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I. Introduction

Models with a continuum of agents, a continuum of goods, or both, have
been used by economists for some time. Examples are Bewley (1972),
Hildenbrand (1974), Mas—Colell (1975) and Jones (1983,1984), although this
list does not contain a fraction of the literature. The reasons for using
such models include mathematical ease and the means to make precise the
hypotheses of perfect competition. Models with a continuum of consumers are
generally justified by demonstrating that they are close in terms of
equilibria, comparative statics, and welfare properties to models with a large
but finite number of consumers, those models that one might believe are closer
to reality. In this way, the mathematical simplicity of the continuum model
prevails and one can speak of a pure or ideal form of perfect competition.

The focus of this paper is on a class of continuum models specialized to
the particular needs of urban economics and regional science in general. The
class also includes some models used for local public goods and differentiated
products. Since the classics of Alonso (1964) and Beckmann (1969), urban
economists and regional scientists have employed models with a continuum of
agents distributed over a continuum of locations or land. Two goods are
consumed by each consumer: land (a differentiated commodity) and a mobile
composite consumption good that is taken to be numeraire. FEach consumer is
required to reside and consume goods in exactly one location (see Wheaton
(1979)). These models have been shown to be tractable in that they circumvent
mathematical complications identified by ten Raa and Berliant (1985). They
have empirical uses and also applications to the local public goods literature

(see Brueckner (1979)). However, Berliant (1985) shows that the standard



justification for models with a continuum of consumers (given above)} does not
apply to this class of location models. In particular, a continuum of
consumers each holding a positive area of land in a Euclidean space is
impossible. Furthermore, any sequence of economies with a finite number of
consumers tending to a‘limiting economy with a continuum of agents has the
property that the land holdings and endowments of consumers must tend to zero
on average. Consequently, the utility derived by a consumer from any positive
area of land must be infinite in the continuum economy, as consumers own
densities. This contrasts with the Hildenbrand (1974) story, which is used
for models without location, where average endowments and consumption are
positive, but the fraction of total commodities consumed by an agent tends to
zero. Thus, these particular continuum location models have the property that
they are not approximates, in the usual sense, to reasonable, large, finite
economies. Under this approximation, the equilibria and comparative statics
of the continuum economy can be vastly different from those of finite
economies.

The purpose of this paper is to examine another possible approximation or
interpretation of this class of continuum location models suggested in the
urban economics literature and by Aumann (1964). A continuum of identical
consumers (of measure 1, say) of the continuum economy is assumed to represent
directly the behavior of one large consumer of an economy with a finite number
of consumers. That is, each consumer of an economy with a finite population
is represented by a continuum of infinitesimal particles. Thus, we examine
whether location economies with a continuum of consumers, whose total mass
represents a finite number of agents, and economies with a direct

representation of finitely many agents are similar. Two notions of similarity



are employed. The economies are strongly similar if demands are equal; they
are weakly similar if equilibria are equal. Equality of demand requires that
the demand mappings have equal values for all prices. Equality of equilibria
requires that the mappings have equal values at equilibrium prices only. Note
that whenever a continuum model is used for comparative statics, the user is
on firm ground only if the model is strongly similar to a finite model, i.e.
demands are the same at all prices. Of more importance, demands in the two
models must vary in the same way (at least locally around equilibrium) with
respect to parameter variations such as changes in endowments. Since the main
result of this paper is negative, the emphasis will be on weak similarity in
order to strengthen the conclusions.

The results detailed below show that it is possible to find equilibrium
prices of a continuum model that do not clear the markets of analogous finite
models, and there are equilibrium prices of a finite model that do not clear
the markets of an analogous continuum model. Thus, the models are not weakly
similar. The particular examples are simple (e.g.. linear or Leontief
preferences) and they seem robust. As a byproduct of this research, examples
of continuum economies with identical individuals and well-behaved preferences
but no equilibrium were found. Thus, the first order conditions for the
continuum model can be different from those of an analogous finite model, and
they can also be vacuous. In a companion paper, Berliant, Papageorgiou, and
Wang (1986) have counterexamples to the first and second welfare theorems for
a similar continuum model. Hence, the continuum model of location theory does
not possess the properties of many neoclassical models. For a location model

with a finite number of consumers that does possess these properties, see



Berliant (1985).

The papers of the urban economics literature most closely related to ours
are Fujita and Smith (1986) and Scotchmer (1985). These papers demonstrate
the existence of an equilibrium for location models with a continuum of
consumers and a continuum and finite number of locations, respectively.

Fujita and Smith consider an open model in which land is initially owned by
nobody and rents exit the system. Furthermore, location cannot enter into a
consumer’s utility. In the urban literature, location usually enters into the
utility function to account for the disutility of travel to work (see Wheaton
(1977)). We shall return to this in the conclusion. Scotchmer considers a
closed model in which location can enter into utility functions. The
assumptions on utility functions include several beyond those normally used in
general equilibrium theory, such as utility is zero if and only if land
consumption is zero. These assumptions rule out many standard utilities,
violate the conventional boundary condition on preferences, and do not reduce
to standard assumptions when land is completely homogeneous. However, they
also rule out the examples below. Thus, one might conjecture that these
additional requirements are weakly necessary for the existence of equilibrium
or perhaps an approximation theorem.

With regard to models of product differentiation, by interpreting the
location attribute of urban economics as a general hedonic attribute or
quality (see Lancaster (1966) or Rosen (1974)) one can use the continuum model
detailed below as a model of product differentiation by reinterpreting the
variables. This model is different from, say, those of Mas—Colell and Jones

in the respect that consumers are restricted to the ownership of divisible



goods in one location or of one quality. Many other location or product
differentiation models focus on the firm or supply side of the market (see,
for example, Fujita and Thisse (1986) or Novshek (1980)), which is passive in
the model discussed below. However, if one allows consumers to be mobile with
preferences over location or quality, then it is very likely that the examples
below apply even with an active supply side of the market.

In general, we expect these examples to apply in any model where a
continuum of consumers is mobile and restricted to choose one commodity out of
a continuum. The intuition for this is not hard to understand. The
equilibrium price or rent function on the differentiated commodity is expected
to do too much in the location model. At each location, it must be equal to
the marginal rate of substitution between land and numeraire. Furthermore, it
must prevent the movement of consumers between locations. Generally, it
cannot perform both functions simultaneously. In the finite model of Berliant
(1985}, the functions collapse into one.

The next section presents the models of the finite economies and of the
continuum economies. The association of a particular finite model with a
continuum model can be ambiguous. Section III presents a discussion of the

various ways this can be done. Section IV contains the examples, while

Section V concludes.

II. The Models
Land is a compact set in a Euclidean space. For the simplicity of the
examples, it is taken to be a one-dimensional interval, a practice common in

urban economics and regional science. Without loss of generality, the



interval is [-1,+1]. If B is a Lebesgue-measurable subset of [-1,1]. let |B|
be its Lebesgue measure. When the urban economic concept of a Central
Business District (CBD) is referenced, the definition shall be the mid-point,

0.

Following Wheaton (1979), the continuum economy has N types of consumers

(N integer and finite) indexed by i,j, and k. Associated with type i is an
interval [0.1] of identical consumers of that type. The location of a
consumer is indexed by r e [-1,1]. For example 4 below we use [0,1] to avoid
the use of |r| instead of r and to avoid factors of 2. Let R+ be the
non-negative part of the real line. At a given location, a consumer has the
non-negative orthant of R2 (call it RE) as the consumption set. The two goods
are land, which for simplicity of the examples is assumed to be homogeneous
across locations except for the locational attribute, and a composite
consumption good. A consumer of type i has an endowment Y > 0 of the
consumption good but no land. Let the quantity of land consumption be given
by h and the quantity of composite good consumption be given by x. For a
given location r, preferences of a type i consumer are given by a
quasi-concave, continuous utility function ui(r,h,x). Quasi-concavity in r is
not assumed in order to be consistent with the location literature. Note that
agents are endowed with (infinitesimal) fractions of income, just as they will
consume fractions of land. If agents were endowed with positive amounts, the
problems in Berliant (1985) appear.

We now may proceed to define an equilibrium concept. The composite
consumption good will be used as numeraire since it is freely mobile and hence

has the same price at all locations. To be determined in equilibrium are a



rent density, p(r) e Ll([—l,lj), giving the price of land at all locations;
hi(r).xi(r) 3 Ll([—l,l]), i=1,...,N, giving the density consumptions of land
and composite good, respectively, for each type at each location; and a
density mi(r) € Ll([—l,l]) of consumers of type i residing at r. It is
assumed that all consumers of type i at distance r from the city enter consume
the same quantity of land, hi(r), and numeraire, xi(r). Alternatively, these
quantities can be viewed as the average holdings of such consumers. This is
consistent with the urban economics literature, e.g. Wheaton (1979).

Consumers of type i face the following maximization problem:

Maximize ui(r,h.x) (1)
r.h,x
subject to p(r)h + x < Y (2)

The solutions to this problem are called continuum economy demand. Demand can

be empty if prices are discontinuous, but the examples below avoid this
problem and display nonempty demand at equilibrium prices.

We do not define a feasible allocation for the reason that the models in
the literature tend to be open rather than closed. No agent explicitly owns
the land initially, while the rents paid for land exit the system. This is a
valid simplification, since it is easy to add landlords, one at each point,
who own all land initially and derive utility only from composite good. In
fact, this closure of the model is used by Fujita (1986) and Berliant,

Papageorgiou, and Wang {1986) to examine the welfare theorems.
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A continuum economy equilibrium with respect to endowments (yi)i—l is a

collection of densities p, (m?,h?,x?)?_l e L} such that:

For almost every r ¢ [-1,1], for each i with mi(r) > 0,

r,h?(r),x?(r) maximizes (1) subject to (2) at prices p¥.

1
J m¢(r) = 1 for all i.
-1 1 .

N
For almost every r ¢ [-1,1], 3 m?(r)h?(r) < 1.
i=1

The first condition states that consumers are maximizing subject to their
budgets. The second condition states that all consumers are located. The
final condition assumes that the land available at each location is one unit,
for simplicity; this can easily be modified to accomodate 2mr as in the plane-
location literature. Since m?(r) is population density and h?(r) is mean land
density with respect to location, their product is equal to the land density
demand of type i consumers, so the last equilibrium condition is the land
market clearance requirement. For composite good endowments (yi)?:l’ the set
of equilibria is denoted e(yl,...,yN).

Several aspects of this continuum model deserve discussion. First, for
most models with prices in Ll, prices are defined only almost surely.

Changing the prices at one point will lead to an "equivalent” set of prices
that clear markets (almost surely). For example, the model with a finite
number of consumers detailed below has this property. The continuum model
above does not have this property. If the equilibrium price of land at one

location is changed to zero, all consumers will reside there (provided



preferences are monotonic in land) and there will no longer be equilibrium.
Thus, there seem to be some deep measure-theoretic problems with the model.

Second, one can have hi(r) > 1 for some i and r in equilibrium, provided
mi(r) < 1. The interpretation of this inequality is unclear, as it seems to
suggest that average or per capita land holdings can exceed supply at r, even
on a set of positive measure.

Third, it is standard to put transportation costs into this model, e.g.
change the budget constraint to x + p(r)h + |r| ¢ Y- For simplicity, our
examples below do not involve such costs, although they could be included in a

neutral way by the following trick. In the model, (1,2), take a new utility

function, say vy defined by vi(r,h,x) = ui(r,h,x - Ir]).
The problem
maximize vi(r,h,x)

subject to p(r)h + x < Y

reduces to:

maximize ui(r,h,x')
subject to p(r)h + x' + |r] gyi
where x' = x - |r|. Hence model (1.2), though simplified, covers the standard

model of the new urban economics.

Finally, the continuum model presented above suppresses two externalities
that appear in the standard models of urban economics and regional science.
The consumers in the models of this literature take the locations of each
other into account. At each location, the population density is inverted in
order to calculate land availability (supply). This is the amount of land

that consumers must consume at any location. Thus, supply enters into the
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decision problem of the consumers. This externality is essentially a reduced
form feature of the equilibrium equations, and we prefer to present the model
in structural form. The second externality is more explicit in that consumers
may care about the population surrounding them (see Beckmann (1977) or ten Raa
(1984)). In this case, the global population distribution is assessed in
terms of proximity when social interaction is a good. The inclusion of such
an externality would complicate the model and examples in an obvious way
without adding further insights to the relationship with the finite model.

Turning now to the finite economy, there are N consumers, one for each

type of the continuum model. Consumer i is endowed with income or composite
good y; € R+, the total of the incomes of those consumers it represents. The
consumption set of each consumer is %XR+, where % represents the og-algebra of
measurable subsets of [-1,1]. Consumers of the finite economy actually buy
subsets of land rather than densities, and can consume composite good as well.
Preferences are represented by utility functions. The utility function of
consumer i is a map Ui! %xm+ - R. We write Ui(B,x) for a parcel B e % and
(residual) composite good x e R+. Prices are, once again, densities in Ll.
Consumers pay the integral of the price density over any parcel (see Berliant

and ten Raa (1986)}). For given p & Ll, the problem of consumer i is:

Maximize U, (B.x) (3)
Be% x>0 !

subject to J p(r)dr + x < ' (4)
B
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The solutions to this problem are called finite economy demand. As for

continuum economy demand, this demand can also be empty. If utility or
preferences are continuous with respect to the topology specified in Berliant

and ten Raa (1986), demand is nonempty.

A finite economy equilibrium is a price system p € L1 and (Bi,xi)lz=1 e
(%XR+)N such that (Bi'xi) maximizes (3) subject to (4) for each i and
(BI'B2""‘BN) partitions [-1,1]. For composite good endowments (yl.....yN).

the set of equilibria is denoted E(yl.....yN). More details about this model

can be found in Berliant (1985).

III. The Association of Models

The data of an economy, be it modelled in the finite or in the continuum
mode, consist of endowments and utility functions. A finite and a continuum
model represent a common economy if endowments are equal and utility functions
equivalent. We cannot require equality of the respective utility functions,
simply because the domains differ. In the finite model, utility is defined on
3 x R,: in the continuum model, utility is defined on ([-1.1] x R ) x R,.
Land enters utility through a parcel, B e %, in the finite case, and through a
location—quantity pair, (r,h) e [-1,1] x R+, in the continuum case. The
latter approach is more restrictive, since location—quantity features are also
captured by commodities B ¢ %, but these parcels embody other qualities as
well (such as shape). Thus, in studying equivalent utility functions, it is
natural to start with a continuum economy utility function, u, and to
associate a finite economy utility function, U. Since U is defined on a much

larger commodity space, the extension will not be unique.



12

Fix u:([-1,1] x R+) x R - R. Take a commodity of the finite model,
(B,x) ¢ 3 x R+. The question is how much utility must be associated with it.
In the continuum model, a consumer is represented by a mass distribution, each
infinitesimal particle of which is an agent who consumes densities of land and
numeraire commodity to collect a density of utility value. Now the very
concept of a density suggests additivity. Therefore, it is natural to
distribute the mass of the consumer, 1, and the numeraire, x, across the
parcel under consideration, B; evaluate utility densities and integrate them.
Let the consumer and numeraire distributions be m and z, respectively. Assume

m(r) and z(r) are positive only if r e B; furthermore, J m(r)dr = 1 and
B

J z(r)dr = x. Note that mean numeraire density at r is z(r)/m(r), mean land
B

density is 1/m(r), mean utility density is u[r,1/m(r),z(r)/m(r)]. and utility
density is u[r,1/m(r),z(r)}/m(r)]m(r). Hence, parcel B carries total utility

J ulr,1/m(r),z(r)/m{(r)Jm(r)dr. It remains to specify m(r) and z(r); they fix
B

total utility, U(B,x). This problem is analogous to the construction of a
social welfare function. We consider the traditional constructs, the
utilitarian and the egalitarian functions. We also consider a construct
suggested to us by David Pines, namely the market function, in which
individuals are forced to decentralize their pieces and consume Walrasian
allocations. Since we construct the amount of utility an individual can get
out of a commodity by integration of utility densities processed by fractions

of the individual, the utilitarian construct seems to be the appropriate one.
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Utilitarian utility is defined by

U(B,x) = sup J‘u[r.1/m(r),z(r)/m(r)]m(r)dr
m,z *B

subject to

J m(r)dr = 1 and J z(r)dr = x.
B B

Egalitarian utility is defined as the solution to the same problem but with
the additional constraint that mean utility density is constant:
u[r,1/m(r),z(r)/m(r)] = constant wherever m(r) > 0. Note that the value of
the egalitarian utility will be equal to the constant, since the total
consumer mass is one. David Pines’ market utility is defined to be the
equilibrium utility level that is obtained by the continuum economy with a
single type of consumer, N = 1, and land endowment B instead of [-1,1].

Note also that when the utility density function is linear homogeneous at

each location, the mass density cancels and total utility reduces to

U(B,x) = sup J\ ulr,1,z(r)]dr
z B

subject to

J;z(r) = x

for the utilitarian case. In this case, the maximization problem fixes the
spatial income density z, whereas the mass density m can be chosen freely. In
particular, it can be chosen to equalize mean utility across locations. This

is an example in which the utilitarian and egalitarian utilities coincide.
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Since this coincidence will also hold for the examples in the next section,
the ambiguity of the association of continuum and finite economy models is
restricted. By separate consideration of the remaining utility construct,
Pines’ market function, this ambiguity is not used as a source for examples of
economies that are not weakly similar.

Now that we have specified the association of finite to continuum models
that will be used, other possible associations can be compared to it. First,
some general remarks are in order. It is only necessary to associate a finite
model with a given continuuh model, and not vice-versa, since we only seek to
try to justify a continuum model by generating an appropriate finite model.
The inverse mapping is not relevant to this problem.

There are many other ways to associate a finite model with a continuum
model. What led us to this particular association was a number of factors.
First, the utilitarian social welfare function is used frequently in the urban
economics literature (see, for example, Mirrlees (1972))}. Second, a
discussion with Aumann suggested that he intended in his early work that
consumers be of arbitrarily small but positive measure. A natural way to take
such limits is through a utilitarian welfare function. Finally, we have also
considered many other alternatives, and found none as appealing as the
~association given above.

For example, one can use a "locator function" approach to association.

To be precise, let continuum model utility be given by u(r.h,x). If Be B, we
may define U(B,x) = u(((B), |B|.x). where {: % - [-1,1]. The map { locates a
consumer of the finite model in his plot of land, and is called a locator

function.
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This approach is quite general, and does not specify a particular locator
function corresponding to any given utility function for the continuum model.
In fact, it does not seem possible a priori to distinguish various locator
functions from one another. Nonetheless, we have found that the examples
generated in the next section can usually be interpreted or modified so as to
apply to other techniques for associating models, such as the locator function
approach. We will amplify this point for example 1 below.

Clearly, there is a large number of ways to associate finite models with
continuum models. Of course, it is not possible to show, using examples, that
there is no way to associate them so that they are similar. On the other
hand, it is not obvious that proving a general theorem is worth the trouble
and complexity that it would involve. This belief stems from our experience
that the locator function inducing similarity depends on the utility function.
So. once the locator function is fixed, alteration of the utility function

will produce examples of dissimilarity.

IV. Examples

In this section, we present a number of continuum economies, specified by
endowments and utility functions, and their associated finite economies. In
the first two examples, the continuum economy equilibrium exists and is
unique, but the finite economy has many equilibria (example 1) or none at all
(example 2). In example 3, the continuum economy has no equilibrium, but the
finite economy has one. It is artificial: generally existence of equilibrium
in an associated finite economy implies existence of equilibrium in the

underlying continuum economy. This relationship is not useful, though, in
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view of our final result. Example 4 shows that even when equilibria exist for
both models, they can be different.
Example 1. For the first example, two types of agents have utility functions
ul(r.h,x) = h + x and u2(r.h.x) = |r|h + x, respectively.

Let us first solve for the continuum model equilibrium. Type 1 agents
maximize h + x subject to p(r)h + x ¢ ¥y Being indifferent between

locations, they consider only the support of the minimum of p(r). If the

¥q

minimum price is less than one, pmln < 1, then x = 0 and Jk(f)dr = " .ip " the
support of the minimum. If pmln > 1, then h = 0 and x = yy- In the hairline
case pmlrl = 1, demand is multivalued as agents are indifferent between land

and numeraire commodity. To type 2 agents, the marginal utility of land is

p(r)
lower, especially towards the CBD. Their marginal cost benefit ratio is W;Wf.

If the minimum value of this ratio is less than one, then x = O and Jh(r)dr =

y
2
p(;j on the support of the minimum. If the minimum value exceeds one, then h

= 0 and x = Yo This completes the derivation of demand. Note that wherever

p(r) > 1, demand for land is zero, which falls short of supply. Hence, in

equilibrium, p < 1. Consider a location, r, where p(r) = pmln. and all points
closer to the center: |s| < |r|. If p(s) > p(r). then no type 1 agent will
p(s) p(r)

demand land at s and _T;T > _T;T, so that no type 2 agent will demand land at

min

, and therefore p(s) = pmln.

s either. Hence, p(s) < p(r) = p It follows
that in equilibrium, p is minimized precisely on an interval, [-r¥,r*] C
[-1,1]. Now consider the other points s, |s| > r*. Since no type 1 agent

will demand land at such points in equilibrium, this land must be demanded by
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p(s)
type 2 agents. Hence _T;T must be minimal at any s of [-1,-r*] U [r*,1], and
min pmin
p(s) < 1. Hence, p(s) = - Is|. |s| > r%. The coefficient % 1S pegged by

the continuity of p. (If p were discontinuous, then a jump in utility levels
across locations would be possible, which is not true in equilibrium.) Note
that r* = O would attract all type 1 agents and yield excess demand at O.

Hence, equilibrium prices are dish-shaped.

It remains to fix r* and pmln. Note that type 1 agents will demand r e

[-r*,r*] and type 2 agents will demand s ¢ [-1,-r%] U [r%,1]. Also, pmin <

n

r*, for if 1 ) pm1 > r*, then there is excess supply of land for |s|

sufficiently close to 1. If pm1n < r¥* = 1, there is excess demand for land at

1 M = 1. Distinguish the three

r*¥. Thus, we have pm n < r* {1 but not pm

remaining cases:
A) pm1n ~1
B) pm <X <1

r* < 1.

o)
Il

P = 1. Since in equilibrium p { 1, it must be that p = 1. Hence,
r¥ = 1. Type 1 agents are indifferent between any h{r) and x. Type 2 agents
are indifferent between h(-r*), h(r*) and x. In equilibrium, almost all land
is bought by type 1 agents. Hence, residual income amounts to X| =Yy~ 2,
where the latter component is the value of all land. Note that this case is

relevant only if Yq 2 2.
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min min
B.

P <r»* < 1. In the same manner as for case A, X =Yy, - 2p T
min min
1 p p 5 _
and Xg =Yg ZJ S ds = Yo = Trx (1-r*7). In this case, however, the

r*
marginal cost benefit ratio is less than one, so that agents want to spend all
min

money on land: X =Xy = 0. It follows that 2pm1nr* =Yy and

2
S (1-rx) =

y
1 . -
¥o- Consequently, r¥ = (____‘—)1/2 and pmm = (1/2)W,(y,+2y,). Note that
2 y1+2y2 1“71 2

¥q

1/2

this case is relevant only if (1/2)v&1(y1+2y2) < < 1; that is,

)
y1+2y2

using positivity of the endowments, Yy + 2y2 < 2.

C. pmlrl = r* < 1. Type 1 agents want to spend all their money on land:

2pmlnr* =y Type 2 agents are indifferent between land in [-1,-r*] U [r*,1]
min Y1

p min

(1—r*2) < Yo- It follows that p =% = ( 5“'1/2

and composite good. -

Y1
and 1 - 5"§ Yo and Yy < 2.

Taken together, the equilibrium price is as follows. If y1 <2 - 2y2.
Y1

172 m

then p is dish shaped with r» = ( ) and p In _ (172)V yl(y1+2y2)

y1+2y2

{which is less than r»). If 2 - 2y2 < Y1 ¢ 2, then p is dish shaped with r» =

5 ) . If Yy 2 2, then p = 1.
Now let us turn to the associated finite economy. Since utility

densities are linear homogenous at each location, the simplified expression
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for total utility, be it utilitarian or egalitarian, from the last section is:

Ul(B,x) sup J u[r,1,z(r)]dr

z B
sup j [1+z(r)Tdr
z B

IB| + J;z(r)dr

|B| + x

U2(B.x)

sup J;[Irl + z(r)Jdr

z
J |r|dr + x.
B

It is not difficult to verify that the continuum equilibrium price does
clear the finite economy. This is essentially due to the absence of income
effects at every location. Therefore, perfect aggregation conditions are
fulfilled and the aggregate consumers are representative of the infinitesimal
agents of the continuum economy. However, there are many more equilibria for
the finite economy. Any rent gradient increasing as one moves away from the
CBD will do. For example, p(r) = |r| clears the finite economy. The first
consumer will demand [-r*,r»] since any point yields more benefit than cost,

where r* is as big as the budget allows, i.e.

T _
I |r|dr =y, or r* = v Yy if Yy <1 and r* = 1 otherwise. Consumer
T

2 is completely indifferent between owning land at any location and numeraire.

Hence, he can choose the remainder of land.
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Under the locator function approach, the finite economy utilities are

|IB] + x and

[¢(B)||B| + x, respectively.
Assuming that ((B) is continuous with respect to the topology of Berliant and
ten Raa (1986), demand is nonempty for both consumers. If Y1 < 2 but close to
2, then if an equilibrium price exists for the finite economy, it is not
dish-shaped as described above (case C). For if it were dish-shaped, then
consumers of type 2, who occupy the outer edges of the dish, can increase
their utility by buying a little more land. All that is needed for this is
that & is Lipschitz in a weak sense. Then the gain in |B| has a benefit
intensity of more than r*, wvhich equals the marginal cost in this case (a

detailed proof is available from the authors).

Example 2. Now we will present a continuum economy with an equilibrium whose

price does not clear the finite economy. Consider
u(r.h.x) = |r| + vhx.
To solve for equilibrium in the continuum economy, consider the consumer’s

problem of maximization of |r| + vg;-subject to p(r)h + x { y. At each

location r, first order conditions and the budget yield the optimum quantity

y
of land to purchase: h(r) = 5;(;7. while residual income is spent on

numeraire. Substituting back into utility we obtain the utility level |r| +

In equilibrium, this utility level must be

(ﬁ)1/2 - e ¢ ——,
p(r) 2vp(r)
y

constant across locations: |r| + ——— =u_. Consequently, the equilibrium

2vp(r)  °
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2
y
. . e —————> . .
price is p(r) 4(uof|r|) (The constant ug is determined by the land
1
clearance condition, j h( )dr = N, where N is the number of consumers. In
Yy
fact, Uy = 1/2 +(N + 4) .)

Turn to the associated finite economy. By the formula of section III

(utilitarian) utility amounts to

U(B.x) = su
m,z

)

I ulr,1/m(r),z(r)/m(r)m(r)dr
B

subject to

J‘m(r)dr = 1 and J\z(r)dr = X
B B
Hence,
(r) 4
U(B.x) = sup f Clr] + (m(r) —o) Y an(ryar
m,z
= sup [J |r |m(r)dr + J vz(r)dr]
m,z “B B
= sup J |r [m(r)dr + sup J Vz(r)dr
m vB z “B
= Bl + (|B|)1/2|B| = IBIl + V|B[x
where IIBIl = sup{|r| | reB} and, as before, |B| is the measure of B. The

limits of m and z that yield the supremum value for the last two terms are the

density of the distribution concentrated on sup B or inf B and the constant,

X
|B|' respectively. Since all mass of the consumer distribution is

concentrated on a single point, this utility is also egalitarian. Clearly,



22

wherever price is locally integrable, all consumers will demand the boundary
points + 1. This is particularly true for the continuum equilibrium price.
Thus, no equilibrium exists for the finite economy. The reason is that this
utility is not continuous in the sense of Berliant and ten Raa (1986).
Example 3:

The next example is one for which no continuum model equilibrium exists,
but when the associated finite model is formulated, an equilibrium does exist
for it. This is further evidence that the continuum model cannot be

approximated, although we admit that the example is artificial in the choice

of utility functions. We shall discuss the implications after presentation of

the example. Let

u(r.h,x)

h - |r| if h < |r|

and u(r,h,x) (1 - |r|/h)x  otherwise.

u is continuous in all of its arguments and concave for given r. It also
exhibits local nonsatiation, but is not monotonic. Monotonicity is
inessential in standard general equilibrium analysis, but its absence does
harm existence of equilibrium for the continuum model.

Select any potential equilibrium price system, p(r). For each r,
distinguish two cases:

A. p(r) 2 y/|r|

B. p(r) <y/|r|
In case A, since the budget constraint is p(r)h + x { y, if h > |r| then p(r)h
+x >p(r)|r] + x 2y (p(r) = 0 is clearly not part of an equilibrium), which
is a contradiction. So for case A, it must be that h ¢ |r|. In this case,

the
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utility function forces agents to spend all on land (h), so that h = A
p(r)
and x = 0. In case B, |r|p(r) <y, so if h { r, then

hp(r) < y. Hence some income is spent on numeraire, x > O. This is not
rational if h < |r|, so it must be that h > |r|. In this case, there is an
interior solution obtained from the first order conditions and the budget
constraint:

= Clrlyp(m1? . x =y - [rlp(r)y1/?
Note that demand is continuous even at p(r) = y/|r|. An equilibrium condition
is that the utility level must be the same, say u . across inhabi ted

locations, for otherwise consumers would move. Consider first case A at some

location r. Then h < |r| and u = - ], _7  =p(r) > A
e T B

Hence uo < 0. 1If case B holds at r, then h > |r| and

= {1 - [rlemy1?) v - Crle(r)y1¥?) = (1 - [rlemy13%y > o,
since |r|p(r) { y in this case. Since u, is a constant, it must be that
either case A holds everywhere or case B holds everywhere. If case A holds in
every inhabited location, then consumers can always move to r=0 and obtain

strictly positive utility, so the original allocation was not an equilibrium.

If case B holds in every inhabited location,

1/2.2
u = {1 - [rlp(r)y]7 %)y
Solving,
172 172 .2
p(r) = (y°7 - u 2 )|r|
1/2 /2, 1/2 _ 172
h(r) = [rly/p(x)177% = Irly "7y - u ")

Given that m(r)h(r) =1 a.s., it must be that

fl __l___ dr fl m(r)dr = N. But
-1 h(r) ~-1

ol ar
-1 h(r)

172

1, 172 1/2
Sy -y

)/(y" " |rDdr.
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The last expression is zero if y = ug and undefined otherwise as 1/|r| is not
integrable at 0. In either case, this expression is not equal to N > O.
Thus, there is no equilibrium for the continuum economy.

Turn to the associated finite economy.

U(B.x) = sup (J + J Julr,1/m(r),z(r)/m(r)]Im(r)dr
m,z A B

subject to me(r) = 1 and fBz(r)dr = X.
Here A" = {r e B|m(r) > 1/]|r]}

and B" {r e B | m(r)<1]r|}

Substituting the expression for u,

U(B.x) = sup {[, [}
m,z A m(r)

= |r{Im(r)ar + £ [1-]r|m(r)]z(r)dr}
B
The first integrand is nonpositive. Hence

U(B.x) < S [1 - [rlm(r)]z(r)dr < S, z(r)dr < Jz(r)dr = x.
B B B

It is not necessary to write down U(B,x) precisely. We see straightaway that,
for example, p = 0 is an equilibrium. Consumers’ demand includes (¢,y) since
its utility equals the previously established upper bound. Supply of land
also includes the empty set when rent is zero. A few remarks are in order.
Egalitarian utility does not always exist in this example. Its existence
requires that B is contained in either A* or B*. so it is not defined for all
B. Pines’ utility does not exist, for it is based on continuum equilibria.
These are indications of the difficulty of associating a finite economy
that admits an equilibrium with a continuum economy that does not. In fact,
if continuum utility is assumed continuous and monotone, then either the
associated finite economy utility function is discontinuous in the

Berliant-ten Raa (1985) topology or always infinite, or continuum equilibrium



25

can be demonstrated to exist by Lebesgue’'s Monotone Convergence Theorem. So
continuity and monotonicity render the construction of an example without a
continuum equilibrium but with a finite equilibrium hopeless. The logical
negation yields a positive statement: If a finite economy with a continuous
and monotone (density-based) utility function has an equilibrium, then so does
the underlying continuum economy. This suggests that some continuum economy
equilibria might be approximated by finite equilibria. The next example
shows, however, that when equilibria exist in both models, they can be very
different.
Example 4. So far we have seen that continuum and associated finite models
can be incompatible by mere lack of existence of equilibrium in one of the
two. The next example shows that the existence issue is not critical. We
will now present an example with different equilibrium price systems for the
continuum and the finite models. Consider r e [0.1] and u{(r,h,x) = hx".
First we determine the equilibrium price for the continuum economy.

Using the first order conditions, at location r, the optimum quantity of land

y
to purchase is h(r) = 77 7, -, while residual income is spent on the
P (r) = (er)p(n) P
y
numeraire good. Substituting back we obtain the utility level z;:;;;z;s(y -
T 1+r
y r y

r 1 .
1+r) In equilibrium this must be equal to a constant, say

T ()T ()

u, . across locations. Hence, the equilibrium price is

T y y
p(r) = l+r [N.B. r | O implies p(r) - ;_].
(1+r) u o
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Here the constant u is determined by the land market clearance condition

1 1
j E?;Y dr = N or, substituting the expressions for h(r) and p(r),
0

1 1 ry r
Y =i | e

Turn to the associated finite economy. By the formula of section III,

(utilitarian) utility amounts to

U(B,x) = sup J ulr,1/m(r),z(r)/m(r)Im(r)dr
m,z VB

subject to

J m(r)dr = 1 and J z(r)dr = x.
B B

Hence,

U(B,x) = sup j [Z(r)]rdr

m,z YB m(r)

subject to

J m{r}dr = 1 and J z(r)dr = x.
B B

Let A and 1 be the Lagrange multipliers associated with the first and second

constraints, respectively. Then the first order conditions are

—rm(r)—r_lz(r)r = A

rz(r)r_lm(r)_r =u
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Solving, we obtain

m(r) = (-\)" "

2(r) = (-\)u 1y

A
Note that z(r) = ;m(r). Integration and application of the constraints yields

A
X = .
9

It follows that

z(r) A
U(B.x) = JB[m(r)]rdr - JB(;)rdr = Ierdr.

Note that mean utility density is

T
X

m(r) ~

(—A)l_rurxr/r.

ulr,1/m(r),z(r)/m(r)] = u[r.1/m(r).x] =

For x > O this varies with r. Hence, the utility function of the finite
economy seems nonegalitarian. Yet the utility function is egalitarian. To
prove this claim we must shuffle agents and numeraire commodity without
reducing utility. This is possible because of a multicollinearity between the
two. The crux of the first order conditions is z(r) = xm{r). Whenever this
holds, J;u[r,l/m(r),z(r)/m(r)]m(r)dr = J‘xrdr = U(B,x). Mean utility density

B

r
X

is m(r)’ So, simply put, m(r) = cx’ with ¢ determined by the constraint

r

1 X 1
: r
J m(r)dr =1, i.e. ¢ = 37— —. Then mean utility density is —, 7 = ~ = J‘X dr
B J x'dr m{r) ¢ B
B
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and total utility equals utilitarian total utility, J x"dr. Note also that
B

U([r.r+h),x). h ! 0, reduces to x'h = u(r,h,x). as should be.

To derive demand in the finite economy, it is convenient to fix x
temporarily and to determine the best B(x) that goes with it. This is a
straightforward application of Berliant (1984). Then we must maximize

U[B(x),x] = J x'dr. Since this is continuous from above, it is maximized
B(x)

by some x*. Thus, [B(x%),x*] is demanded. Its existence can also be
established by Berliant and ten Raa (1986). Now let N > 1. Then, to avoid

excess demand, the Berliant (1984) benefit cost ratio must be constant at xX.

1

Consequently, p(r) = c*x% . Here c* is determined by Walras law, C*J x*'dr +
0
% Ay -y - oxx
Nx = Ny. Hence, c* = NJd N = Nx* _ 1 log xX.
x¥ dr
0
T 1+r
r
The continuum and finite economy prices are p(r) = l+r and p(r)
(1+41) u
o
r Yy
= c¥x* , respectively. Suppose they are equal. Then (putting r = O) 5 = c*,
o
rr r r r T X%
hence, 77 T cxy = c¥x¥ , or y = X%, Or .. i, = .
(1+r)1+r (1+r)1+(1/r) (1+r)1+(1/r) y

which cannot hold for all r. Hence, the equilibrium price systems differ.

David Pines’ market utility function is easily found by recalling the
expression for u, in the continuum model. Thus, we define the (finite model)
utility of a parcel and numeraire to be the equilibrium utility attained by a
continuum of consuﬁers (of measure 1) with that numeraire locating on that
parcel:

u(B.x) = S5 Hdr.
B 1+r
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The consequent finite model equilibrium price is

p(r) = ¢ ()T

1+r

where the constants are determined precisely as in the utilitarian case.
Interestingly enough, David Pines’ equilibrium price is different from both
the continuum model equilibrium price and the utilitarian/egalitarian finite
model equilibrium price.

Four remarks round off this example. First, if the number of consumers
increases, all equilibrium prices increase proportionally, so their relative
differences persist. Second, the income effects in this example do not form
the wedge between the continuum and the finite model. The difference persists
if we use the example u(r,h,x) = hl_rxr. Third, the crux of the difference
between the continuum and finite models is that, for the continuum model, the
marginal utility of numeraire is allowed to vary freely in one location (with
land consumption) without taking into account land consumption at neighbouring
points. In the finite model, the marginal utility of numeraire is pegged by a
land density of one and éan vary only through cross elasticities with
locations elsewhere. The consequent wedge between the marginal rates of
substitution in the two models yields an equilibrium price difference that
persists when the number of consumers increases. Lastly, since the utility
function in the finite economy is essentially a welfare function for the
consumers of the continuum economy, and since the associated finite economy
price is a decentralization of the welfare optimum that apparently differs
from the continuum equilibrium price, the welfare theorems may fail in the

continuum economy. For detailed analysis, we refer to Berliant, Papageorgiou,

and Wang (1986).
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Further Examples: Returning now to the question of existence of an
equilibrium of the continuum model, it was remarked above that the existence
of equilibrium for this model is quite tight. This is true even when all of
the standard assumptions used to prove that an equilibrium (or
quasi-equilibrium) exists hold. For the sake of brevity, we shall not go
through the details of the examples below (which are available from the
authors), but simply list utility functions for which continuum economies with

identical consumers do not have equilibria for a large set of endowments.

u(r,h,x)

min( |r|.h,x)

u(r,h,x) min(r2x.h) (r e [0,1])

u(r,h,x) = rx + h (r e [0,1]) Ny > =.

If one prefers decreasing utility as distance from the city center
increases, minor alterations of any of the examples in this paper will

suffice. The procedure has been detailed in Section II.

V. Conclusion

In a series of papers, we have seen that the standard continuum model of
spatial economics is flawed because it cannot generally be approximated by
finite models, and because equilibrium may fail to exist or the welfare
theorems may fail even under standard assumptions of general equilibrium
analysis. What distinguishes this model from others is that there is a
continuum of consumers, each of whom must choose one of a continuum of

locations {(or qualities) at which to consume completely divisible commodities.
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The major difference between the continuum and finite models is that the
marginal utility for numeraire depends only on land purchases at a given
location for the continuum model, while it depends on land purchases, of fixed
quantity, at many locations for the finite model. Thus, marginal rates of
substitution for the two models are not necessarily related.

The major difference between this type of continuum model and that of
Mas—Colell (1975) or Jones (1983) is that the consumption set is not convex
here due to the restriction to the choice of exactly one location, while
commodities are divisible.

There are several other ways of putting this. First, as noted in the
introduction, utility is associated with location as well as the other goods.
Hence, equilibrium prices must be equal to the marginal rate of substitution
at each location as well as prevent consumers from moving between locations.
In this sense, there are not enough prices or incomplete markets, since
location itself is not priced. Moreover, there is no requirement that utility
be quasi-concave in location, if this is considered to be a good, and so no
price support can be expected. If location simply indexes goods (in this
case, h), then it is not obvious that utility can be extended to a larger,
linear space (such as the space of distributions) in a quasi-concave manner.
Furthermore, the equilibria of such aﬁ extended model will generally involve
consumer purchases at many locations.

One point that this discussion brings out is the difference between
location as a commodity in itself and location as an attribute of a commodity.
For the differentiated products literature, one generally leans toward the

latter interpretation, but this is not entirely obvious if consumers purchase
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goods at only one location. Does the effect of location stay fixed or change
as more of the differentiated commodity is purchased? With regard to the
spatial or location theory literature, one leans toward the former
interpretation. This is clear from the additively separable form of utility
in location and land (see Beckmann (1969)). Presumably, this comes from the
assumption that weather, geography, and the utility cost of travel to work
have a fixed effect on utility, at least to some degree. Is location a good
in such models, and shoﬁld it be priced?.

We wish to make four final points before summarizing the main message of
this paper. First, the problems presented here arise primarily because
location enters explicitly into consumers’ utility functions. Second, it is
easy to close both the finite and continuum models while retaining the results
by using landlords who own all land initially but desire only composite
consumption good. Third, it does not matter whether the point-by-point or
aggregate market clearing condition is used for land, as the examples can be
modified to accept either. Fourth, the examples of continuum models without
equilibrium extend easily to a finite or countable number of locations.

The main point of this paper is that one should be very careful when
formulating and using models with location. The intricacies involved in using
location variables seem subtle and complex. The alternative mode of modeling
spatial economies developed by the authors in separate papers (Berliant (1985)
and Berliant and ten Raa (1986)) is not just a theoretical refinement of the
canonical model of location theory, but generates dissimilar equilibrium
results. Thus, it might be said that the two modes are qualitatively

different.
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