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ABSTRACT

Bargaining Problems with Uncertain Disagreement Points

We analyze bargaining problems with known feasible sets and uncertain disagree-
ment points. We impose on solutions the requirement of disagreement point concavity,
which says that uncertainty affects all agents in the same way. This requirement is
dual to one considered by Myerson [1981] and others for situations where the disagree-
ment point is known but the feasible set is uncertain. Together with weak Pareto
optimality, individual rationality and continuity, it characterizes a new family of solu-
tions, the directional solutions: let § be a function associating with each feasible set
a non-negative direction. Then, the directional solution relative to 6 is obtained by
choosing as solution outcome of each problem the maximal feasible point such that
the vector of utility gains from the disagreement point is in the direction determined
by applying 6 to the feasible set. These solutions generalize the weighted egalitarian
solutions. This subfamily, as well as the egalitarian solution, which it contains, can be
obtained by imposing various additional axioms, expressing that the solution should
respond appropriately to certain changes in the shape of the feasible set.






1. Introduction

Most axiomatic studies of the bargaining problem, as formulated by Nash [1950], have
been concerned with the responsiveness of solutions to variations in the feasible set.
Recently, however, several papers have appeared which focus on the disagreement
point (Livne [1986a,b|, Peters(1986b] and Thomson [1987]). The present paper is also
devoted to an analysis of the role played by the disagreement point in bargaining.

Specifically, we study situations in which the feasible set is known but the dis-
agreement point is not. To illustrate, suppose bargaining takes place today, without
the precise location of the disagreement point being known, this uncertainty being
resolved tomorrow. One option open to the bargainers is to wait until tomorrow and
to solve then whatever problem has come up. The other option is to use the expected
value of the disagreement point as new disagreement point and to solve the resulting
problem today. We impose on solutions the requirement that agents always agree
on solving the problem today. This requirement of disagreement point concavity is
dual to one considered by Myerson {1981] (variants of which are studied by Perles
and Maschler [1981] and Peters [1986a]) for situations where the disagreement point
is known but the feasible set is not.

We show that disagreement point concavity, when used in conjunction with the
standard conditions of weak Pareto optimality, individual rationality and continuity,
suffices to characterize a new family of solutions, which we call directional solutions.
They are defined as follows. Let § be a function associating with each feasible set

2 fxon-negative direction. Then, the directional solution relative to 6 is defined by
choosing as solution outcome of each problem the maximal feasible point such that

the vector of utility gains from the disagreement point is in the direction determined
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by applying & to the feasible set. These solutions generalize the well-known weighted
egalitarian solutions. We also show how this subfamily, as well as the egalitarian
solution, which it contains, can be obtained by imposing various additional axioms,
expressing that the solution should respond appropriately to certain changes in the
shape of the feasible set.

The paper is organized as follows. Section 2 contains some preliminaries and in-
troduces the basic axioms. Section 3 states our main axiom of disagreement point
concavity, and characterizes the family of directional solutions. Section 4 character-
izes the family of weighted egalitarian solutions, and its distinguished member, the
egalitarian solution. Finally, section 5 investigates in greater detail the role played by

each axiom in our main result, as well as the importance of our choice of domain.

2. Preliminaries
An n-person bargaining problem, or simply a problem, is a pair (S,d), where S is a
subset of R™ and d is a point in S, such that
(1) S is convex and closed,
(2) S lies below some hyperplane with a positive normal, i.e., there exist
p€ R%, ! and c € R, such that forall z € S,p-zéc,
(3) Sis comprehensive, i.e., for all z € S and for all y € ®", if y < z, 2 then
yES,

(4) there exists z € S with z > d.

S is the feasible set. Each point z of S is a feasible alternative. The coordinates

1 ?R'_:_+ = {2: € !R"lz.' > 0 for all t}
2 Vector inequalities: given T,y € R™ 2 2YhHIT2Y,T>Y.
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of z are the von Neumann-Morgenstern utility levels attained by the n agents through
the choice of some joint action. d is the disagreement point (or status quo). The
intended interpretation of (S,d) is as follows: the agents can achieve any point of S
if they unanimously agree on it. If they do not agree on any point, they end up at d.
Let X" be the class of all n-person problems and I'" be the class of all feasible sets
satisfying (1), (2) and (3).

A solution is a function F: X" — R" such that for all (S,d) € ", F(S,d) € S.
F(S,d), the value taken by the solution F when applied to the problem (S, d), is called
the solution outcome of (S, d).

We are interested in solutions satisfying the following axioms.

Weak Pareto Optimality (WPO). For all (S,d) € " and for all z € 8", if z > F(S,d),
thenz ¢ S.

Let WPO(S) = {z € S| for all '’ € R",z’ > z implies ' ¢ S} be the set of weakly
Pareto-optimal points of S. Similarly, let PO(S) = {z € S| for all 2’ € R*,z' > z
implies z’ ¢ S} be the set of Pareto-optimal points of S. If W PO(S) = PO(S), then

S is strictly comprehensive.
Individual Rationality (IR). For all (S,d) € T, F(S,d) > d.
Let IR(S,d) = {z € S|z > d} be the set of individually rational points of (S,d).

In the formulation of the next axiom, convergence of a sequence of sets is evaluated in

thg Hausdorff topology.

| Continuity (CONT). For all sequences {(S*,d*)} c T and for all (S,d) € T", if
S* — S and d* = d for all k, then F(S*,d*) — F(S,d).
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WPO requires that there be no feasible alternative at which all agents are better
off than at the solution outcome. IR requires that no agent be worse off at the solution
outcome than at the disagreement point. CONT requires that a small change in the
feasible set cause only a small change in the solution outcome. Note that we require
continuity with respect to the feasible set, not with respect to the disagreement point.

The following notation and terminology will be used frequently. Given z;,...,zk
€ R", con{zy,...,zx} is the convez hull of these points (the smallest convex set con-
taining them,) comp{z,,...,zx} is their comprehensive hull (the smallest comprehen-
sive set containing them,) and concomp{z;,...,zk} is their convez and comprehensive
hull (the smallest convex and comprehensive set containing them.) Given A C R",
Int(A) is the relative interior of A. A™! is the (n-1)-dimensional simplex. Finally,

given £ € R™ and 6§ € A", £(z,6) is the line passing through z in the direction 6.

3. The Axiom of Disagreement Point Concavity. The Main Characterization

First, we introduce our main axiom.

Disagreement Point Concavity (D.CAV). For all (S?,d'),(S?,d%) € L™ and for all
a€[0,1],if S? = §2 = S, then

F(S,ad' + (1 — a)d?®) > aF(S,d*) + (1 — @) F(S, d?).

Note that (S, ad! + (1 — a)d?) is a well-defined element of X".

This axiom, which should be compared to the axiom of concavity used by My-
erson [1981], can be motivated on the basis of very similar considerations of timing

of social choice. Consider agents today, who, tomorrow, will face one of two equally
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likely problems (S,d!) and (S, d?), having the same feasible set, but different disagree-
ment points. The agents have two options: either they wait until tomorrow for the
uncertainty to be lifted and solve then whatever problem has come up, or they con-
sider the problem obtained by taking as disagreement point the average of d* and d?®
and solve that problem today. The expected payoff vector associated with the first
option is ﬂs—’dlj"g—ﬂiﬂ and that associated with the second option is F(S, ilzﬁ),
since ﬂ‘{ﬁ is the corresponding “expected” disagreement point. If either F(S, ‘—ii,ldi)
weakly dominates ﬂsﬁil';_i'(ﬂ’l or the reverse holds, all agents agree on what to do.
A conflict may arise if neither of these inequalities holds. Imposing D.CAV on the
solutions prevents such a conflict.

Related axioms were introduced by Myerson [1981] (under the name of concavity),
Perles and Maschler [1981] (under the name of super-additivity) and Peters [1986a)]
(under the name of partial super-additivity). All of these axioms are concerned with
uncertainty about the feasible set, while disagreement point concavity is concerned
with uncertainty about the disagreement point.

Our main theorem is a characterization of a new family of solutions, ® which

generalize the egalitarian solution. 4

Definition. Given 6:T" — A" the directional solution relative to 6, E®, is defined

by setting, for each (S,d) € ", E®(S,d) equal to £(d,6(S)) N WPO(S).

Throughout this paper, the following lemmas will be useful. Note that they do
not involve CONT.

‘Lemma 1. Let F be a solution satisfying WPO, IR and D.CAV. Also let (S,d) € "

3 Actually we characterize continuous members of the family.

See formal definition in Section 4.



be such that F(S,d) € Int(PO(S)). Then for all z € £ N Int(S), where € ts the line
passing through d and F(S,d), F(S,z) = F(S,d).

Proof. First, note that £ is well-defined and that (S,z) € £" for all z € £N Int(S).
Let z € £N Int(S) such that = # d be given.

(2) z € (d, F(S,d)). Let X € (0,1) be such that z = Ad + (1 — X) F(S5,d), and {A*} C
(0,1) be such that A* < X for all k and A* — X. Also, let z* = %‘T_’\—;;‘i for all k. Note
that (S,z*) € " for all k. By D.CAV, F(S,z) > *F(S,zF)+(1-XF)F(S,d). Ask —
0o, zF — F(S,d) and by IR and the fact that F(S,d) € PO(S), F(S,z*) — F(S,d).
Therefore, we obtain F(S,z) > F(S,d). Since F(S,d) € PO(S), F(S,z) = F(S,d).
(b) d € (z,F(S,d)). By a similar argument, we could show that F(S,d) > F(S,z).
Since F(S,d) € Int(PO(S)) and by WPO, F(S,z) € WPO(S), we have F(S,z) =
F(S,d). Q.E.D.

Lemma 2. Let F be a solution satisfying WPO, IR and D.CAV. Also let S € T'™
and d*,d* € Int(S). If aF(S,d") + (1 — a)F(S,d?) € PO(S) for all a € [0,1] and
F(S,d') € Int(PO(S)), then the line €' passing through d* and F(S,d") is parallel to
the line €2 passing through d? and F(S,d?).

Proof. Let §,d?, d2%, £ and £2 be as in the Lemma. By Lemma 1, for all y € £1nInt(S),
F(S,y) = F(S,d). Let d® € £! N Int(S) be such that d® # d'. Without loss of
generality, suppose that d® € (d', F(S,d")). Now let z* = (3)(d* + d?) for i = 1,3. By
D.CAYV, we have

F(S,2") > %{F(S, d') + F(S,d*)} = %{F(S,dl) + F(S,d*)}=z  fori=1,3.

Since z € PO(S), we have F(S,2') = z for { = 1,3. Now let £2 be the line passing

through 2! and 23. For all z € £3 N Int(S) such that 2® = Az! + (1 — A)z for some
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A € (0,1), by D.CAV and X < 1, we have z > F(S,2). Since F(S,d!) € Int(PO(S))
and F(S,d?) € PO(S) imply z € Int(PO(S)), we have by WPO, F(S,z) = z. By IR,

£3 passes through z. This is possible only if £! is parallel to £2. Q.E.D.

Proof of Lemma 2.
Figure 1.

Now we present our main result.

Theorem 1. A solution satisfies WPO, IR, CONT and D.CAYV if and only ‘c'/ it is a

directional solution E° with an additional property, that § be continuous.
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Proof. It is obvious that all E® satisfy WPO, IR and D.CAV and, if é is continuous,
CONT. Conversely, let F be a solution satisfying the four axioms. Let (S,d) € " be
a polygonal problem such that Int(PO(S)) # 0. Let {S*|i € I}, where I C N, and
S'= {z € ®"| > piz; < ¢ for some p* € A" ! and ¢* € R} be a minimal collection
such that S = ﬂ,-e;S". Let ¢ € I be such that p* > 0. Then, by WPO and IR, there
exists z € Int(S) such that F(S,z) € Int(PO(S)NPO(S')). By Lemma 2, for all d €
Int(S),if F(S,d) € PO(S)NPO(S’), then the line connecting z and F(S, z) is parallel
to the line connecting d and F(S,d). Let the common direction be denoted §(S*). By
IR, 6(S*) > 0. Also, for all d € Int(S), if £(d, 6(S*)) NPO(S*) = y € Int(PO(S)), then
F(S,d) = y. Indeed, if y € Int(PO(S*) N PO(S)) = A*, then the conclusion follows
from Lemma 2. If y ¢ A%, let y! € A%, d! = ¢! —6(Si), d? = 1(d+d'),y? = J(y+v')
(see Figure 2). By D.CAV, F(S,d*)>1(F(S,d') + F(S,d)) = 3(y* + F(S,d)). Since
y! € AY, F(S,d?) = y®. Therefore, y>F(S,d), and since y € Int(PO(S)), and F
satisfies WPO, we conclude that y = F(S, d}, as desired.

Now let S* and S7 be such that PO(S*) n PO(S?) N Int(PO(S)) # @. Without
loss of generality, suppose ¢ = 1 and 7 = 2. We claim that §(S') = 6(S?). Let
a € PO(S) N PO(52) N Int(PO(S)), y* € AY, d* = y* — 6(S?) and d? = a — §(S?).
By the previous step, F(S,d!) = y! and F(S,d?) = a. By Lemma 2 applied to d!
and d?, we conclude that the line passing through d! and F(S,d!) is parallel to the
line passing through d? and F(S,d?) = a. Therefore, §(S!) = 6(S?). Repeating the
argument, we have §(S*) = §(S!) for all S* with p* > 0. We denote this common
non-negative direction by §(S5).

" We now claim that F(S,d) = E(S,d). If £(d,8(S)) n WPO(S) € Int(PO(S)),
then, by the previous argument, F(S,d) = E®(S,d). Otherwise, let {(S*,d)} C " be



a sequence of polygonal problems such that for all k, d € Int(S "), and

PO(comp{IR(S*,d)}) n PO(S*) C Int(PO(S¥)), and such that S* — S. By the
previous argument, F(S*,d) = E*(S*,d) for all k, and by CONT, F(S,d) = E%(S,d).

Since an arbitrary feasible set S € I'* can be approximated by a sequence of
polygonal elements of I'*, we conclude, by applying CONT again, that F(S,d) =
E®(S,d) for all (S,d) € £".

Finally, we note that CONT implies the continuity of § in the Hausdorff topology.

Q.E.D.

Proof of Theorem 1.
Figure 2.
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4. Further Characterizations

In this section, we impose additional axioms to characterize an important subfamily of
the family of directional solutions, namely, the family of weighted egalitarian solutions,

as well as its distinguished member, the egalitarian solution (see, for example, Kalai

[1977]).

Definitions. Given a € A"}, the weighted egalitarian solution with weights o, E<,
is defined by setting, for all (S,d) € ", E*(S,d) equal to £(d,a) N WPO(S). The
egalitarian solution, E, is the member of this family obtained by choosing a; = a; for

all 1, 7.

The following axiom, introduced by Nash [1950], has been widely used to charac-
terize various solutions. It says that if an alternative has been judged superior to all
others in some feasible set, then it should also be judged superior to all alternatives

in any subset (to which it belongs) provided the disagreement point is kept constant.

Independence of Irrelevant Alternatives (IIA). For all (S*,d!),(S?,d?) € £, if S% C
S', d! = d? and F(S1,d") € 57, then F(5?,d?) = F(S',d).

Theorem 2. A solution satisfies WPO, IR, CONT, D.CAYV and IIA if and only if it

ts a weighted egalitarian solution.

Proof. Obviously, all E* satisfy the five axioms. Conversely, let F be a solution
satisfying the five axioms. By Theorem 1, the first four axioms imply that F is a
_directional solution E? relative to some continuous §. Let S!,S%2 € I'™ be given.
Given c € R, let §° = {z € R™|}_ z; < ¢}. Then there exist ¢*, for i = 1,2, such that
for all ¢ < ', S°NS' #0. Let € = min{c!,c?}.

10



(a) If, for § = 1,2, there exists z° such that z* € Int(PO(S*)) N PO(S?), then let
T = SN S* and d' = z* — §(S) for § = 1,2. By definition of F, F(S*,d') = z* for ¢ =
1,2. By IIA applied to the pairs {(S°*,d"), (T, d")}, for i = 1,2, F(T*,d*) = F(S5',d').
Therefore, §(T*) = 6(S*) for ¢ = 1,2. We could show similarly that §(T*) = 6(S°) for
i = 1,2. Altogether, we have 6(S!) = §(S?).

(b) Otherwise, let {S**}, for § = 1,2, be a sequence of problems such that (a) S** — S*
and (b) Int(PO(S**)) N PO(S?) # @ for all k. Since, by (i), 6(S**) = 6(S?) for all ¢

and k, the continuity of 6 implies that §(S*) = 6(S?) for all 1. Q.E.D.

An interesting variant of Theorem 2 can be obtained by modifying IR and IIA as

follows.
Strong Individual Rationality (SIR). For all (S,d) € X", F(S,d) > d.

Weak Independence of Irrelevant Alternatives (WIIA). For all (S1,d!),(S2,d?) € =™,
if S2 = comp{F(S!',d")} and d' = d?, then F(S52,d?%) = F(S?,d}).

SIR, introduced by Roth [1977], requires that all agents be better off at the solution
outcome than at the disagreement point. WIIA, introduced by Thomson and Myerson
[1980], is a considerable weakening of IIA, since it applies to (at most) one subproblem

of the original problem. Both SIR and WIIA are satisfied by all well-known solutions.

Theorem 3. A solution satisfies WPO, SIR, CONT, D.CAV and WIIA if and only

if it 3s a wesghted egalitarian solution with positive wesghts.

Proof. First, note that all the E, for a > 0, satisfy the five axioms. Conversely, let F
satisfying the five axioms be given. By Theorem 1, F = E? for some continuous §. By

SIR, 6(S) > Oforall S € ™. Let S, 5% € I'™ be such that W PO(S)nW PO(S?) # 0.

11



Let z € WPO(.191) NWPO(S2), T = comp{z} and d = z — §(S*). Since 6(S*) >0,
z > z—6(S1), so that (S!,d),(T,d) € . By definition of F, F(S',d) = z. By WIIA
applied to the pair {(5*,d),(T,d)}, F(T,d) = z. Therefore, 6§(T) = 6§(S?!). Similarly,
we could show that 6(T) = 6(S?). Altogether, we have §(S!) = §(S?).

Now let S! and S2 be arbitrary elements of I'*. Let T € I'" be such that
W PO(T) N W PO(S') # ® and WPO(T) N WPO(S?) # 0. By applying the above
argument twice, 6§(T) = 6(S!) and §(T) = 6(S2). Therefore, 6(S!) = 6(S?) for all
S, 82 e T™, Q.E.D.

The egalitarian solution is the only weighted egalitarian solution satisfying the

following axiom.

Symmetry (SY). For all (S,d) € " and for all permutations =:{1,...,n} — {1,...,n},

if § = n(S) and d = n(d), then Fy(S,d) = F;(S,d) for all ¢,j =1,...,n.

This says that if the only information available on the conflict situation is contained in
the mathematical description of (S, d), and (S, d) is a symmetric problem, then there

is no ground for favoring one agent at the expense of another.

Corollary 1. A solution satisfies (i) WPO, IR, CONT, D.CAV, IIA and SY, or (i)
WPO, SIR, CONT, D.CAV, WIIA and SY if and only if it 1s the egalitarian solution.

These two statements are direct consequences of Theorems 2 and 3, respectively.

" Next, we investigate which invariance properties are satisfied by the E®. A positive
affine transformation is a function A: R — R" given by a € R} and b € R, such

that for all z € R™, Mz) = (ayzy + b;,...,a,T, + by).
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Scale Invariance. For all (S,d) € =™ and for all positive affine transformations A: R" —

R", F(A(S), A(d)) = A(F(S, d)).

Theorem 4. A directional solution E° satisfies scale tnvariance if and only if for

some 1, 6(S) = ¢; for all S € T™, where e; is the ** unit vector of A" 1.

Note that in that case E° satisfies the stronger property of ordinal snvariance, that is,
E’ is invariant under all monotone increasing transformations of the utility functions.
Finally, we note that E? satisfies homogeneity, that is, E® is invariant under positive
affine transformations with equal multiplicative coefficients (a; = a; for all ¢, ), if and

only if 6(AS) = 6(S) for all S € T'™ and for all A € R4 4.

5. Variants

In Theorem 1, we identified all solutions satisfying WPO, IR, CONT and D.CAV.
Here we investigate in greater detail the role played by every one of these axioms, by
exhibiting additional solutions that would be made admissible by removing it, and
evaluating the extent to which it could be strengthened or substituted for. We also

consider alternative domains of problems.

(i) Weak Pareto Optimality.
First, we ask whether in Theorem 1 the optimality axiom can be strengthened to the

following, while the other axioms are retained.

Pareto Optimality (PO). For all (S,d) € " and for all z € R", if £ > F(S,d), then
zé¢S.

PO says that F should exhaust all gains from cooperation.

13



The answer is negative, even if CONT is abondoned, as shown in the following

Theorem.

Theorem 5. There 15 no solution satisfying PO, IR and D.CAV.

Proof. See Figure 3. Let § = concomp{(8,2),(2,8)} and d! = (3,3). By PO and
IR, F(S,d!) € Int(PO(S)) and F(S,d') > (3,3). Let £! be the line connecting d’
and F(S,d"). By Lemma 1, F(S,d) = F(S,d") for all d € £! N Int(S). If £! is not a
horizontal line, then let £2 be the line passing through (2,8) and parallel to £! and d?
be a point in Int(S) and strictly above £2. If £! is a horizontal line, then let £2 be the
horizontal line passing through (8,2) and d? be a point in Int(S) and strictly below
¢2. By PO, F(S,d?) € PO(S). Note that £* is not parallel to the (well-defined) line

passing through d? and F(S,d?). This is in contradiction with Lemma 2.

This argument can easily be generalized to an arbitrary n > 3. Q.E.D.
Uz
(2,8)
2 F(S.d%)

F(S.y")=F(S,y)=%[F(S,d") +F(S.d%))]

(2
2
T\ F(s.a")
(3
2
3 g X
; (8.2)
X
e
( S
0 3 u,

Proof of Theorem 5.
Figure 3.
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If WPO is dropped from the list of axioms of Theorem 1, a large family of solu-
tions become admissible. First, for all (S,d) € £", let F be defined by F(S,d) = d.
This “disagreement solution™ satisfies IR, CONT and D.CAV, but not WPO. More
generally, let k:R4 — R, be a concave function such that k(t) < t for all t € R,.
Also, let 6:Z® — A™"! be a continuous function. Then, given (S,d) € I", let
F(S,d) = d+ k(||u||)u/| x| where u = E®(5)(S,d) — d, and ||ul| is the Euclidean norm
of u. Any such F also satisfies IR, CONT and D.CAV.

Note that a member of this family satisfies ITA if §(S) is constant for all S € T
and there exists f such that k(t) = ¢ for all t <  and k(t) = ¢ for all t > . These

truncated egalitarian solutions were introduced and characterized by Thomson [1985].

(i) Individual Rationality.
First, we show that IR and IIA can be replaced in Theorem 2 and Corollary 1 by the

following axiom.

Independence of Non-Individually Rational Alternatives (INIR). For all (S,d) € X",
F(S,d) = F(comp{IR(S,d)},d).

This axiom, introduced by Peters [1986a], says that the non-individually rational al-
ternatives are irrelevant to the determination of the solution outcome. It is a natural
condition since agents are guaranteed their utilities at d. It is also a very weak condi-

tion which is satisfied by all the major solutions.

Theorem 8. A solution satisfies WPO, CONT, D.CAV and INIR sf and only sf st ss

a wetghted egalitarian solution.

Proof. Since it is obvious that all E® satisfy the four axioms, we only show the

converse statement. Let F be a solution satisfying the four axioms. First, it is clear
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that WPO, INIR and CONT together imply IR. By Theorem 1, it follows that F
is a directional solution E° relative to some continuous §. Now let § € I'™ be such
that Int(PO(S)) # 0. Let z € Int(PO(S)). We claim that §(5) = §(comp{z}). Let
L= {z—X6(S)|A > 0}, let {d*} be a sequence of points in £ such that d* — z and finally
let S* = comp{IR(S,d*)}. By INIR, we have, for all k, F(S,d*) = F(S*,d*) = z,
which implies that §(S*) = 6(S). Since S¥ — comp{z}, the continuity of § implies
that 6(comp{z}) = 6(S).

Next, let S be an arbitrary problem in I'* and z € WPO(S). By CONT, we
obtain §(comp{z}) = 6(S).

Now we apply the argument used in the proof of Theorem 3 and obtain the desired

conclusion. . Q.E.D.

Corollary 2. A solution satisfies WPO, CONT, D.CAV, INIR and SY if and only sf

it 1s the egalitarian solution.

If IR is dropped from the list of Theorem 1, again many additional solutions
become admissible. In fact, any solution that is independent of the disagreement
point satisfies D.CAV trivially, but of course violates IR. The other requirements can

easily be satisfied.

(iii) Continuity. Given (S,d) € ", set F(S,d) = z if S = comp{z} for some z € R".

Otherwise, set F(S,d) = E(S,d). F satisfies WPO, IR and D.CAV, but not CONT.

(iv) Disagreement Point Concavity. The Nash and Kalai-Smorodinsky solutions ° sat-

5 Given (S, d) € L™, the Nash [1950] solution outcome of (S, d), N(S, d), is the unique max-
imizer of the product H,-EN(x,- — d‘) over IR(S,d), and the Kalai-Smorodinsky [1975] solution
outcome of (S, d), K(S, d), is the maximal point of S on the segment connecting d and G(S, d),
where, for each t, a,-(S, d) = maz{:z:i|:c € IR(S,d)}
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isfy WPO, IR and CONT, but not D.CAV. Many other examples could be constructed.

(v) domain

(a) Let £" be the domain of problems satisfying all propei‘ties defining " except
perhaps for convexity. On this domain, all E° satisfy the following weakening of
D.CAV, which is still an appealing condition since it guarantees that all agents agree

whether to wait or not.

Disagreement Point Uniformity. For all (S!,d!),(S%,d?%) € £" and for all a € [0,1],

if S' = $2 =5 and (S, ad! + (1 — a)d?) € £*, then either
F(S,ad' + (1 — a)d?) > aF(S,d") + (1 — &) F(S, d?)
or

F(S,ad' + (1 - a)d?) < aF(S,d") + (1 — ) F(S,d?).

(b) Let £% C ™ be the set of all members of L™ that are bounded from above, and I'}
be the corresponding domain of feasible sets. On X}, which is a commonly considered
domain, the four axioms of Theorem 1 still characterize the ES.

In addition, the following generalization of the directional solutions can be char-
acterized by weakening the individually rationality axiom. Let B*~! =
{zeR* Y |zl =12and —z ¢ R} and let £(d,6(S)) be the half-line originating at d

in the direction ().

Definition. Given 6 : I'y — B"~! the generalized directional solution relative to 6 is

defined by setting, for each (S,d) € T3, E%(S,d) equal to 2(d, 5(S)) n WPO(S).
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Note that for (S,d) € £7, the intersection (d, 6(S)) "W PO(S) always exists (and is
a singleton), so that these solutions are indeed well-defined. On I", they would not

necessarily be well-defined.

The characterization uses the following axiom, which considerably weakens IR.

Boundary (BOUND). For all sequences {(S*,d*)} c % and for all (S,d) € T}, if
Sk = S for all k and d* — z € PO(S), then F(Sk,d*) — z.

Theorem 7. A solution on L}, satisfies WPO, CONT, D.CAV and BOUND if and

only if it 1s a generalized directional solution.
The proof of Theorem 7 is similar to that of Theorem 1, and we omit it.

Next, consider the following appealing conditions:

Cutting (CUT). For all (5',d"),(52,d?) € £%, and for all ¢, if $2 C S?, d! = d? and
z € S'\S? implies z; < Fi(S!,d!), then F;(S2%,d%) < F;(S!,d?) for all 5 # 4.

Translation Invariance (T.INV). For all (S!,d'),(S2,d?) € £}, and for all t € R",
if $2 = 8!+t (= {2 € ®*|3z* € S? with z? = z! + t}) and d? = d' + ¢, then
F(S2,d%) = F(S1,d") +t.

CUT, which is a variant of a condition introduced by Thomson and Myerson [1980]
under the same name, requires that eliminating alternatives unfavorable to agent ¢
causes all other agents to (weakly) lose. T.INV requires the invariance of the solution
unaer translations. These are very weak conditions satisfied by all well-known solutions

(except that CUT is not satisfied by the Perles-Maschler [1981] solution. € )

6 The definition of the Perles-Maschler [1981]) solution is somewhat complicated, so we will not
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Theorem 8. A solution on L} satisfies WPO, SIR, CONT, D.CAV, CUT and T.INV

sf and only if it s a wetghted egalitarian solutson.

Proof. Obviously, all E< satisfy all six axioms. Conversely, let F be a solution on £%
satisfying the six axioms. It was noted earlier that, even on L}, the first four axioms
imply that F = E® for some 6. Let S',5% € Ty be given. First, we assume that
S and S? are the comprehensive hulls of compact sets. Let a;(S*) = maz csrz:
and 5°(S¥) € PO(S) be such that bi(S*) = a;(S*) for all i and k. Let ¢!, € R,
for all 1, be defined by t* = b*(S') — a(S?) and r* = b*(S?%) — a(S?). By T.INV,
§(S2 + 1) = 6(S2) and 6(S* + r*) = 8(SY) for all .

Let d = b(S2) + ¢* — 6(S'). Since 6(S') > 0 by SIR, (S!,d) € T} and
F(S',d) = b'(S?) + tl. Also, (S2+t!) C S! and if z € S!\(5% + t!), then
zy < Fy(S1,d). Therefore, by applying CUT to the pair {(S%+t1,d),(S',d)}, we have
Fj(S%*+t,d) < Fj(S!,d),for all j # 1. This implies 6;(52) = 6;(S%+t!) > 6,(S!). By
a similar argument applied to the pair {S!+r!, S?}, we conclude that 6,(S*!) > 6,(S?).
Therefore, 6;(S!) = 6,(5%).

We repeat the argument for all ¢, and obtain 6;(S?) = 6;(S?) for all i. Altogether,
we have §(S!) = §(S?), as desired.

If $* and S? are not the-comprehensive hulls of compact sets, we apply CONT.

Q.E.D.

give it in full. For our purposes, it suffices to have it for the following problems: given (S, d) € 22
such that S = comp{z,y} for some I,y € !Rz, the Perles-Maschler solution outcome of (S,d),
PM(S, d), is the midpoint of PO(S) n IR(S, d); also, given a symmetric problem (S, d) € 82,
PM(S, d) is the maximal feasible point of equal coordinates. To prove the astatement in parenthesis,

let S = comp{(l, %), (0, 1)} and §2 = comp{(l,O), (%, %), (0, 1)}, and d! = d? = 0. Then
PM(SI’ dl) = (—;—, %) and PM(S2’d2) = (—i—, %), which is in contradiction to CUT since agent
2 loses although (Sz,d2) is obtained from (Sl,dl) by “cutting®to the South-East of F(Sl,dl).

Perles and Maaschler [1981] also contains an example showing that their solution violates CUT.
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It is well-known that the Nash, Kalai-Smorodinsky and Perles-Maschler solutions
satisfy PO and IR. Therefore, Theorem 5 implies that these solutions do not satisfy
D.CAV. This can be seen directly in the example that follows.

The main purpose of the example however is to show that this negative result
still holds if we restrict the domain to the class of economic problems of fair division,
even in the one-commodity and two-agents case. * Such a problem is a triple (u,2,w)
with u = (u,u), where for each ¢, u;: Ry — R is agent i’s utility function, 1 € R,
is the aggregate endowment and w; € R, such that w; + wy; < 1 is the amount of
the commodity each agent receives when the conflict occurs. A feasible allocation for
(u,0,w) is a vector z = (z1,7;) € R2 such that z; + z; < Q. Let A(f2) be the set of

feasible allocations of (u,fl,w). Given (u,N,w), let
S(u,N) = {u € R?| there exists z € A(N) with u;(z;) = @ for all ¢} and
d(u,w) = (u1(w1),uz(ws)).

Given a bargaining solution F: X% — R2, let F' be the solution to the problem of
fair division defined by associating with each (u,,w) such that (S(u,),d(uv,w)) € £?,
the allocation(s) z € A(Q) such that u(z) = F(S(u,Q),d(u,w)).

Now let u; = up = w: R 5 R be defined by u(z) = min{z,8} and 2 = 10. Then
we have S(u,0) = con{(0,0),(8,0),(8,2),(2,8),(0,8)}. Also, let w! = (0,0), and
therefore, d! = d(u,w!) = (0,0). We obtain N(S,d!) = K(S,d') = PM(S,d") =
(5,5). Next, by setting w? = (0,7), we have d* = d(u,w?) = (0,7), which im-
plies N(S,d?) = (2,8), K(S,d?) = (2,2) and PM(S,d?) = (3,%). Now, let

ws = (0,7). Note that w?® = (1)(w! + w?). We have d® = d(u,w?®) = (0, 1), which

7 Chun and Thomson [1984] discuss the usefulness of bargaining theory in solving such problems.
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implies that N(S,d%) = (12,2%), K(S,d%) = (182,2L) and PM(S,d%) = (], %)

Since (3){N(S,d')+ N(S,d?*)} £ N(S,d®), (2){K(S,d") + K(S, d*)} £ K(S,d®) an
(H){PM(S,d") + PM(S,d*)} £ PM(S,d?), the desired conclusion follows.

u
2 (2.8)= N(S.d9)
2
R(s,d})ﬁ“&‘"
d2=(0,7) _ 4
N(S.83)
K(S.d% \ PM(s.d%)
N(s.d")=K(S,d")=PM(S.d")
d®=(0,7/2)
(8,2)
S
d'=0 u,

The Nash, Kalai-Smorodinsky and Perles-Maschler solutions
do not satisfy D.CAYV for economic problems of fair division
with one commodity and two agents.

Figure 4.
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