the model are described
and we show how a dynamical system can be associated to every
problem of mathematical optimization. In Section 3 we study some
mathematical properties of the dynamic processes associated to
concave optimal models and we conclude the analysis stating an

important genericity result.

The two examples of chaotic dynamics given in Section 4 are
general enough to prove that these types of phenomena can easily
raise in optimal growth problems, even if the very simple one- or

two-sector economies are considered.

We conclude the paper discussing some possible relations

between our results and the well famous Turnpike Theorems.



2. ACCUMULATION PATHS THAT ARE DYNAMICAL SYSTEMS.

In this Section we 1introduce the general framework which
underlies our study of the problem of economic growth. As it is
easily seen the pure mathematical model 1is general enough to

couple with many others economic optimization problems.

We are concerned with the quasi-stationary model 1in the
discrete time version. We use the reduced form for the objective
function, where the evaluation of each period depends on the
initial and terminal states (usually a vector of capital stocks)
instead of events within the period (tipically the consumption
flows). When the model is written in this form it allows for very
general types of dependence of the social utility function on the
states of the economy: the vector of states can be thought of as
a general description of the economy and the usual identification
of it with the per-capita capital stocks is a simple matter of

tradition and simplicity.

This greater generality is not a minor point in our approach:
it enables us to think of the forms that the objective function
assumes as belonging to a very broad class. Two particular cases
are discussed below in Section 4. The economic model we have in
mind is essentially McKenzie's [16] or [18,par.7] with only some

minor modifications. .

As we said we do not assume technical progress, nor the
existence of exhaustible natural resources, so that the

technology remains the same in every period. The utility function
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is thought as well as invariant with respect to time and
independent from the past events: this guarantees that the only
way in which time affects our world is through the discount
factor, in this way ug(e) = u(>)st, for all t = 1,2,3,... is the

istantaneous utility function.

As usual the population 1is assumed growing at a given
exogenous rate , the participation ratio is constant and full
employment will be achieved in every period. We can express the
per-capita quantity of the capital stocks using the n-component

vector kieRY} .

The technology 1is represented by a non-empty valued and
continuous correspondence F(e¢ ), associating with each initial
state vector kgy_1 eR} a set F(ky-j) of possible final states
among which the society selects the next-period's initial state

vector according to an opportune maximization rule.
The following basic assumptions are made:

(A.1) The feasible transformation set D = {(kf-1,kt),
kieF(ky—-1) } 1s a non-empty, convex and compact subset of KxK,
where K is a compact subset of the positive orthant of the n-
dimensional euclidean space. This 1implies that F:K+K 1is a

continuous set-valued correspondence.

£

(A.2) The utility function u: KXK >R is a strictly concave and

continuous function.
(A.3) From (x,y,)eD it follows (x',y')eD for all 0gy'sy and
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X'>X.
(A.4) There exists a kg with (kg,k)eD and with k>kg
Some brief comments are useful.

The first Thypothesis brings two kinds of restriction:
convexity of D implies the concavity of the production
correspondence F which is a relevant limitation to the generality
of the model, see on this point McKenzie [18,par.2]. Most, but
not all, of our arguments can be extended to the non-convex case:
namely those based on compactness of D and on continuity of u(e).
The compactness of D is the second relevant limitation in (A.1)

but, in our opinion, the mildest one.

Economically speaking we have only to think at the existence
of a primary factor which is essential to the production but
which 1is available only in a limited amount, say labor for
instance; then if the technology is such that it is impossible to
produce something with nothing the boundedness of D is a logical
consequence. Infact we encounter this assumption very often in
the current literature, see for example McKenzie [16] and [18],
Gale (11], and Sutherland [23]. In some places it is stated in a

more indirect form, that is:

- There exists positive values C and y<l such that ||k|[|>C and

(k,k")eD implies |[|k'|]|<y|[|k||, (McKenzie [16]).

From this hypothesis it is easy to derive a compact

transformation set on which the optimal problem is defined (see
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again McKenzie [16, p.357]).

Finally: (A.3) is the well known "free disposal"” assumption
and (A.4) simply states that an expansible capital stock does
exist: they are both stated for the sake of completeness and will

not play a mayor role in the subsequent discussion.

Let us <call a (feasible) capital accumulation path with
initial state ko any sequence {(kf-3,kf)} for t = 1,...,T of
pairs (kK}{_1,kKt) in D such that Ky = kg . Now the classical
problem of the optimal growth theory can be stated as: find an

accumulation path {(kf_1,k§)} for t =1,...,T such that it solves:

;
Max: § ulke_q,ke)st7L

t=1
s.t. (kt_l,kt)ED

ky30eK if T<w

ko given

To underline its dependence on the 1initial conditions, the
time horizon and the discount parameter we will call this problem

P(kg, 8, T).

Because we are interested in the infinite horizon case and we
are going to wuse the finite horizon problem as a simple
explanatory devihe only, the final constraint has been relaxed to
the non-negativity of kp for T< «» (i.e. no positive bequest are

required). Under (A.l1) - (A.4) problem P(k,, §, T) has one and

only one solution for every kg in K
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Let us note that, at this stage of the analysis most of the
current literature tackles the problem of the existence of prices
supporting the optimal path in a competitive economy. Our purpose
is quite different and we do not need the properties of the
supporting price sequence: this follows from the fact that we do
not use any duality argument in our reasoning, we apply instead
the dynamical system theory. Nevertheless the interested reader
can easily see that, with the weak requirement of the existence
of an interior solution, a vector of prices supporting the
optimal solution of P(kg, §, T) can be derived, see McKenzie [17,

par.3]

This permits the interpretation of all the following results
as possible outcomes of the dynamic evolution of an economy which
is in competitive equilibrium, This last fact has some possible
implications for the equilibrium business cycle theory, but they

will not been explicitely considered here.

Now we can move to the core of our argument showing how one
can associate to each Problem P(ky, 8, T) a dynamical system over

K.

We begin by considering the case T = + ® where no terminal
condition is required. Let {Kk%, Kj, ...} be the unique solution
of P(ky, 8, ®). Define as tg: K»K the map sending Ry to kI . By

*

the Bellman's Principle it follows that: Kl = 15(ks), Ko =

* *
t5(K1), oo, ky = t5(kp-1)
In other words: the values of the capital stocks which belong
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to the optimal solution of P(., &, «) are generated by the one
parameter family of discrete dynamical systems: kﬁ = Tg(ki_l),

k; = Ko, with 8e(0,1) as the discount parameter.

In a strict sense it is not possible to consider P(ky, 8, T)
as a dynamical system when T is finite, both for the presence of
a terminal condition and because the system will end up after a
finite number of steps. In view of the future use of P(ky, &, T)
with T< », the following approach, already adopted in Montrucchio

[19], can be used here.

We assume that the system is controlled from t = 0 to t = + ®
by an agent taking a sequence of optimal decisions, each one
lasting for a finite number of periods, say T . This technique is
frequently encountered 1in the economic literature on optimal
short-run programming, see Benhabib and Day [1], Day and Kennedy
(6] and particularly Intrilligator [12] where a general argument
is given; the technique can be used also in the analysis of some

overlapping generations models.

The above case can arise when the technology and the
preferences are not varying over time, but for some institutional
or psychological reason the agent has the power of deciding his
action only for a finite sub-period of the economy's life.

>

Then the T-miopically optimal sequence {ﬁ;,kﬁ, ..... } of
capital stocks 1is the solution of the following programming

problem:



(h+1)T 1
Max: Z U(kt_l,kt)ﬁt_

t=hT+1
s.t ktEF(kt_l) (1)

koeK given,

h=20,1,2,...

Using this approach it is easily seen that for any unique
solution {Kg, kﬁ, ...} of Plkg, 8§, T), (T< ®), we can define a
map 6: K»K associating Kp to k;, that is 6 is the initial-state
to terminal-state map. The dynamical system is then derived

considering the h = 0,1,2,..... iterations of the same mapping

and it is defined as:

ki = 8(kh-1), koeK (2)

h=20,1, 2,

A brief consideration will suggest that 6 is in this case the
Poincare map of the dynamical system associated to (1), in this
way a fixed point of 8 corresponds to a T-periodic cycle for the

accumulation path which solves (1),



3. A MATHEMATICAL DIGRESSION

This Section is entirely devoted to a mathematical analysis of
the properties of the optimal dynamic processes 8 and Tt1g, the
theoretical implications of which will be examined in Section 4

and 5.

In order to underlie the dependence of 6 on § and T we will
write 6(8.T) for the general case and simply & when T = 1, as the

Poincare map does not depend on § in this case.

Let us start with the extreme situation where T = 1 and P(kg,

§,T) simply reduces to:

Max: ulkg, ki) (3)
s.t. klEF(ko)

koeK, given,

Because we are interested only in the mathematical properties
of the problem we will not seek any economic interpretation of
it. The solution of (3) gives raise to the short-run dynamic

system ki = 6(K{_1) where 6 is found by solving:

8(ky) = Argmax{u(kg,k1), s.t. kieF(kg)} (4)

We ,are now in position to give our first theorem. This could
be named "The Inverse Problem Theorem": it asserts that under our
hypothesis the short-run dynamics can be of any type, provided

that 6(k™)eF (k™).
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THEOREM 3.1 Let 6:K»K be given, where K = X is a compact and
convex subset of RM™ and X is open. Let 6 be a C?-function on X,
continuously extendable with its derivatives on K. Then there
exists a strictly concave and continuous function u: KXK »R such

that:

U{ko,e(ko)} = Max u(ko,kl)

kiek

Proof .
Let us define u(kg, k) as:

ulko, k1) = a - M[1/2] k1| ]2 - <ky,0(ko)> + (L/2)]|ko||% 1,
where we take aeR and M,L>0. In Montrucchio [22] it is proved
that u is a strictly concave function on KxK when L is positively

high enough. Q.E.D.

Theorem 3.1 1is a major tool for obtaining the genericity
results we claim for: it asserts that for T = 1 every type of
dynamics can be a solution of a concave-maximization problem.
This fact implies that even very "well conformed” wutility
functions can produce "undesirable" optimal paths. That is to say
that assumptions (A.1)-(A.4) are too much generic to gquarantee
the kind of dynamics we are usually looking for. It becomes then
straightforward to look for supplementary acceptable conditions
on ,u(*) and F(+~), such that 6 results in a well conformed

dynamics.

Let us move to examining the case T>1l. In Section 2 we showed

that optimal paths of infinite programmings P(kgy, §,») are
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generated by the policies tg . Similarly, in the case of finite
horizon, the dynamic behavior will be summarized in the Poincare
mapping 6(§,T):K+K. Note that, generally speaking, both tg§ and

8(8,T) are analitically intractable.

Let us 1indicate with Wg p(kg) and Wg(ky) the usual value
4
functions, respectively for the finite and the infinite horizon

case, that 1is:

WG,T(kO) = Max Eu(kt_l,kt)ét_l (5)
t=1
s.t. keeF(ke_1)

and:

T 1
Ws(ko) = Max § ulke_q,kg)st” (6)
t=1
s.t. ktEF(kt_l)

Then Wg T(ko) and Wg(kg) turn out to be strictly concave for

every value 0<8<1l, moreover they satisfy the Bellman's equations:

Ws T(ko) = Max{ulkg,ky) + 8Wg 7-1(k1)}, (7)

s.t. kieF(kp)
, Ws,0 = 0, and (8)

Ws (ko) = Max {u(kg,ky) + SWg(ky)} (9)

s.t. leF(ko)
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It also a well known result that Wg t can be obtained by
iteration of a map acting on the space of continuous functions.
Formally: let C%°(K) be the space of all the real-valued

continuous functions on K, endowed with the uniform topology.
Consider the operator Ug: C°(K)>C°(K) defined as:
(Ugf) (x) = Maxfu(x,y) + 8§f(y) s.t. yeF(x)} (10)

It has been proved, see Denardo [8] and Flynn [10] for a
recent exposition, that Ug turns out to be a contraction with
modulus 8§, i.e.:||Ug(f) - Ug(g)||s 8||f - g||. Moreover: the
value function Wg is the unique fixed point of Ug, i.e.: Ug(Wg)
= Wg, and the Wg T are obtained by iterations of Ug starting at

0, that is: Wg 7 = U§T+l)(0), where UéT+1) = UgoUF .
We need three preliminary Lemmas:

LEMMA 3.1 The maps & Wg and &»Wg T are continuous from [0,1)

into C%(K)

Proof. It follows easily considering the above discussion and
the estimates: [Wg! 7 - Wg2 7| < [8' - 8%[M/(1-81)(1-82), where

we have set M = sup|u(k,k')]|. Q.E.D.

Define now as EZ°(KxK) the space of all the continuous and
strictly concave functionals over KXK, endowed with the uniform
topology, (C°-topology), and define also as C°(K;K) the space of
all the continuous maps from K to K with the C°-topology. Define
then as Cg(K;K) the closed subspace of C°(K:;K) which contains
all the maps f(+) such that f(k)eF(k) for every keK. Here F

_13_



indicates the production correspondence defined in Section 2.

Now we can prove:

LEMMA 3.2 Let 6 be the map defined in (4), then the map J: u+86

between EZ°(KXK) and C§(K,;K) is continuous.

Proof. It follows easily from the Maximum Lemma (see Berge
[2]). Infact the map (u,kg,k1)»u(ky,k;) from the product space
E°(KXK)xKXK in R is continuous. For the Maximum Principle the map
(u,kg)»Argmax{u(ky, k1), kijeF(kg)} of E®°(KX K)X K in K is
continuous. Hence the compactness of K implies that the mapping
from u to 6 of the space E°(KXK) in CR(K{K) is continuous.

Q.E.D.
Finally we can state:

THEOREM 3.2 Under Assumptions (A.1)-(A.4) the following
properties are true
a) tg and 6(8,T) are continuous maps from K to K
b) The maps 8»1§ and §+6(§,T) are continuous from the interval
[0,1) into C°(K;K).
Moreover the following two limit-relations hold:
- C°-1ime(s,T) = oT

§+07

- C°-lim 14 = ©

§»0t

Proof. We first prove the Theorem for the case in which it is

T = o, that is for the function tg
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Remember that 1§ has been obtained as:
Ts(k) = Argmax {u(k,k') + 8Wg(k'), s.t. k'eF(k)}.

Then point a) follows immediately from the Maximum Lemma, see
Berge [2].
With regard to part b), let us recall from Lemma 3.1 that the map
d»Wg from [0,1) into C°(K) is continuous as well as the map
S{u(k,k') + 8Wg(k')} from [0,1) into E°(KxK).
Then Lemma 3.2 implies the continuity of the composition of the
latter with the map J defined in Lemma 3.2 itself. But this
composition of maps gives raise to the map d»tg(k) considered in
the part b) of our Theorem.
The C°-1lim is easily understood considering that:

To(k) = Argmax {u(k,k')} = 6(k)
by definition.
The case T< o, i,e., the map 6(§,T), is completely analogous to
the former if the following recursive relations are considered.
For the Bellman's Principle one has:

6(s,T) = 6(s,T-rre'r)(s,T)

after having defined 6(¥) as:

0(r) (s, T): kowkl, for l<r<T,
where {k;, kI,....} is the optimal solution of P(ky, §, T).
From this fact we deduce that the map 6(§,T) can be factorized
as:

0(s,m) = 8061 (s,2):0(1) (5,300 ....c0(1)(5,1),

and then the result 6(0,T) = 67 follows.

Because we also have:
6'1)(s,T7) = Argmax {u(k,k') + 8Wg p-1(k'), s.t. k'eF(k)}
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it is now immediate to see that we can repeat for 6(1)(6,T) the
same argument we used above for Tg .

Finally, because 6(§,T) is the composition of a finite number of
maps 0(1)(6,') the propositions a) and b) follow also for the

finite horizon case. Q.E.D.

Some explanations on the implications of Theorem 3.2 seem to

be useful at this point:

1) The optimal paths of capital accumulation are generated by
the dynamic system k; = Ts(k:_l) where the continuous map T
is the one that maximizes the concave functional {u(k,k') +
SWs(k')}. For & varying on [0,1) we have a one parameter family
of dynamical systems. An analogous argument 1is true for the

Poincare mapping 8(§8,T).

Moreover the Lemma 3.2 tells us that from concave functionals
close to each other we derive short-run choice functions close to
each other (according to the C°-topology). Because the optimal
paths of the finite horizon problems are derived by composition

of short-run choice functions the result will extend to them.

2) Theorem 3.2 states that not only 1tg and 6(8,T) are
continuous on K, but also that some relevant limit relations hold
between them. The latter are very important because they imply
that the capital accumulation paths of models with infinite
horizon become as close as we like (in the C°-topology) to
accumulation paths of myopic (T=1) models when the discount

parameter § becomes close enough to zero.
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3) Finally the existence of steady state values of the capital
stocks k for P(k®,8, ») is easily assured by the continuity of Tg
and the compactness of K via the Brower fixed point Theorem. An
analogous argument can be conducted on 6(§,T) to prove the
existence of a fixed point for the map 6(§,T): K»K. Now,
remembering that 6(§,T) has been defined as the Poincare map of
the dynamic system wunderlying (1), it turns out that 1in
correspondence to a fixed point of 6(8,T) there exists a T-
periodic cycle which is an optimal solution to (1) when this

maximization problem has to be replicated over time.

These three facts, when associated with the result of Theorem
3.1, will suggest that also the dynamic motions coming from the
models with infinite horizon can be of almost every type if the
discounting of the agents manifest a high degree of impatience,

that is if 6 is very small,.

The next proposition we will prove provides a formal version

of the above intuition.

As before let C°(K}K) be the space of all the continuous
functions from K to K and let CR(K;K) be the closed subspace
consisting of all the functions f(:) such that f(k)eF(k) for each

keK, both spaces are endowed with the C°-topology. Then we state:

THEOREM 3.3 Let K = X, where X is open in R", then under the
hypothesis (A.1)-(A.4) and the additional one:
(A.5) intF(k) # @ for every keK

the set of optimal accumulation paths 1g§: K»K which are solutions
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of P(kg,8,») with K and F(+) fixed and with u(*,e¢) ranging on

5°(kxK) and & on (0,1), is dense in the space Cf(K;K).

Proof. Let wus Dbegin by recalling that any function
feCH(K,K) can be approximated by functions with range contained
in the interior of the set F(k). In fact, being keintF(k) lower
semi-continuous, Michael's Theorem (see for example Florenzano
[10,p.44]) implies that there exists a continuous selector n(k)

such that u(k)eintF(k) for any kekK.

Thus the family of functions: fgy(k) = p(k) + ol f(k) - p(k)]
has the property:
C’-lim fy = £ as a»1” and fu(k)eintF(k)

for every keK and each a<l.

As a second step we use the fact that the space C2%(X;K) is
dense in C§(K;K). This relation follows from the point above

and from the standard result of density of C2(X;K) in C%°(X;RM).

Now: consider any function feCg(K;K) and any neighbourhood
of this function in C§(K;K). For the density argument we just
recalled there will be a 6eCE(X,;K) which lies in such a
neighbourhood Theorem 3.1 assures that there will exist a concave
function u(k,k') such that:

8(k) = Argmax { u(k,k'), s.t. k'eF(k) }.

Thus, from Theorem 3.2 , it follows that the maps t1g associated
with u(k,k') belong to that neighbourhood for § in an appropriate
right-neighbourhood of zero. This fact concludes the proof of the

Theorem. Q.E.D.
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The density Theorem just proved is the central result of this
paper and, in our opinion, it allows a better understanding of
the mechanisms which originate dynamical complexities for the

optimal paths of capital accumulation.

As the range of behaviors of maps f: K»K belonging to
CH(K3K) is very wide, then any such behavior is a candidate for

maps of the type tg too.

From the 1last arqument we have to conclude that chaotic
behaviors are, at least, "logically possible" .This conclusion 1is
a direct implication of the very well known fact that most of the
strange attractors and chaotic movements are persistent
properties of maps (i.e. such properties are preserved under
C’-perturbations). From a purely mathematical point of view our
statement is reinforced by some recent results, (see Butler and
Pianigiani [4] and Siegberg [22]), according to which in the
space of all the continuous functions from a real and compact
interval on itself there exists an open and dense set of

functions that are chaotic.

At this point we are lead to conjecture that erratic solutions
for optimal programming problems can be found more or less easily
and that their existence cannot be labelled as exceptional even

in the simple one-dimensional growth model.

In the multidimensional case some analogous results on the
degree of ergodicity suggest that erratic behaviors become more

and more probable as the dimensionality of the model increases.
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Unfortunately an analytic treatment of high dimension models

seems, up to now, a prohibitive task.
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4. TWO EXAMPLES OF OPTIMAL CHAOTIC PATHS OF CAPITAL ACCUMULATION.

Our last step is to provide a first concrete confirmation of
the conjecture with which we ended the last Section. We will do
it by giving a couple of simple examples of optimal accumulation
problems that, under very general assumptions, are associated to
chaotic maps 1g for low values of the discount parameter. The two
examples we propose are, in some ways, "ad hoc" ones: we mean
that we have chosen those specifications for the wutility
functions and/or for the production functions in order to get

some desired results,

Nevertheless these functions satisfy all the standard
hypothesis of the theory of optimal growth and they are not
"exceptional™ at all among those currently used in economic
theory. This implies that we do not see any reason, on a pure a-
priori ground, to refuse them as irrational or "irrealistic". On
the contrary we can actually think of many "concrete" situations
in which production or utility functions of these kinds can be

usefully adopted.

Both examples produce a one dimensional map Ttg§: K»K as the
final description of the optimal dynamics, with K being an

interval on the real line.

This choice has been done for technical reasons: as a matter
of fact maps 71g: R™RM™ with n»2 are, in most of the cases,
analytically intractable and there is no definite method to work

with nonlinear maps of dimension two or three or more when they
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are written in explicit form.

On the contrary the case n = 1 has been extensively studied in
the last few years and, in particular, there is now a great deal
of available knowledges on the characteristics of maps of the
interval on itself that show erratic behaviors. A particularly
good and extensive survey of these results is given in Collet and
Eckmann [5]. They studied there a large set of "strange"
behaviors for a parameterized family of dynamical systems. These
dynamical systems are produced by the iteration of maps of the

unimodal type.

A mapping f of the interval [a,b] into itself is defined
unimodal if:
Ul) f is continuous;
U2) there exists a point ¢, a<c<b, such that f'(c) = 0;

U3) f is strictly increasing on [a,c] and strictly decreasing on

[c,b].

The named authors consider a one parameter family of unimodal
maps fy with ue(0,1] and, corresponding to various values of u,
they find that f| exhibits various kinds of strange behaviors:
that is to say "chaos" in the Li and Yorke [15] sense,

sensitivity to initial conditions, entropy, etc.

From our point of view the upshot of their analysis can be
summarized as follows. Once a parameterized unimodal map f, is
given then we can almost surely calculate values of p such that

the dynamical system x{;1 = fp(xt) exhibits some form of strange
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behaviors.

This simple but important result will be extensively used 1in
the present Section. Infact we will simply concentrate on finding
conditions under which the optimal policies 1§ are unimodal and
dependent on some parameters. Then the existence of chaotic
regions for these parameters follows from the Collet and
Eckmann's results and we will avoid to afford the explicit
cumbersome computations. The careful reader is obviously

referred to [5].

(4.1) Wealth effects in a one-sector neoclassical model.

It has recently been showed, see Dechert [7], that in the
standard one-sector optimal growth model with a neoclassical
production function and with people maximizing the present value
of a discounted stream of future consumption flows over an
infinite horizon, the optimal sequences of the capital stock are

monotonic and chaos is therefore, impossible.

We will study now a very simple model where all but one of
these assumptions are retained: namely we assume that net wealth,
as it is measured by the existing capital stock kieKCR,, enters

as an argument of the utility function.

For our purposes we need an analytic form of the utility

function and we will adopt the standard Cobb-Douglas form.
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The optimal problem is then stated as:

o

Max: § c¥ki~%st-1 (11)
t=0

s.t. 0\<Ct\<f(kt_1) - kt

kteK and kg given in K.

where K is an interval on Ry . For the moment we will not choose
any specific form for the production function f. As in [7] we
simply allow for the case in which f(») have regions where the
marginal productivity of capital is negative and, obviously, we

assume strict concavity of f(:) over K.

It is very simple to calculate the map 6(ky) we have defined

in (4) above; for the problem at hand it results to be:

The mapping 6( ,a): K+*K is the desired one-parameter unimodal
map: infact there are many possible specifications of an
aggregate concave production function such that (12) turns out to
be unimodal. The ranging of o over the interval (0,1) will
provide the degree of freedom sufficient to obtain those erratic
dynamics we claimed to exist. For example the very simple
specification f(ky) = kf - kY, satisfies all the three

assumptions Ul)- U3) above when 0<g<1l and y>1l.

The authors have carried explicit calculations on this map and
it shows chaotic behaviors in the sense of Li and Yorke [15] for

a relevant set of values of the parameters.
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Recalling the limit relations we proved to hold between 6 and
1§, (see Theorem 3.2 point b) above), it is straightforward to
conclude that there exists a neighbourhood U.(0) of the origin
such that, for all the 8eU.(0) the map t1g§ which solves (11) is

chaotic.

This very simple analysis suggests that the introduction of
wealth effects in the standard neoclassical model of optimal
accumulation can destroy the tipical monotonic behaviors which
are usually accepted in the literature. It 1is immediate to
conjecture that other natural modifications of the standard
assumptions (e.g. those regarding the convexity of the technology
set) can lead to non-standard behaviors for appropriate choices

of the parameters.

We think that some brief observations can help the reader to
understand this point and, in some sense, to discover the
technical "trick" which wunderlies our result as opposed to

Dechert's one.

The latter can be intuitively understood in a very simple way.
An optimal accumulation path {k;,kf,...} is monotonic if and
only if the policy function tg is monotonic. Now the first
derivative of 1§ for the one-dimensional <case 1is easily

calculated using its definition:

T5(k) = Argmax{u(k,k') + SWg(k'), s.t. k'eF(k)} (13)

From the above:
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t5(k) = - upa(k, k") [upp(k, k') +swWs(k') 171 (14)

follows easily using the first order conditions; the notation is
self evident.Now the concavity of u and Wg implies that for every

k along the optimal path:
sign t§(k) = sign ujp(k, k") (15)

Equation (15) explains both Dechert's and our result. Infact
given the standard specification of the neoclassical one-sector
optimal growth model, where u(k¢,ke+1) = ulf(ke)-kes1] it is
possible to see that, along any optimal path the sign of uj) is

positive and not changing.

This happens even if the production function is allowed to
exhibit zones of negative marginal productivity: the optimal path

will never take up values in those zones.

When the technology or the tastes are such that the sign of
uj2 is negative then the optimal trajectory is an oscillating
one: in this case there is the possibility of finding optimal n-
cycles by studying the existence of fixed points for the n-th

iterate of the policy function T4

What is more important,for us, is that the specification (11)
introduces the possibility of switching for the sign of ujp also
along optimal paths. This 1is the main building block of our
result because, obviously, a wunimodal map has to be non-
monotonic: the presence of the parameters gives the residual

degree of freedom to obtain chaos.
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Notice that this argument makes sense for one-dimensional
policy functions only. Nevertheless it is a powerful argument:
whenever an optimal dynamics can be described by a one-
dimensional policy function exotic phenomena are possible only if
the specification of the model allows tg to be non-monotonic. We
have seen that this amounts to ujp changing sign over K K: this
can be obviously satisfied by many different economic

assumptions.

We have chosen the wealth effect both for its simplicity and
because it has some "historical precedents” in the classical
growth theory. We like infact to recall the work of Kurz ([13]
where it was shown that, 1in the continuous time case, the
introduction of the capital stock as an argument of the utility
function generates a (finite) molteplicity of steady states, some
of which are unstable. Due to the greater sensibility of the
discrete-time formulation we have shown that an analogous change
of hypothesis is able to produce a result which appears even more

disturbing but, in some sense, also more fascinating.

(4.2) Labor-leisure choice in an underdeveloped economy.

Our second example of possible chaotic optimal programs is a
little more elaborated than (4.1) because it studies a two-sector
economy. We consider a very simple world with a technology of the
Gale's [11] type: there exist two sectors in the economy, one

produces a consumption good using only the stock of capital
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whereas the second sector produces the capital good using both

capital and labor.

The technology can be expressed in a linear form, the supply

of labor is exogenously given and growing at a constant rate.

Let A be the input and B the output matrices, L is the vector

of labor inputs, y is the rate of depreciation of capital:

0 0
A =
321 az?
b11 0 )
B =
(1-y)azy b3
L = [0,1]"

1 2
Indicate with v = [v , v ]' the levels of activity in the two

sectors. The constraints will be:

Lveg AET11, (16)
and

AvigBvio) (17)

where vy 1s the level of activity at time t, 15 is the amount
of available labor in the first period, X is the rate of growth

of the supply of labor.

We will indicate with ug = u(v¢/At71) the istantaneous per-
capita utility function. It is very well known, see [11], that
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the model can be reduced to one with constant supply of labor. We
will do it here very briefly, the cautios reader is referred to

[11] for more details.
Define A' = AA, B' = B, L' = L and u{ = ulvg).

Assuming that the system is productive, that is Aapp<bpp, we
can formulate the optimal problem as follows:

o0
Max: ) u(ve)st™t (18)

t=0
s.t.hazjvi+ragavic(l-y1)rapivi-1+(l+o)ragvi_q

Ogvi, Ogvigly/l =1

where y! > 0 and o > 0 are proportionality factors between A’
and B'. The presence of the vector vi as the argument of u is
easily understood: people obtain utility from consuming more of
the consumption good, but they experience a reduction in their

utility from the time they spend working.

The space V of all the couples (v!', v?) is not compact because
v! is unbounded: we get the compactness of V simply assuming a
finite upper bound v! for the level of consumption. This can be
done ex-post, that is after that problem (18) has been solved:
because to <choose an infinite level of activity for the

consumption sector implies the use of an infinite amount of

labor, which is excluded by our assumptions.

Another difference with the standard programming problem we
have been considering in Section 3 is due to the fact that the
utility function does not have the initial states and the
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terminal states as arguments: also in this case the problem is
easily solved considering that, if u is strictly concave, the
sequence of v which is an optimal solution to (18) 1is still
unique. Thus a dynamical system can be associated again to (18)

and all the Theorems of Section 3 still hold.
To study the problem let us re-define our variables as:

Aap1vi = vi, Aragovi = i (19)
and (18) becomes the following P(vgy,8, «):
QO
Max: J u(vg)at ! P(vg, §,®)
t=0

s.t. v + vE g (1-yY)vi_1 + (l+o)vi_1

=

vt >0 and 0 < v{ g

Now indicate with v¢.3»F(vg-1) the production correspondence
constraining problem P(v,, &8, «) a geometrical illustration of

which is given in Figqure 1. below.

The solution to P(vg, 8, ®») will be a map rgzv:_1+v:, from
which, using (19) the time path of the optimal levels of activity

is immediately derived.

Because all the conditions of Theorem 3.2 are met we know
that: lim 1§ = 6 for 60", where 8 satisfies the condition:
e(v:_l)eF(v;_l). The dynamical system induced by iteration of
® 1s a bidimensional one but we can reduce it to a one-

dimensional dynamic system using the following considerations.
It is easily seen that all the points v{ on the same'segment
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with slope -(1-y!)/(l+c) are mapped into the same F(v¢): it
follows that the induced dynamic becomes monodimensional after

only one iteration.

A closer idea of this reduction of dimensionality comes from
the consideration of the monotonicity of u in v!': this simply
amounts to assuming that the agents are locally non-satiable in
the consumption good. Then we conclude that the agent will
always choose v:+1 on the north-east border of F(v:) in every

period t.

In this case it is easy to express the one dimensional dynamic
taking as the state variable the projection ¢ on the vl axis, in

the direction -1, of the point v:

We will indicate with [v{(z), v%(z)] the maximum of u on the
intersection between the line vw! + v? = ¢ and the feasible set
F(v). With some simple calculations we can derive the one

dimensional dynamic 8 as:

g = (o+y )va(ze_1) + (1-y)ze-1 (20)

We can concentrate our analysis on the first addendum because
the second one, (l-y!)zt-j3, is linear. Let us note that for y'-l
(that is to say for a very high rate of capital depreciation) the
second element of (20) disappears and the map 6 reduces to

(l+c)v§(ct_1).

Obviously the characteristics of 68 as a dynamical system will

depend on the form of the function v§(ct_1). The latter depends
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on u{vy) so that we have to choose an analytic specification for

the utility function. We have chosen the following:
u o= (vH)%(vZ + ev)B(I - v2)K (21)

which is concave (if a + B + ¥« € 1) and it is also monotone in
the consumption good v!. The particular features of (21) come
from its non-monotonic behavior with respect to v?, which 1is an
index of the amount of time spent at work. To be more precise we
show in Figure 2.a, 2.b, and 2.c three sections of the graph of u
with respect to v? corresponding to three different values of v!,

specifically for v! = 0, for 0<v!gB/ex and for v! > B/ex.

The reader can see that the behavior of u with respect to v?
is non standard as long as the activity level of the consumption
good industry is smaller or equal of a certain critical amount.
Infact when v! is in that small right interval of zero we assume
the agent receives a positive utility from working up to a
certain number of hours: after that point leisure time becomes
desired as it is usually assumed. Note that the critical level
of v! can be made arbitrarily small by increasing k and reducing
o + B, without 1influencing the qualitative results of our

analysis.

Many different examples can be used to give an economic
rationale to this behaviors: we think , first of all, at the
tipical situation of an underdeveloped country with a large
amount of unemployed labor, small opportunities of consumption

and a very small stock of capital. It seems quite intuitive to
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think that in such a situation the optimal programmer will not
evaluate leisure time as a source of positive utility for the

members of the society.

This is, in our opinion, quite natural for two reasons: first
the citizens do not posses anything to consume during their free
time (case v! = 0) or, at most, a very small amount of
consumption good is available; then surviving 1s not assured.
This argument roughly correspond to the claim of a
complementarity between leisure and consumption for very low

level of the latter.

Also: with no consumption available the citizens will find
highly valuable the time spent at work, because this produce the
capital stock necessary in the production of the next period

consumption good.

We like to stress that the non standard behavior of u is
limited to a small neighbourhood of zero: infact the graph of the
utility function respect to v? assumes the ordinary downward
sloping form when a certain positive amount of consumption good

becomes available to the society.

Finally (21) can be interpreted in terms of a preference
ordering over consumption and leisure such that when the former
falls short of a certain minimum amount the ordering of the
latter looses the monotonic relation with its quantities. With
similar arguments the utility function (21) is extendable to the

study of a household intertemporal choice between consumption and
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leisure. The presumption that a starving and unemployed person
will greatly appreciate his first few hours of works sounds quite

realistic, indeed.

Turning back to the mathematics of the model let us note that
our claim on the existence of chaotic behaviors in situations of
this type follows from the fact that the function V;(C) is a
unimodal map for ¢ < B/(a+B). With some simple calculations we
see that the implicit function defining v%(c) has the following

expression:
B(1-€e)[ez+(1-e)v317L = alz-v5171 + «[1-Vp]171 (22)

The graph of (22) has the form depicted in Figqure 3. for
values of the parameters such that: € < B/(a+B). The point

indicated as T can be calculated and it is equal to:

£ =[8 - ela + B)I1l(ke) 1L

These arguments are enough to conclude that the dynamic
induced iterating 6 (and the 1§ for low values of 8) can be very
rich and even chaotic, depending on the relative values of the

parameters.

Also in this case we will avoid the explicit calculations
referring again the reader to the techniques illustrated in [5]
for unimodal maps. We like only to stress that also in this case
complicated phenomena arise for the non invertible character of
V;(C) and for the presence of the parameterizing factor (o+y!)

in front of it, (see equation (20)).
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The two parameters ¢ and y! can be used to modulate the
curvature and the slope of the map & and it can be seen that
erratic phenomena will become more and more accentuated the

larger ¢ and y! are.

We do not intend to discuss further the economic implications
of our analysis. As a matter of fact our purpose here is merely
that of suggesting a method to discover unexpected results in
standard and, apparently, well conformed economic models. It is
not our intention to suggest any possible "realistic” application
of these results. Nevertheless the reader would find amazing to
compare the typical temporal path of a chaotic map with many

business cycle data.
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5. CONCLUSIONS

In this paper we have shown that optimal trajectories coming from
economic problems of optimal intertemporal programming exhibit a
large variety of behaviors depending on the values of the
discount parameter §. In particular when § 1is in a small
neighbourhood of zero they may reach erratic behaviours. This
fact has several implications, for example the extreme
sensitivity on 1initial data which leads to impredictability,

exactly as in random systems.

On the other hand it is opportune to remember that such a
variety of phenomena comes to be ( at least partially) destroyed
as § increases and approaches the value one. Perhaps Figure 4.
can give a useful metaphoric picture of these evolutions: the
image has been elaborated for a specific map coming from a

problem P(ky, §, ®) with:

u(ke_1,ke) = M - akf_1ke + akp_iky -1/2kf -L/2kf_7 ,

with (kt_l,kt)eD = [0,11x[0,1]

where the value of the parameter a is close to 4 and L>a?

We refer to Montrucchio [19] for details. It represents the
tipical bifurcation diagram of a one-parameter map on the

intervall ( the so-called Feigenbaum scenario, see [5]).

2

The disappearing of the strange attractors as § increase 1is
very strongly related, in the contest of economic growth, to the
well famous Turnpike Theorems. Shortly speaking we can say that,
under suitable assumptions, the Turnpike results guarantee that
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all optimal paths shrink and converge to a unique stationary
solution. This fact can be related to ours by immagining the
values one and zero as the "Alice's mirror image” of one other:
when the parameter § moves from one to zero the well organized
and regular world of the Turnpike Theorems becomes its contrary:
chaotic movements and impredictability of the social choices

appear.

Because § 1is, fundamentally, an inverse measure of people's
degree of impatience we see that in the absence of myopia (i.e. T
= +o), and of uncertainty regarding future events chaos is caused
by the impatience in planning. Of course if myopia is present
(i.e. the case T < ») the dynamics of the capital stocks become
more and more complicated and erratic behaviors can appear also
for "non small" §. In our opinion the finite horizon case needs
further 1investigation and we conjecture that very interesting
phenomena - can arise under various acceptable conditions.
Unfortunately the analytical treatment is not simple and we will

tackle the problem in a following work,

A final brief observation is useful: our two examples suggest
that when people increase the degree of "rationality" of their
choices, that 1is they take care of many state-variables 1in
evaluating their wutility, chaotic paths become more and more
probable. On the other side if they adop£ "naive" decision rules
the optimal trajectories have a simpler and more regular set of
attractors. We think that this other dycotomy could also be

useful for future reseraches. It suggests a non-monotonic
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relation between the degree of "rationality” (as it is usually

defined) and "predictability of economic behaviors”.
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